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ABSTRACT: This article examines the CO, adsorption—desorp-
tion kinetics of bituminous coal under low pressure injection (0.5
MPa) in the context of CO, sequestration in shallow level coal
seams. This study used two different sizes of intact core samples of
bituminous samples from seam no. 30 at the Experimental Mine
Barbara (EMB) in Katowice, Poland. Manometric adsorption
kinetics experiments were conducted on 50 mm dia. 60 mm long
coal core samples (referred to as EMB1) and S0 mm dia. 30 mm
long coal core samples (referred to as EMB2). The kinetics of
adsorption at injection pressures ranging from 0.1 to 0.5 MPa were
compared to those at elevated pressures ranging from 0.5 to 4.5 Time

MPa. For the first time, intact sample adsorption—desorption data

were fitted in pseudo first order (PFO), pseudo second order (PSO), and Bangham pore diffusion models. The PSO model fits the
data better than the PFO model, indicating that bulk pore diffusion, surface interaction, and multilayer adsorption are the rate-
determining steps. Comparing the equilibrium amount of adsorbed (g.) obtained for the powdered samples (9.06 g of CO,/kg of
coal at 0.52 MPa) with intact samples (11.68 g/kg at 0.53 MPa and 7.58 g/kg at 0.52 MPa for the intact EMB1 and EMB2 samples)
showed the importance of conducting experiments with intact samples. The better fit obtained with the Bangham model for lower
pressure equilibrium pressures (up to 0.5 MPa) compared to higher pressure equilibrium pressures (4.5 MPa) indicates that bulk
pore diffusion is the rate-determining step at lower pressures and surface interaction takes over at higher pressures. The amount of
CO, trapped within the coal structure following the desorption experiments strengthens the case for intact bituminous coal samples’
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1. INTRODUCTION

CO,, along with other greenhouse gases, is the primary
contributor to global warming. Accumulative emissions of CO,
are estimated to be 2035 + 205 Gt of CO, and increasing at
the current emission rate of 40 Gt CO,/year."” Carbon
capture and sequestration (CCS) in geological media is viewed
as a promising option for limiting the adverse effects of climate
change. Deep saline aquifer sequestration, mineralization with
rocks, and coal seam sequestration all seem to be viable
options for carbon sequestering. Countries were urged to
speed up the phaseout of coal use by 2030 in order to limit the
temperature increase <1.5 °C preferably by the end of the
century.”~® CCS in coal might be a practical option for the
effective use of un-mineable coal seams.”

Coal is a fractured and porous structured carbonous material
found in different ranks such as lignite, subbituminous,
bituminous, and anthracite depending on the coalification
process. The coal’s ability to adsorb gas demonstrates its
applicability for CCS operations. Adsorption of methane in
coal seams is facilitated by the high surface area and porous
nature of the coal.*’ According to studies, the coal surface has

© 2022 The Authors. Published by
American Chemical Society
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a stronger affinity for CO, than that for CH,, especially in
bituminous coal samples.'’~"*

CO, trapping in coal is influenced by several factors,
including sequestration capacity, gas permeability/injectivity,
pressure, temperature, coal swelling behavior, confinement
pressure, moisture content, and depth.”'>'® According to the
gas physical adsorption phenomenon, increasing the equili-
brium pressure increased the CO, adsorption capacity of coal.
The sorption isotherm, on the other hand, showed decreasing
trends at pressures near and above the critical pressures (7.38
MPa at a temperature of 304.1 K)."”~*' Typically, the reported
adsorption capacity increased with the decrease in temper-
ature,”” and the majority of the current literature reported the
adsorption isotherm obtained at higher temperatures (308.15,
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Figure 1. Core samples of bituminous coal cores extracted from large coal blocks. (a) EMB1: 50 mm dia. and 60 mm length, (b) EMB2: 50 mm

dia. and 30 mm length.

318.15, 328.15, and 377.15 K).23‘24 However, there is very
limited for the CO, adsorption on coal at lower temperatures
(298.15 and 290.15 K).>*¢

In general, coal seam depths of less than 1000 m are
preferred for CO, sequestration. Deeper than 1000 m, the
confining pressure may affect coal permeability, eventually
reducing the injectivity and CO, adsorption capacity.”’
Shallower than 1000 m depth, where the temperature and
pressure are expected to be less than the critical parameters of
CO, (31 °C and 7.38 MPa). The subcritical temperature and
pressure adsorption behavior of CO, is currently understood
to a lesser extent.” Most studies have used powdered coal
specimens to study adsorption capacity and kinetics, with very
limited data on intact samples.””*’ To understand the CO,
trapping capabilities of bituminous coal at subcritical pressure
and temperature, it is critical to conduct comprehensive
adsorption—desorption experimental studies on large intact
samples.

The CO, adsorption capacity of coal is correlated to its
swelling behavior, and matrix swelling creates a pathway for
CO, to permeate the coal’s microfractures and nanopores.*®
The reversibility of trapped CO, in the pores is critical for
estimating the coal seam’s residual CO, retaining capacity.
This parameter can be determined by examining the
adsorption—desorption kinetics and hysteresis patterns. As
such, a positive deviation in the hysteresis indicates that the
adsorbate gas is not readily released to its equilibrium pressure
and temperature values.”” The kinetics of CO, desorption from
coal has received less attention. Until now, it has been reported
that a large proportion of CO, gas molecules are trapped in the
structure of bituminous coal during the desorption process.'’
Previously, manometric experimental setups were used to
examine the CO, adsorption kinetics of powdered samples of
bituminous and anthracite coal at 35, 45, and 55 °C, as well as
pressures up to 25 MPa.”® Similarly, the spontaneity of CO,
reversibility from the coal’s nanopores can be explored by
conducting adsorption—desorption kinetics studies with an
intact specimen of porous bituminous coal under subcritical
CO, conditions.

The pseudo-first-order (PFO) kinetic model and pseudo-
second-order (PSO) kinetics have been widely applied for
predicting the gas phase adsorption of CO, on coal.”*~** The
equilibrium amount of CO, adsorbed on an intact bituminous
coal specimen obtained using the manometric method at
pressure ranges up to S MPa and temperatures of 298.15,
308.15, and 318.15 K were shown to be in good agreement
with the PSO model.>> The rate-determining factor of
adsorption was determined as the pore diffusion/condensation
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of CO,. The PSO model assumes that the CO, adsorption on
bituminous coal is dominated by surface interaction and bulk
diffusion.’® Nevertheless, the desorption kinetics of the intact
specimen holds the key information on the rate-determining
factor and most important to know the residual amount of
CO, remaining in the coal seam. Bangham and Burt (1924,
2002)***” successfully applied a kinetic model from the CO,
adsorption ex;)eriments conducted on glass and Bangham and
Sever (1925)° extended the pore diffusion model to the van
der Waals adsorption of gases, which were well fitted with the
model. Probing the rate-determining steps at low pressure
injection would highlight the prominent adsorption mecha-
nisms at low pressure injection at shallow depth coal seams.

From the current understanding, the limitation of available
desorption kinetic data from the large bituminous sample at
subcritical CO, conditions, investigation needs to be carried
out to substantiate the candidature of shallow level coal seams
as CCS reservoirs. Moreover, the gas phase adsorption of CO,
at low injection pressure, reversibility, and residual CO,
retained in the pores are the crucial information for shallow
level sequestration, which has been less understood. Especially,
the experimental studies” conducted in the subcritical range
showed very limited data representing the pressure range
below 0.5 MPa to ascertain the CO, behavior at these pressure
ranges. A large number of studies have been conducted at the
supercritical pressure range aiming to inject CO, in coal seams
located below 1000 m assuming that environmentally safe,
CO, can be stored at higher volume at high density. However,
laboratory conditions cannot be replicated in the field and CO,
can escape to different pressure and temperature regions in the
ground. Moreover the higher confining pressure at deeper coal
seams would affect the injectivity of CO,.*”*' Therefore, the
current study attempted a detailed adsorption—desorption
kinetic study of gas phase adsorption for shallow level
injection. The shallow level of CO, storage required low
pressure injection of gas phase CO, owing to the low confining
pressures. The present study demonstrates the experimentally
observed adsorption—desorption kinetics of CO, adsorption
on large cores of bituminous coal samples at low pressure
injections (less than 0.5 MPa) and at a temperature of 298.15
K obtained using a manometric adsorption apparatus. The data
were fitted into PFO, PSO, and Bangham models to predict
the rate-determining factors of adsorption and desorption
processes.

2. MATERIALS AND METHODS

The bituminous coal specimens have been procured from the “seam-
310” located at 30 m depth in Experimental Mine Barbara (hereafter
referred to as EMB), at the Central Mining Institute, Katowice,
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Figure 2. X-CT image reconstruction (a) and visualization of microfracture features (b,c; dark shades show the microfracture volume) in intact

bituminous coal cores.

Poland. A core drilling machine with a drilling bit with a diamond saw
tip (50 mm internal diameter) was employed to extract core samples
of 50 mm dia. 60 mm length (referred to as EMBI1) and 50 mm dia.
30 mm length samples (referred to as EMB2) (Figure 1). Ground
pulverized coal was passed through a 63 yzm mesh to obtain powdered
coal samples.

The large-sized adsorbent was characterized for its microfracture
network using X-ray computed tomography (X-CT) (Figure 2). The
scans were used to quantify the microfractures and not the pores. The
microfractures are separated from the matrix, and the volume of these
flow paths (connected and unconnected fracture network) is
quantified to compare with the He-pycnometry method. The images
of the physical structure of the coal core adsorbent showed the
unconnected fracture network volume which will become available to
CO, owing to the swelling behavior of bituminous coal as described
in previous studies.””* The connected and unconnected void
volume was about 1.5% of the bulk sample. Even though the volume
was a negligible addition to the adsorption cell void volume (vy; see
Section 2.1), the vy was adjusted with the excess volume measured by
X-CT to calculate the molar volume of the adsorbed phase.

Proximate and ultimate analysis of EMB coal showed a moisture
content of 7.54 and 6.39%, respectively, for the “as received” and
“analytical” samples. The carbon content is 71.5% (approx.), the
maximum ash content is 15.56%, and the vitrinite’s reflectance is 0.57
+ 0.03%. The coal is classified as low rank bituminous coal. Table 1
summarizes the properties of the coal samples.

2.1. Measurement of CO, Adsorption Kinetics by Mano-
metric/Volumetric Method. A manometric gas adsorption cell was
employed to determine the CO, adsorption capacity of the core
samples. The schematic of the apparatus and experimental setup is
presented in Figure 3. The apparatus was designed and installed by
GDS Instruments UK. A detailed description of the experimental
setup is available at Mosleh (2014).*¢

To measure CO, adsorption in a manometric cell, a known amount
of gas (nicoz) is injected into the reference cell (RC) and expanded
into the sample cell (SC), which contains a coal sample that is
degassed prior to the test using a vacuum pump attached to the
adsorption cell (each sample was degassed for 24 h) (Figure 3). The
amount of gas (nC°?) injected in the RC was calculated using the
perfect gas law (eq 1) by precisely measuring the available volume for
gas (v,) in the adsorption cell, pressure (p), and temperature (T).
The volumes of adsorption cells were measured using the He-
pycnometry method.*” The pressure was measured using two pressure
transducers connected to RC and SC (Figure 3). With time, the CO,
gas pressure injected in the adsorption cell reduces because the gas
molecules continue to adsorb on the adsorbents (coal). At a given
time (t), the difference between the amount injected (nicoz) and the
amount remaining in the gas phase (nec 92) is recorded as the amount

of CO, adsorbed or desorbed (thaOdz

equilibrium is attained, the pressure in the RC is progressively

) on the coal specimens. Once the
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Table 1. Proximate and Ultimate Analysis of the EMB Coal
Specimen”

parameter value
As Received
moisture (%) 7.54
ash (%) 15.56
S total (%) 0.51
calorific value (kJ/kg) 21708
Analytical

moisture W* (%) 6.39
ash A* (%) 16.52
volatile matter V* (%) 33.94
calorific value A* (kJ/kg) 23019
c* (%) 718
H (%) 3.70
N* (%) 0.87
S* total (%) 0.54
S (%) 0.54
0* (%) 14.03

0.57 + 0.03%
“Oxygen calculated as follows: (O%) = 100 — (W*) — (A*) — (C*) —
(HY) = (57 = (N*) %.

vitrinite reflectance

%] Needle valve
RC Reference cell
SC Sample cell

@ Vacuum pump

>

>k 'mJ
g r%\ 20

/L
)
RC SC.

Water bath thermostat

®

)

)

To extractor

)

Gas cylinder

Figure 3. Schematic of the manometric gas adsorption cell and
experimental setup.

increased for the next pressure step up stages (the pressure ranges are
given in Table 2), and the aforementioned procedures are repeated to
calculate the cumulative amount of adsorbed CO, corresponding to
the thermodynamic equilibrium pressure at a given time. After
completing the adsorption test steps, pressure in the RC is
progressively reduced and the amount of desorbed CO, is
determined. In this experiment, the pressure values were recorded
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Table 2. CO, Adsorption—Desorption Experimental
Program

experiment
no. sample conditions tests

EXP1 EMBI: 50 mm 0.5—4 MPa, 298 K CO,
dia. X 60 mm length adsorption

3.6—0.085 MPa, CO,
298 K desorption

EXP2 0.1-0.5 MPa, CO,
298 K adsorption

0.41-0.041 MPa CO,
desorption

EXP3 EMB2: 50 mm 0.1-0.4 MPa, CO,
dia. X 30 mm length 298 K adsorption

0.37-0.38 MPa CO,
desorption

EXP4 powder (<63 ym) 0.1-0.5 MPa Cco,
adsorption

every 10 s using a data logger. The equilibrium pressure was defined
as a pressure value that remained steady for at least 4 h. The selected

data points were used for calculating the adsorbed amount of CO, (
co,

9,2 /de) at a time (¢) during adsorption or desorption by employing
the following equationsz‘s_52
Co
CO. 2 M
ncoz _p 2Mvrc. nC02 _ Peq 7
i - ) t - —
RTZ@’V) RTZ@’V) ( 1)
2C0s _ €O,
‘Lca?iz =t : amount adsorbed during adsorption
, m,
(2)
co, co,
Cco n; - n . )
q, dez = amount adsorbed during desorption
’ m

(©)
where qtcaodz/de is the mass of CO, adsorbed on coal (g of CO,/kg of

coal) at time t during adsorption or desorption; peioz is the

equilibrium pressure of CO, (Pa); R is the universal gas constant
(R = 8.314 Pa-m®/K/mol); and M is the molar mass of CO, (M =
44,01 g/mol). vy is the void volume available for gas (m®), the
available void volume for gas (V) in the RC and SC is approximated
by He-pycnometry method,*” Z is the compressibility factor of CO,
which is calculated using cubic form of Peng—Robinson equation of
53

state, niCO2 is the known amount present in the gas phase at

beginning of the adsorption experiment (g of CO,), and n% is the
amount of CO, at the gas phase at time t.

Adsorption experiments were conducted using two different sizes
of EMB coal core samples, S0 mm dia. 60 mm length (referred to as
EMB]; Table 2) and 50 mm dia. 30 mm length (referred to as EMB2;
Table 2) samples, at an injection pressure range of 0.1—0.5 MPa. The
experiments were termed EXP2 and EXP3 for EMB1 and EMB2,
respectively. The pressure range was chosen to comprehend the
adsorption process of CO, injection at a low pressure in a shallow
level coal seam with low confining stresses (an approximate vertical
stress of 0.51— 0.7 MPa is expected at 30 m depth). One sample with
a 50 mm dia. 60 mm length (EMBI1) was tested at an intermediate
pressure range of 0.5—4.5 MPa (termed as EXPI; Table 2) to
compare the kinetics of the adsorption process at elevated pressure
range in the subcritical range. The adsorption kinetics process of the
large cores was compared with a powdered sample (termed as EXP4;
Table 2). The experimental conditions are outlined in Table 2.

2.2. Kinetic Models. Adsorption kinetics data acquired from the
experiments were fitted into the PFO and PSO rate eqs 4 and S to
ascerﬁtfirsl the rate-determining steps in CO, adsorption on EMB
coal.”™?
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PFO: ¢, = qe(l — ekt (4)

t

PSO: g, = -

1
2
knlqe

(5)

where g, = mass adsorbed per mass of adsorbent at time t (g of CO,/
kg of coal), g, = mass adsorbed per mass of adsorbent at equilibrium,
g of CO,/kg of coal, k,, = first-order rate constant for adsorption, h™",
and k,, = second-order rate constants for adsorption, kg/g h.

The PFO and PSO models have not so far been modeled for the
desorption kinetics of CO, from coal. The current study adopts the
desorption kinetic models proposed by Njikam and Schiewer
(2012),°° in which the adsorbate concentration remaining in the
adsorbent during the desorption is the rate-determining factor (eqs 6
and 7).

L
e

PFO: q, = qe/ekd‘t (6)

qe
(1 + (kyq,t)) (7)

where g, = mass adsorbed per mass of adsorbent at time ¢, g of CO,/
kg of coal, g, = mass adsorbed per mass of adsorbent at the time of
equilibrium, g of CO,/kg of coal, ky; = first-order rate constant for
desorption, h™' and ky, = second-order rate constants for desorption,
kg/g h.

The best fitting model was validated by the coefficient of
determination (R?) combined with the standard error of the estimate

(eq 8).
} (8)

where g, is the experimentally observed mass of CO, adsorbed at
time t (g of CO,/kg of coal), gg is the predicted mass of CO,
adsorbed at time t (g of CO,/kg of coal) by PFO or PSO models, and
n is the number of experimental observations.

Bangham model have been used to predict the influence of the pore
diffusion, the slowest step of the gas adsorption (eq 9).*>*’

PSO: q, =

Standard error of estimate (SEOE) =

‘Z (qobs - qﬁt)z

q, = q,(1 — exp(=kyt")) (9)

where g, is the mass adsorbed per mass of adsorbent at time ¢ (g of
CO,/kg of coal), g, is the mass adsorbed per mass of adsorbent at the
time of equilibrium, g of CO,/kg of coal, and k, (h™") and n are
constants of the model.

3. RESULTS AND DISCUSSION

The amount of CO, adsorbed—desorbed per kg of coal is
calculated using eqs 2 and 3, respectively, for each pressure
step of the adsorption and desorption experiments described
earlier. The PFO, PSO, and Bangham models were fitted to the
experimental data and to determine the rate-determining steps
in CO, adsorption on intact bituminous coal.

3.1. Analysis of CO, Adsorption—Desorption Kinetics
Data. The results of the PFO and PSO model fits to the
kinetics data are presented in Figures 4—7 and the summary of
the fitting exercises is in Tables 3—6. Overall, the PSO model
fits the data better than the PFO model. The PSO model
assumes that available surface and pore volume are driving
factors and diffusion, or chemisorption/surface interaction, are
the primary rate-determining steps. In Figures 4—6, the
experimental results of adsorption kinetics are plotted against
the PFO and PSO models for intact core samples (EXP1,
EXP2, and EXP3), and the model parameters are listed in
Tables 3—5. The R? values combined with the standard error
of estimate indicate that the PSO model adequately describes

https://doi.org/10.1021/acs.energyfuels.2c01426
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Figure 4. CO, adsorption—desorption kinetics data fit to PFO and
PSO models. Sample EMB1 and experimental condition EXP1 (the
numbers in the plot represent the injection pressure stages; Table 3).
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Figure S. CO, adsorption—desorption kinetics data fit to PFO and
PSO models. Sample EMB1 and experimental condition EXP2 (the
numbers in the plot represent the injection pressure stages; Table 4).

CO, adsorption on coal. Furthermore, the PSO kinetic model
analysis was used to predict CO, adsorption on solid
adsorbents, as well as the previously observed relationship
between the PSO rate constant, k,,, and the diffusion
coeflicient of adsorbent microspheres in the unipore model,
which says that CO, adsorption on coal is controlled by pore
diffusion.** ™

At higher pressures (up to 4.5 MPa; Figure 4, Table 3), the
inconsistent relationship between the equilibrium pressure and
the kinetic rate constant (k,,) of the PSO model indicates that
the heterogeneous nature of the coal samples has an effect on
adsorption and that bulk pore diffusion, surface physical
adsorption, and pore filling occur first, followed by slow surface
interactions. For example, as the equilibrium pressure
increased from 0.63 to 2.5 MPa, the PSO rate constant (k,,)
increased (from 0.21 to 0.32 kg/g h). At 3.6 MPa, the rate
constant fluctuated to 0.31 kg/g h. The pressure independence
of PSO parameters (k,, and gq,.) at lower pressures (0.5 MPa;
Tables 4 and S; Figures S and 6) indicates that the varying
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Figure 6. CO, adsorption—desorption kinetics data fit to PFO and
PSO models. Sample EMB2 and experimental condition EXP3 (the
numbers in the plot represent the injection pressure stages; Table S).
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Figure 7. CO, adsorption kinetics data fit to PFO and PSO models.
Powdered sample and experimental condition EXP4 (the numbers in
the plot represent the injection pressure stages; Table 6).

sizes of the pores in the coal have an effect on the adsorption
process and that different mechanisms determine the rate of
CO, adsorption on intact coal samples. The higher rate
constants (k,; Tables 4 and S) observed in low pressure
adsorption experiments indicate that monolayer adsorption/
pore filling occurs initially, followed by multilayer or pore
condensation.”® As previous studies aimed to achieve higher
density and higher adsorption at supercritical injection, no
detailed comparative adsorption kinetic data for large intact
samples at the given low temperature and pressure ranges has
been published. As a result, the rate constant values presented
in the current study for the intact bituminous coal samples had
to be thoroughly evaluated.

Compared to the equilibrium times of lower pressure (Table
4; EXP2) experiments of EMBI with those of high-pressure
experiments (Table 3; EXP1), it took longer to attain
equilibrium at higher pressures. The equilibrium times of the
individual pressure stages show that the adsorption was a slow
process in the low-pressure experiments. For example, to
adsorb 10.06 g of CO,/kg of coal, it took 36 h to reach
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Table 3. PFO and PSO Model Parameters Obtained from Fitting EMB1 EXP1 Experimental Data®

pressure step-up stage

no. PFO PSO
pressure A pressure B equilibrium time ka]1 de1 k. qe
adsorption (MPa) (MPa) (h) (h™) (g/kg) R* SEOE (kg/gh) (g/kg) R*> SEOE
1 1.03 0.63 32 1.5 9.39 0.99 0.67 0.21 9.81 0.89 0.41
2 2.02 143 96 2.32 16.8 0.99 0.77 0.23 16.9 091 0.67
3 3.02 2.50 31 42 22 0.99 0.98 0.32 21.99 0.81 0.68
4 4.0 3.60 14 3.71 30.98 0.99 1.46 0.31 31.2 0.66 14
pressure step-up stage
no. PFO PSO
pressure A pressure B equilibrium time kd]l qa1 Gea
desorption (MPa) (MPa) (h7™) (g/kg) R? SEOE kg (kg/gh)  (g/kg) R? SEOE
1 3.08 3.21 14 0.001 32.6 0.76 0.08 3.7 X 107° 32.62 0.76 0.08
2 2.55 2.73 18 0.001 32.1 0.18 0.58 5.5 % 107° 32.2 0.18 0.58
3 2.01 223 22 0.002 30.9 0.79 0.199 6.9 x 107° 30.88 0.78 0.199
4 1.5 1.75 27 0.002 29 0.68 0.335 89 x 107° 29.1 0.69 0.332
S 1.02 1.31 36 0.002 26 0.74 0.353 0.0024 26.66 0.74 0.348
6 0.051 0.085 17 0.013 20 0.72 0.79 0.00073 20.27 0.75 0.76
“A = injection pressure in RC. B = equilibrium pressure in (RC + SC) referring to the pressure at A.
Table 4. PFO and PSO Model Parameters Obtained from Fitting EMB1 EXP2 Experimental Data®
pressure step-up stage
no. PFO PSO
pressure A pressure B equilibrium time ky Ge1 ky Ge
adsorption (MPa) (MPa) (h) (™) (g/kg) R* SEOE (kg/gh) (g/kg) R? SEOE
1 0.14 0.035 22 1.83 1.73 0.99 0.14 1.47 1.81 0.99 0.097
2 0.22 0.09 53 0.86 4.22 0.99 0.39 0.54 4.09 0.77 0.21
3 0.32 0.19 14 3.71 6.27 0.97 1.04 1.17 6.43 0.58 0.41
4 0.45 0.28 41 5.02 8.64 0.98 121 0.37 9.43 0.86 0.27
S 0.53 0.39 39 4.53 11.68 0.99 0.29 1.12 11.81 0.6 0.32
6 0.64 0.51 24 4.47 13.99 0.99 0.28 1.1 14.14 0.47 0.38
pressure step-up
stage no. PFO PSO
pressure A pressure B equilibrium qa qe
desorption (MPa) (MPa) time (h) kg (07Y) (g/kg) R? SEOE kg (kg/gh)  (g/kg) R? SEOE
1 0.41 0.44 6.5 0.01 14.2 0.77 0.046 0.0007 14.2 0.77 0.046
2 0.31 0.37 6 0.006 13.71 0.66 0.103 0.0005 13.71 0.67 0.102
3 0.26 0.31 25 0.007 13.14 0.73 0.094 0.0005 13.14 0.75 0.093
4 0.2 0.25 14 0.002 12.39 0.5 0.145 0.00015 12.39 0.5 0.145
S 0.15 0.21 13 62 x 107° 11.95 0.71 0.002 5.15 x 107¢ 11.95 0.54 0.002
6 0.1 0.16 20 0.004 10.78 0.54 0.142 0.0004 10.78 0.55 0.014
7 0.063 0.094 20 0.007 9.76 0.59 0.23 0.0007 9.77 0.6 0.23
8 0 0.03 S 0.014 9.28 0.78 0.103 0.002 9.28 0.78 0.102

“A = injection pressure in RC. B = equilibrium pressure in (RC + SC) for the injection pressure A.

equilibrium pressure of 0.63 MPa (stage no. 1, Table 3) in high
injection pressure experiments. To adsorb a similar amount of
CO, (9.43 g of CO,/kg of coal), the EMB1 sample required
130 h of cumulative equilibrium time (stage nos. 1 to 4; Table
4) at low pressure injections (up to 0.5 MPa). The results from
the current study indicate that the longer equilibrium times
and small step-up injection pressures can yield maximum
adsorption capacity at low pressure injections (up to 0.5 MPa;
Figures S and 6; Tables 4 and 5) in shallow level bituminous
coal seams.

Equilibrium times of desorption kinetics show that the
equilibrium was attained faster than the adsorption pressure
step up kinetic experiments. However, the amount remaining
adsorbed was greater than that of the corresponding
equilibrium conditions of the adsorption because all the
adsorbed CO, was not readily desorbed, or the process was not
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reversible, which further explains the better fit of the second-
order kinetic model. The significant amount of residual CO,
trapped in the coal samples (Figures 4—7) was attributed to
the pore trapping mechanisms such as pore blockage, gas
cavitation, adsorption induced deformation, and pore network
effect or ink bottle effect.’® *° The results in Figure 4 show
that 17 g of CO,/kg of coal remained in the EMBI coal core at
the end of the desorption experiments. Similar CO, entrap-
ment was observed during the lower pressure EXP2 and EXP3
tests on the intact EMB1 and EMB2 coal cores (Figures S and
6). The residual amount of CO, retained in the EMBI and
EMB?2 samples, during low injection pressure, was about 8 g of
CO,/kg of coal (up to 0.64 MPa injection pressure) and 2.52 ¢
of CO,/kg of coal (up to 0.52 MPa injection pressure),
respectively. This means that small increments in injection
pressures can result in an increased amount of residual CO,
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Table 5. PFO and PSO Model Parameters Obtained from Fitting EMB2 EXP3 Experimental Data®

pressure step-up stage

no. PFO PSO
pressure A pressure B equilibrium time ka]1 de1 k. qe
adsorption (MPa) (MPa) (h) (h™) (g/kg) R? SEOE  (kg/g h) (g/kg) R? SEOE
1 0.13 0.058 14 3.0 1.09 0.76 0.17 3.57 1.19 0.86 0.12
2 0.21 0.12 42 3.57 2.65 0.65 0.32 12.18 2.79 0.81 0.23
3 0.32 0.21 21 14.74 4.39 0.36 0.49 8.98 5.03 0.3 0.5
4 0.41 0.3 28 7.27 6.07 0.42 0.52 14.7 7 0.47 0.46
S 0.52 0.40 29 36.17 8.18 0.15 0.52 10.77 8.66 0.69 0.31
pressure step-up stage
no. PFO PSO
pressure A pressure B equilibrium time kg, qar kg Gex
desorption (MPa) (MPa) (™) (g/kg) R* SEOE (kg/gh) (g/kg) R*  SEOE
1 0.33 0.37 11.5 0.025 7.98 0.80 0.30 0.0004 8.43 091 0.2
2 0.24 0.3 1.8 0.053 6.12 0.88 0.07 0.009 6.52 0.88 0.07
3 0.15 0.23 4.5 0.036 542 0.98 0.1 0.007 5.82 0.88 0.1
4 0.021 0.13 7.5 0.068 4.29 0.76 0.34 0.02 4.7 0.8 0.22
N 0.06 0.08 S.S 0.06 2.87 0.99 0.08 0.024 3.26 0.92 0.08
“A = injection pressure in RC. B = equilibrium pressure in (RC + SC) for the injection pressure A.
Table 6. PFO and PSO Model Parameters Obtained from Fitting Powdered Coal EXP3 Experimental Data®
pressure step-up stage
no. PFO PSO
pressure A pressure B equilibrium time
adsorption (MPa) (MPa) (h) k., Qe R*  SEOE ks Qe R*  SEOE
1 0.11 0.042 13.4 10.10 0.73 0.83 0.12 16.23 0.76 0.89 0.09
2 0.20 0.095 16.64 90.47 1.94 0.59 0.26 66.83 2.04 0.75 0.2
3 0.31 0.17 17.88 130.87 3.75 0.49 0.39 70.51 3.88 0.76 0.27
4 0.42 0.27 25.13 458.37 5.54 0.22 0.46 14.24 6.11 0.99 0.06
S 0.51 0.36 47.92 649.36 7.64 0.15 0.45 149.45 7.79 0.59 0.34
6 0.52 0.43 32.62 967 9.06 0.27 0.27 397 9.1 0.45 0.28

“A = injection pressure in RC. B = equilibrium pressure in (RC + SC) for the injection pressure A.

retained in the micropore channels of bituminous coals,
independent of sample sizes used in the experiments.
Therefore, residual CO, in intact cores is correlated with the
equilibrium pressures, indicating the small amount of residual
was achieved for EMB2 as the pressure was not sufficient for
the CO, to enter the ultra-nanopores. This further strengthens
the assumptions of the PFO and PSO models of surface
interaction and pore diffusion and condensation. Overall, the
analysis indicates that CO, adsorption on bituminous EMB
coal is controlled by the pore diffusion process in the initial
stages and surface interaction takes over. To compare the
desorption kinetics results obtained from PFO and PSO
models (Tables 3—5), there are no published desorption
kinetics data. Therefore, detailed desorption kinetics studies
needed to be studied further to ascertain the reversibility of
CO, adsorption.

The powder sample showed an increasing trend in
equilibrium times (Table 6), with the equilibrium pressure
demonstrating that large, exposed polarized sites cause surface
interaction mechanisms to take over following pore diffusion.
The active sites in bituminous coals are created by functional
groups and carbon-containing groups, which become more
exposed when coal is pulverized.”*®" For the powdered sample
experimental data, the SEOE values show that the PSO model
fit better than the PFO model, supporting the above-
mentioned interpretation that surface interaction is the slowest
rate-determining step rather than physical adsorption and
diffusion processes (Figure 7; Table 6). A similar type of
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experiment conducted by Gabrus et al. (2021)** showed
significantly higher k,; and k,, values than the current study
(k,q; was in the range of 1.6 X 10° to 1.0 X 10° h™" and kg,
was in the range of 5.7 X 10° to 12 X 10° h™'). However, the
present study intends to allow the equilibrium to occur for
each pressure step, whereas in the previous experiments the
equilibrium values were reported for only 24 h (for pressure
ranging from 0.5 to 6.4 MPa).

Despite the increased surface area of the powdered samples,
the intact samples showed similar equilibrium adsorbed
amount (g,) values obtained for the powdered samples at
comparable pressure and temperature conditions. The ¢,
values were 11.68 g/kg (at 0.53 MPa) and 7.58 g/kg (at
0.52 MPa) for the intact EMB1 and EMB2 samples, whereas
the powdered sample showed 9.06 g/kg (at 0.52 MPa). These
results indicate the influence of channel-like pores on the high-
density CO, (liquid like) adsorption in intact samples. These
pores will be lost or modified when the samples are powdered,
and less density gas phase adsorption occurs in the large
surface area exposed.

3.2. Bangham Model for the Pore Diffusion-Con-
trolled Adsorption Process. To ascertain the pore diffusion
theory, the experimental data set was fitted into the Bangham
model. The Bangham model fitting, shown in Figure 8,
predicts that the g, values are closely matched to those
calculated using the PSO and the PFO model. Moreover, for
PFO and PSO the data needed to be fitted segmentally for the
specific equilibrium pressure stages, whereas the entire data set
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Figure 8. CO, adsorption—desorption kinetics data fitted to the Bangham pore diffusion model. (a) Sample EMBI, experimental condition EXP1
and (b) EXP2; (c) sample EMB2, experimental condition EXP3; and (d) powdered sample and experimental condition EXP4.

has been (all the stages) used in the nonlinear fitting of the
Bangham model (Figure 8). The model parameters and the
coefficient of determination (R?) values listed in Table 7 show
that the CO, adsorption on bituminous EMB coal is pore
diffusion controlled at a pressure range of 0.5 to 4.5 MPa at a
temperature of 298.15 K.

The pressure dependency of the adsorption kinetic model
parameters (n and k) and the coefficient of determination
(R?) values show that bulk pore diffusion is not the only the
rate-determining factor. At lower pressure experiments, the

Table 7. Fitting Parameters of the Bangham Pore Diffusion
Model

experiment sample k, (h7™h) n SEOE R?
EXP1 EMBI1 0.061 0.58 2.94 0.87
EXP2 0.0006 1.6 0.98 0.94
EXP3 EMB2 0.004 1.52 0.35 0.98
EXP4 powder 0.007 1.18 0.45 0.98
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parameters n and k, are greater than at higher-pressure
experiments, implying that the pore diffusion is the rate-
determining step at lower pressures and the surface interaction
is the rate-determining step at higher equilibrium pressures.
The coefficient of determination values complies with the
observations as the value observed for high pressure experi-
ment (up to 3.6 MPa) was 0.87 and which are smaller than
that of low-pressure (up to 0.5 MPa) adsorption experiments
of same sized EMBI coal (R* = 0.94). Much lower equilibrium
pressure experiments with the EMB2 sample (up to 0.4 MPa)
were in good agreement with the model (R* = 0.98),
underscoring that the pore diffusion is the predominate rate-
determining factor at lower pressure and surface interaction
takes over at higher pressures.”” The standard error of estimate
was correlated with the coefficient of determination (R?)
values. The powdered samples showed a similar trend to the
pore diffusion model data fitting (Figure 8d). The better fit in
the PSO model for powdered materials (Figure 7 and Table 6)
and longer equilibrium durations imply that the rate

https://doi.org/10.1021/acs.energyfuels.2c01426
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controlling process is CO, interaction with polarized sites,
followed by early pore diffusion and condensation.

4. CONCLUSIONS

This study presented extensive data from adsorption—
desorption kinetics for injection pressures of up to 0.5 MPa
in the context of injecting CO, into shallow level coal seams
for the first time. The powdered samples took longer to reach
equilibrium, indicating exposed surface sites that are unlikely to
be present if the coal is intact. At the same corresponding
equilibrium pressures, the comparable equilibrium amount of
CO, adsorbed on the intact and powdered samples indicated
the importance of conducting experiments with large intact
samples.

The PSO model fitted the experimental data well for both
adsorption and desorption kinetics, implying that pore
diffusion and surface interaction are the rate-determining
steps. The cumulative experimental data fitting to the Bangham
diffusion model supported the idea that pore diffusion is the
rate-determining step in the CO, adsorption process on
bituminous EMB coal at lower pressures.

The current study established detailed CO, desorption
kinetics from intact coal samples for perhaps the first time, and
the data fitted into the modified PFO and PSO models. The
data from desorption kinetics confirm the prediction by
demonstrating the pore trapping capabilities. The amount of
residual CO, retained in the coal sample at the end of the
desorption tests demonstrates the pore trapping capabilities of
the bituminous coal sample. The amount of CO, trapped was
proportional to the equilibrium pressure.

In broad sense, the adsorption—desorption kinetics experi-
ments provided insights into rate-determining mechanism,
reversibility of CO, adsorption, or pore entrapment of CO, at
the low-pressure injection in shallow level bituminous coal
seams.
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