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Graphical Abstract

Abstract

A versatile conservative three-dimensional Cartesian cut-cell method for simulation of incompressible viscous flows over
complex geometries is presented in this paper. The present method is based on the finite volume method on a non-uniform
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staggered grid together with a consistent mass and momentum flux computation. Contrary to the commonly cut-cell methods, an
implicit time integration scheme is employed in the present method, which avoids numerical instability without any additional
small cut-cell treatment. Strict conservation of the mass and momentum for both fluid and cut cells is enforced through the PISO
algorithm for the pressure—velocity coupling. The versatility and robustness of the present cut-cell method are demonstrated
by simulating various two- and three-dimensional canonical benchmarks (flow over a circular cylinder, airfoil, sphere, pipe,
and heart sculpture) and the computed results agree well with previous experimental measurements and various numerical
results obtained from the boundary-fitted, immersed boundary/interface, and other cut-cell methods, verifying the accuracy of
the proposed method.

©2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In computational fluid dynamics, two- (2D) and three-dimensional (3D) fluid flow over complex geometries
appear in many scientific research and engineering applications, e.g. flow over urban structures, automotive
aerodynamics, marine hydrodynamics, hydraulic and coastal engineering, and fluid—structure interaction problems.
In contrary to dealing with the complex geometries in boundary-fitted methods [1,2], the Cartesian grid method has
become a popular alternative to solve fluid flow in a fixed Cartesian grid due to its simplicity for mesh generation
and easy data structure management, especially for moving bodies [3,4].

There are several Cartesian grid methods, such as reviews for immersed boundary method (IBM) [5], immersed
interface method (IIM) [6], and the Cartesian cut-cell method [7]. For the immersed boundary method, it can be
classified as diffused interface and sharp interface method [3]. The original IBM [8] is a continuous forcing diffused
interface IBM, in which the force at the immersed points is computed from appropriate constitutive law and then
spreads to the background grid by using a discrete delta function. Later, direct forcing diffused interface IBM is
also proposed for rigid bodies [9], in which the force at the immersed boundary points is calculated from the
discretised momentum equation using the interpolated velocity at the immersed points, and then redistributed to the
Eulerian grid by a delta function. Contrary to the diffused interface IBM, a sharp interface IBM has proposed for the
spectral [10] and finite difference [11] methods. Later various sharp interface IBMs [12—19] have been developed,
mainly based on the different interpolation of the velocity for the neighbouring or ghost cells. A projection approach
is also proposed for IBM and its difference compared to other IBMs can be found in [20].

It is worth noting that the IBM is normally implemented in the finite difference method coupled with a fractional
step approach. The force introduced for the momentum equation does not satisfy the global mass conservation [3].
Some research has been developed to alleviate this issue by adding mass sink/source term in the continuity
equation [12], an implicit treatment of both the boundary force and pressure as a single set of Lagrange multipliers
in the Poisson equation [20], and combining cut-cell and IBM to deal with the continuity and velocity correction
in the vicinity of immersed boundary [21].

Contrary to IBM, the Cartesian cut-cell method is very attractive as it enforces strict conservation of mass,
momentum and energy at a discretised level, even near the immersed boundary. The Cartesian cut-cell method
has been applied for fixed solid boundaries for 2D inviscid [22,23] and viscous [24-26] fluid flow and 3D
inviscid [27,28], viscous [29-31], and turbulent [32] flows. The Cartesian cut-cell method can also be further
extended for free-surface/two-phase flows [33-39] and moving body problems [40—46]. In conjunction with other
interface capturing/tracking methods or structural solvers, the Cartesian cut-cell methods have also been developed
for multiphase flows with moving bodies [47-52] and fluid—structure interaction [53-55]. A hybrid cut-cell and
ghost-cell method has been developed in [56]. The cut-cell method can also be employed in the finite element [57—
63] and finite difference [23] method. A common problem for cut-cell methods is the small cut-cells generated near
the solid boundary which lead to numerical instability if there is no special treatment for small cells [64], which
makes it challenging to apply in 3D flow problems.

For incompressible Navier—Stokes equations, the coupling between velocity and pressure is a key concern
and normally a staggered grid is used in most discretisation methods. However, most of the recent 3D cut-cell
methods [30,31,41-43] are developed based on the collocated grid for compressible flows. In addition, most of the
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3D cut-cell methods employ an explicit scheme and additional treatment for the small cut-cells is needed to avoid
the numerical instability.

The objective of this work is, therefore, to present a versatile finite volume-based Cartesian cut-cell method for
the unsteady, incompressible, Navier—Stokes equations on a 3D non-uniform staggered grid. The novelty of this
paper is threefold: (1) the generation and configuration of both 2D and 3D cut-cells are presented in detail and the
finite volume discretisation is presented for both fluid and cut cells on the staggered grid, which is different from
the previously used collocated grids; (2) an implicit time integration scheme is used for the governing equations
without any small-cell treatment, which avoids the common instability problems in small cut-cells existing in the
literature; (3) a consistent mass and momentum flux computation is used to ensure strict conservation of mass
and momentum, even for the cut-cells, which is different from most of the IBMs where mass conservation near the
immersed boundary is not enforced. Compared to our previous study for simple moving bodies for single-phase [46]
and two-phase [52] flows, this study focuses on the incompressible viscous flow over fixed bodies, but with more
complex geometries. In addition, both external flow over bluff bodies and internal flow inside fixed structures are
studied. Several canonical 2D and 3D benchmark problems are validated, with a cross comparison being made
against available analytical solutions and experiments, as well as some other boundary-fitted, immersed boundary,
immersed interface and cut-cell methods published in the literature.

The paper is organised as follows. The description of the mathematical formulation, finite volume discretisation,
and Cartesian cut-cell method are presented in Section 2. The versatility and robustness of the present cut-cell
method are demonstrated by a number of 2D and 3D external and internal flow problems in Section 3. Conclusion
and future work are finally discussed in Section 4.

2. Mathematical formulation and numerical method

2.1. Governing equations

The governing equations considered are the non-dimensional unsteady incompressible Navier—Stokes equations,
given as:

V.u=0, (1
V. weuw=-Vpt v )
— u®u) =— —V-u,

Py PT Re

where u is the non-dimensional velocity vector with components (u, v, w) in the streamwise (x), vertical (y) and
spanwise (z) direction, ¢ and p are the non-dimensional time and pressure, and Re is the Reynolds number.

2.2. Computational grid and finite volume discretisation

The finite volume method is employed to discretise the governing equations because it enforces the conservation
of mass and momentum at a discretised level. The staggered Cartesian grid is used in this study, which has the
advantage of strong coupling between the velocity and the pressure. Fig. 1 shows an example of the problem setup
and the variable arrangement in a 3D Cartesian grid with cut-cells together with the name of locations used in the
discretisation, in which the pressure is stored at the cell centre and the velocities are located on the face centre of
the control volume.

Considering a volume of fluid cell {2 which has an arbitrary domain, the surface of the control volume is S and
the unit outward normal vector to the face f is . The momentum equation (Eq. (2)) can be recast into an integral
formulation as below

u 1 ou
///QEd!2+//s(u-n)udS:///Q—Vde—i-/sR—ea—ndS, 3)

For a full fluid cell, the cell volume is 2 = [[[,df2 = AxAyAz and the area of the face A is similarly
calculated, e.g., the one of the east face A, is A. = [, dS = AyAz.

u u"+17u"

A backward finite difference is used for the time derivative 5= A which leads to an implicit scheme

for the Navier—Stokes equations for the current time level n 4 1. The high-resolution scheme [65] is used for the
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(c) cut cell on selected 2D plane (d) 3D cut cell

Fig. 1. Schematic of a three-dimensional flow over a complex geometry: (a) 3D computational setup with a 2D plane shown for the Cartesian
grid (dash line frame: the selected 2D mesh shown in (c)); (b) Variables used for the control volume (i, j, k) in a 3D staggered grid. Pressure
p(i, j, k) is stored in the centre of the control volume whereas velocities u(i, j, k), v(i, j, k), and w(i, j, k) are stored in the centre of the six
faces of the control volume. (c) The selected 2D plane from (a) shows the background mesh together with the full fluid cells (white) and
cut-cells (blue) and the solid domain (yellow); (d) Example of a 3D cut-cell with the yellow shaded area being solid. Name of the locations
used in the discretisation is also shown, in which P is the present node, the upper-case letter E, W, N, S, B, and R denote neighbouring
nodes on the east, west, north, south, back, and front with respect to the central node P. The lower-case e, w, n, s, b, and r denote the
corresponding face of the control volume. Ax, Ay, and Az are the grid spacing in the x, y, and z directions, respectively. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

advective flux. The second-order central difference scheme is used for diffusive flux, pressure gradient term and
the pressure correction equations. It is worth noting that a consistent mass and momentum approach is used here
for the staggered grid to discretise the nonlinear term, in which the mass flux m¢ = [/ s U - ndS for the momentum
control volume is calculated based on the interpolation of the mass flux already available for the continuity equation.
However, in cut cells, all these discretised terms will need to be modified and this will be discussed in detail in
Section 2.3. Substituting all the discretised terms into Eq. (3), leads to

apup™ =" alul! + b + Ad(pp — pan)-. @)

where a* is the coefficient for the momentum equation, the subscripts P and nb = E, W, N, S, B, R denote the
variables in the present and neighbouring cells (shown in Fig. 1), respectively, and by is the source term contained
u" and high-order terms due to the high-resolution scheme.

The PISO algorithm [66] is employed in this study for the pressure—velocity coupling and it is used to calculate
the corrected pressure twice. For a guessed pressure distribution p*, the discretised momentum equations can be
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solved to produce the fluid velocities #*, which satisfy the momentum equation (Eq. (4))
apuf =) atul, + b+ Adpp — piy)- (5)

To obtain the pressure correction p’, the updated fluid velocities are substituted into the discretised continuity
equation (Eq. (1)) and the resulting pressure correction equation has the following form

abpp=Y_alply + bp. 6)

where a? is the coefficient for the continuity equation and the term by, called the mass residual, is the left-hand
side of the discretised continuity equation evaluated in terms of the fluid velocities u*.
A second pressure correction (p”) step is introduced in the PISO algorithm [66] as

all)jpl/; = afbl’r/:b + bp, @)

where the coefficients have the same value in the first pressure correction equation shown in Eq. (6) and the source
term has been changed for calculating the mass residual based on the value of first velocity correction u’.

In this study, the algebraic equations are solved by the strongly implicit procedure method or Bi-CGSTAB (Bi-
Conjugate Gradients Stabilized) method [67]. After solving the first and second pressure corrections (Egs. (6) and
(7)), the solutions in a continuity control volume are updated as

p:p*+p/+p//’

8
ufzuf*+u}+ul’c', ( )
where
Ag
up = —(Pp — Pup);
P ©
” Z AopUnb + Af(pP B pnb)
uy = - .
ap

It is worth noting that the implicit discretisation for the velocity prediction and pressure correction makes the
PISO algorithm stable for fairly large time steps [66] and has also been employed for hybrid unstructured grids [68].
The detailed stability analysis of the PISO algorithm on both collocated and staggered grids can be found in [69]
and will not be further discussed here.

2.3. Cartesian cut-cell method

2.3.1. Geometric representation of complex geometries

In this study, the complex geometry of a solid is represented by a general level set function ¢(x, y, z) (a formula
for a 2D curve or 3D surface, and level-sets for a complex surface), in which the value ¢(x, y, z) > 0 in the fluid
domain and ¢(x, y, z) < 0 inside the solid domain. The solid boundary is represented as a sharp piecewise linear
interface when ¢(x, y, z) = 0, and it is a straight line in 2D and a sloping plane in 3D.

2.3.2. Cut-cell information

In the finite volume discretisation for each 3D Cartesian grid cell, both the area for each face of the control
volume and the total fluid volume in a cell are needed. For full fluid cells, this has been discussed above. For
cut-cells, this information needs to be changed according to the geometric information for each cell. In order to
have a general framework for both full fluid and cut-cells, an additional 6 function is introduced in the spatial
discretisation, which represents the ratio for the face area A or volume {2 between the cut-cell and the original
full-cell. Thus, the face area and volume in a cut-cell can be obtained as Ay = 6;A and (2 = 6.2, respectively.
The 6 function has values at the volume centre and each face of the control volume and it is calculated at the
beginning of the simulation. Its value is 1 for a full fluid cell and O for a solid cell inside the solid boundary,
whereas 0 < 8 < 1 in cut-cells.

To calculate the area and volume of the cut-cell, how the solid boundary cuts the Cartesian cell is determined
first. Fig. 2 shows an example of 2D cut-cell configurations, in which one to three of the four edge points have
been cut in a control volume. The grid nodes can be classified as inside or outside of the solid based on the sign of
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the level set function ¢(x, y, z) (shown as blue for a positive value and red for a negative value). It can be seen that
there are 4 grid nodes in a 2D cell, thus there are 2* configurations. For a 3D cell, it would be more complicated
and there are 8 grid nodes in each cell so it has 2% configurations. Following the marching tube algorithm [70] and
using the inversion and rotation of different configurations, the 256 cases can be rearranged to 15 cases as shown
in Fig. 3 for a typical cut cell in a 3D Cartesian grid, which is classified as zero, one, two, three, and four points
being cut out of the eight points in the Cartesian grid cell.

Once the configuration of the cut cell has been determined, the intersection point along each edge can be obtained
by linear interpolation of the level set function of two neighbouring grid nodes. Once the point of intersection of
the line with the cut plane is found, the geometric information can be calculated. Finally, the face area and total
volume of the truncated cell are calculated by numerical integration [64]. In contrary to a full fluid cell, the spatial
discretisation at cell faces and cell centres is modified in a cut cell with the 8 value, which will be presented for
the momentum and continuity equations.

2.3.3. Cut-cell treatment for the momentum equation
The finite volume discretisation of the advection term in Eq. (3) is obtained as

ff (u - n)udS = meuf, (10)
S £

where m = u - nO A is the mass flux and the subscript f denotes the corresponding face of the control volume. In
cut cells, the mass flux has also to be modified by the 6 function on the boundary as shown in Figs. 2 and 3. If
6 = 0 (such as the west face of the first case in Fig. 3(e)), there is no mass flux through the face and the advective
flux is obtained as my = 0.

The finite volume discretisation of the diffusion term in Eq. (3) for cut-cells is obtained as

/ SLIT 3 L8 A+ tl(1 - 0)A] (11
—adS=) —— Twl(l — ;

< Re on — Reon ' !

where g—z is calculated by the finite difference approach from the present point P to the neighbouring point nb as
g—z = "“‘f—_"", and T, is the wall shear stress on the face of the control volume.

The volume of the cell has also been changed and the finite volume discretisation of the pressure gradient in
Eq. (3) for cut-cells is obtained as

/// —Vpd2 = —V pb.02, (12)
2

and the pressure gradient is calculated as

(13)
_Pe=Pw Pn—Ps Pbo— Pr

Ax T Ay T Az

).

2.3.4. Cut-cell treatment for the continuity equation
When dealing with the continuity equation, the exact conservation of mass is enforced to the discretised level in
cut-cells and the mass residuals (b}, and bp) for the pressure correction equations (Egs. (6) and (7)) are obtained as

bp=Y me= ui-n@Ay.
f f

(14)
by = ui-n@OA).
f

It can be seen that the cut-cell information for each control volume and their face area is taken into account in
the discretisation of the continuity equation to satisfy the divergence-free constraint at the current time level n + 1.
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(a) zero point
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(b) one point

. . s . 23 . - - 23 . 3 . 23

(¢) two points
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(d) three points

(e) four points

Fig. 2. Example of 2D cut cell configurations. Blue points are inside a fluid domain and red points are inside a solid domain while the
solid boundary is represented by the interface between the blue and yellow interface. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

2.4. Boundary and initial conditions

It is necessary to define the boundary conditions in a computational domain to completely describe the numerical
model. For the inlet, the Dirichlet boundary condition is used for the velocity. No-slip or free-slip boundary
conditions can be specified for the sidewalls. For the outlet, the zero-gradient condition is applied for the flow. For
the solid boundary on the geometry, Dirichlet boundary condition is specified for the velocity and the zero-gradient
condition is used for the pressure.
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(e) four points

Fig. 3. Example of 3D cut cell configurations, which indicate how many edge points are in the fluid (blue) and solid (red) domain in a
Cartesian grid cell: (a) zero point (either pure fluid or solid cell); (b) one point; (c) two points; (d) three points; (e) four points. In total,
there are 256 cases, but all cases can be rearranged to 15 cases shown here after inversion and rotation. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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In the computation, the initial flow field at # = 0 has to be prescribed. For calculations with the fluids initially
at rest, the flow field is initialised with zero velocity. In order to speed up the flow development, the flow field can
also be initialised with the same inlet velocity everywhere inside the computational domain.

2.5. Comparison with other cut-cell methods

For most of the Cartesian cut-cell methods, an explicit time integration scheme is normally used thus an instability
problem might occur in small cut-cells in the vicinity of the solid boundary. Thus a very small time step has to be
used to satisfy the stability criteria. Some approaches have been developed to deal with small cut-cells [71], such as
the cell-merging technique [64] and using slightly different control volumes [48], both of which effectively increase
the size of the cut cell. Recently, as an alternative, there are also some developments for the flux-redistribution
schemes [41—43] and a state redistribution algorithm [22] to deal with the stability issue for the small cut-cells. A
new mixed explicit implicit time stepping scheme is developed for advection and Euler equations [72], where an
implicit scheme is used for the cut-cell for the stability and explicit scheme is employed for standard cells. Because
of the difficulty of extra treatment in 3D, some of the previous studies are focused on 2D problems.

In cut finite element methods, there are also Ghost Penalty methods [73] to tackle the small cut-cell instability
issue. The main role of the penalty term is to extend the coercivity from the physical domain to the mesh domain
with some penalty parameters.

In the present Cartesian cut-cell method, there is no special treatment for the small cut-cells and the instability
issues are not found in the simulations thanks to the implicit time integration scheme used for both full and cut
cells in this study.

3. Results and discussion

In order to validate the proposed Cartesian cut-cell method, we first simulate the Taylor—Green vortices with
and without the immersed domain and both spatial and temporal convergence are investigated. The proposed
method is then applied to some canonical problems in two-dimensional flows (such as flow over a cylinder and
an airfoil), and three-dimensional external flow over a sphere and internal flow in a pipe. The results are compared
with available experimental measurements and analytical solutions, as well as previous simulation results, obtained
by other established immersed boundary, immersed interface, and boundary-fitted methods. Finally, the method is
further used to study the flow past a heart sculpture to demonstrate its versatility to deal with complex geometries.

3.1. Convergence study: Taylor—Green vortices

In order to study the effect of the cut-cell method to deal with complex geometries in a Cartesian grid and to
investigate the spatial and temporal convergence of the proposed method, the two-dimensional unsteady flow for
Taylor—Green vortices is considered here with an analytical solution as

u(x,y,t) = —cos(mwx) Sin(r[y)e—zﬂzt/Re’

—27121/Re
9

v(x,y,t) = sin(wx)cos(wry)e (15)

plx,y, 1) = —%[cos(an) + cos(2ny)]e_4”2’/Re.

This case has also been computed using the immersed boundary method for an immersed square [12] and
circular [9] domains. The computational setup is shown in Fig. 4, where the computational domain (—1.5 <
x/L,y/L < 1.5) is normalised by the vortex length L and the immersed circular domain is centred at the origin
of the domain with a radius of unity. The same parameter from [9] is used here with Re = % = 5, where U
is the maximum initial velocity, and the simulation is run to t = 0.3 with a time step Az = 0.001. Both cases
with and without the immersed circular domain are investigated using various spatial and temporal resolutions. The
initial condition and boundary condition along the simulation are provided by the analytical solution Eq. (15). For
the circular domain simulation, the analytical solution Eq. (15) also provides the value for the cut region on the
circular, which is not included in the computation for the present solver.

In order to study the spatial convergence, four different mesh resolutions (12, 24, 48, and 96 cells in each
direction, respectively) are used in the simulation with a constant time step Ar = 0.001. Fig. 5(a) shows the

9
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y/L

Fig. 4. Computational domain, grid system, and immersed boundary (yellow lines) for the Taylor-Green decaying vortices. The initial
vorticity field is also shown here with blue indicating clockwise rotation and red indicating counter-clockwise rotation. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

variation of the maximum error and L, norm of the velocity for grid points inside the immersed domain. It can be
observed that second-order convergence is obtained for both cases with and without cut-cell treatments, which is
consistent with the high-resolution scheme used here. It is also worth noting that the errors are not so sensitive to
the Cartesian cut-cell method and only a slightly higher error is introduced for the cut-cell discretisation.

In order to study the temporal convergence, four different time steps (Ar = 0.001, 0.002, 0.004, 0.008) are used
for the grid (96 x 96 cells). Fig. 5(b) shows the variation of the maximum error and L, norm with respect to
the time step sizes and it can be seen that the convergence is first-order, which is consistent with the first-order
backward Euler time integration method.

3.2. 2D uniform flow past a circular cylinder

Here the steady and unsteady flows past a circular cylinder in a uniform incoming flow are studied, which is
considered as a standard benchmark problem for computational fluid dynamics. Some interesting flow patterns can
be observed depending on the Reynolds numbers Re = %, where U is the incoming velocity magnitude and
D is the diameter of the cylinder. Although the cylinder can be easily dealt with a boundary-fitted method, it
is challenging to accurately predict the flow behaviour using Cartesian grid methods. As many experimental and
numerical data sets exist in the literature and they will be selected to make cross-comparison between different
methods.

In the present study, the time dependent drag and lift coefficient are defined as:

(1)
Cp(t) = T 721’
2pU"D (16)
= 0
1pUD’
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Fig. 5. Maximum error and L, norm of the velocity u for the Taylor—Green vortices at time ¢ = 0.3 with and without Cartesian cut-cell

treatment.

Table 1

Comparison between experimental results, other simulations, and the present study for flow over a cylinder at Re = 40.
Study Method /D a/D b/D o Cp
Tritton [74] experiment - - - - 1.59
Coutanceau and Bouard [75] experiment 2.13 0.76 0.59 53.8 -
Fornberg [76] body-fitted 2.24 - - 55.6 1.50
Tseng and Ferziger [13] IBM-ghost cell 221 - - - 1.53
Taira and Colonius [20] IBM-projection 2.30 0.73 0.60 53.7 1.54
Mittal et al. [17] IBM-sharp interface - - - - 1.53
Berthelsen and Faltinsen [18] IBM-ghost cell 1D 2.29 0.72 0.60 539 1.59
Linnick and Fasel [77] 1M 2.28 0.72 0.60 53.6 1.54
Ye et al. [24] cut-cell 2.27 - - - 1.52
Kirkpatrick et al. [29] cut-cell 2.259 - - 53.55 1.535
Cheny and Botella [78] cut-cell 2.299 - - - 1.508
Hartmann et al. [30] cut-cell 2.306 - - - 1.521
Muralidharan and Menon [31] cut-cell - - - - 1.56
Present (D/h = 32) cut-cell 221 0.708 0.594 53.3 1.526
Present (D/h = 64) cut-cell 2.21 0.708 0.594 53.3 1.534

where Fp(t) and Fi (¢) are the drag and lift force, respectively, and the force F = (Fp, F1) is calculated by integration

of the pressure and shear stresses along the cut-cell boundaries I" as:

F:/(—np+n~r)dF.
r

The Strouhal number is calculated as St = fTD, where f is the vortex shedding frequency calculated from the

lift force Fi(¢) in the unsteady flow regime.

3.2.1. Re=40

The simulations for flow at Re

= 40 have been carried out in a large square domain ([—20D,20D] x

[—20D, 20D]) with the cylinder located at the centre. The uniform velocity U is specified at the inlet whereas the
zero gradient boundary condition is applied for other variables along the boundaries. Two non-uniform Cartesian
grids (200 x 200, 400 x 400) are used to discretise the computational domain with uniform meshes 7 = Axp, =
A¥min (h/D = 1/32,1/64) in the vicinity of the cylinder. A constant time step At = 0.001D/U is used in the
simulation in order to minimise the temporal discretisation error.
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Fig. 6. Uniform flow past a cylinder at Re = 40. Contours of stream function and vorticity are shown as red for positive value and as
blue for negative value. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6 shows predicted streamlines and vorticity for flow over the cylinder for Re = 40 at the steady-state. It
can be seen that the flow is symmetric and vorticity is generated with an opposite sign at both sides of the cylinder,
which is similar to other results obtained in the literature. The predicted drag coefficients and wake characteristics
are also compared with experimental and numerical results reported in the literature in Table 1. The same parameters
l,a, b, o discussed in [20,75] are used here, where [ is the length of the circulation zone, a is the distance between
the centre of the wake vortex and the cylinder, b is the vertical distance between the centre of two wake vortices,
and « is the separation angle respected to the horizontal axis, respectively.

Table 1 shows the comparison of the values obtained for the same case with several experimental and numerical
results, including the body-fitted, various immersed boundary, immersed interface, and other cut-cell methods. It
can be seen that the mesh convergent drag coefficients and wake vortex parameters are obtained for the present
method, which is in good agreement with those results reported in the literature.

Fig. 7 shows the pressure coefficient (Cp) and skin-friction (Cy) along the surface of the cylinder for Re = 40,
together with those results obtained by the boundary-fitted and ghost-cell methods reported in [13]. It can be seen
that the present results are very close to the results obtained by the ghost-cell method, and both are very similar to
the boundary-fitted results which have better representation for the wall-normal derivatives.

In order to demonstrate the benefit of the implicit scheme to deal with small cut cells, additional three simulations
have been carried out for the fine mesh with larger time steps when CFL= U At/ h = 0.25, 0.5, and 1.0, in which
the CFL number is defined based on the full cells. Fig. 8 shows the predicted drag (Cp) as a function of the CFL
number. It can be seen that the drag value is convergent and it is gradually decreased with the decrease of CFL
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Fig. 7. The pressure coefficient C}, (a) and skin-friction C¢ (b) for flow over a stationary cylinder at Re = 40 and comparison with other
methods reported in [13].
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Fig. 8. The CFL number effect on the drag coefficient Cp for flow over a stationary cylinder at Re = 40.

number. It is worth noting that when the CFL number is equal to 1.0, the local CFL number for cut cells would be
larger than 1.0 as the local grid size in cut cells is smaller than %, which demonstrates the advantage of the present
implicit cut-cell method.

3.2.2. Re =100
It is noted that when at a higher Reynolds number, the two vortices and symmetric flow shown in Fig. 6 become
unstable, and the vortex shedding will start. In order to capture the vortex shedding, the flow at Re = 100 is

simulated in a slightly larger computational domain ([-20D, 40D] x [-20D, 20D]) with the cylinder located at
(0, 0). As this is a benchmark case for CFD, especially for Cartesian grid methods. Four different non-uniform
meshes (150 x 132, 300 x 264, 600 x 528, 1200 x 1056) are considered with various minimum resolutions
(h/D =1/16,1/32,1/64, 1/128) to capture the cylinder in a Cartesian coordinate.

Fig. 9 shows an instantaneous vorticity field for flow over a stationary cylinder at Re = 100. It can be seen that
the von Karman vortex sheet with counter-rotating vortices are well captured by the present method.
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Fig. 9. The instantaneous vorticity field in the wake of the flow over a stationary cylinder with the mesh resolution #/D = 1/64 at Re = 100.
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Fig. 10. Computed temporal variation of the drag (Cp) and lift (Cr) coefficients for the flow over a stationary cylinder with the mesh
resolution 7/D = 1/64 at Re = 100.

Fig. 10 shows the time evolution of the predicted drag (Cp) and lift (Cr) as a function of time. The time-
averaged drag coefficient with the fluctuation, the RMS-averaged lift coefficient, and the resulting Strouhal number
are presented in Table 2. The results reported previously in the literature are also included for comparison, including
those obtained from the experiment, body-fitted, different kinds of immersed boundary, immersed interface, and
cut-cell methods. For completeness, the size of the computational domain and mesh resolution are also summarised
in Table 2. It can be seen that the present results obtained from the four sets of meshes are convergent and they
are in good agreement with those results obtained from previous numerical methods. When compared to the mesh
size for other immersed boundary methods, a reasonable good result can be obtained with a relatively coarse mesh,
mainly due to the sharp-interface representation in the cut-cell method. When compared to other cut-cell methods,
there is no additional special treatment for the numerical instability for small cut-cells in the proposed method,
which would be more efficient when dealing with moving body problems [46].

Fig. 11 shows the spatial convergence study for the drag and lift coefficients for the three grids (h/D =
1/16,1/32,1/64), where the solution for the finest mesh is taken as a reference to calculate the errors. It can
be seen that the convergence rate is close to second-order for the finer grids. When the mesh is refined in the
vicinity of the cylinder, the predicted drag and lift coefficients and the Strouhal number are in very close agreement
with the results obtained from the body-fitted method and experimentally measured frequency, which demonstrate
the accuracy of the present cut-cell method to simulate the vortex shedding for flow over a circular cylinder.
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Table 2
Comparison between experimental results, other simulations from immersed boundary methods (IBM), immersed interface
method (IIM), cut-cell method, and the present study for flow over a cylinder at Re = 100.

Study Method L/Dx W/D D/h Cp CL St
Williamson [79] experiment - - - - 0.164
Liu et al. [80] body-fitted - - 1.35+0.012 0.339 0.165
Lai and Peskin [81] IBM-smooth interface 27 x 27 128 1.447 0.33 0.165
Kim et al. [12] IBM-mass source 70 x 100 30 1.33 0.32 0.165
Tseng and Ferziger [13] IBM-ghost cell 32 x 16 72 1.42 0.29 0.164
Uhlmann [9] IBM-direct forcing 40 x 40 38.4 1.45£0.011 0.339 0.169
Mittal et al. [17] IBM-sharp interface 40 x 40 66.7 1.35 - 0.166
Berthelsen and Faltinsen [18] IBM-ghost cell 1D 50 x 30 128 1.38 £ 0.01 0.34 0.169
Yang and Stern [82] IBM-smooth delta - 25 1.393 0.335 0.165
Abdol Azis et al. [19] IBM-unstructured 32 x 32 60 1.371 - 0.166
Linnick and Fasel [77] M — x 43 - 1.34 +0.009 0.333 0.166
Cheny and Botella [78] cut-cell 23 x 12 100 1.31 £0.009 0.349 0.170
Hartmann et al. [30] cut-cell 64 x 30 32 1.35 0.337 0.165
Muralidharan and Menon [31] cut-cell 30 x 30 80 1.36 - 0.167
Present study cut-cell 60 x 40 16 1.294 £ 0.005 0.238 0.17
Present study cut-cell 60 x 40 32 1.30 = 0.008 0.293 0.17
Present study cut-cell 60 x 40 64 1.33 £0.009 0.320 0.17
Present study cut-cell 60 x 40 128 1.34 £ 0.009 0.329 0.165
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Fig. 11. Error for the drag and lift coefficients as a function of grid resolution for the flow over a circular cylinder at Re = 100. Lines for
first-order and second-order behaviour are also plotted for reference.

3.3. 2D flow past an airfoil

After successfully validating the flow over a circular cylinder, another benchmark case for flow over a NACA0012
airfoil is considered here. The leading edge of the airfoil has a small radius compared to the chord length and also
there is a sharp corner for the trailing edge, which is quite challenging for some interpolations in immersed boundary
methods and some cut-cell methods due to the additional treatment for small cut-cells. In this study, a computational
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Fig. 12. Schematic of the computational setup for the flow past a NACAO0012 airfoil at Re = 1000. The whole computational domain (a),
local region near the airfoil (b) and zoom-in view mesh in the vicinity of the airfoil (c) are shown here.

domain of [—5¢, 15¢] x [—5¢, 5c], shown in Fig. 12(a), is used and the leading edge of the airfoil is located at
(0, 0), where c is the chord length. A non-uniform 500 x 300 grid is employed here with the uniform minimum
mesh (Axp, = 0.01¢, Aypin = 0.0025¢) in the vicinity of the airfoil shown in Fig. 12(c). Two angles of attack
(¢ = 5° and o = 10°) are studied here for the Re = "TUC = 1000, based on the incoming velocity magnitude U
and the airfoil chord length c.

Fig. 13 shows the predicted vorticity and normalised pressure for the flow over the airfoil at « = 5° angle of
attack. It can be seen that the pre-vortex regime is observed for this angle of attack as negative and positive vorticity
is observed on the upper and lower side of the airfoil, respectively. This is in close agreement with those results
obtained by the body-fitted [83] and sharp interface immersed boundary [84] methods. The normalised pressure
distribution also indicates that higher pressure is obtained at the bottom surface of the airfoil and lower pressure is
obtained at the upper surface, which is driven force to produce the lift.

When the angle of attack increases to o« = 10°, it can be seen from Fig. 14 that periodic vortex shedding is
generated from the trailing edge of the airfoil, with alternating negative and positive vorticities moving upwards
and downwards, respectively. The vortex shedding pattern is also similar to those reported in the literature [83,84].

Fig. 15 shows the computed temporal variation of the drag and lift coefficients for the flow over a NACA0012
airfoil at Re = 1000 for two different angles of attack «. It can be seen that both drag and lift coefficients increase
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Fig. 13. Contour plots for the vorticity (a) and normalised pressure (b) fields for the flow over a NACAO0012 airfoil at Re = 1000 and
o =5°.
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Fig. 14. Contour plots for the vorticity of the flow over a NACA0012 airfoil at Re = 1000 and o« = 10°.
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Fig. 15. Computed temporal variation of the drag (Cp) and lift (CL) coefficients for the flow over a NACA0012 airfoil at Re = 1000 for
different angles of attack «.

when the angle of attack increases. For the pre-vortex shedding at « = 5°, the drag is nearly constant and there
is only a small fluctuation for the lift coefficient. During vortex shedding at « = 10°, periodic flow downstream
the airfoil can be observed with larger fluctuation for the lift and small amplitude oscillation for the drag. The
time history of the drag and lift coefficients including fluctuation at « = 10° is in very good agreement with the
body-fitted finite element simulation results shown in Fig. 7 of [85], which confirms the accuracy of the present
cut-cell method.
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Table 3
Comparison between other simulations (body-fitted and immersed boundary methods), and the present study for
flow over a NACAO0O012 airfoil at Re = 1000.

Angle of attack Method 5° 10°

At Re = 1000 Cp CL St Cp CL St
Mittal and Tezduyar [85] body-fitted (FEM) - - - 0.166 0.425 0.85
Kurtulus [83] body-fitted (FLUENT) 0.13 0.25 - 0.163 0.42 0.876
Menon and Mittal [84] IBM-sharp interface 0.11 0.25 - 0.17 0.44 0.92
Present study cut-cell 0.13 0.25 - 0.17 0.42 0.875

The time-averaged drag and lift coefficients, and the resulting Strouhal number are presented in Table 3. The
results reported previously in the literature are also included in the comparison, including those obtained from the
body-fitted finite element method [85], the commercial software FLUENT [83], and the sharp interface immersed
boundary method [84]. It shows that the predicted drag, lift, and Strouhal numbers are in close agreement with the
previous studies for both pre-vortex and vortex shedding flow phenomena.

3.4. 3D flow past a sphere

For three-dimensional flow, the laminar flow over a sphere is considered here, which is a conical and
challenging benchmark for Cartesian grid methods. Some of the previous studies have used different numerical
methods to examine this problem, such as the boundary-fitted method [1,86,87], different immersed boundary
method [11,12,14,17], and cut-cell method [30,31]. Similar to the 2D circular cylinder case, the flow phenomenon
depends on the Reynolds number and the flow pattern changes from steady motion to unsteady motion beyond
about Re = 280 [17].

In order to capture both steady and unsteady vortex shedding, two cases with Re = 100 and Re = 300, based
on the diameter of the sphere D and the inlet velocity U, are considered here. The computational domain of
15D x 15D x 15D is discretised by two non-uniform grids (180 x 120 x 120 and 360 x 240 x 240) with
minimum meshes & = Axpin = Aymin = AZmin (/D = 1/25,1/50) in the vicinity of the sphere. A fixed time
step At = 0.005D/U is used and the simulations are run to 200D/ U.

Fig. 16 shows the computed vortical structures and the streamlines obtained in the simulations, in which the
A method [88] is employed to identify the vortices. At Re = 100 shown in Fig. 16(a), it can be seen that a
steady axisymmetric vortex ring is observed just downstream of the sphere and there is flow separation in the wake
region with an almost uniform pattern of the streamlines. When the Reynolds number increases to 300 shown in
Fig. 16(b), the flow is non-axisymmetric anymore and unsteady vortex shedding is developed. Periodic hairpin
vortices are developed with stronger flow separation being observed from the streamlines in the wake of the sphere.
These phenomena are consistent with those results reported in the literature.

In order to quantitatively compare with different methods in the literature, the time-averaged drag coefficients
are compared in Table 4 for Re = 100 and the time-averaged drag and lift coefficients, and the resulting Strouhal
number are presented in Table 5 for Re = 300. It can be seen that mesh convergent results are obtained with the
present cut-cell method, which are consistent with those results obtained by the body-fitted, immersed boundary,
and cut-cell method. It is also noted that a reasonably good result can be obtained by the present method using a
relatively coarse mesh to capture the flow dynamics over a 3D sphere.

3.5. 3D flow in a pipe

After validating the three-dimensional external flow over a bluff body, the internal flow inside a 3D pipe is further
investigated. Only laminar flow is considered here as we know the analytical solution for the parabolic velocity
profile u = upax [1 —4(r/ D)Z] and also the friction factor as a function of the Reynolds number as f = 64/Re,
where un,x 1s the maximum centreline velocity and r is the radial distance from the pipe centre. The computational
domain of 27D x 1.1D x 1.1D is used in the streamwise, vertical, and spanwise direction with a uniform mesh
300 x 110 x 110 of Ay = Az = 0.01D to resolve the pipe boundary.
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(b) Re = 300

Fig. 16. Computed vortical structures (identified by A, method) and the streamlines for flow over a stationary sphere at Re = 100 (a) and
Re =300 (b).

Table 4
Comparison between boundary-fitted simulations, immersed boundary methods, and the present
study for flow over a sphere at Re = 100.

Study at Re = 100 Method D/h Cp
Fornberg [86] boundary-fitted - 1.0852
Fadlun et al. [11] IBM-direct forcing - 1.0794
Kim et al. [12] IBM-mass source 40 1.087
Gilmanov et al. [14] IBM-sharp interface 40 1.153
Hartmann et al. [30] cut-cell 32 1.083
Present study cut-cell 25 1.0737
Present study cut-cell 50 1.0843
Table 5

Comparison between boundary-fitted simulations, immersed boundary methods, and the present study for flow
over a sphere at Re = 300.

Study at Re = 300 Method D/h Cp CL St

Johnson and Patel [1] boundary-fitted - 0.656 0.069 0.137
Constantinescu and Squires [87] boundary-fitted - 0.655 0.065 0.136
Kim et al. [12] IBM-mass source 40 0.657 0.067 0.134
Mittal et al. [17] IBM-sharp interface - 0.66 - 0.135
Hartmann et al. [30] cut-cell 32 0.657 0.069 0.135
Present study cut-cell 25 0.6532 0.062 0.131
Present study cut-cell 50 0.6524 0.067 0.134

Fig. 17 shows the predicted velocity distribution along a cross-section together with the mesh for the cut-cell
treatment. The pressure distribution along the streamwise plane is also shown. It can be seen that the velocity is
higher in the centre and gradually decreases towards the pipe wall due to the no-slip boundary condition there. The
pressure is higher at the inlet and lower at the outlet and the pressure gradient is balanced by the wall shear stress.

In order the make a quantitative comparison, the velocity profile is compared with the analytical solution in
Fig. 18(a), in which a very good agreement is obtained by the cut-cell method. In addition, several simulations
for different Reynolds numbers at Re = 10, 100, 1000 have been performed and the computed friction factors are
shown in Fig. 18(b), which agree well with the analytical formula for the friction factor for laminar flow in a pipe.
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Fig. 17. The computed velocity distribution along a cross section and the pressure distribution along the streamwise plane. The mesh to
deal with the cut-cells (a) and also the computational domain (b) are shown.
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Fig. 18. The computed velocity profile (a) and friction factor (b) for laminar flow in a pipe.

3.6. 3D flow past a heart sculpture

Finally, three-dimensional flow over a complex geometry, i.e. a heart sculpture, is shown here. The same setup
and mesh used for the sphere case is employed here, whereas the sphere is replaced by the geometry of the heart
surface taken as [89]

92, 2,2 39 23 2.3
G+ + =) — oox =y =0 (18)

The computed vortical structure and streamlines for the flow over the heart sculpture at Re = 100 are shown
in Fig. 19. It can be seen that the steady flow structure is observed, similar to the flow over a sphere at the same
Reynolds number. However, the vortex is not axisymmetric but follows the shape of the heart. More chaotic flow
separation can be observed from the streamline in the wake of the heart, demonstrating stronger mixing when the
bluff body changed from the sphere to the heart.

4. Conclusions

A versatile three-dimensional Cartesian cut-cell method has been developed for the simulation of incompressible
viscous flow over complex geometries in the code Xdolphin3D. Both 2D and 3D cut-cell configurations are presented
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(a) (b)

Fig. 19. The computed vortical structure (a) and streamlines (b) for flow over a heart sculpture at Re = 100.

in detail on a staggered grid, in which a consistent mass and momentum transport is used for the finite volume
discretisation in both fluid and cut cells. Contrary to existing cut-cell methods, an implicit time stepping scheme
is employed in the present study, which avoids numerical instability without any additional small-cell treatment.
Different from most immersed boundary methods, strict conservation of the mass and momentum is enforced
through the PISO algorithm for the pressure—velocity coupling, together with cut-cell information for the momentum
and continuity equations.

In order to validate the cut-cell method, several canonical benchmark cases in both 2D and 3D have been
investigated. First, both spatial and temporal convergence tests are performed for Taylor—Green vortices to check the
performance of the cut-cell method. A 2D laminar flow over a circular cylinder is first computed, with and without
vortex shedding. The wake characteristics, drag and lift coefficients, and Strouhal number for vortex shedding have
been shown with different mesh resolutions. A 2D flow over a more challenging NACAO0O012 airfoil is also studied,
and the flow pattern and forces are shown, which are similar to those obtained from body-fitted methods. Then 3D
external flow over a sphere is considered at two Reynolds numbers, with different vortical structures and streamlines
being observed in the simulation. For the cylinder, airfoil and sphere cases, it is worth mentioning that all the
computed drag and lift coefficients and Strouhal numbers are compared with experimental measurements, boundary-
fitted, various immersed boundary methods, and other cut-cell methods, with a close agreement being obtained with
those results reported in the literature. Furthermore, a 3D internal pipe flow is studied and the computed velocity
profile and friction factors are compared with the analytical solution. Finally, the ability of the present solver to
deal with more complex geometry, a heart sculpture, is demonstrated with a different vortical structure and wake
flow separation.

It is worth mentioning that the stability analysis is important to understand the cut-cell schemes at the theoretical
level. However, the hypothesis of the Fourier method cannot be rigorously fulfilled in the present study (as there
is assumption for cyclic boundary conditions and constant discretisation coefficients) [69], so we will focus this
theoretical investigation in our future work by finding an ideal case to simplify the problem. All the benchmark
cases in this paper are for low-Reynolds number flows. Future study will also focus on the cut-cell method for
high-Reynolds number incompressible [32] and compressible [90] flow, which is an area of interest in engineering
applications.
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