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Clinical recommendations for Acute Myeloid Leukemia (AML) classification
and risk-stratification remain heavily reliant on cytogenetic findings at diag-
nosis, which are present in <50% of patients. Using comprehensive molecular
profiling data from 3,653 patients we characterize and validate 16 molecular
classes describing 100% of AML patients. Each class represents diverse biolo-
gical AML subgroups, and is associated with distinct clinical presentation,
likelihood of response to induction chemotherapy, risk of relapse and death
over time. Secondary AML-2, emerges as the second largest class (24%),
associates with high-risk disease, poor prognosis irrespective of flow Minimal
Residual Disease (MRD) negativity, and derives significant benefit from
transplantation. Guided by class membership we derive a 3-tier risk-stratifi-
cation score that re-stratifies 26% of patients as compared to standard of care.
This results in a unified framework for disease classification and risk-
stratification in AML that relies on information from cytogenetics and 32
genes. Last, we develop an open-access patient-tailored clinical decision
support tool.

Received: 10 February 2022

Accepted: 11 July 2022

Check for updates

1Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 2Center for
HematologicMalignancies,Memorial SloanKetteringCancerCenter, NewYork, NY,USA. 3Tri-Institutional Computational Biology andMedicine PhDProgram,
Weill Cornell Medicine of Cornell University and Rockefeller University, New York, NY, USA. 4The Rockefeller University, New York, NY, USA. 5Centre for Trials
Research, School of Medicine, Cardiff University, Cardiff, UK. 6Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK. 7Institute of
Immunology and Immunotherapy, University of Birmingham, Birmingham, UK. 8Nuffield Department of Population Health, University of Oxford, Oxford, UK.
9Department of Medical and Molecular Genetics, King’s College, London, UK. 10Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger
Institute, Hinxton, UK. 11Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
12Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité—Universitätsmedizin Berlin, corporate member
of Freie Universität Berlin andHumboldt-Universität zu Berlin, Berlin, Germany. 13Department of Internal Medicine III, Ulm University, Ulm, Germany. 14Visiting
Professor University of Glasgow, formerly Cardiff University, Cardiff, UK. 15TheChristieNHS Foundation Trust, Manchester, UK. 16Department of Haematology,
Nottingham University Hospital, Nottingham, UK. 17Department of Haematology and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of
Cambridge, Cambridge, UK. 18These authors contributed equally: Nigel H. Russell, Sean M. Devlin, Brian J. P. Huntly, Elli Papaemmanuil.

e-mail: papaemme@mskcc.org

Nature Communications |         (2022) 13:4622 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1595-9631
http://orcid.org/0000-0002-1595-9631
http://orcid.org/0000-0002-1595-9631
http://orcid.org/0000-0002-1595-9631
http://orcid.org/0000-0002-1595-9631
http://orcid.org/0000-0002-2057-7187
http://orcid.org/0000-0002-2057-7187
http://orcid.org/0000-0002-2057-7187
http://orcid.org/0000-0002-2057-7187
http://orcid.org/0000-0002-2057-7187
http://orcid.org/0000-0003-1869-180X
http://orcid.org/0000-0003-1869-180X
http://orcid.org/0000-0003-1869-180X
http://orcid.org/0000-0003-1869-180X
http://orcid.org/0000-0003-1869-180X
http://orcid.org/0000-0002-4647-5779
http://orcid.org/0000-0002-4647-5779
http://orcid.org/0000-0002-4647-5779
http://orcid.org/0000-0002-4647-5779
http://orcid.org/0000-0002-4647-5779
http://orcid.org/0000-0001-9333-5296
http://orcid.org/0000-0001-9333-5296
http://orcid.org/0000-0001-9333-5296
http://orcid.org/0000-0001-9333-5296
http://orcid.org/0000-0001-9333-5296
http://orcid.org/0000-0001-5156-9086
http://orcid.org/0000-0001-5156-9086
http://orcid.org/0000-0001-5156-9086
http://orcid.org/0000-0001-5156-9086
http://orcid.org/0000-0001-5156-9086
http://orcid.org/0000-0002-3486-3168
http://orcid.org/0000-0002-3486-3168
http://orcid.org/0000-0002-3486-3168
http://orcid.org/0000-0002-3486-3168
http://orcid.org/0000-0002-3486-3168
http://orcid.org/0000-0002-2261-9862
http://orcid.org/0000-0002-2261-9862
http://orcid.org/0000-0002-2261-9862
http://orcid.org/0000-0002-2261-9862
http://orcid.org/0000-0002-2261-9862
http://orcid.org/0000-0003-3915-7243
http://orcid.org/0000-0003-3915-7243
http://orcid.org/0000-0003-3915-7243
http://orcid.org/0000-0003-3915-7243
http://orcid.org/0000-0003-3915-7243
http://orcid.org/0000-0003-2116-5536
http://orcid.org/0000-0003-2116-5536
http://orcid.org/0000-0003-2116-5536
http://orcid.org/0000-0003-2116-5536
http://orcid.org/0000-0003-2116-5536
http://orcid.org/0000-0002-3921-0510
http://orcid.org/0000-0002-3921-0510
http://orcid.org/0000-0002-3921-0510
http://orcid.org/0000-0002-3921-0510
http://orcid.org/0000-0002-3921-0510
http://orcid.org/0000-0003-1734-5817
http://orcid.org/0000-0003-1734-5817
http://orcid.org/0000-0003-1734-5817
http://orcid.org/0000-0003-1734-5817
http://orcid.org/0000-0003-1734-5817
http://orcid.org/0000-0002-6801-720X
http://orcid.org/0000-0002-6801-720X
http://orcid.org/0000-0002-6801-720X
http://orcid.org/0000-0002-6801-720X
http://orcid.org/0000-0002-6801-720X
http://orcid.org/0000-0003-0312-161X
http://orcid.org/0000-0003-0312-161X
http://orcid.org/0000-0003-0312-161X
http://orcid.org/0000-0003-0312-161X
http://orcid.org/0000-0003-0312-161X
http://orcid.org/0000-0003-1709-8983
http://orcid.org/0000-0003-1709-8983
http://orcid.org/0000-0003-1709-8983
http://orcid.org/0000-0003-1709-8983
http://orcid.org/0000-0003-1709-8983
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32103-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32103-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32103-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32103-8&domain=pdf
mailto:papaemme@mskcc.org


Acute Myeloid Leukemias (AML) are overlapping hematological neo-
plasms associated with rapid onset, progressive and frequently che-
moresistant disease1,2. Intensive chemotherapy and combination
regimens have recently shown improvement in patient response3,4,
however, the risk of relapse-related mortality remains high5. At diag-
nosis, classification and risk-stratification are critical for treatment
decisions2–4. Decisions on type of consolidation chemotherapy, timing
of hematopoietic stem cell transplantation (HSCT) or eligibility for
clinical trials3, are evaluated on each patients’ a priori likelihood of
attaining complete remission (CR), the prospective persistence of
measurable residual disease6 (MRD), and the predicted likelihood of
relapse or death2.

As prospective sequencing is becoming routine during AML
diagnosis, there is a need to understand the clinical relevance of
molecular biomarkers in the context of established endpoints (i.e.
MRD, CR, relapse). Translation of such findings into clinical practice
warrants the development of evidence-based and dynamic clinical
decision support tools that considermolecular and clinical biomarkers
to inform optimal diagnosis and treatment decisions and improve
patient outcomes7.

To this end, genemutations are being gradually incorporated into
classification and risk-stratification guidelines for AML patient
management1,2. However, with the exception of NPM1, CEBPA and
provisionally RUNX1, the WHO2016 classification is primarily reliant on
cytogenetic findings1,2. Here, we incorporate data from 2113 repre-
sentative AMLpatients enrolled in threeUK-NCRI trials8,9.We study the
relationships between genetic alterations, clinical presentation, treat-
ment response and outcome to develop a framework that unifies
diagnostic classification to risk stratification that results in significant
improvement in predictive accuracy. Results were validated in an
independent cohort of 1540 AML patients10.

Results
Study participants
Study participants included 2113 AML adult patients enrolled in UK-
NCRI trials3,8,9 (training), which uniquely recruit up to 80% of UK
patients fit for either intensive or non-intensive treatment and are
therefore representative of the “real-world” patient population rather
than studies limited by strict trial entry criteria. The majority (83%,
n = 1755) were intensively treated8,11,12 (median age = 56). Data from
1540 AML patients from the AML-SG10 (median age = 50) with com-
parable molecular annotation at diagnosis were used as a validation
cohort (Supplementary Table 1, Supplementary Data 1, Supplementary
Fig. 1). Informed consent was obtained for all patients. Molecular
assessment of UK-NCRI cohort included karyotypes8,9, copy number
alterations (CNA) and putative oncogenic mutations across the entire
gene body of 128 genes implicated in myeloid neoplasia pathogenesis
at diagnosis (Supplementary Data 2–4).

Genomic landscape of AML
Mapping of recurrent cytogenetic abnormalities and gene mutations
characterized 8,460 driver events in 98% of the UK-NCRI cohort
(Supplementary Data 3, 4) Genotype and clinical relationships for 70
recurrent cytogenetic abnormalities and 84 genes were consistent
with prior studies (Supplementary Figs. 3, 4; https://www.aml-risk-
model.com/gene-panel). Detailed genotype and clinical relationships
to include patterns of co-mutation, clinical and outcome correlates
were evaluated for each of 70 recurrent (>1%) cytogenetic abnormal-
ities and 84 genes with established role in AML pathogenesis (Sup-
plementary Fig. 4; https://www.aml-risk-model.com/supplementary).

Molecular classification in AML
Utilizing the WHO2016 guidelines for AML classification, 49.6%
(n = 1049) of UK-NCRI patientsmapped to establishedWHO2016 classes.
Each class ranged in size from 0.4% to 31.5% (Supplementary Fig. 5).

Clustering analysis on the basis of cytogenetic and gene mutation
findings identified 14 non-overlapping clusters classifying 92%
(n = 1943) of patients (Supplementary Figs. 6, 7). These validate
established WHO2016 entities, resolve provisional subgroups2,13,14 and
determine previously uncharacterized molecular subgroups that
describe 33.3% of AML patients (Supplementary Fig. 8). Each class is
associated with distinct demographic and clinical parameters and in
unison, explain the heterogeneity observed at diagnosis across age,
peripheral blood and blast counts amongst AML patients (Supple-
mentary Table 2).

Classes defined by cytogenetic alterations included entities
defined by translocations and patients with complex karyotype
(CK, ≥ 3 unbalanced abnormalities) (n = 217, 10.3%) with frequent
involvement of TP53 mutations (n = 141, 65%)14. Consistent with prior
studies, patients with CK were generally older (median diagnostic
age = 62) and associated with adverse outcomes10. With the exception
of mutations in TP53, whichwasmutated in 65% of CK cases, there was
a paucity of other acquired mutations in this group. Unlike in MDS15,
the allelic state of TP53 (mono allelic or multi-hit) provided no further
prognostic information in AML (Supplementary Fig. 9). A novel cyto-
genetic subgroupwas defined by the presence of ≥1 trisomies (n = 237,
11.2%), frequently involving +8, +11, +13, +21 and +22 but no deletions.
This group had infrequent involvement of TP53 (4%), and was asso-
ciated with more favorable disease, even when ≥3 trisomies were
present (Fig. 1a, b, Supplementary Fig. 10).

Patients with ≤2 aneuploidies (n = 233, 11%), enriched for “MDS-
related”16,17 cytogenetic abnormalities clustered with secondary AML
type mutations (sAML)16 such as SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1,
EZH2, BCOR, or STAG2, as well as novelly described here, RUNX1,
SETBP1, and MLLPTD mutations. This represented the second largest
cluster (28.4%, n = 601). Patients in this group were older (median
diagnostic age 65.5 vs 56, p < 0.0001), with lower blast counts (median
51 vs 65, p <0.0001) and higher incidence of antecedent hematologic
disease (AHD) (32% vs 11.4% p <0.0001) (Fig. 1c). Given the enrichment
of MDS-related abnormalities and sAML like genemutations, we name
this cluster “sAML” per Lindsley et al 18. Of prognostic importance, the
association with adverse outcomes was specific to patients with ⩾2
mutations (5-year survival rate = 16%), as compared to patients with a
single gene mutation in a class-defining gene (5-year survival rate =
37%) (Fig. 1d, Supplementary Figs. 11, 12, Supplementary Table 2).
Thus, we subdivided this cluster into secondary AML Like-1 (sAML1)
definedbypatientswith singlemutations (n = 100) and secondaryAML
Like-2 (sAML2) for patients with ⩾2 class defining genes (n = 501)
(Fig. 1d, Supplementary Figs. 11, 12). AHD was enriched in sAML2 and
associated with even worse outcomes (p <0.0001) (Supplementary
Fig. 13). The provisional WHO entity defined by RUNX1 mutations
(13.5%) spread across both sAML1 and sAML2 subgroups at similar
frequencies and did not confer independent prognosis (Supplemen-
tary Fig. 14).

In the absence of classifying events (e.g CEBPAbi, t(8;21)), WT1
mutations defined a distinct cluster (n = 40, 2%) (Supplementary Fig.
15) characterized by few mutations, younger diagnostic age (med-
ian = 41), high white blood cell (WBC) counts and intermediate risk,
unless co-mutated with FLT3ITD(Supplementary Fig. 15). We further
validated theDNMT3A/IDH class in 1% of patients anddemonstrate that
this is a heterogeneous group (Supplementary Fig. 16)14. 6% of patients
(n = 124) not clustering with any class were labeled as “molecularly Not
Otherwise Specified” (mNOS) and 2% had no identifiable mutation
(n = 46) in our panel (no mutations).

Thesefindings informed a hierarchical classification that explicitly
assigns 100% of patients into a molecular class (including mNOS and
no-mutations) (Fig. 1e, Supplementary Fig. 17, https://www.aml-risk-
model.com/supplementary). Patients in the sAML1, sAML2, WT1 and
trisomyclasses demarcated independent prognostic groups relative to
ELN2017 (Fig. 2a, Supplementary Fig. 18).
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This is important as in the absence of risk stratifying biomarkers a
significant proportion of patients in these newly defined groups were
considered as intermediate risk AML (eg. 18% of patients in the AML2
class) (Fig. 2a). Patients with no-mutations had favorable outcomes
and were distinct from intermediate-risk mNOS. This demonstrates
that given a comprehensive workup, negative findings also provide
relevant prognostic information (Figs. 1e and 2a, Supplementary Fig.

18). Proposed class associations were validated in AMLSG (Supple-
mentary Fig. 19). As expected, non-intensively treated patients in the
NCRI cohort were enriched in the TP53-CK and sAML2 groups. None-
theless, the associations with adverse outcomes remained, as in the
intensively treated subsets (Supplementary Fig. 20).

Notably, similarly to most signaling gene mutations (e.g. NRAS),
FLT3 mutations are present across classes. Thus, these mutations are
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not “class defining” and are therefore not considered in the hier-
archical classification schema.

Integration of AML classes into prognostic models for clinical
management
Prompted by the strong associations between class and outcomes, we
compared prognostic models that considered genetic features to
class-based models (Supplementary Tables 3, 4, Methods) or both,
using ELN2017 as a reference. Monosomal karyotypes19 did not provide
independent prognostic value17 (Supplementary Fig. 21). Model com-
parisondemonstrates that a simplemodel, basedon classmembership

and FLT3ITD status (17 features), captures the same prognostic infor-
mation as more complex genetic models (154 features)(Fig. 2b, Sup-
plementary Figs. 22–29). These findings provide a rationale for the
development of a risk stratification schema that is based on class
membership and FLT3ITD status, thus offering the opportunity to unify
classification to risk stratification and importantly link a biological
definition of disease ontology to clinical presentation and outcomes.

In agreement with prior findings7, inclusion of clinical features
(age of diagnosis, gender blast, antecedent hematologic disorder,
performance status, white blood cells, hemoglobin and platelet)
achieved the highest improvement in model discrimination (Fig. 2b,

Fig. 1 | Molecular classification in AML. a Repartition of two patterns of chro-
mosomal aneuploidies to include TP53 and complex and trisomies. The y-axis
represents the fraction of patients carrying each driver event (on the x-axis) for
each of the two subgroups (training, n = 2113). b Kaplan–Meier overall survival
curves for overall survival curves for patients with trisomies (<3)(gray), triso-
mies(≥3)(lightgrey) and complex karyotype (burgundy) in the training cohort
(n = 2113). Log-rank tests compared the survival distributions between complex
andMDS related cytogenetics and between complex and trisomies not complex
subgroups. c Comparison of age (years), bone marrow blasts (%) and AHD
(antecedent hematologic disorder) distributions for sAML like subgroups
(N = 601) to other AML in AML NCRI cohort (N = 1512). Two-sided p-values on the

boxplots used either a Wilcoxon rank-sum test or a Fisher’s exact test.
d Kaplan–Meier overall survival curves for the secondary AML like classes
(sAML1 and sAML2) in the training cohort (n = 2113). Annotated P-values are
from two-sided log-rank tests. e Hierarchical classification schema. Hierarchy
rules for AML class assignment, biomarkers for hierarchy implementation and
class range proportions. sAML2 comes before biCEPBA in the hierarchy (Sup-
plementary Appendix for more details). WHO 2016 set1 and WHO 2016 set2
display classifications for more than one group. For those 2 specific boxes, we
displayed range values representing the proportions of the smallest class and
largest class in that subset. For all other sets, the values represent the propor-
tion of patients in the cohort for that particular class.

(4.7%) (23.7%) (2.1%) (1.9%) (2.2%) (5.9%)

p=9.79 x 10-8

Fig. 2 | Prognostic relevance of molecular subgroups. a Kaplan–Meier overall
survival curves for the sAML1, sAML2, trisomies, WT1, no event and mNOS sub-
groups, separated by ELN2017 scores. A bar plot representing ELN2017 repartition for
each class is included in the lower panel. b Estimates of the concordance index (C-
index) derived from Cox regression with a ridge penalty that consider (1) ELN2017

strata, (2) gene mutations, (3) molecular classes, (4) molecular classes + FLT3ITD, (5)
genetic data (gene mutations and cytogenetics), (6) clinical and demographic, (7)
genetic, clinical and demographic and (8) classes, FLT3ITD, clinical and demographic
features using internal 5 fold cross-validation for penalty selection. Top panel
includes barplots representing the number of features/categories considered in

each model (i.e. 3 for ELN). The centers of the error bars represent the mean; the
lower and upper whiskers represent the 95% CIs. Annotated P-values are from two-
sided t score test. cDensity plots representing the scaled observed hazard (0–1) for
the ELN2017 risk categories and the proposedmolecular classes. In purplewe show
the density of risk for each class, in orange we present the subset of cases in class
that also have FLT3ITD. We omitted the density plot for class t(15;17) due to small
numbers. The hazard is depicted for overall survival. In all boxplots, the median is
indicated by the horizontal line and the first and third quartiles by the box edges.
The lower and upper whiskers extend from the hinges to the smallest and largest
values, respectively, no further than 1.5 × interquartile range from the hinges.
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Supplementary Fig. 30). Figure 2c exemplifies how the heterogeneity
in clinical outcomes (as a function of overall survival hazard) is cap-
tured by the proposed classification. Despite differences in age, geo-
graphy and chronology, feature selection was comparable in the
AMLSG cohort, indicating that results are generalizable across AML
patients (Supplementary Figs. 31, 32) and further demonstrating class
membership as stable features for prognostic model construc-
tion in AML.

A multi-state model for disease progression
We next studied associations between class membership, treatment
response and relapse.Modeling a patient’s journey through treatment,
we applied a six-state Markov Model (MM)20 that includes the follow-
ing states: alive (n = 2017); alive in CR (n = 1460); relapse (n = 778);
death without CR (n = 543); death with CR (n = 199) and death follow-
ing relapse (n = 607) (Fig. 3a, Supplementary Fig. 33). Results were
consistent in the intensively treated subset (n = 1661) (Supplementary
Fig. 34).

This provides a detailed analysis of the proportion of patients
in each class likely to transition between any two clinical endpoints
over time (e.g Alive in CR - > Death in CR, or Alive in CR - > Relapse
->Death in relapse). The resulting survival estimates reflect the
cumulative hazard for each of the transitions (Fig. 3b–d). This
provides a detailed resolution of anticipated transitions across
molecular subgroups. For example, patients with inv(16) or t(8;21)
have comparable OS estimates, yet patients with inv(16) are more
likely to relapse21 (Supplementary Figs. 35, 36). Notably, upon
relapse, inv(16) patients achieve the highest salvage frequencies, as
compared to all other AML classes. Patients with no events, con-
sidered as intermediate-risk, have similar transitions to the NPM1
class.We estimate endpoint-specific outcomes for theWT1, Trisomy
and mNOS classes, which together with t(6;9) respond well to
induction chemotherapy. However, patients inWT1 and t(6;9) class
have a high likelihood of relapse-related mortality (Fig. 3b–d). This
is particularly the case for the subset of patients with FLT3ITD.
Indeed, subjects with FLT3ITD had both decreased likelihood of
achieving CR, and increased risk of relapse-related mortality across
all AML classes, not just NPM1 (Supplementary Figs. 35, 36). This is
despite the use of escalated doses of daunorubicin in AML17 which
has been reported to reduce relapse risk in patients with FLT3ITD 22.
Furthermore, this model demonstrates that a key differentiator
between sAML1 and sAML2 is response to induction chemotherapy,
with 43.7% of sAML2 group patients not attaining CR as compared
to 26% in sAML1 (Fisher’s Exact test p = 0.002). Consistent with prior
findings, adverse outcomes in TP53/complex and inv(3) are
explained by highly chemoresistant disease and relapse-related
mortality14,23. These observations were also observed in the AMLSG
cohort (Supplementary Fig. 37, Supplementary Data 5).

Implications for disease surveillance
MRD surveillance assesses initial response and guides treatment
decisions24,25, such as HSCT. Whilst MRD status is considered an
independent predictor of outcome26,27, the predictive relevance of
MRD has not been determined across classes.

Results fromMRD surveillance by flow-cytometry after course 1
were available in 523 UK-NCRI AML17 patients16. Of these, 202 were
CR MRD−ve and 321 were CR MRD+ve (Fig. 4a, Supplementary Fig. 38).
The MRD+ve rate, by class, ranged from ~33% to 95% (Fig. 4b). As
expected6, MRD+ve patients had a higher risk of relapse and death
(Fig. 4a), with some exceptions. 70% (MRD+ve = 69) of sAML2
patients in CR were MRD + , yet while there was no evidence of a
significant difference in relapse or survival rates, there was no dif-
ference of effect by group (p = 0.3 for interaction) (Fig. 4c, Sup-
plementary Fig. 39). For sAML1, there was no difference in relapse-
incidence between MRD+ve and MRD−ve subjects. A trend towards

poorer OS for MRD+ve patients was observed. These results suggest
that while achieving MRD-negativity after the first course is asso-
ciated with favorable outcomes, its utility may not be universal
across classes (Supplementary Figs. 40–43) and that differences
may be explained by the underlying biology associated with the
mutations in each class.

Relevance of AML classes to transplant outcomes
Next, we evaluated HSCT outcomes by AML class. Consolidating data
from 2,244 intensively treated patients in the UK-NCRI (n = 1095) and
AMLSG (total n = 1149) that achieved CR, 759 patients were trans-
planted in CR1 and 436 after relapse (Total n = 1195) (Supplementary
Tables 5–7).

Evaluation of OSwith respect to class andHSCT timing (Fig. 4d, e)
demonstrated that sAML2 patients undergoing HSCT had a reduced
risk of death, following adjustment for performance score and age
(p < 0.0001; Fig. 4d). Therewasno significant survival difference based
on HSCT in CR1 or CR2 (p = 0.21; Fig. 4e). Of note, patients in the TP53-
CK also benefited from HSCT. However, in this group, patients trans-
planted inCR2 had significantlyworse survival than those transplanted
in CR1 (p =0.009; Fig. 4e, Supplementary Fig. 44). Adjusting for age
and performance score, HSCT was not associated with a reduced risk
of death for patients in the sAML1 group, albeit therewas evidence of a
benefit for patients transplanted in CR1 vs CR2 (Fig. 4d, e, Supple-
mentary Fig. 44).

Prior studies show that adverse-risk groups as defined by cyto-
genetics benefit from transplant28. Here our findings extend the defi-
nition of adverse-risk groups to include the newly defined sAML2
group, which account for 23.7% of patients in the study. However,
given inherent selection biases associated with transplant, these
results warrant validation in prospective studies.

Relevance of molecular class in AML risk stratification
Using a panel of 32 genes (Supplementary Table 8), the proposed
classification explicitly assigns 92% of patients into one of 14 AML
classes and is sufficient to classify remaining patients into the two
mNOS or no events subgroups. We demonstrated that class mem-
bership and FLT3ITD status capture the same prognostic information as
genetic parameters. We next assessed how a class-based framework
might inform future ELN2017 revisions.

Using the ELN2017 as a foundation, we assigned each class to one
of three proposed risk strata (Favorablep, Intermediatep, Adversep)
(Fig. 5a). Patients in the no events class were assigned to Favorablep

group and “mNOS” patients to the Intermediatep. sAML1, trisomies,
WT1, DNMT3A/IDH and t(6;9) were classified as Intermediatep-risk
and sAML2 as Adversep. Per ELN2017, t(6;9) was considered an
adverse-risk group. We show that adverse-risk is specific to the
subset of patients (72%) with FLT3ITD (Supplementary Fig. 45). We
demonstrate that FLT3ITD is the only gene that delivers independent
prognostic information from class membership.,Indeed, the pre-
sence of FLT3ITD was associated with worse outcomes for all
intermediate-risk (Fig. 5b, Supplementary Fig. 46) classes. This
association was independently of FLT3ITD ratio29,30 (Supplementary
Fig. 47). Thus, FLT3ITD status was used to upgrade risk for all
intermediate-risk patients to adverse-risk.

Taken together, this framework re-stratified 25.5% of NCRI and
24.6% of AMLSG patients (Supplementary Figs. 48, 49). The redefined
risk-strata overlappedwith ELN2017 trajectories.However, the proposed
framework led to an increase in variance explained and a significant
improvement in the c-index (p =0.05 for NCRI; p =0.025 in AMLSG)
(Fig. 5c, Supplementary Fig. 50, Supplementary Table 4). The relative
proportion of transplanted patients did not differ amongst the
respective ELN strata (Supplementary Table 7) and results were con-
sistent in the intensively treated subset (n = 1755) (Supplementary
Fig. 51).
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Fig. 3 | Multi-state model for disease progression in the AML NCRI Cohort
(n = 2017). a Representation of patient transitions (in numbers) across clinical
endpoints (alive (meaning received induction chemotherapy); alive in complete
remission; alive in relapse; death without complete remission; death in complete
remission; death in relapse).The arrows represent the number of transitioning
patients. Circle arrows correspond to number of patients that do not transition.
b Stacked transition probabilities (y-axis) across time (x-axis). c Cox volcano plots
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and the vertical one corresponds to β =0 on the x-axis. Highlighted predictors have
a significant effect or have large β coefficients (p-value greater than the threshold:
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parisons. d Stacked transition probabilities for each class (y-axis) across time (x-
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from themulti-statemodel for disease progression (2113–96 = 2017) due tomissing
timepoints.
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Clinical decision support tools
Appreciating the complexity introduced by the multitude of genetic
features considered, we developed a web-based tool that executes the
proposed classification and risk stratification hierarchy (Figs. 1e, 5a)
(Figs. 5, 6, https://www.aml-risk-model.com/calculator). Using muta-
tions in 32 genes and cytogenetics as input variables, supervised

classification assigns each patient into the corresponding AML class
and risk group. The model is restricted to the intensively treated
subset of the study (n = 3201), which represents 90% of the patients in
both NCRI and AMLSG cohorts. Graphical representation of end-point
specific predictions across time are presented in the form of sediment
and barplots. The contributing factor tab displays patient specific
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covariates that inform each transition estimate alongside the corre-
sponding coefficients. For example, Patient PD25176a, classified as
intermediate risk per ELN2017 is 63 with normal karyotype and muta-
tions in BCOR and SF3B1. Here, this patient classifies as sAML2 with
AdverseP risk and the predicted outcomes for each transition are dis-
played (Fig. 6, Supplementary Fig. 52). To account for cases with
clinical presentation outside the 95th quantile range of the training
cohort and enhance interpretability of results, we introduce a warning
sign for outlier cases and compute confidence intervals for all pre-
dictions in the calculator.

Discussion
The scale and comprehensive analyses deployed in this study enabled
us to validate some of the findings in the prior literature, establish

further insights and consolidate these into a global framework for the
introduction of molecular biomarkers in clinical algorithms for AML
patient management.

Using data from 3653 patients, we develop and validate a uni-
fied framework for disease classification and risk-stratification in
AML that is informed by cytogenetics and 32 genes. This framework
classifies 100% of AML patients into one of 16 molecular subgroups
and refines our understanding of established classes (e.g t(6;9)), as
well as provisional WHO entities (e.g RUNX1). We identify novel
clusters of prognostic relevance (sAML1, sAML2, WT1, trisomies)
accounting for 33.3% of AML patients, demonstrate the importance
of negative molecular findings (No events, mNOS) and highlight the
broad implications of FLT3ITD-positivity irrespective of FLT3ITD

allelic ratio.

Fig. 4 | Implications for measurable residual disease surveillance and trans-
plant outcomes. a Cumulative incidence of relapse and Kaplan–Meier overall
survival curves for patients that attainedCR inAML17 trial subset, stratified byMRD
status post course 1 (n = 523). Two-sided Gray’s test and the logrank test were used
to compare the relapse incidence and survival, respectively. b Barplots indicating
proportion of patients in each molecular class with flow MRD +ve (any detectable
MRD) orMRD−ve status post course 1. Restricted to theAML17 trial subset (n = 523)
and to classes with at least five patients in the MRD+ ve subset. c Incidence of
relapse and OS by MRD status for the sAML2, sAML1 subgroups. A test for inter-
action between sAML1 vs sAML2 and MRD (Interaction HR: 1.90 (0.55–6.49), p-
value: 0.31) was not significant. The analysis provided in c is limited to AML17
patients with MRD data available. Two-sided Gray’s test and the logrank test were
used to compare the relapse incidence and survival, respectively. dNonparametric

estimated curves of the hazard rate (deaths per person-year; y-axis) across time (x-
axis) for the sAML2, sAML1 and TP53 complex subgroups in the combined dataset
(UK-NCRI and AMLSG). Curves display the hazard for patients transplanted (TPL) in
CR1 to the non-transplanted patients. Tests of association were modeling trans-
plant as a time-dependent covariate adjusted for age andperformance status. A test
for interaction between sAML1 vs sAML2 and transplant was borderline significant
(Interaction HR: 0.57 (0.30–1.08), p-value: 0.08). 95% CIs are shown in the shaded
areas. e Kaplan–Meier overall survival curves comparing patients who have been
transplanted in CR1 to patients transplanted in CR2 for the selected classes. P-
values are computed using the log-rank test. The analysis in d, e is limited to the
patients to 2244 intensively treated patients in the UK-NCRI (n = 1095) and AMLSG
(total n = 1149) that achieved CR, 759 patients were transplanted in CR1 and 436
after relapse (Total n = 1195).

Fig. 5 | Establishment of a new risk proposal based on the AML classes. a Class
assignment into one of three proposed risk categories (FavorableP, Inter-
mediateP, AdverseP) is based on class membership and FLT3ITD status, whereby
the presence ofNPM1 and FLT3ITD in the FavorableP, the presence of FLT3ITD in the
IntermediateP groups shifts one risk category to the IntermediateP and AdverseP

respectively. NPM1 FLT3ITD Patients classified as intermediate by class mem-
bership with the presence of FLT3ITD shift to adverse. The dotted arrow refers to
the risk transition for patients with both NPM1 and FLT3ITD mutations from
favorable to intermediate. The solid arrow refers to the risk transition for
patients with FLT3ITD from intermediate to adverse. b Kaplan–Meier overall
survival curves comparing each of the proposed risk strata (FavorableP, Inter-
mediateP, AdverseP) by the presence of NPM1 and FLT3ITD status for the

FavorableP and by FLT3ITD status for the IntermediateP and AdverseP in the
training AML NCRI cohort (n = 2113) and the validation AML SG cohort (n = 1540)
validate the rationale for the FLT3ITD shift in risk. Annotated P-values are from
two-sided log-rank tests. c The estimated improvement in the concordance
index (C-index) and pseudo-variance explained (R2) for the two classifiers in the
training AML NCRI Cohort (n = 2113) and validation AML SG Cohort (n = 1540).
95% confidence intervals were generated by bootstrap resampling for the
C-index. In all boxplots, the median is indicated by the horizontal line and the
first and third quartiles by the box edges. The lower and upper whiskers extend
from the hinges to the smallest and largest values, respectively, no further than
1.5×interquartile range from the hinges. Annotated P-values are from two-sided
t score test.
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Implementation of multistate models that consider each transi-
tion during a patients journey through AML, such as attainment of CR,
likelihood of relapse and risk of death fine-map the most likely tem-
poral trajectories for the established classes, and importantly further
dissect and add granularity to the newly characterized classes in this
study, which were previously merged into a heterogeneous unknown
or intermediate-risk group. This provides a blueprint linking the bio-
logical processes deregulatedwithin each class to apatient’s likelihood
of response to treatment, risk of disease progression, relapse and
death. As an exemplar of this added clarity, the sAML2 class accounts
for 24% of AML patients, is associated with chemorefractory disease,
high relapse rates and poor survival, irrespective of early MRD nega-
tivity. However, for the subset of sAML2 patients who achieve CR,
there appears to be a benefit of HSCT. Future studies, powered by
adequate sample size are warranted to confirm these observations.

Building upon the ELN2017 guidelines, we propose a three-tier risk-
score (FavorableP, IntermediateP, AdverseP) informed by class mem-
bership and FLT3ITD status. Informed by the AML classification, this
framework restratifies one in four AML patients and achieves sig-
nificant improvement in prognostic accuracy. Moreover, despite
demographic and clinical trial differences between our test and vali-
dation cohorts, our findings are reproducible across both the UK-NCRI
and AMLSG cohorts. This is likely because the molecularly defined
classes capture the spectrum of phenotypic and clinical heterogeneity
observed amongst AML patients. Importantly, this demonstrates that
findings from this study are generalizable across AML patients and are
representative of those seen in routine clinical practice, particularly
those considered fit for therapeutic intervention, where clinical deci-
sion making is currently most problematic. Despite the emergence of
adjunct therapeutic approaches in the management of AML3,4, the

Fig. 6 | Example presentation of personalized clinical decision support tool for
molecular classification and risk stratification. The calculator is derived using
the multi-state models that consider data from (n = 3201 total patients, UK-NCRI
and AMLSG) all intensively treated. a Input parameters to include cytogenetic,
genetic, clinical and demographic are considered to (b) display each patient’s
ELN2017 score alongside with the proposed risk group developed in this study. To
further improve interpretation confidence, we provided confidence intervals for
each sediment plot and probability estimate transitions. The lower and upper
whiskers represent the 95% CIs. Stacked sediment plots for each patient represent
the likelihood to transition between clinical endpoints across time. X-axis indicates
time from diagnosis in years. Y-axis indicates probability for each transition. Black
line indicates probability of survival across time. Vertical dotted line indicates the
1 year time frame.Horizontal barplots indicate the probability of attaining each one

of these endpoints at selected time (vertical dotted line). c, d Adjacent barplots
show the relative contribution of each covariate (molecular, clinical, demographic)
on each transition. Estimates can be dynamically derived for the time of diagnosis
or upon attainment of Complete Remission (CR) and across timepoints (i.e. Year 1
post diagnosis or CR, Year 3 post diagnosis or CR etc). To further improve inter-
pretation confidence, we provided confidence intervals for each sediment plot and
probability estimate transitions. The lower and upper whiskers represent the 95%
CIs. Stacked sediment plots for each patient represent the likelihood to transition
between clinical endpoints across time. X-axis indicates time from diagnosis in
years. Y-axis indicates probability for each transition. Black line indicates prob-
ability of survival across time. Vertical dotted line indicates the 1 year time frame.
Horizontal barplots indicate the probability of obtaining each one of these end-
points at selected time (vertical dotted line) and at 3 years.

Article https://doi.org/10.1038/s41467-022-32103-8

Nature Communications |         (2022) 13:4622 9



backbone regiments in our training and validation cohorts (“7 + 3 like”)
are representative of AML treatment practices globally.

Recent correlative studies between molecular biomarkers and
clinical outcomes primarily focus on single-genes or broad, hetero-
geneous risk groups13,31–33. This has challenged integration of findings
into generalizable clinical algorithms to guide patient management.
More recently, we prototyped patient-tailored clinical decision sup-
port tools in AML that deliver personalized risk scores7. However, in
the absence of adjunct risk strata the utility of personalized risk scores
in clinical trial design and interpretation of results is limited. Addi-
tionally, the complexity and “black box” nature of the models chal-
lenge clinical implementation and interpretation. Here, we deliver a
simplified framework whereby mutations and cytogenetic findings at
>100 loci can be summarized by 16 classes and the corresponding
three risk strata. Class membership provides resolution in the het-
erogeneity observed in clinical presentation anddelivers a rationalized
schema for correlative studies as compared to single biomarkers or
clinical cutoffs (e.g. % blast counts), which may dichotomize or group
together heterogeneous and biologically distinct nosological entities.
The delivery of a stable, biologically informed classification system
further enables future studies of class-specific associations that extend
beyond those of single gene-mutations and capture themost common
patterns of co-mutation.

Integration of data from MRD and HSCT outcomes allowed us to
prototype such correlative analyses using class-based associations.
Indeed, the applicability of this framework to emerging treatment
approaches inAMLmanagement to include less intensive regimens4 or
emerging therapeutics3 needs further definition. Likewise, while we
demonstrate a significant increase in risk hazard for many molecular
classes in the presenceof an additional FLT3ITD -mutation,wenote that
the survival advantage described in recent trials where FLT3 inhibitors
were combined with intensive chemotherapy were modest34–36. It is
noteworthy that patients with established adverse cytogenetics or
genetic features (TP53 mutations) associated with poor outcomes to
intensive chemotherapy also have adverse outcomes in response to
emerging treatments such as azacytidine and venetoclax4. Here we
expand the definition of adverse risk to encompass patients with
sAML2 and a broader cohort of patients with FLT3ITD mutations.

As clinical management options evolve, studies focused on class
associations with MRD status19, response to emerging therapeutics3

such as FLT3 or IDH37,38 as well as combination regimens (e.g azacyti-
dine and venetoclax)4 are warranted tomake definitive determinations
for AML patient care.

Method
Informed consent was obtained for all subjects to the study.

All relevant ethical guidelines have been followed, and any
necessary IRB and/or ethics committee approvals have been obtained.
The trialwas conducted in accordancewith theDeclaration ofHelsinki,
was sponsored by Cardiff University, and was approved by the Wales
Research Ethic Committee. Sample collection was approved by the
Wales research ethic committee protocol number 08/MRE09/29
Analysis of the data in this study was approved byMSKCC Institutional
Review Board protocol number x20-064.

Clinical annotation
Demographic and diagnostic variables were ascertained at the time of
diagnosis by the NCRI Clinical Trial Center. The variables collected
included: Age of diagnosis (AOD), Gender, Bone marrow karyotype,
AML type (AML: de novo AML, sAML: secondary AML, tAML: therapy
related AML), Antecedent hematological disease (AHD), Performance
status and peripheral blood counts to include white blood cell (WBC)
counts, lactate dehydrogenase levels (LDH), platelet counts, hemo-
globin levels (Hb). Outcome endpoints included status at last follow
up, time from diagnosis to time of last follow up, event free survival

and time to event, relapse free survival and time to relapse as well as
whether complete remission was achieved, time to remission and time
to transplant where transplant was received.

For patients in the NCRI AML17 trial flow cytometric MRD data
were previously derived from Freeman et al.27

Molecular annotation
Preparation of custom capture libraries for sequencing. Genomic
DNA was extracted from peripheral blood or bone marrow mono-
nuclear cells for adult AML patients ascertained through the UK-NCRI
AML Trials AML11, AML12, AML14, AML15, AML16, AML17 and AML Li1
(Supplementary Table 1). All samples were collected at diagnosis prior
to any treatment. CustomRNAbaits were designed permanufacturers’
guidelines (SureSelect, Agilent, UK) complementary to all coding
exons of 128 genes as well as genome wide SNP probes selected using
the following criteria:(1) Inter-marker distance every 3MB; (2) Popu-
lation Minor Allele Frequency > 0.4; (3) Not within repeat regions.
Detailed bait file design to include all regions targeted by RNA baits,
alongside genomic coordinates and annotation are provided in Sup-
plementary Data 1.

A total of 125μl of 40ng/μl of WGA DNA was fragmented to an
average insert size of 145 bp (75I300) and subjected to Illumina DNA
sequencing library preparation using the Bravo automated liquid
handling platform. Individual samples were indexed using a unique
DNA barcode via six cycles of PCR. Equimolar pools of 16 libraries were
prepared and hybridized to custom RNA baits following the Agilent
SureSelect protocol. Enriched pools of 96 cases were sequenced on a
lane of an Illumina HiSeq Genome Analyzer machine using the 75 base
pair paired-end protocol up to a median coverage of 600x. Only data
that passed FASTQC MultiQC criteria (coverage > 100x, duplicate
reads, GC bias) were retained in the study.

Of note, all samples from the NCRI trials were uniformly pro-
cessed, sequenced and annotated. AMLSG data were derived from the
data repository in Papaemmanuil et al.10.

All raw data has been deposited in the European Genome-
Phenome Archive EGAS00001000570.

Sequencing data alignment. Raw sequence data were aligned to the
human genome (NCBI build 37) using BWA53. Unmapped reads, PCR
duplicates and reads mapping to regions outside of the target region
(merged exonic regions + 10 bp either side of each exon) were exclu-
ded from analysis. Bedtools® coverage v2.15.05was subsequently used
to determine the coverage depth at each base. Genes with median
target coverage <20x were removed from the study and samples with
median overall coverage <50x were also excluded from downstream
analysis and are not reported in this study.

Variant calling
Substitutions. Base substitutions were mapped using established
bioinformatics approaches as previously described10,54,55. Single base,
somatic substitutions were called independently in each sample using
an in-house algorithm CaVEMan: Cancer Variants through Expectation
Maximisation56. The algorithm compares sequence data from each
tumor sample to an unrelated normal sample and calculates a muta-
tion probability at each base-pair position locus. A number of post-
processing filters were applied to improve specificity. Filters applied to
targeted capture data required that:
1. At least a third of the alleles containing themutantmusthave base

quality ≥ 25.
2. If mutant allele coverage ≥ 10, there must be a mutant allele of at

least base quality 20 in the middle 3rd of a read. If mutant allele
coverage is < 10, a mutant allele of at least base quality 20 in the
first 2/3 of a read is acceptable10.

3. The mutation position is marked by <3 reads in any sample in the
unmatched normal panel.
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4. If the mean base quality is <20 then <96% of mutation-carrying
reads are in one direction.

5. Variants were cross-referencedwith a panel of unmatched normal
samples (n = 300) to allow definition of base pair specific errors in
the panel/

6. Previously reported bona fide somatic variants presenting in the
unmatched normal panel were not filtered out from the dataset.

Small insertion and deletions. Small somatic insertions and deletions
(indels) were identified using an in-housemodified version of Pindel57.
Post-processing filters were applied as previously described58,59. The
following steps were taken to improve specificity for calling non-
coding indels:
1. ‘SUM-MS’ score (sum of the mapping scores of the reads used as

anchors)≥ 200
2. ‘Previously Rejected Score’ (PRS) is = =0
3. Bidirectional (evidence in both read directions (forward and

reverse) in Pindel or BWA reads)
4. Variant allele is not a unit within a homopolymer track presenting

with variant allele fraction <8%.
5. Variants did not present in ~300 unmatched normal samples and

did not have a COSMIC ID with confirmed somatic status in the
literature.

6. Artifactual indels occur at recurrent loci across multiple samples,
often as a consequence of highly repetitive sequence. To ensure
that such variants were not retained in the data, in-house
databases for recurrently rejected Pindel calls interrogation were
performed. All variants were visually inspected prior to removal.

Regions enriched for GC content and low target coverage were
manually reviewed (i.e. CEBPA, SRSF2) and, where available, prior data
derived by a CLIA approved diagnostic laboratory, were cross-
referenced and for FLT3ITD, CEBPA mutations and NPM1 mutations
incorporated in the dataset.

Additionally, for FLT3ITD detection a custom analysis script that
performs a localized query for reads consistent with an inverted tan-
dem duplication within the FLT3 locus was developed.

Visual inspection using visualization software (IGV) was per-
formed of all variants in the targeted gene screen dataset after
applying these filters.

Quality control and variant annotation. To evaluate the relevance of
each mutation in the study, we searched the following databases for
the presence of each mutations and relevant annotation on clinical
relevance: gnomAD https://gnomad.broadinstitute.org, COSMIC
https://cancer.sanger.ac.uk/cosmic, cBioPortal for Cancer Genomics
https://www.cbioportal.org, OncoKB Precision Oncology Knowledge
Base https://www.oncokb.org, ClinVar https://www.ncbi.nlm.nih.gov/
clinvar.

From the list of high confident somatic variants, putative onco-
genic variants were distinguished from variants of unknown sig-
nificance (VUS) based on:
• Recurrence in the Catalog Of Somatic Mutations in Cancer

(COSMIC)9, in myeloid disease samples registered in cBioPortal60,61

or in the study dataset.
• The inferred consequence of a mutation; where nonsense muta-

tions, splice site mutations and frameshift indels were considered
oncogenic for likely tumor suppressor genes (from COSMIC Can-
cer Census Genes or OncoKB Cancer Gene List).

• Presence in pan-cancer hotspot databases62,63.
• Annotation in the human variation database ClinVar64.
• Annotation in the precision oncology knowledge database

OncoKB54.
• Recurrence with somatic presentation in a set of in-house data

derived from >6,000 myeloid neoplasms10,55,59.

Briefly using these database variant annotation parameters are
listed by variant type as follows:
Oncogenic
• Known oncogenic variants previously reported in the literature or

databases;
• Novel recurrent variants (n ≥ 2) that cluster with known somatic

variants in well characterized myeloid driver genes;
• Truncating variants (nonsense mutations, essential splice muta-

tions or frameshift indels) in genes implicated in myeloid malig-
nancies through acquisition of loss of function mutations;

Details of all mutations annotated as oncogenic and retained for
bioinformatic analyses are provided in Supplementary Data 2.

Variants of unknown significance. Variants identified outside the
range of frequent driver variants in genes with known oncogenic var-
iants; Variants in genes whose role in myeloid disease is not yet
established or variants presenting uniquely in the dataset were not
considered in the study.

Cytogenetic findings and copy number alterations (CNA). Kar-
yotypes for 983/2113, 46.5% were ascertained in accordance with the
International System for Human Cytogenetic Nomenclature from
diagnostic assessment. Recurrent alterations including fusion genes
and copy number alterations were included in downstream analysis.
Additionally we used Allele Specific Copy Number Analyses of Tumors
(ASCAT65) to derive aberrant copy number segments at an arm or
chromosome level resolution. Findings from CNA and cytogenetic
findings from karyotype analyses were evaluated for concordance, as
well as matched for patient gender, as a means to quality control that
the derivative sample does indeed match the corresponding clinical
data. Detail annotation of the recurrent copy number alterations and
cytogenetic findings incorporated in the analyses is provided in Sup-
plementary Data 3.

Annotation of TP53 allelic state. TP53 allelic state15 was annotated as
follows:
• Mono-allelic annotation for samples with only one putative

somatic mutation (substitution, small insertion or deletion, splice
site mutation).

• Multi-hit annotation for samples that satisfied the following
criteria:
a. At least 2 mutations in TP53 (substitution, small insertion or

deletion, splice site mutation).
b. At leastonemutation of TP53and a concomitant deletion of the

TP53 locus to include focal deletions, 17p deletions or whole
chromosome 17 deletions.

c. At least one mutation in TP53 at a VAF estimate >65%, indica-
tive of LOH.

Statistical methodology
Bayesian dirichlet process for derivation of class membership. We
performed an ab initio evaluation of molecular classification in AML.
We used a Bayesian Dirichlet process (BDP)(https://github.com/
nicolaroberts/hdp), which defines a potentially infinite prior distribu-
tion for the number and proportions of clusters in a mixture model as
previously described10. Briefly, using this process a dataframe of 2150
rows (for each patient) with 153 columns representing recurrent
genetic alterations as binary variables (1 for present, 0 for wild type) is
used as input (Supplementary Data 3-4). The optimal number of clus-
ters is learned from the data by Markov chain Monte Carlo (MCMC)
methods. This approach does not constrain genetic features within
one cluster but rather allows genetic lesions to be shared across
clusters. This means that the resulting clusters can share genetic
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features. As the clusters are defined, patient samples obtain a prob-
ability of class membership for each cluster.

A 2-step Bayesian Dirichlet Process with Gaussian distribution
was implemented. In the first iteration a total of x high-confidence
clusters were defined assigning x patients with a high probability
of assignment >x%. Once components are determined, for each
patient, a probability of assignment to each of the components is
derived on the basis of the representative features for each class.
Hyperparameter selection was dependent upon: (1) The total
number of high-confidence components; (2) Maximum probability
of assignment for each patient; (3) The delta between the max-
imum probability of assignment and the second highest prob-
ability of assignment. A second iteration followed, with input the
subset of patients that were not classified in the first iteration,
which led to the x patients that did not classify within the first
iteration.

Selection of the execution parameters (i.e. hyperparameter)
selection was performed using a gridsearch (Supplementary Table 9).
• Cosine similarity threshold applied on the measure of distance

between clusters to differentiate distinct components.
• Initial number of clusters: random initialization to this predefined

number of clusters before applying the Gibbs sampling procedure.
• Base distribution: The distribution fromwhich the parent node will

draw from representing the shape of the data.
• ConcentrationParameterαA: shapehyperparameter for the gamma

prior over the concentration parameter.
• Concentration Parameter αB: rate hyperparameter for the gamma

prior over the concentration parameter.

Post processing. High-confidence components were defined as non-
overlapping clusters with uniform molecular composition that
resulted in the highest probability of assignment of the constituent
patients. Whilst each patient derives distinct probabilities of
assignment for each cluster (i.e. Let Patient 1 with 60% assignment
probability for cluster 1, 24% probability for cluster 2 and 16%
probability for cluster 3), Patient 1 would be assigned to cluster (1)
Patients were only assigned in a given component if the main class
defining genes or cytogenetic alterations were present. For exam-
ple, for a patient to be part of the NPM1 cluster, the patient has to
have an NPM1mutation. Certain components, owing to similarity in
patterns of commutation were assigned within the same cluster.
These included t(15;17) and t(11;x), WT1 and t(6;9). A manual split
into independent components was applied. For 91 patients in the
study (4.3%) assignment criteria to >1 class post processing were
fulfilled.

Hierarchical class assignment. An overall hierarchy for AML classifi-
cation was informed by the presence of unique and non-overlapping
molecular subgroups, class defining alteration frequency, class size.
For overlap cases, size, clinical presentation and severity of clinical
phenotype and outcomes was prioritized in the hierarchy (i.e. estab-
lished WHO entities preceded entities, TP53 and complex karyotype
preceded the hierarchy a patient with WT1 mutations).

Main Fig. 1e outlines the hierarchy of assignment in the proposed
classification in an R snippet code

Survival analysis. Overall survival (OS) defined as the time to death or
last follow-up was the primary endpoint of the study. Survival analyses
was used by implementation of established statistical methodologies
for modeling outcomes to include:

Cox penalized models. Cox regression model39,40 with regularization
using a Lasso penalty41. The degree of shrinkage λ was selected
internally by cross validation. The Lasso penalty has the effect of for-
cing someof the coefficient estimates,with aminor contribution to the

model, to be exactly equal to zero. Cox Random Effects Models
(https://github.com/mg14/CoxHD) were applied to introduce a Ridge
type regularization shrinking the effect of correlated variables.

Cox boosting L2 models. Cox likelihood-based boosting42 approach
with the negative L2-normpenalizedpartial likelihoodwere performed.

Random survival forests. Random survival forest43 models with the
logrank splitting criteria were used.

Support Vector Machine Survival (SVM). SVM44 with truncated
Newton optimization and order statistic trees that did not rely on the
number of comparable pairs of events was applied.

Evaluation metric using the concordance index(C-Index). The dis-
criminaton of various models were compared using the concordance
index (C-Index)45. The C-Index applied for all comparisons used an
inverse probability of censoring weight (IPCW) to account for cen-
sored observations.

Models that consider different feature groups (genes mutations,
cytogenetic findings, clinical variables, demographic variables, mole-
cular classes and/or ELN risk strata) were evaluated across algorithmic
approaches using the following workflow: 75% of patients in the
dataset were randomly selected for the training and cross-validation.
Model performances were evaluated on the 25% of remaining patients
to compute the C-Index (evaluation metric).95% confidence intervals
for the C-Index estimates were constructed using bootstrap resam-
pling (100 bootstrap resamples). P-values were calculated using the
C-Index estimates along with the standard error estimates from the
bootstrap resampling. The same process was conducted for training
and validation cohorts respectively (2113 patients for AMLNCRI cohort
and 1540 for AML SG cohort).

A number of algorithmic approaches were evaluated to include
following hyperparameters selection:
• Cox model with penalization:

° different values of α: (0 to 1 with 0.2 increment) controlling the
tradeoff Ridge-Lasso

° internal validation of λ parameter controlling the weight given
to the coefficients penalization

• Cox boost with the following hyperparameters:
° maxstepno=500: maximal number of steps to evaluate
° K = 10: number of folds to be used for cross-validation to find

the optimal number of boosting steps
° type = “verweij”: used to compute the partial likelihood in the

hold-out folds with Verweij method
° penalty=100: penalty value for the update of an individual ele-

ment of the parameter vector in each boosting step.
• Cox random effects with the following hyperparameters:

° Groups: as many groups as number of variables and with
° ν =0 meaning no hyperprior
° σ0: the variance of a si-chisq hyperprior on the variance
° max.iter = 500: maximal number of iterations
° tolerance =0.01: the stopping criteria

• Random forest survival:
° Nodesize: 5,10,20
° Number of trees: 100–1200 with 50 increments
° Split rule: log-rank splitting
° tolerance =0.01: the stopping criteria

• Support vector machine survival:
° Kernels: linear, polynomial, radial basis function and sigmoid
° α: range 1e-6 to 1multiplying by 10 to penalize the square hinge

loss in the objective function. Internal cross validationwas used
to select this parameter.

° Avltree optimizer named after inventors Adelson-Velsky
and Landis
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° Max iter = 1000: maximal number of iterations
° Tolerance = 1e-6

Details about softwares and packages used are available in Sup-
plementary Data 6.

Algorithmic comparison on the best performing feature combi-
nation was also investigated in Supplementary Fig. 53.

Feature importance. A permutation strategy was developed to
evaluate feature importance. The reference C-Index (evaluation
metric) was computed and the values of each feature were per-
muted 50 times to compare the new C-Index with the reference
C-Index without permutation. With this framework, each feature is
ranked from the most to the least important for model perfor-
mance using the values of the ratio = ref_CI / permuted_CI. This
strategy is useful to characterize the relative association of each
covariate with the given endpoint (i.e. survival) without informa-
tion on direction of effect. This strategy was also compared with
(1) the variable importance returned by random forest and (2) the
coefficients given by the Cox penalized models and results were
ranked similarly. This permutation strategy was applied for dif-
ferent feature combinations on the following models: Cox Lasso,
Cox Ridge, Cox ElasticNet, Cox Random Effects and Random For-
est Survival with the same parameters as presented in the above
section.

Multi-state models to model transitions across clinical endpoints.
Multi-statemodels46,47 weredeveloped todescribe a stochastic process
where patients experience a succession of events (alive (received
induction chemotherapy), complete remission, relapse and death) and
transition between different states overtime. Markov assumption is
implicitly present in the likelihood of state transition: the future
depends on history only through the present.

First, a non-parametric approach was performed to estimate
overall transition probabilities within the cohort. Second, a semi-
parametric approach was used by incorporating covariates of interest
into the modeling of transition probabilities with different baseline
transitions. The implementation to model those transitions was per-
formed using the mstate package in R.

Additional statistical tests. Fisher’s exact test48 was used to compare
patterns of co-mutations for each genetic abnormality. Due tomultiple
comparisons, all P-values were adjusted using the false discovery rate
(Benjamin-Hochberg procedure). To compare continuous correlates
(age,wbc,hb,plt and blasts) by mutational or class status, a Wilcoxon
rank-sum test49 was used. To compare other categorial correlates
(gender,ahd,perf_status,secondary,eln) bymutational or class status, a
chi-square or Fisher’s exact test were conducted, as appropriate. A test
of interaction within a Cox proportional hazards model was used to
evaluate whether a giving class modifies the effect of MRD or trans-
plant on survival or relapse. Lastly, survival was compared across two
or more groups using a logrank test50.

Regression analysis for clinical variables. Univariate regression vol-
cano plots: Linear model was fitted using the lm package in R for
continuous outcomes and a logistic regression (logistf package in R)
for binary outcomes. In the volcano plot, each covariate coefficient on
the x-axis and the log (base 10) false discovery rate adjusted p-value
value on y-axis were plotted.

Multivariate regression coefficient rankings: Linear and logistic
Lasso models were fitted using the cv.glmnet R package with internal
cross validationof the regularizationparameter ƛ. Eachmodel used the
entire dataset 100 times and the coefficients were aggregated for each
of the covariates to evaluate absolute ranking.

Hazard riskover timeand risk density. Thebshazardpackage inRwas
applied to obtain a non-parametric smooth estimate of the hazard
function based on B-splines51.

In Fig. 2 of the manuscript, the hazard density across the
ELN2017 risk categories and the classes were plotted to visualize a
shift in the hazard across the classes. The x-axis represents the
hazard and the y-axis was rescaled to aid for the visualization of the
hazards.

Estimation of contributing factors in the multistate model
We used the Cox semi-parametric approach to estimate the different
transition probabilities wherewe specify covariates to be incorporated
in the model. The transition hazard takes the following form:

- hij(t | Z) = hij,0(t) exp(βT
ij Zij), where β(k)

ij is the coefficient com-
puted from the Cox transition model corresponding to covariate (k)
for the transition from state i to state j, Zij

(k) is the value for covariate (k)
for that transition.

Thus, we compute the contributing factors for each transition:
FactorCONTRIB = βij

*(Zij-Zij,median) values, with Zij,median the median
value for that covariate in this transition.

A negative FactorCONTRIB value corresponds to a low risk covariate
value transition while a positive value corresponds to a high risk cov-
ariate value transition.

We omitted n = 96 patients from themulti-statemodel for disease
progression (2113 − 96 = 2017) due to missing timepoints.

Development of study web portal
Data accessibility and code reproducibility. All raw data have been
deposited on EGAS00001000570. Additionally. a web portal to
accompany this publication has been deployed on: https://www.aml-
risk-model.com The portal includes (1) A direct link to cbio portal
containing detailedmolecular and clinical findings in the study; (2) List
of gene panel used to develop the AML classification and risk stratifi-
cation model; (3) A gene by gene description of all genotype-clinical,
genotype-genotype, and genotype-outcome associations in the study;
(4) A class by class description of all class-clinical, class-genotype
and class-outcome associations; and (5) A personalized risk calculator
tool. Additionally a Github52 https://github.com/papaemmelab/Tazi_
NatureC_AML has been deployed that contains all input data, code and
data visualizations relating to this publication.

AML risk calculator. For the development of a personalized risk cal-
culator we consider 3201 intensively treated patients from the AML
NCRI and AMLSG cohorts. For each patient,cytogenetic findings and
mutations in the panel of 32 genes were considered to derive class
assignment, ELN2017 and proposed risk scores.

Cox multi-state models22,23 were used to estimate the transition
covariate coefficients across six clinical endpoints (Alive (received
induction chemotherapy)→Alive in CR; Alive→Death no CR; Alive in
CR→Alive in Relapse; Alive in CR→Death in CR; Alive in Relapse→
Death in Relapse) for the following 4 models: (1) AML Classes; (2)
ELN2017; (3) Proposed risk score; (4) AML Classes, demographic and
clinical parameters. For detailed information on the coefficients please
refer to: https://www.aml-risk-model.com/calculator

For any patient outside of the cohort, given any combination of
molecular, clinical and demographic parameters the web calculator
determines a patient’s class assignment, ELN2017 and proposed risk
score and estimates the transition probabilities for each of the six
clinical endpoints. All of the 32 genes and cytogenetic findings are
assumed to be wild type unless specified by the user. Clinical and
demographic parameters that were not specified were imputed as the
median for the cohort.

To increase confidence in the model interpretation, we have
added the following features in the calculator:
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1. Display of the overall cohort distribution for all clinical variables.
This allows a practicing physician to appreciate whether the pre-
sentation of a given patient is within the expected or outlier ran-
ges of the cohort.

2. Where input parameters for a patient represent outlier values, we
have introduced awarning sign alerting the end user that the data
supporting predictions for this patient may be less powered.

3. For the sediment plots, displaying probabilities of transitioning
between each clinical point, we have added confidence intervals
for the predictions. Confidence intervals are also available for the
probability estimates.

A web application was developed, where the risk model is
deployed as a serverless lambda function available through a restful
API, and consumed by a single page javascript application. The web
calculator is built using Python and Javascript open-source libraries
for web development, and the R multi-state model is uploaded and
executed on AWS Lambda in real-time to adjust for personalized
transition probabilities prediction relative to the user’s input para-
meters. Details of the services infrastructure and the cloud imple-
mentation using Amazon Web Services are shown in Supplementary
Fig. 54.

Cohort description
Mutation annotations are available for all AML NCRI and all AML SG
patients (Supplementary Table 1).

AML NCRI cohort includes patients from AML17, AML16, AML11,
AML12, AML14,AML15 and AML Li1. AML SG cohort includes patients
from HD98A, HD98B and 07-04.

Transplant data is available for a subset of AML17 patients and a
subset of AML SG patients (Supplementary Table 5).

MRD data is available for a subset of AML17 patients.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Clinical, copy number and mutation data are available at https://
github.com/papaemmelab/Tazi_NatureC_AML52 and Supplementary
Data 7. The data underlying all Main Figures, Supplementary Figures
are provided as Supplementary Data 7 and available at https://github.
com/papaemmelab/Tazi_NatureC_AML52.

All raw data has been deposited in the European Genome-
Phenome Archive EGAS00001000570.

Code availability
Source code and data to reproduce all figures in the manuscript are
available at https://github.com/papaemmelab/Tazi_NatureC_AML52

and Supplementary Data 8.
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