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Di�usion MR is sensitive to the microstructural features of a sample. Fine-scale

characteristics can be probed by employing strong di�usion gradients while

the low b-value regime is determined by the cumulants of the distribution

of particle displacements. A signal representation based on the cumulants,

however, su�ers from a finite convergence radius and cannot represent the

‘localization regime’ characterized by a stretched exponential decay that

emerges at large gradient strengths. Here, we propose a new representation

for the di�usion MR signal. Our method provides not only a robust estimate

of the first three cumulants but also a meaningful extrapolation of the entire

signal decay.
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1. Introduction

Diffusion magnetic resonance imaging (dMRI) is a non-invasive characterization

technique whose sensitivity to tissue microstructure can be exploited to address

numerous diagnostic and basic science challenges. Most commonly, this is accomplished

by introducing a pair of diffusion sensitizing gradients (Stejskal and Tanner, 1965) into

conventional measurements (such as spin echo), which makes it possible to probe the

net displacements of water molecules undergoing random movements between the two

gradient pulses. A quantity called the b-value (LeBihan and Breton, 1985) determines

the level of diffusion sensitivity encoded in dMRI acquisitions. The b-value is given

by b = G2δ2(1 − δ/3), where δ and 1 are the duration and separation of the two

pulses, respectively, and G = γ g with γ being the gyromagnetic ratio and g is the

gradient strength.

Employing certain functional forms to represent the signal profiles, e.g., to

approximate the signal’s dependence on the b-value, has proven beneficial in

dMRI. Importantly, such representations provide regularization, interpolation, and
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extrapolation of the signal, allowing for the analyses to be

feasibly performed by utilizing limited amounts of data (De Luca

et al., 2021). The particular functional form for the dMRI signal

profile is determined based on the mathematical properties of

the signal as predicted by the physics of diffusion and how it

influences the dMRI signal.

One natural representation is achieved via the Maclaurin

series expansion of the natural logarithm of the dMRI signal.

Such an expansion is sometimes referred to as the cumulant

expansion since the coefficients of different terms correspond to

the cumulants of the net displacement distribution (Stepišnik,

1981; Liu et al., 2004; Jones, 2010; Kiselev, 2010). Measurements

at small b-values reveal the apparent diffusion coefficient

and tensor, which are voxel-averaged measures of the second

moments of displacements and are probed in Diffusion Tensor

Imaging (DTI) (Basser et al., 1994; Basser, 2002). DTI is

the most widely used dMRI representation for characterizing

anisotropic diffusion providing noninvasive markers of tissue

state (Pierpaoli and Basser, 1996) and has been used for mapping

anatomical connections between different regions of the brain

(Conturo et al., 1999; Mori et al., 1999; Basser et al., 2000). This

signal model is simple and successful as it is readily achievable

with conventional clinical scanners.

As the b-value is increased, higher order moments of

displacement become more prominent (Liu et al., 2004). The

next term in the Maclaurin series contains the kurtosis of the

net displacement distribution, leading to Diffusion Kurtosis

Imaging (DKI) (Jensen et al., 2005). The diffusional kurtosis is

a quantitative measure for the non-Gaussianity of the diffusion

process (Jensen and Helpern, 2010). Since diffusional non-

Gaussianity in brain tissue is strongly linked to microstructural

tissue complexity, the kurtosis is of interest for investigating

various neuropathologies (Steven et al., 2014; Marrale et al.,

2016) as well as for studying both aging (Coutu et al., 2014; Billiet

et al., 2015) and development (Paydar et al., 2014; Grinberg et al.,

2017) in normal brain. The kurtosis can be characterized by

several rotationally invariant metrics, such as the mean kurtosis

(MK) and the kurtosis fractional anisotropy, which augment the

more commonly-used DTI parameters of mean diffusivity (MD)

and fractional anisotropy (Jensen and Helpern, 2010; Glenn

et al., 2015b). In addition, the orientational dependence of the

kurtosis in white matter can be exploited for fiber tractography

(Lazar, 2010; Glenn et al., 2015a, 2016).

Retaining more terms in the Maclaurin series extends the

validity of the representation toward larger b-values. In general,

data at larger b-values offer not only a better description

of the signal but also more parameters related to the tissue

microstructure. Unsurprisingly, acquisitions at higher b-values

have led to significant advances, e.g., in resolving more than one

major fiber orientations within a voxel (Tournier et al., 2004;

Tuch, 2004; Özarslan et al., 2006; Wedeen et al., 2012).

The cumulant expansion suffers from a serious deficiency;

the Maclaurin series expansion has a limited radius of

convergence leading to poor extrapolations of the signal at large

b-values (b > 2, 000 s/mm2) (Jensen et al., 2005; Kiselev,

2010; Hutchinson et al., 2017) (The radius of convergence for

cumulant expansion is the largest b-value for which the signal

converges). To overcome this limitation, Özarslan et al. (2008)

proposed an expansion in terms of a complete and orthogonal

set of basis functions, and employed Hermite functions in

particular. The three-dimensional adaptation of this approach

has led to an alternative generalization of DTI, referred to as

Mean Apparent Propagator MRI (MAP-MRI) (Özarslan et al.,

2013). This approach provided superior ability to represent

the dMRI signal (Ning et al., 2015; De Luca et al., 2021),

and alternative measures of non-Gaussianity, anisotropy and

zero-displacement probabilities. Recently, Saleem et al. (2021)

validated the measures derived from high-resolution MAP-

MRI via comparisons with histology data from the macaque

brain. MAP-MRI was also successfully used in detecting changes

induced by stroke (Boscolo Galazzo et al., 2018), Parkinson’s

disease (PD) (Le et al., 2020) and in distinguishing the grades

of gliomas (Wang et al., 2021; Sun et al., 2022), comparing

the microstructural integrity of the corticospinal tract (CST)

between glioma patients with and without motor epilepsy

(Wang et al., 2022) and detecting amyotrophic lateral sclerosis

(ALS)-related white matter (WM) alterations (Chen et al., 2021).

When strong and long gradient pulses are applied, the signal

decay, E(b), is described by a stretched exponential function

E(b) ∝ e−(bD)1/3 , which is the characteristic feature of the

localization regime (Stoller et al., 1991). In localization regime,

diffusion in a strong constant gradient suppresses the signal

everywhere except next to pore walls. More specifically, this

regime is realized when the dephasing length (the typical length

scale over which a spin must travel to dephase by 2π radians)

ℓg = (D0/G)
1/3 is shorter than the geometric length scales

within the specimen as well as the diffusion distance ℓδ =
√
D0δ,

where D0 is the bulk diffusivity of the fluid. In this regime, the

transversemagnetization far from the boundaries of themedium

vanishes and only a thin layer near the boundaries contributes

to the measured signal (Moutal et al., 2019). Hürlimann et al.

(1995) and Moutal et al. (2019) both reported the experimental

observation of the localization regime. In parallel with the

availability of stronger gradient strengths, studies investigating

the localization regime have intensified in recent years leading

to a number of interesting predictions (de Swiet and Sen, 1994;

Grebenkov, 2014, 2018; Grebenkov et al., 2017; Herberthson

et al., 2017; Ning et al., 2018). For example, the localization of the

magnetization near the boundaries was shown to enhance the

sensitivity of the signal to differences in membrane permeability

(Grebenkov, 2014; Grebenkov et al., 2017). Williamson et al.

(2019) and Cai et al. (2022) developed magnetic resonance (MR)

methods for measuring the tissuemicrostructure andmembrane

permeability of live and fixed excised neonatal mouse spinal

cords on a one-sided NMR scanner under an extremely large

magnetic field gradient. Lee et al. (2021) detected the localization
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regime in vivo using a Connectom scanner and estimated the

soma size in cortical brain gray matter.

We note that although MAP-MRI does not suffer from the

convergence issue encountered in DKI, having finite number

of terms in the MAP-MRI series representation makes the

localization regime inaccessible since the basis functions have

an exponentially decaying tail. When the reconstruction of the

average propagator is concerned, this leads to a smoothing of

the actual propagator. In this work, we provide an extension of

cumulant expansion that can represent the diffusion-weighted

signal in the localization regime as well. Our report is organized

as follows. First, we present in Section 2 the signal representation

that we propose. Section 3 depicts the results obtained from

previously-published as well as new data. The characteristic

stretched-exponential decay of the signal in the localization

regime is observed at moderately high gradients and in various

geometries, including unbounded diffusion outside obstacles.

We discuss the implications of these results and conclude the

paper in Section 4.

2. Methods

2.1. Theory

We consider acquisitions featuring diffusion gradients

applied either in the same direction (single-direction

acquisition), or in different directions uniformly-distributed on

the surface of the sphere, where orientational-averaging is to be

employed over each b-value shell. In either case, one obtains

a one-dimensional signal profile, E(q). To represent the signal

attenuation, we propose the following expression

E(q) = exp

(

− (qr)2/3
(

(qu)
4
3 e

−q6p6

− (qv)
10
3 e−q6p6

+ (qw)
16
3 e−q6p6

))

, (1)

where r, u, v, w, and p are the parameters of the

representation. The asymptotic (large-q) behavior of this

function is governed by the desired stretched exponential decay

since

lim
q→∞

E(q)

e−(qr)2/3
= 1 (2)

We note that the asymptotic behavior (of an expression)

becomes increasingly accurate as a variable approaches a limit,

usually infinity.

At small q-values, the function is given by

lnE(q) = −q2r2/3u4/3+q4r2/3v10/3−q6r2/3w16/3+O

(

q8
)

.

(3)

where the argument of O(·) denotes the growth rate of the

remaining term.

This small-q behavior is consistent with DKI while the

representation exhibits the stretched exponential decay at large-

q, characteristic of the localization regime. Thus, our signal

representation works at both low and high b-values. The

parameters r, u, v, w, and p provide this flexibility for our

representation. In the given signal representation, r determines

the asymptotic behavior. For a given r, u determines the 2nd

cumulant, v determines the 4th cumulant, and w is related to

higher order cumulants.

In this study, the representation in Equation (1) is

fitted to dMRI signals for two scenarios, namely, to

orientationally-averaged signal (Afzali et al., 2021) and to

single-direction acquisitions. The parameters r, u, v,w, and p

were obtained by solving the nonlinear optimization using

the trust-region algorithm implemented in MATLAB (The

MathWorks, Inc., Natick, MA).

2.2. Relationship between DKI and our
proposed method

The form of the signal for diffusion kurtosis imaging (DKI)

is given by:

lnE(q) = −q2 (1 − δ/3)D+
1

6
q4 (1 − δ/3)2 D2K, (4)

where D is the apparent diffusion coefficient and K is the

mean kurtosis. Comparing Equations (3) and (4), we have:

D =
r2/3u4/3

(1 − δ/3)
, (5)

and

K =
6r2/3v10/3

(1 − δ/3)2 D2
. (6)

2.3. Experimental data

The experimental data representing gas diffusion with

hyperpolarized xenon-129 continuously flowing through

different geometries of three physical phantoms were used to

validate the proposal: (1) parallel plates separated by a distance

of 3 mm (Figure 4 from Moutal et al., 2019), (2) cylindrical

tubes with a cylinder of a diameter 3.8 and 2 mm (Figures 6, 7

from Moutal et al., 2019), and (3) cylindrical rods on a square

grid with a cylinder of a diameter 3.8 mm (Figures 10 (a) and 10

(b) fromMoutal et al., 2019).

2.4. In vivo data

• Two healthy participants were scanned using a 3T

ConnectomMR imaging system with a maximum gradient
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FIGURE 1

The result of fitting the proposed representation to the experimental data from Figures 4, 6, 7, 10 (a) and, 10 (b) in the work by Moutal et al.
(2019).

strength of 300 mT/m (Siemens Healthineers, Erlangen,

Germany). Two acquisition protocols were used: (1) the

first protocol comprised six b = 0 and 11 non-zero shells

at (b = 0.4, 0.8, 1.2, 2, 3, 4, 6, 8, 10, 12, 15 ms/µm2)

along (16, 16, 21, 31, 21, 21, 31, 31, 31, 31, 46) gradient

directions, respectively (Knutsson, 2018; Afzali et al., 2021),

and (2) the second protocol included the data acquired

in a single direction, (1/
√
3, 1/

√
3, 1/

√
3)⊺, following the

same b-value distribution as the former one. Contrary to

the former protocol, in the latter case, the measurements

were repeated with the same number of directions per b-

value as in the first protocol. In total, 66 axial slices were

acquired with 2 mm isotropic voxel size, matrix size of

106 × 106, TE/TR = 55/4,000 ms, 1/δ = 23/12 ms and

partial Fourier factor of 6/8. The phase variation in each

complex-valued diffusion weighted image was removed

using the method proposed by Eichner et al. (2015). Real-

valued diffusion-weighted images were then corrected for

Rician bias (Koay et al., 2012), Gibbs ringing artifacts

(Kellner et al., 2016), eddy currents and subject motion

using FSL EDDY (Andersson and Sotiropoulos, 2016). The

orientationally-averaged signal was normalized based on

the b = 0 in each voxel.

• Additionally, the data points from Figure 3 in Lee et al.

(2021) representing the cortical gray matter were used

for experimental verification of the proposal. The data

come from the scanning of two healthy subjects using

a Connectom scanner (Siemens Healthineers) with a

gradient strength at 50-275 mT/m under two acquisition

setups: (1) two b = 0 and 10 non-zero shells at (b =
0.4, 0.8, 1.2, 2, 3, 4, 6, 8, 10, 12 ms/µm2), 1/δ = 22/11

ms, and (2) two b = 0 and 10 non-zero shells at (b =
0.6, 1.2, 1.8, 3, 4.5, 6, 9, 12, 15, 18 ms/µm2), 1/δ =
24/13 ms. In both cases, the data was acquired along

32 gradient directions per shell with a 2 mm isotropic

voxel size, TE/TR = 62/5,200 ms and partial Fourier factor

of 6/8.

3. Results

Figure 1 shows the result of fitting the proposed

representation given by Equation (1) to the experimental

data from Figures 4, 6, 7, 10 (a) and 10 (b) in the work by

Moutal et al. (2019). The extrapolated signal follows the trend of

localization regime (− ln (E) ∝ q2/3).

The result of fitting the proposed representation to data from

cortical gray matter in Lee et al. (2021) is illustrated in Figure 2.

As shown, the representation based on the cumulant expansion

(diffusion kurtosis imaging, DKI; Jensen et al., 2005) diverges at

moderate q-values, while our representation fixes this problem.

Figure 3 shows the estimated parameters (r, u, v, w, and p)

of the representation for both orientationally-averaged signal

and single-direction signals. No significant correlation between

the estimated parameter r and the other parameters of the
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FIGURE 2

The result of fitting the proposed representation to the data from cortical gray matter voxels in the work by Lee et al. (2021).

representation is seen in the scatter plots in Figure 3. Note

further that the estimated r map from the brain image is

also smooth.

We extracted the apparent diffusion coefficient and kurtosis

using DKI and the low-q approximation of our proposed

representation. A good agreement between the maps from DKI

and our proposed method is observed as illustrated in Figure 4.

4. Discussion and conclusion

Diffusion MRI has become a key tool in diagnostic medicine

as well as material science (Callaghan, 1993; Tuch et al., 2003;

Frahm et al., 2004; Grebenkov, 2007; Price, 2009; Le Bihan and

Johansen-Berg, 2012). However, most of the works are based on

the Gaussian phase approximation (weak gradient amplitudes,

i.e., low b-values) while only a few studies investigated the

localization regime theoretically (Stoller et al., 1991; de Swiet and

Sen, 1994) and experimentally so far (Hürlimann et al., 1995;

Moutal et al., 2019; Williamson et al., 2019; Lee et al., 2021).

In the localization regime, the dMRI signal is attenuated

by one or more orders of magnitude and therefore there is a

need for an experimental setup with high signal-to-noise ratio.

Substantial advances in MRI scanner technology compared

to the first experiments related to the localization regime by

Hürlimann et al. (1995) making it experimentally tractable.

The limitation, however, is that the Gaussian is intermingled

with stretched-exponential decay of diffusion weighted signal.

By applying strong gradients, one can separate free water

and restricted water as free water decays exponentially with

b1 while the restricted water decays exponentially with b1/3

(Grebenkov, 2018).

The Gaussian phase approximation may be invalidated

by the current trend in increasing b-value above values of

b > 2, 000 s/mm2 and therefore there is a need for appropriate

mathematical tools and better interpretation of signal

attenuation mechanism in the presence of strong gradients.

We have proposed a representation consistent with the

localization regime which we tested on the experimental data in

three geometries: slab, cylinder, and array of circular obstacles

(rods) (Moutal et al., 2019) as well as in vivo brain data. Slab and

cylinder are examples of confined geometries and can be used as

a model for intracellular space. In most of the previous studies,

a Gaussian model was assumed for the extracellular space and

multiple pools were used to explain the non-Gaussian effects.

One may assume that the b-values are small enough that the

Gaussian phase approximation is valid or the obstacles can be

considered as a medium with an effective diffusivity D such

that the diffusion process is Gaussian. The latter case is only

applicable in the very long time limit, as it has been discussed

by Novikov et al. (2014).

Our representation of the diffusion MR signal reproduces

DKI at low gradient strengths while capturing the stretched

exponential behavior consistent with the localization regime at

large gradient strengths. We have thus achieved a meaningful

extrapolation of the signal, overcoming a serious deficiency of

the cumulant expansion.

Note that fitting a stretched exponential function to the

entire diffusion-weighted signal profile is problematic as its low-

q behavior suggests diverging values of quantities such as the
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FIGURE 3

Estimated parameters (r, u, v, w, and p) of the representation for the orientationally-averaged (first row) as well as the single-direction signal
(second row). The third to sixth rows show the scatter plots of proposed representation parameters vs. each other for the
orientationally-averaged (rows three and four) and single-direction signal (rows five and six).

apparent diffusion coefficient and kurtosis as pointed out by

Özarslan et al. (2012). Our representation has the stretched

exponential tail, yet guarantees finite values for these quantities.

To take advantage of the localization regime, for example for

estimating the soma size as done by Lee et al. (2021), it is difficult

to decide on an appropriate range of b-values for fitting the
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FIGURE 4

Estimated apparent di�usion coe�cient and kurtosis using DKI (first row) and our proposed representation (second row), the di�erence
between the estimated D and K using DKI and our proposed method (third row), and the scatter plot of the proposed method vs. DKI for D and
K (fourth row) for both orientationally-averaged and single-direction scenarios.

asymptotic form. Having a good representation would alleviate

this problem.

As demonstrated by Dela Haije et al. (2020), DKI estimation

could benefit significantly from constrained estimation schemes

enforcing convexity conditions that arise from the underlying

stochastic process. We intend to employ such methods in

future work.

In conclusion, we introduced a new diffusion MRI

signal representation that could perform well in the entire

range of gradient strengths, and thus overcomes the well-

known challenges associated with the commonly-employed

representations. Due to its ability to accommodate the relevant

mathematical features that the signal profiles are expected

to have, the proposed representation could improve our

ability to reliably probe the information available in the

signal using fewer measurements. It can achieve the same in

studies involving large gradient strengths to determine the fine

structural characteristics of the tissue which are available in the

localization regime.
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