
Pervasive and Mobile Computing 86 (2022) 101677

p
i
(
T
a
t
s

t
o
s

Contents lists available at ScienceDirect

Pervasive andMobile Computing

journal homepage: www.elsevier.com/locate/pmc

Utilising the co-occurrence of user interface interactions as a
risk indicator for smartphone addiction
Björn Friedrichs ∗, Liam D. Turner, Stuart M. Allen
School of Computer Science and Informatics, Cardiff University, Abacws, Senghennydd Road, Cardiff, UK

a r t i c l e i n f o

Article history:
Received 14 April 2022
Received in revised form 2 August 2022
Accepted 5 August 2022
Available online 13 August 2022

Keywords:
Smartphone addiction
Smartphone usage
User behaviour
Addiction risk

a b s t r a c t

The push to a connected world where people carry an always-online device which has
been designed to maximise instant gratification and prompts users via notifications has
lead to a surge of potentially problematic behaviour as a result. This has lead to a
rising interest in addressing and understanding the addictiveness of smartphone usage,
as well as for particular applications (apps). However, capturing addiction from usage
involves not only assessment of potential addiction risk but also requires understanding
of the complex interactions that define user behaviour and how these can be effectively
isolated and summarised. In this paper, we examine the correlation of physical user
interface (UI) interactions (e.g. taps and scrolls) and smartphone addiction risk using
a large dataset of those smartphone events (65,093,343, N=301,024 sessions) collected
from 64 users over an 8-week period with an accompanying smartphone addiction
survey. Our novel method which reports on the probability of a users addiction risk
and in a model case we show how it was be used to identify 57 of 64 users correctly.
This supports our observations of UI events during sessions of usage being indicative of
addiction risk while improving previous approaches which rely on summative data such
as screen on time. Within this we also find that users only exhibit addictive behaviour
in a subset of all sessions while using their smartphone.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Smartphones have found their way into many aspects of modern life, creating unparallelled connectivity between
eople and information. However, the human psyche can be overwhelmed with the never-ending instant gratification that
s produced by those devices [1]. As a result, problematic behaviour such as overuse in the form of Smartphone Addiction
SA) can be induced [2]. In those cases the behavioural issues of SA are also referred to as Problematic Smartphone Use.
his has been linked to multiple issues which include time spent on the device [2], certain types of applications [3,4], or
mount of interactions taken [5]. However, where previous studies have provided indicators based on those circumstances,
hey have not considered the potential correlations between SA and behaviour summarised from a direct input source
uch as user interaction events that occur during usage sessions on devices.
The circumstances that can lead to addictive behaviour with technology is complex [6] and made more so for SA by

he large body of research aiming to understand smartphone usage [7,8]. SA has been shown to have a significant effect
n productivity and well being, with overuse of the device causing missed work, concentration issues or even physical
ymptoms [9]. Instead of focusing on these symptoms, in this paper we focus on examining links between interaction

∗ Corresponding author.
E-mail addresses: friedrichsb@cardiff.ac.uk (B. Friedrichs), TurnerL9@cardiff.ac.uk (L.D. Turner), AllenSM@cardiff.ac.uk (S.M. Allen).
https://doi.org/10.1016/j.pmcj.2022.101677
1574-1192/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1016/j.pmcj.2022.101677
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2022.101677&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:friedrichsb@cardiff.ac.uk
mailto:TurnerL9@cardiff.ac.uk
mailto:AllenSM@cardiff.ac.uk
https://doi.org/10.1016/j.pmcj.2022.101677
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


B. Friedrichs, L.D. Turner and S.M. Allen Pervasive and Mobile Computing 86 (2022) 101677

a
o
b
c

c
h
s

2

s
b
b
i
p

a
b
o
s
t
i

2

c
a
o
w
c

A
r
w
w
(
s

e
t
a
a

c
s

events (such as individual taps, scrolls or keystrokes) and SA. To do this, we utilise the Tymer dataset [5,10] which
consists of 60,841,255 app-window, device and user-interaction events collected from 64 users over an 8-week period.
SA is quantified through smartphone addiction scale (SAS) scores, which are extracted from the surveys undertaken by
the participants.

We develop a methodology that extracts and represents user usage behaviour via UI events within smartphone sessions
nd use this to correlate with an SA score. From this, we build regression models which indicate the users risk of addiction
n a per-session basis. This approach builds on previous event-based studies between smartphone usage and addictive
ehaviour [5,8] by firstly considering sets of interaction events that occur during a usage session and secondly, considering
orrelations to SA as a risk indicator. From this, the paper provides the following research contributions:

• We show that UI interactions are a stronger indicator of SA than previous metrics such as application use by time
or application switches.

• Furthermore, that co-existing events in a session create a stronger risk evaluation than events considered in isolation.
• The type of application in combination with co-existing events has direct influence on the risk effect.

The end-goal from this study is to supply a framework to passively observe behaviour which correlates with SA that
ould even be computed on the smartphone itself. We envisage that this could be a stepping stone for tools that can
elp detect potentially problematic user states in real time through smartphone usage, without the need for exhaustive
urveys, life-intrusive equipment and sensors or other problems arising from experience sampling [11].

. Related work

The study of smartphone use has taken many facets and usually utilises multiple influences such as length of use,
ignal strength, or battery consumption, among others [12,13]. These high level factors have been captured on devices to
uild an understanding of how humans use these devices amongst daily life [14]. These findings have been used as the
asis to explore potentially related psychological factors and the creation of applications aiming to support usage. This
ncludes using the information to improve smartphone user experience by predicting the next-app the user will open and
roviding recommendations [15,16] or pre-loading applications in the background [17].
Another body of work examines usage with other psychological and social factors, such as interruptibility detection

nd prevention mechanisms [18,19], prediction of context such as user location [20]) or session behaviour (e.g. in call, just
rowsing) [21], or monitoring mood [22,23]. In these works there is a common coupling of real world data (e.g. length
f smartphone use) mixed with additional data collection such as individual user surveys that record a users mental
tates [5]. A common basis within the analyses of these studies is the focus on summary statistics of usage [12], or on
ypes of interaction events in isolation [5]. This creates a notable limitation and opportunity to examine the potential
nter-play between different types of interaction behaviour within apps and sessions.

.1. Smartphone addiction

Generally, addiction is a case of compulsive or obsessive behaviour that continues even when faced with the negative
onsequences (financially, socially, etc.) of those actions. There are different kinds of addiction and SA is often considered
‘behavioural addiction’ [2] where habits get enforced from gratification instead of as a result of e.g. substances. Parallels
f this behaviour can be seen in gaming [24] or internet [6]. This kind of addiction has also been linked to some extent
ith various personality and identity traits [6] such as anti-social behaviour [25]. It has also been suggested that SA’s
ontributing factors are hard to differentiate from those of non-addicted users [26].
Much like other addictions, whether or not, and to which extent someone is affected by SA is not immediately obvious.
common way to measure the severity of SA in the literature is the Smartphone Addiction Scale [9]. The SAS is a self-

eport survey that was developed to identify the level of addictedness of users. A short version (SAS-SV) [27] was produced
hich cut the amount of questions from 33 to 1. The participants answered those questions on a six point Likert scale
ith results ranging from 1 to 6. Part of the SAS-SV is an extension that presents cut-off values for male (31) and female
33) users which when exceeded indicate SA. The SAS has been used to link addiction to multiple facettes of mental health
uch as social anxiety [28], a need for social acceptance [2] or stress [29].
Additionally, SA is often linked with certain application categories such as social networking and communication [3,30],

ntertainment [4] or video games [31]. These studies have found that, while there can be many reasons why one is unable
o stop using their phone, many times it is down to keeping up their status in their relevant social circles [4] or to relieve
nxiety [32]. Additionally, there have been reports of categories of applications or individual applications being identified
s a contributor to SA that do not seem immediately obvious (e.g. reading in a bible application [33]).
A main drawback across the previous studies is the absence of a flexible model for embedding behaviour and examining

orrelations to addiction risk. This motivates the development of a flexible semi-supervised methodology as part of this
tudy.
2
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2.2. Hypotheses

From the previous work surrounding smartphone use and its connections to addictive behaviour we formulate the
ollowing hypotheses:

H1 Co-occurring UI events are reflective of addiction and offer a more strongly correlated indicator (in terms of effect
size) when assessing SA risk compared to length of use or events in isolation.

H2 The within session usage will not always be uniquely represented by only an addicted or non-addicted group of
users. Rather, we expect that sessions by addicted users will sometimes display traits of sessions usually generated
by non-addicted users and vice-versa.

H3 Certain application categories show a stronger response than others in context of their interactions, specifically H3a
social, H3b communication, H3c entertainment and H3d game applications.

. Methodology

To examine the interaction effects between UI events and SA scores we create multiple models of sessions from the
aw data. As done by Friedrichs et al. [34] we create two representations of the user interaction data for each session, one
sing absolute counts of each event type and another utilising the natural language processing technique, term frequency-
nverse document frequency (TF-IDF), to represent the relevance of events in a session, comparable to keywords in a
ocument. This in turn allows us to consider the impact of embedding interaction event information as a set of singular
vents and as co-existing events in a session. We extend this by introducing a dependent variable, a smartphone addiction
evel, by means of an accompanying per-user SAS survey. We first examine the correlation of individual UI events with
A before moving on to evaluating their co-existence and the relevance of application types.

.1. Dataset

The Tymer dataset [5,10], was collected from a similarly named Android application that collected and tracked device
nteraction and notification data. Participants were asked before and after the usage period to complete a survey which
llowed us to place them on the SAS. The average SAS score from each of the 64 users was retrieved. Of those 64 users (30
emale, 34 male), 40 million interaction events were captured over the span of 8 weeks (after pruning duplicate events).
sers were split using the cutoff points as defined by Kwon et al. [27] and discussed in Section 2.1, which resulted in 13
sers being identified as addicted.
The data used in this paper includes all detected screen on, screen off, and boot events, as well as the following events:

ap, Long Tap, Text input, App switch (e.g. opening an application), and Scrolling, along with pseudo-events to capture the
eriods between interaction events in a session — Short idle (1 s) and Long idle (45 s, based on [35]). One limitation of
he data collection was the capture of applications which were built using pure ‘canvas’ screens (gaming applications
requently make use of these). Only inputs of the Android interface were captured, this means that interactions with
he canvases are not considered. Multiple approaches of creating sessions have been proposed across the literature,
ncluding screen events [36], application boundaries [37] or non-interaction timeouts [35]. As we are looking to detect
roblematic behaviour every time someone picks up their phone we decided to proceed with the screen event based
pproach, similarly used by Oulasvirta et al. [38] and Hintze et al. [39].
To create the sessions, all events are assigned to their respective user and then sorted based on their timestamp. All

vents between screen on and screen off form a session. Some screen on events were not followed by screen off events,
hich could be due to a number of reasons including the battery depleting or issues in the stability of the data collection
echanism from the original study. To account for this, we inferred the endpoints for these sessions as the timestamp
f the last interaction event before a number session began. The total number of sessions in the dataset was 316,072
per user Std. = 3427.48). The inherent distribution of session usage is strongly skewed towards very short bursts of
nteraction, which resulted in n = 15,048 sessions having no UI interactions at all. We argue that these sessions will not
e suitable for analysis in this study as the events will be used as features for comparison with SAS, so were removed.
Each session was then labelled with the SAS label of the user using the remaining N = 301,024 sessions, resulting

n n = 79,354 addicted (13 users) and n = 221,670 non-addicted (51 users) sessions. The aggregated set of sessions is
sed as the basis for analysis, rather than compressed traits for individual users, as the objective of the study is to isolate
nteraction behaviour in sessions that could be indicative of an addicted user. We hypothesise (H2) that a labelled addicted
ser will not exhibit correlating behaviour in every usage session.

.2. Representing usage behaviour and addiction

To represent behaviour, previous work [34] has shown that embedding interaction events to represent behaviour
eveals common ‘types’ of smartphone usage sessions. These events also reveal types of usage sessions that are not
pparent using summative features such as the length of a usage session. As a parallel, in this paper we examine
orrelations between SA and both, UI event feature embeddings and summative features (such as session length) to

bserve the additional utility that interaction events can bring. We analyse the individual interaction of features with

3
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SA by probing their separability between users. We then move on to logistic regressions that combine all of the above
features to build models that can predict a users addiction risk based on their usage session behaviour. We report multiple
metrics, as the standard results for Mann–Whitney U (U and p-value) and logistic regression (error rates and confidence
intervals) are not directly comparable. For comparisons we will rely on effect sizes since p-values by themselves might
indicate significance but fail to capture the strength of the prognostic capabilities on the outcome variable [40].

3.3. Effect size

The Mann–Whitney U (MWU) test is a common nonparametric test to check for significant differences in size between
two samples by comparing their medians. Our session data can be separated by the respective addiction label supplied
by the user. These tests will provide a baseline of general separability between the addicted and non-addicted samples.
Due to the nature of statistical tests, even small deviations will be reported as significant for large sample sizes, so we
also report the effect sizes as an area under curve (AUC) in addition to test statistics and p-values. AUC is a standard way
to describe effect sizes [41] and will also provide a basis for comparison in the logistic-regression task.

The AUC score ranges from 0 to 1, where given two sets of data it describes the predictive capabilities of a chosen
variable or model. The bounding values 0 and 1 correspond to a strong (negative or positive) diagnostic ability and .5 to
no diagnostic ability. While AUC values have no strict boundaries they can be categorised by rule of thumb, we follow [42]
label them as poor for .5 ≤ AUC < .7, acceptable for .7 ≤ AUC < .8, excellent for .8 ≤ AUC < .9 and outstanding for AUC
≥ .9. Formally the AUC can be derived from the MWU statistic [43,44] by letting U be the test statistic result, nx be the
size of a sample and φ the normal cumulative distribution function, so that the score can be calculated as:

z =
U −

n1×n2
2 − .5√

n1×n2×(N+1)
12

(1)

r =
|z|
√
N

(2)

d =
2 × r

√
1 − r2

(3)

AUC = φ
d

√
2

(4)

4. Assessing risk indicators

In this section we will explore the utility of using smartphone interaction behaviour as the basis to predict probabilities
relating to SA. Due to the sensitive nature of the topic there are implications of hard misclassifications if represented as
strict binary classification labels (addicted when not addicted or vice versa). As a consequence we will report our findings
in terms of potentially correlating factors and probabilistic risk, rather than treating it as a strict classification problem.
Then we add only suggestions as to how they could be used in practice. We first investigate the effectiveness of high-level
features separating the samples of addicted and non-addicted users. We then show how those results are improved by
utilising UI and introducing application categories.

4.1. Separability by summative, high-level features

SA has been connected to summative, high-level features such as time spent in applications [33] or application changes
in fragmented use [4]. Therefore, in addition to creating session embeddings from UI events (e.g., taps and scrolls) we
also calculate the session length, number of switches between applications, and the total number of events to provide a
comparable baseline. Each session is labelled with according to the SAS of the user that generated them (discussed further
in Section 3.1).

Table 1 shows that the median session length (in seconds) for sessions that were labelled addicted (Mdn = 2.38 s, M =

101.59 s, SD = 276.71 s) is slightly longer than for those non-addicted (Mdn = 19.98 s, M = 12.58 s, SD = 324.05 s), U =

1700735811, p ≤ .001, AUC = .526. We extend this by examining the time spent in different categories of applications per
session. We extracted the Google Play Store category for the app the event occurred in, with all apps not on the Google
Play Store placed in an Other category, resulting in a total of 45 categories. When considering time spent in specific
categories, simulation games showed the strongest differentiation and none of the categories in our hypotheses H3a-
c show a significant difference (other categories were omitted). Statistically these are significant based on the p-value
threshold, but the effect size shows that there is limited potency. Additionally, we can observe how the categories with
the strongest effect sizes have low cross-user representation (e.g. game simulation apps are represented by only 4 of 64
users). This limits confidence in the use of session length for specific types of applications across a population.

Sessions by addicted users typically included more application switches (Mdn = 4, M = 5.9, SD = 14.61) than non-
addicted users (Mdn = 2, M = 7.75, SD = 34), with a slightly stronger response than overall session length, U =

1666167040, p ≤ .001, AUC = .533. However the effect sizes are also small. Lastly, the total number of interactions
4
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Table 1
MWU statistic of length of use in seconds for overall sessions and the top 5 scores of usage time within specific application categories. p ≤ .001
pplies for all results.
Category AUC U Addicted Non addicted

Users Mdn SD Users Mdn SD

All .527 1659087399 13 81.5 395.2 51 70.3 429.6
Game simulation .686 11973 1 119.6 113.5 3 315.9 474.4
Education .682 9758 4 89.1 141.4 16 16.1 154.0
Sports .681 28752 2 4.0 106.7 7 24.2 91.1
Tools .675 53666516 13 11.7 207.4 51 2.0 131.3
Finance .672 179604 6 11.5 60.1 24 30.9 92.2

Table 2
MWU tests using the count and TF-IDF scores of user interaction events in sessions. p ≤ .001 for each feature. The results are sorted by effect
ize.
Type Feature AUC U Addicted Non addicted

Users Mdn SD Users Mdn SD

Count Text input .568 481378196 13 22 172.2 51 11 146.5
Long idle .542 131478681 13 2 16.9 51 3 18.7
Long tap .535 969989 13 1 1.2 51 1 2.3
Scrolling .534 1022691388 13 7 68.5 51 5 448.4
Short idle .524 1664563262 13 66 919.6 51 66 732.4
Tap .523 1196571408 13 3 29.8 51 4 29.5
App switch .510 1609207477 13 5 11 51 5 1.9

TF-IDF Tap .556 1322548432 13 .309 .137 51 .342 .140
Scrolling .554 1000752988 13 .465 .185 51 .424 .177
Long idle .542 141631150 13 .366 .192 51 .409 .193
Long tap .534 993693 13 .365 .148 51 .339 .139
Text input .527 557535949 13 .641 .186 51 .608 .184
App switch .509 1716098754 13 .332 .135 51 .339 .138
Short idle .508 1768056702 13 .464 .147 51 .466 .156

has previously been used as a basis for correlating with SAS scores over time [5]. We find that while there is a significant
link between the total number of interactions produced by addicted users (Mdn = 26, M = 226.23, SD = 844.87) and
non-addicted (Mdn = 28, M = 225.38, SD = 725.54) within sessions, the effect size is poor (U = 1666065715, p ≤ .001,
UC = .533).
This analysis reveals that while sessions do have statistically significant differences between their medians of session

ength, application switches, and number of interaction events, the effect sizes are small enough to make their predictive
apabilities unsuitable. Overall, we can conclude that the results of summative, high level features, are unlikely to be
uitable for the goal of isolating SA. We explore user interactions based on specific events next.

.2. Separability by user interactions

As a comparison to the summative, high-level features (e.g., session length) we examine different representations of
ser interaction activity within sessions and observe correlations with SA.
For the first representation, we count the occurrences of each event type per session. Table 2 shows that while

ignificant, very weak effects can be observed for individual event types. For the second representation, we consider
essions from all users as a ‘corpus’, and use this to calculate the relevance of each event using TF-IDF. We define the
relevance as the TF-IDF score for each event type e in session d as:

TF-IDFed = tfed × idfe
tfed = 1 + log (freq(e, d))

idfe = log
(

1 + n
1 + dfe

)
where freq(e, d) is the number of events of type e that occurred in session d, n is the total number of sessions and
dfe is the number of sessions that contain an event of type e. Each session d is then represented by a feature vector
fd = (TF-IDFe1d, . . . , TF-IDFe7d). We then test the difference of the medians between the session samples for every event
type using MWU.

Table 2 also shows the results when considering TF-IDF scores rather than the number of times events occur. TF-IDF
shows equally low effect sizes to counts. However, these findings indicate that considering some interaction events may
provide slightly stronger predictive power in comparison to overall session length, number of application switches, and
number interaction events. From here we examine interaction events within specific categories of apps using counts and
5
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Table 3
Results of a MWU test for the top ten features (count of each event type in an app category) with the highest effect sizes. N refers to the number
of users in each group.
Category Feature AUC p U Addicted Non addicted

N Mdn SD N Mdn SD

Game trivia Scrolling .815 .009 1 3 19 20.6 2 17.5 21.2
Game trivia Tap .806 .004 10 4 41 187.7 3 30 174.6
Game simulation Long idle .794 <.001 10238 1 3 4 3 10.5 26.8
Music and audio Long tap .788 .032 62 3 1 .37 2 2 2.6
Sports App switch .776 <.001 5883 2 1 2 7 1 1.5
Game simulation App switch .767 <.001 16069 1 1 0.4 3 2 2.9
Education Text input .760 <.001 2240 2 16 12.8 9 3 9.4
Education Long idle .747 <.001 1724 4 1 2.1 9 3 10.2
Launcher Long idle .732 <.001 2156723 12 1 4.3 45 2 9.9
Sports Scrolling .701 <.001 3818 2 7 21.9 6 3 129.3

Table 4
Results of a MWU test for the top ten features (TF-IDF score of each event type in an app category) with the highest effect sizes. N refers to the
number of users in each group.
Category Feature AUC p U Addicted Non addicted

N Mdn SD N Mdn SD

Education Text input 0.934 <.001 433 2 16 12.8 9 3 9.4
Game trivia Scrolling 0.837 .007 0 3 19 20.6 2 2 0.5
Game trivia Tap 0.832 .002 7 4 41 187.7 3 3 4.5
Music & audio Long tap 0.814 0.02 66 3 1 0.4 2 2 2.6
Sports Scrolling 0.780 <.001 2699 2 7 21.9 6 3 129.3
Sports Short idle 0.747 <.001 12310 2 12 327.5 7 38 228.1
Tools Short idle 0.725 <.001 24947084 13 14 1371.9 51 4 192.1
Game word Short idle 0.715 <.001 1459 3 14 63.8 8 41 563.5
Sports App switch 0.709 <.001 6481 2 2 2.1 7 1 0.7
Finance Text input 0.707 <.001 6604 5 6 30 15 3 19.7

TF-IDF scores. This will provide a comparable basis to the time spent in categories of apps which produced stronger effect
sizes in comparison to time spent across all apps, however with a limited amount of users in the dataset.

4.3. Influence of application categories

We extend the analysis to consider the potential efficacy of UI events as features by examining the events for specific
ategories of applications, rather than generally. From this, given the set of all event types E = {e1, . . . , e7} and the set of
ll categories C = {c1, . . . , c45}, we construct a feature combination vector fc315d based on E×C , containing information on

each event type for each category. After constructing the final vector it was reduced from 315 to 278 features by removing
37 combinations of events and app categories which did not occur in the dataset. We formalise this as an expansion of
the original feature vector fd as fc278d = (TF-IDFe1d, . . . , TF-IDFe278d).

We first consider the features based on the number of times they occurred in a session. Of the 278 features, 108 are
statistically significant and those with the largest effect sizes can be seen in Table 3. The effect sizes, with the largest
being AUC = .815 (Scrolling in trivia games), resemble a reasonable indicator for the utility of considering interaction
vents relative to the type of app they occurred in, in comparison to generally and the summative, high-level features in
ection 4.1.
We repeat the analysis using vectors comprised of TF-IDF scores to determine whether a metric that considers the

o-occurrence of events has stronger effects than event counting. 109 features were statistically significant and Table 4
hows the features with the largest effect sizes, with the largest being .924 (Text input in education).
We attribute this jump of performance to two factors. Firstly, the test statistic (U values) are very low for some of

the results. These low values mean there were fewer sessions to evaluate from. This is also reflected by the samples
under-representing total users where for the most part less than a dozen of users contributing. Secondly, the differing
results between the top features of count and TF-IDF can be accounted to the scaling that takes place during the TF-IDF
vectorisation. TF-IDF’s ability to distinguish nuances in usage might be compromised by the very low vocabulary of only
7 features (i.e. event types). While TF-IDF may show a slightly higher effect sizes (AUC values) for some features, overall
they perform similarly. The cross product of features and categories created a better model for TF-IDF itself.

Some of the MWU scores for isolated user interaction events showed an improvement over session length (e.g. Text
input in education or scrolling in trivia games). This suggests that when all data points apart from a single category-feature
combination were dismissed, it showed better results across the board for those sessions that remained. As we can only
use sessions that those combinations occurred in, we lose many sessions for the evaluation. To be able to use all sessions
we want to consider all features together, this can be achieved via a logistic regression and forms the next focus of our
6
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Fig. 1. Increase in effect size (AUC) for testing the model as the minimum of required events increases.

Fig. 2. Reduction of available sessions user for testing the model as the minimum of required events increases.

nalysis. The higher performance of the TF-IDF results that already consider the co-existence of events among others, and
his motivates that the interplay of multiple features may produce strong results when applied to a trained model.

. Combination of features

We extend our statistical analysis of individual event types to examine H1 further by building Logistic Regression
odels that embed multiple event types. We trained the models with 90% (n = 270,922) of the available sessions and

then tested with the remaining 10% (n = 30,102) and performed 10-fold cross-validation to limit any selection bias and
report the mean values. Before building the models we need to address high collinearity issues by pruning the vectors
defined in Section 4.3 (fc278d) which removes the features that show a correlation higher than .9, creating a final vector of
56 event type pairs (fc256d). To evaluate these models we reuse the AUC of the receiver-operator-characteristic (ROC) as

a measure of performance of the true positive rate against false positive rate.
The performance of the models built from the counts of event types per app category is similar to the single event effect

sizes in Table 3 (AUC = .68, p<.001, SD = 0.002). However, for models built from the TF-IDF value equivalent vectors, the
odel performance improves by almost 5%, AUC = .73, p<.001, SD = 0.002. This achieves a reasonable result in terms of
ffect size as defined in 3.3 and shows that considering multiple types of UI events (and their weighting relative to each
ther) provides the improved separability over singular events — supporting H1. This method also allows us to captures
ll 64 users, similar to the tests without category restrictions while improving on their efficiency by more than 20%.
As discussed in Section 3.1, short sessions can be an issue when trying to predict the label as these typically contain

ew events which consequently could inhibit the ability to distinguish between an addicted user and not. To investigate
he effects of this, we removed sessions that had less than 5 user interactions of any type. While this reduces the amount
f sessions to 45% (302,734 to 141,588 sessions) it retains sessions for each user (M = 2212.31, MD = 2126, Std = 1365.3).
oing so improves the performance by 5% to AUC = .773. We also examined alternative event count thresholds and the
ffects of this on model performance (Fig. 1) and the number of sessions this removes (Fig. 2), which shows support for
onsidering a minimum, however the benefits reduce the larger this is.
7
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Table 5
FDR corrected significant categories and feature combinations for classifying addiction. Negative coefficients are a stronger indicator for non addiction.
Switch = App switch.
Category Feature β AUC p Category Feature β AUC p

Communication Scrolling 1.38 .704 <.001 Navigation Short idle −1.28 .309 .006

Text input .13 .52 .012 Personalisation Switch −4.20 .051 .041
Short idle −.55 .415 <.001 Short idle −4.95 .027 .031

Tap −1.01 .35 <.001 Photography Scrolling 1.45 .714 <.001
Long idle −1.19 .322 <.001 Switch 1.14 .672 .002

Education Text input 2.15 .799 .041 Short idle −.77 .381 <.001

Entertainment Short idle −1.36 .298 .003 Productivity Switch 5.93 .99 <.001

Finance Switch 2.01 .784 .013 Scrolling .85 .63 <.001
Text input 1.62 .736 .013 Text input −.48 .426 .037
Short idle −1.23 .315 .001 Tap −1.51 .28 <.001

Adventurea Switch 3.27 .899 <.001 Short idle −2.49 .166 <.001
Short idle .58 .59 <.001 Long idle −2.91 .128 <.001

Long idle −.75 .385 .001 Social Switch 1.44 .712 <.001

Casuala Switch 3.64 .922 <.001 Text input .79 .621 <.001
Long idle 2.28 .813 <.001 Short idle .37 .558 <.001

Puzzlea Long idle 1.96 .777 .016 Scrolling −.31 .452 <.001

Sportsa Long idle 3.49 .913 .004 Tap −.429 .43 .001

Strategya Short idle −3.67 .076 .003 Long idle −1.10 .334 <.001

Health and Fitness Switch 3.63 .921 <.001 Sports Short idle −2.83 .135 <.001

Short idle −3.02 .12 <.001 Tools Short idle 4.82 .97 <.001

Launcher Scrolling 2.68 .852 <.001 Long tap 1.92 .773 .049

Lifestyle Switch 4.00 .94 <.001 Scrolling .74 .613 <.001
Text input 2.59 .844 <.001 Text input −1.25 .313 <.001
Scrolling 1.28 .691 <.001 Tap −1.87 .23 <.001
Long idle −1.05 .341 .001 Long idle −3.07 .116 <.001
Short idle −1.19 .321 <.001 Switch −9.23 0 <.001

Music and audio Text input 1.24 .685 .005 Travel and local Scrolling 1.498 .72 <.001
Tap .52 .58 .013 Switch 1.03 .656 .006
Scrolling .457 .571 .048 Text input 1.00 .652 .011
Long idle −2.19 .197 <.001 Short idle −1.64 .261 <.001

News and magazines Scrolling 2.14 .798 <.001 Video players Switch −1.63 .263 .009
Switch 1.72 .749 <.001 Scrolling −2.41 .174 <.001

Short idle −.52 .42 <.001 Weather Short idle −5.77 .012 <.001

Tap −.803 .38 <.001 Other Short idle 1.44 .712 <.001
Long idle −2.75 .142 <.001 Long tap 1.34 .699 .001

Web browser Tap 3.56 .917 <.001 Scrolling .89 .626 <.001
Text input 2.47 .833 <.001 Long idle −.99 .35 <.001
Switch 1.70 .746 .002 Switch −1.33 .302 <.001
Long idle −1.92 .227 .049 Text input −1.36 .298 <.001
Short idle −2.75 .142 <.001 Tap −2.48 .17 <.001

aGame category.

5.1. Categories as a predictor

From the Logistic Regression models we can extract feature importance by utilising the models’ coefficients. The AUC
n this case is related to the coefficient and is added as a way to show the effect size. Where e is the Eulers number, β
he regression coefficient and OR is the odds ratio, then formally [45]:

OR = eβ (5)

d = lnOR ×

√
3

π
(6)

AUC = φ
d

√
2

(7)

Table 5 shows the event category, coefficient β , effect size (AUC) for features where p<.05. The features are sorted by
the strength of their significant coefficients β in descending order. In this section we will focus on only reporting effect
8
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sizes that show moderate to high correlations. The first observation is that significant features for addiction are spread
across almost all categories and their contributing magnitude or even polarity is not always matching. We note that since
we did not select features and there are many of them, there is the chance that some of the features (even with low
p-values after false discovery rate correction) are false positives or (not-featured) negatives. While we will discuss the
observations, the main focus of this section is the magnitude and differences of effect size for features across categories
and how they differ from each other.

Another aspect to consider is, given the transformation by TF-IDF, these coefficients do not necessarily hint towards
he frequency of the events occurring in a session, but rather towards the relevance of the event. For example, when app
witches are the most relevant in lifestyle applications, they are positively correlated towards addiction, whereas long idles
re negatively correlated. Sessions can have fewer app switches than long idles but if they are more important in context
f the session the evaluation will swing towards addiction risk.
App switches (AUC = .712, p<.001) in social apps are moderately contributing towards risk of addiction. This

bservation could be part of the fragmented use of frequent switches, especially surrounding social media apps, as
eferenced previously [4]. This would be further supported by long idles being a negatively correlating factor (AUC =

.334, p<.001), which could hint towards more considered use in social apps.
Scrolling (AUC = .704, p<.001) in communication apps is moderately positively correlated with addiction which would

reflect the findings in [5]. Long idle (AUC = .322, p<.001) and tap (AUC = .347, p<.001) events are on the edge of moderate
egative correlation. This could be connected to factors such as scrolling being a more engaged action than simply waiting
or responses or tapping various interface elements to reply.

The presence of 6 and 5 events respectively for social and communication apps being significant with effect sizes
anging from moderately negative to moderately positive is indicative that we can observe separability based on social
nd communication apps and therefore shows support for H3a and H3b. Overall, social and communication apps have
ower effect sizes than gaming or some of the other categories (all AUCs<.8). This may be reflective of them being common
ctivities across all smartphone users [46].
Entertainment apps only show short idles (AUC = .298, p = .003) as the only significant feature, being negatively

orrelated. With only a single variable for this category it is hard to argue for stronger separability using entertainment
pps compared to others. Our data shows that other categories (e.g. games or communication) are more widely used, the
dditional data could lead to better separability and therefore stronger correlation coefficients. From this we conclude
hat events in the entertainment category are not a strong indicator for distinguishing the addiction risk in users and we
eject H3c.

Multiple event types in game apps also show correlations to SA. App switches are strongly positively correlated in
asual and adventure games (AUC≈.9, p<.001). In casual, sports and puzzle games long idles have a moderate to strong
ffect towards SA (.75<AUC < .95, p<.05). Long idles in adventure games (AUC = .385, p = .001) show a slight negative
orrelation with addiction risk and were not significant for all other game categories. Short idles are strongly negatively
orrelated for strategy games (AUC = .076, p = .003) and vaguely so in adventure games (AUC = .385, p = .001). This
hows support for H3d as playing games for a variety of sub-categories (i.e., adventure, casual, puzzle, sports and strategy).
ompared to other categories, coefficients are high, specifically switching to and idling (potentially because of capture
imitations discussed in Section 3.1) with the games open show strong correlations.

Significant coefficients of the same events between categories also reveal notable observations. App switches display
oderate to very high AUCs for almost all categories, outliers are made up of personalisation, tools, video players, and

he ‘other’ category. This signifies that when switches are the most relevant interactions, a session is more likely to
e connected to SA. At least the ‘other’ category could be explained by the fact that it will include a wide range of
pplications and switching to any of those would not always be considered neutral. Conversely, short and long idles
re almost exclusively a negative predictor for SA apart from some of the game categories (specifically casual, sports
nd puzzle games). This pattern exists for all events, a predominant polarity of coefficients with few outliers, including
gradient of effect sizes from poor to excellent. This supports prior findings where singular events are generally an

nfluence [5] on SA but simultaneously also support our assumptions that no single event can evaluate SA in isolation
cross all categories.
We were able to observe that events within these categories (e.g. game, social and communication applications) are

ble to separate addicted from not addicted behaviour. Moreover, there are tangible differences in predictive capabilities
nd magnitude for the same event types across categories. Some categories (e.g. dating or shopping) did not display any
ignificant features at all. This supports our hypothesis H3 in that problematic behaviour is not uniform for all application
ategories.

. Applying risk

Labelling someone as addicted due to a usage session(s) should be handled with care due to the risk of false positives
r negatives being potentially harmful and any model could be argued as only to be used as decision support tool with
uman oversight. In the literature, regression models are often evaluated based on some score or classification rule. This
ncludes defining a threshold in the probability range 0 to 1 and then classifying data and points higher or lower than
his threshold accordingly [47]. In a balanced dataset this threshold corresponds to .5 but to account for the imbalance
9
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Fig. 3. Improvements of AUC when detecting SA using 10-fold cross-validation with (left to right) count, TF-IDF, TF-IDF with 5 minimum events,
TF-IDF when applying an uncertainty area of .15 at the threshold of .23.

Fig. 4. User count of true positives, false positives, true negatives and false negative based on mean probabilities.

of addicted compared to non-addicted users and potentially different priorities in minimising false positives and false
negatives, we explore changes to regression performance for different thresholds.

We can uncover this threshold by calculating the maximum Youden index [48] to optimise the break-even point
between the false positive and true positive rate.

sensitivity =
true positives

true positive + false negatives
(8)

specificity =
true negatives

true negatives + false positives
(9)

J = sensitivity + specificity − 1 (10)
10
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Fig. 5. A .15 uncertainty range around a .23 threshold based on their prediction probability. These sessions would be considered uncertain and be
excluded.

Fig. 6. AUC of a logistic regression model where uncertain sessions inside of the uncertainty range are not considered as part of the scoring.

In our case this is .23 (visualised in Fig. 4), where the false positives decrease drastically but the true positives remain. In
terms of risk to be addicted, the probability evaluation of sessions could be accompanied by a scale that places users into
a more understandable risk system. A basic example would be defining t such that when p is the addiction probability,
low (p ≤ .23 − t), medium (.23 − t > p > .23 + t) and high (p > .23 + t) can categories can be understood. The
nderstanding of a scale that has one or more cases which define a medium (or uncertain) case is explored in more detail
n the following section.

.1. Uncertainty range

Sessions are labelled based on the user’s addiction label as a binary value. This assumes that every session of an addicted
ser will be distinct from that of non-addicted users. We propose through H2 that this is not the case and that a subset of
essions will have distinct characteristics and a subset will be similar. For example, the dataset contains sessions that are
hort and have limited interaction events where correlating characteristics with addiction may be prevalent. To examine
his and the impact on the modelling, we utilise the probability range from the previous section to evaluate using three
nstead of two prediction classes. The intention of this is to isolate types of usage sessions that are common to both
ddicted and non-addicted users.
To account for uncertain cases of interaction, we continue with training a binary classifier, but then evaluate and adjust

he classification of the training data to account for uncertainty in the model. Interpreting ranges in logistic probabilities
n as uncertain cases has been discussed in the literature before [49]. In these cases, a low confidence area around the
lassification threshold is created which besides the labels (in our case, addicted and not addicted) creates a third label,
ncertain.
As can be seen in Fig. 5, a uncertainty range is extended to both sides of the threshold yielding the excluded sessions.
hen applied it will remove sessions from the support but greatly benefit the classification power. Similar to limiting

essions to a minimum event count, Fig. 6 shows that as we increase the threshold and remove uncertain cases from
11
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Table 6
Confusion matrix for addiction classification per user based on a Youden’s index of .23
and by utilising the each users mean session probability. Based on 141,588 sessions and
probabilities without an uncertainty range.

Negatives Positives

True 36 12 48
False 1 15 16

37 27

Table 7
Confusion matrix for addiction classification per user based on a Youden’s index of .405
and by utilising the each users mean session probability. Based on 141,588 sessions and
48,832 probabilities with an uncertainty range of .15.

Negatives Positives

True 46 11 57
False 2 5 7

48 16

Fig. 7. The distribution of session that are considered addicted, non addicted or uncertain for every user. Uncertain is split into session that would
have been classified addicted or not addicted at the .23 threshold. The users are sorted by their mean addiction probability of all their sessions.
Symbols along the x-axis: ‘x’ is a user that is addicted according to the SAS. ‘o’ shows that if a user is either a false positive or negative (depending
on ‘x’) when considering a Youden index of .405.

the binary classification, the model starts to become more accurate for the remaining cases. At a threshold of .15, this
increases the AUC up to .875 and 92,756 sessions are removed from the evaluation. Sessions for all users are retained
(M = 763, MD = 621.5, Std = 684.81). This means that we can observe the improved results for the remaining 48,832
essions. Youden’s index for these sessions is .405.
While this approach loses information in terms of sessions, all 64 users still produced sessions which were represented

y the uncertain label. Also this approach greatly boosts the accuracy of the remaining sessions once the attached users
re considered. Table 6 shows that without an uncertainty range, only one false negative is perceived but an issue can
e perceived when 15 false positives come into play. In contrast Table 7 shows 2 false negatives but reduces the false
ositives (15 to 5) drastically.
Fig. 7 visualises how the sessions removed by the uncertainty range affect considered sessions. Every user produced

essions of each category but either sides of the scale show that users predominantly create sessions with their respective
abel. Additionally, it shows how sessions that were falsely classified mostly created session of the opposite label.

This demonstrates how excluding uncertain sessions can transform assessment of addiction risk. Once users have
generated enough data points, this strategy identifies sessions which are too generic to judge a users addiction risk and
by removing the range of data including these sessions improves results when trying to evaluate users themselves instead
of individual sessions. Additionally, as touched upon in the introduction, this paper is developing a methodology to detect
SA through continuous use of a smartphone. When viewing it in context of an actual devices, continued use would enable
a steady stream of created sessions which eventually would lead to a risk assessment.
12
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7. Discussion

Our analysis shows that user interaction behaviour (e.g., through taps, scrolls, etc.) as part of usage sessions have
redictive power for determining whether smartphone usage was undertaken by an individual scoring high on the SAS or
ot (Section 4). Crucially, the results show that while high-level, summative features such as session length are also
omewhat linked (Section 4.1), the effect sizes are substantially smaller. This adds to the growing body of evidence
n the literature [50,51] that user interaction behaviour provides important granularity for applications examining and
haracterising smartphone usage.
Observations made by Nöe et al. [5] which utilised the same dataset focused on the link between the summed number

f events and SA. This was an important step to establish the existence of a relationship with user generated events. To
xtend on it, we considered how the net of complex behaviour could be limited by generalising every event to carry
he same weight. We show that the co-occurrence of these different UI events results in a more representative form of
nfluential features and appears to model the usage behaviour more closely. Additionally, we took the consideration of
ser interaction behaviour a step further than previous studies by comparing the effects of interaction events in isolation
o one another, as well as together, through modelling interaction behaviour using TF-IDF and through regression models.
he results highlight stronger effects and model performance where interaction events are considered together (Section 5),
hich strongly supports our hypothesis, H1.
Furthermore, instead of considering events over the course of a day (or any other arbitrary time window) we find that

rouping events into sessions that are bounded by interactions with the device allows to capture more nuances of usage
n an individual level. This means that the increase in available information can be used to build a predictive model which
akes dozens to hundreds of data points per day into account, rather than just one.

The logistic regression models, particularly those that break down event types into the categories of apps they occurred
n, perform reasonably well. However, as the goal is prediction of potential addiction, the priorities of the model may
nvolve minimising false positives or false negatives, rather than both equally. This is further supported by the presence
f common types of usage sessions irrespective of addiction scores, particularly where there are few user interaction
vents in a session (Section 6.1). Fig. 3 shows the improvement we were able to achieve using differing strategies such
s pruning the training set and accounting for confidence in classification labels. The models utilising TF-IDF scores beat
he performance of models that utilise event counting.

We discovered that an uncertainty range between addicted and non-addicted behaviour caused by the inherent
iversity in smartphone behaviour exists. Sessions in this range are difficult to evaluate and including them leads to
owered separability and accuracy. We can evidence partial support for H2 under the condition that discarding uncertain
ases is viable (enough data points generated) and the per-session risk is not as important as the user’s overall risk.
Lastly, categories did show distinguishable features between themselves. Gaming, social and communication use has

een presented in the literature before [3,4,24,30,31] which influenced our expectations set in H3a, H3b and H3c. From our
nalysis, we reject H3c, entertainment applications being a strong indicator, because of only a single significant feature.
lso, other categories (e.g. health and fitness) had surprisingly high coefficients hinting towards discerning features of
martphone addiction and motivates further study. This also reflects prior research that found surprising correlations
etween some applications categories and addiction (e.g. reading the bible [33]). We argue that H3 as a whole could be
upported on the grounds that some but not all sub-hypotheses were supported and the overall observation that different
eatures were found to be important across different app categories. This differed to an extent to the findings by Nöe et
l. [5] who found that the relationship of addictive behaviour and UI events can vary for specific applications but was not
resent for any of these categories in general. We argue that the distinction of category specific event types will have
evealed associations that would not have been present by simply summing all event counts (e.g. scrolling and long idle
vents in communication being opposing influential factors as seen in Table 5).

. Conclusions and future work

In this paper, we use the co-occurrence of UI events to highlight their predictive power of addiction in users, which
ere classified as addicted using the SAS. We are able to use our models to show how users can display a positive, neutral,
r negative connection to addiction session-by-session, but when combining all session behaviour the users addiction
evel matches with our risk prediction. We also show how the same interactions in behaviour can cause different (or
ven inverse) magnitudes of correlation with addiction across application categories.
In the process we discovered that high level features such as session length are not sufficient to accurately test for

ddiction in smartphone usage. Results from a previously discovered approach to extract term weightings from user
ehaviour offered improved risk detection. While single features only showed poor risk prediction capabilities for SA,
imilarly to high level features, we were able to create models that can assess addiction risk from co-occurrence UI events
ith more accuracy. The results are improved if the model is trained with sessions with sufficient length (10 or more

nteractions by a user) or when considering uncertainty in the classification which filters out uncertain sessions.
We were also able to show differences in behaviour between categories that are the highest contributors to detected

ddicted use. In some categories there are distinctions between behaviour that actively contributed to detecting SA and

nteractions that were less likely to be taken by addicted users. This supports our assumption that not all use in every app

13
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is to be treated equal for detecting addiction and rather that it is required to pay closer attention what a user is actually
doing. In respect to previous literature, there were some matching occurrences of use surrounding entertainment and
social apps, but the communication category of which app are frequently referenced as an outlet for addicted behaviour
there was no notable difference to be observed (there was no statistically significant positive or negative correlation for
any feature).

The work presented has shown a considerable relationship between UI events and the ability to predict addicted use.
rom this point onward there are a few open questions that we would like to see addressed. One key assumption in
his work is the identification of in-session behaviour and our models show good predictability based around features
athered from interactions in those. However, it is possible that implementing additional parameters such as session
nterplay, regularity, or task detection could provide additional useful features to further build on the approach of this
tudy.
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