
Integr. Equ. Oper. Theory           (2022) 94:30 
https://doi.org/10.1007/s00020-022-02708-1
c© The Author(s) 2022

Integral Equations
and Operator Theory

Global Propagator for the Massless Dirac
Operator and Spectral Asymptotics

Matteo Capoferri and Dmitri Vassiliev

Abstract. We construct the propagator of the massless Dirac operator
W on a closed Riemannian 3-manifold as the sum of two invariantly de-
fined oscillatory integrals, global in space and in time, with distinguished
complex-valued phase functions. The two oscillatory integrals—the pos-
itive and the negative propagators—correspond to positive and negative
eigenvalues of W , respectively. This enables us to provide a global in-
variant definition of the full symbols of the propagators (scalar matrix-
functions on the cotangent bundle), a closed formula for the principal
symbols and an algorithm for the explicit calculation of all their homo-
geneous components. Furthermore, we obtain small time expansions for
principal and subprincipal symbols of the propagators in terms of geo-
metric invariants. Lastly, we use our results to compute the third local
Weyl coefficients in the asymptotic expansion of the eigenvalue counting
functions of W .
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1. Statement of the Problem

Let (M, g) be a connected oriented closed Riemannian 3-manifold. Through-
out this paper we denote by ∇ the Levi-Civita connection, by Γα

βγ the
Christoffel symbols and by

ρ(x) :=
√

detgαβ(x) (1.1)

the Riemannian density.
Let us clarify straight away why, when dealing with the massless Dirac

operator, we restrict our analysis to the 3-dimensional case. The reason is
twofold: on the one hand, dimension three is physically meaningful in that it
represents the first step towards a potential future analysis of the relativistic
3+1-dimensional setting, and on the other hand, our method requires the
eigenvalues of the principal symbol of our operator to be simple, cf. Sect. 3,
which is not the case for the massless Dirac operator in higher dimensions.

Let ej , j = 1, 2, 3, be a positively oriented global framing, i.e. a set of
three orthonormal smooth vector fields1 whose orientation agrees with the
orientation of the manifold. In chosen local coordinates xα, α = 1, 2, 3, we
will denote by ej

α the α-th component of the j-th vector field. Throughout
this paper we use Greek letters for holonomic (tensor) indices and Latin for
anholonomic (frame) indices. We adopt Einstein’s convention of summation
over repeated indices.

Let

s1 :=
(

0 1
1 0

)
= s1 , s2 :=

(
0 −i
i 0

)
= s2 , s3 :=

(
1 0
0 −1

)
= s3 (1.2)

be the standard Pauli matrices and let

σα := sj ej
α (1.3)

1 Observe that an orientable 3-manifold is automatically parallelizable [37,48].
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be their projection along the framing. The quantity σα is a vector-function
with values in the space of trace-free Hermitian 2 × 2 matrices.

Definition 1.1. We call massless Dirac operator the operator

W := −iσα

(
∂

∂xα
+

1

4
σβ

(
∂σβ

∂xα
+ Γβ

αγ σγ

))
: H1(M ;C2) → L2(M ;C2).(1.4)

Here H1 is the usual Sobolev space of functions which are square integrable
together with their first partial derivatives.

In relativistic particle physics the massless Dirac equation is often re-
ferred to as the Weyl equation, which explains our notation. Our operator
W appears as the result of separating out the time variable in the relativistic
Weyl equation, see [19] for details. Henceforth, we refer to the massless Dirac
operator simply as the Dirac operator, which conforms with the terminology
adopted in differential geometry.

Remark 1.2. The Dirac operator admits several equivalent definitions. The
most common is the geometric definition written in terms spinor bundles.
Our analytic Definition 1.1 is equivalent to the standard geometric one, see
[28, Appendix B].

Definition 1.1 depends on the choice of framing and this issue requires
clarification.

Let

G : M → SU(2) (1.5)

be an arbitrary smooth special unitary matrix-function and let W̃ be the
Dirac operator corresponding to a given framing. Consider the transforma-
tion

W̃ �→ G∗W̃G =: W, (1.6)

where the star indicates Hermitian conjugation. It turns out that W is also
a Dirac operator, only corresponding to a different framing.

Let us now look at the matter the other way round. Suppose that W̃ and
W are two Dirac operators. Does there exist a smooth matrix-function (1.5)
such that W = G∗W̃G ? If the operators W̃ and W are in a certain sense
‘close’ then the answer is yes, but in general there are topological obstructions
and the answer is no. This motivates the introduction of the concept of spin
structure, see [6,19].

The gauge transformation (1.5), (1.6) is the manifestation, at operator
level, of the freedom of pointwise rotating the framing in a smooth way,

ẽj �→ Oj
k ẽk =: ej , O ∈ C∞(M ; SO(3)), (1.7)

via the double cover

SU(2) 2:1→ SO(3).

The Dirac operator (1.4) is uniquely determined by the metric and spin
structure modulo an SU(2) gauge transformation.
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The Dirac operator is symmetric with respect to the L2 inner product

〈u, v〉 :=
∫

M

u∗v ρ dx , u, v ∈ L2(M ;C2), (1.8)

where dx = dx1dx2dx3. Furthermore, a simple calculation shows that it is
elliptic.2

It is well known that the Dirac operator is self-adjoint and its spectrum
is discrete, accumulating to +∞ and to −∞. Let λk be the eigenvalues of W
and vk the corresponding orthonormal eigenfunctions, k ∈ Z. The choice of
particular enumeration is irrelevant for our purposes, but what is important
is that eigenvalues are enumerated with account of their multiplicity. Note
that the Dirac operator has the special property that it commutes with the
antilinear operator of charge conjugation

v =
(

v1

v2

)
�→

(−v2

v1

)
=: C(v),

see [24, Appendix A] for details, and this implies that eigenvalues have even
multiplicity.

Definition 1.3. We define the Dirac propagator as

U(t) := e−itW . (1.9)

The Dirac propagator is the (distributional) solution of the hyperbolic
Cauchy problem

(
−i

∂

∂t
+ W

)
U = 0 , (1.10a)

U(0) = Id . (1.10b)

It is a time-dependent unitary operator which can written via functional
calculus as

U(t) =
∑

λk

e−itλk vk 〈vk , · 〉. (1.11)

The Dirac propagator can be written as a sum of three operators

U(t) = U+(t) + U0 + U−(t)

defined as

U+(t) :=
∑

λk>0

e−itλk vk 〈vk , · 〉, (1.12a)

U0 :=
∑

λk=0

vk 〈vk , · 〉, (1.12b)

U−(t) :=
∑

λk<0

e−itλk vk 〈vk , · 〉. (1.12c)

2 Ellipticity means that the determinant of the principal symbol does not vanish on T ∗M \
{0}.
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We call the operators (1.12a), (1.12b) and (1.12c) positive, zero mode and
negative propagators, respectively. These are time-dependent partial isome-
tries. Note that the operator U0 is nontrivial only if the Dirac operator has
zero modes (i.e. if zero is an eigenvalue).

We define the positive (+) and negative (−) local counting functions as

N±(y, λ) :=
{

0 for λ ≤ 0,∑
0<±λk<λ[vk(y)]∗ vk(y) for λ > 0.

(1.13)

Of course, integration over M gives

N±(λ) :=
∫

M

N±(y, λ) ρ(y) dy =
{

0 for λ ≤ 0,∑
0<±λk<λ 1 for λ > 0.

(1.14)

The functions (1.14) are the ‘global’ counting functions, the only difference
with the usual definition [45] being that we count the positive and negative
eigenvalues separately.

Let μ̂ : R → C be a smooth function such that μ̂ = 1 in some neighbour-
hood of the origin and supp μ̂ is sufficiently small. Here ‘sufficiently small’
means that supp μ̂ ⊂ (−T0, T0), where T0 is the infimum of lengths of all the
geodesic loops originating from all the points of the manifold.

Following the notation of [17], we write the Fourier transform as

Fλ→t[f ](t) = f̂(t) =
∫ +∞

−∞
e−itλf(λ) dλ (1.15)

and the inverse Fourier transform as

F−1
t→λ[f̂ ](λ) = f(λ) =

1
2π

∫ +∞

−∞
eitλf̂(t) dt. (1.16)

Accordingly, we put μ := F−1[μ̂].
It is known [26,34–36,45] that the mollified derivative of the positive

(resp. negative) counting function admits a complete asymptotic expansion
in integer powers of λ:

(N ′
± ∗ μ)(y, λ) = c±

2 (y) λ2 + c±
1 (y) λ + c±

0 (y) + . . . as λ → +∞. (1.17)

Here ∗ stands for the convolution in the variable λ.

Definition 1.4. We call local Weyl coefficients the smooth functions c±
k (y)

appearing in the asymptotic expansions (1.17).

Remark 1.5. (i) Our definition of Weyl coefficients does not depend on the
choice of mollifier μ. If μ̃ is another mollifier with the same support
properties, then

(N ′
± ∗ μ)(y, λ) − (N ′

± ∗ μ̃)(y, λ) = O(λ−∞) as λ → +∞.

(ii) Our definition of Weyl coefficients is, in a sense, unusual. The standard
convention in the literature is to call local Weyl coefficients the functions
appearing in the asymptotic expansion of the mollified counting function
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N ∗ μ , as opposed to its derivative. The two definitions are, effectively,
the same up to integrating factors,

(N± ∗ μ)(y, λ) =
∫ λ

−∞
(N ′

± ∗ μ)(y, κ) dκ

=
1
3

c±
2 (y)λ3 +

1
2

c±
1 (y)λ2 + c±

0 (y)λ + . . . as λ → +∞,

(1.18)

compare (1.17) with (1.18). As a matter of convenience, we will stick
with Definition 1.4 throughout this paper.

(iii) It was shown in [24] that

c±
2 (y) =

1
2π2

, c±
1 (y) = 0. (1.19)

(iv) The unmollified counting functions N±(y, λ) also admit asymptotic ex-
pansions as λ → +∞, but here the situation is more delicate because
these functions are discontinuous and one encounters number-theoretic
issues. It is known [23,24] that

N±(y, λ) =
1

6π2
λ3 + O(λ2) as λ → +∞

uniformly over y ∈ M and, furthermore, under appropriate assumptions
on geodesic loops,

N±(y, λ) =
1

6π2
λ3 + o(λ2) as λ → +∞.

(v) An important topic in the spectral theory of first order elliptic systems
is the issue of spectral asymmetry [1–4]. Let us mention that to observe
spectral asymmetry for our Dirac operator one as to go as far as the
sixth Weyl coefficients. This follows from the fact [12,31] that the eta
function

η(s) :=
∑

λk �=0

sgn λk

|λk|s =
∫ +∞

0

λ−s(N ′
+(λ) − N ′

−(λ)) dλ

is holomorphic in the complex half-plane Re s > −2 and has its first
pole at s = −2. The value of the residue of the eta function at s = −2,
which was computed explicitly by Branson and Gilkey [14], describes
the difference

∫

M

(c+
−3(y) − c−

−3(y)) ρ(y) dy

between the sixth (global) Weyl coefficients.

Our paper has two main objectives.
Objective 1 Construct the propagators U±(t) explicitly, modulo integral

operators with infinitely smooth kernels, and do so as a single invariantly
defined oscillatory integral global in space and in time.

Objective 2 Compute the third Weyl coefficient c±
0 (y).
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Remark 1.6. One cannot, in general, identify the third Weyl coefficient by
looking at the asymptotic behaviour of the unmollified counting function.
In order to illustrate this point, let us consider the 3-torus equipped with
standard flat metric. Already in this simple case the mathematical statement

N±(y, λ) =
1

6π2
λ3 + c±

0 (y)λ + o(λ) as λ → +∞
is false. This fact can be established by writing down the eigenvalues explicitly
as in [24, Appendix B] and using standard results [32] from analytic number
theory.

2. Main Results

The study of Dirac operators in curved space, arguably the most important
operators from the point of view of physical applications alongside the Lapla-
cian, has a long and noble history in the mathematical literature. Excellent
introductions to the subject can be found in [39] and [30].

Due to the physical significance of the topic, numerous researchers have
contributed to our current understanding of the spectrum of Dirac operators
on Riemannian manifolds. One can ask, for example, how the eigenvalues be-
have under perturbations of the metric [13,25,28], how the spectrum depends
on the spin structure [10], whether zero modes exist [8], et cetera.

Later in this paper we will be concerned with the study of the asymptotic
behaviour of large (in modulus) eigenvalues of the Dirac operator on a closed
3-manifold. In the case of scalar elliptic operators, such as for example the
Laplace–Beltrami operator, a wide range of classical techniques are available
in the literature to compute spectral asymptotics. However, if one is interested
in a first order system, whose spectrum is, in general, not semi-bounded, the
heat kernel method can no longer be applied, at least in its original form,
and even resolvent techniques require major modification [7]. A very natural
approach in this case is the so-called wave method, going back to Levitan
[40] and Avakumovic [5], which involves recovering information about the
eigenvalue counting function from the behaviour of the wave propagator, see
(1.11). How this can be done will be explained in greater detail later on.
This partly motivates our interest in the Dirac propagator (1.9), which is
also of interest on its own. Of course, the hyperbolic Cauchy problem (1.10)
for W lies at the heart of relevant applications in theoretical physics (e.g.,
the mathematical description of neutrinos/antineutrinos in curved space).

In order to construct the propagator (1.9) precisely, one needs to know
all eigenvalues and eigenfunctions of W , which is unrealistic for a generic
Riemannian manifold. However, microlocal techniques allow one to construct
the propagator (1.9) approximately, modulo an integral operator with smooth
integral kernel. This fact is well-known and an extensive discussion can be
found, for instance, in [33].

There are, however, several issues with this classical construction: (i) it
is not invariant under changes of local coordinates, (ii) it is local in space
and (iii) it is local in time. The last issue, locality in time, is especially
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serious: it is to do with obstructions associated with caustics. In practice,
constructing a propagator locally in time means that for large times one has
to use compositions

U(t) = U(t − tj) ◦ U(tj − tj−1) ◦ · · · ◦ U(t2 − t1) ◦ U(t1).

The propagator U(t) is a special case of a Fourier integral operator and it is
known that handling compositions of such operators is a daunting task.

Our goal is to construct the Dirac propagator explicitly, in a global—
i.e., as a single oscillatory integral—and invariant (under change of coordi-
nates and gauge transformations) fashion. The key idea, originally proposed
by Laptev, Safarov and Vassiliev in [38] and further developed in [45], is to
use Fourier integral operators with complex-valued, as opposed to real val-
ued, phase function. Crucially, this allows one to circumvent the topological
obstructions due to caustics.

Our work partly builds upon [23] and [24]. In [23], using the wave
method, Chervova, Downes and Vassiliev obtained an explicit formula for the
second Weyl coefficient of an elliptic self-adjoint first order pseudodifferential
matrix operator, fixing thirty years of incorrect or incomplete publications
in the subject, see [23, Sect. 11]. In [24] the same authors applied the re-
sults from [23] to the Dirac operator. Unlike the current paper, the approach
from [23] is not geometric in nature and the complexity of phase functions is
not actually put to use. Note that some results from [24] were improved by
Strohmaier and Li in [41], where the authors studied the second term of the
mollified spectral counting function of Dirac type operators and characterised
operators in this class with vanishing second Weyl coefficient.

A fully geometric global construction of the (scalar) wave propagator
e−it

√−Δ on closed Riemannian manifolds, as a single oscillatory integral with
complex-valued phase function, was recently proposed by the authors and
Levitin in [17], and subsequently extended to the Lorentzian setting in [16].
The publication [17] is the starting point of the current paper. The extension
of the results of the current paper to globally hyperbolic Lorentzian manifolds
is carried out in [18].

Our main results are as follows.

1. We present a global construction of each of the two propagators, the
positive propagator U+(t) and the negative propagator U−(t), as a sin-
gle invariantly defined oscillatory integral, global in space and in time,
with distinguished complex-valued phase function (Theorem 3.3, Defi-
nition 5.1, Definition 5.3). We provide a closed formula for the principal
symbols of the propagators (Theorem 6.1) and an algorithm for the cal-
culation of the subprincipal symbols and all asymptotic components of
lower degree of homogeneity in momentum (Sect. 3.3).

2. We give an explicit small time expansion of principal and subprinci-
pal symbols of positive and negative propagators in terms of geometric
invariants (Theorem 7.13).

3. We compute the third local Weyl coefficients in the asymptotic expan-
sion of the two eigenvalue counting functions (1.13) (Theorem 8.1).
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Along the way we prove a number of results about general first order
elliptic systems and invariant representations of pseudodifferential operators
on manifolds. Note that the third Weyl coefficients can, in principle and with
some work, be also obtained by a different method using results available in
the literature, see Remark 8.3.

Our paper is structured as follows.
In Sect. 3 we explain how to construct explicitly positive and negative

propagators for a general first order elliptic self-adjoint (pseudo)differential
matrix operator, with a rigorous mathematical justification.

In Sect. 4 we deal with the delicate issue of invariant descriptions of pseu-
dodifferential operators acting on scalar functions. In particular, we examine
the relation between our g-subprincipal symbol and the standard notion of
subprincipal symbol for operators acting on half-densities.

In Sect. 5 we apply the results from Sect. 3 to the Dirac operator. A
formula for the principal symbol of positive and negative Dirac propagators is
provided in Sect. 6, whereas small time expansions for principal and subprin-
cipal symbols of positive and negative propagators are obtained in Sect. 7.
Our final results are expressed in terms of geometric invariants: curvature of
the Levi-Civita connection associated with the metric g and torsion of the
Weitzenböck connection generated by the framing defining the Dirac opera-
tor.

In Sect. 8 we use the results from Sect. 7 to compute the third local
Weyl coefficients for the Dirac operator.

Finally, in Sect. 9 we apply our techniques to two explicit examples:
M = S

3, where formulae are isotropic in momentum, and M = S
2 × S

1,
where they are not.

The paper is complemented by two appendices, containing background
material and technical proofs.

3. Preliminary Results for General First Order Systems

In this section we will consider a broader class of first order systems and we
will prove fairly general results, which will be later applied to the special
case of the Dirac operator. In doing so, we will need some of the technology
developed in [23]. The setting of our analysis is somewhat different from that
in [23], in that our operators are differential, as opposed to pseudodifferential
(see also Remark 3.11), and act on scalar functions on a Riemannian mani-
fold, as opposed to half-densities on a manifold with no metric structure. In
particular, the change of the space in which the operator acts raises delicate
issues concerning the invariance of the mathematical objects involved. For
these reasons we provide here a modified version of some of the results from
[23], adapted to the setting of our paper.

Throughout this section, M will be a smooth connected closed Rie-
mannian manifold of dimension d ≥ 2.

Let A be an elliptic symmetric (with respect to (1.8)) first order m×m
matrix differential operator acting on m-columns of smooth complex-valued
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scalar functions v ∈ C∞(M ;Cm) and let Aprin : T ′M → Herm(m,C) be the
principal symbol of A, where T ′M := T ∗M \ {0} and Herm(m,C) is the real
vector space of m × m Hermitian matrices.

We denote by h(j)(x, ξ) the eigenvalues of Aprin(x, ξ) enumerated in
increasing order, with positive index j = 1, 2, . . . ,m+ for positive h(j)(x, ξ)
and negative index j = −1,−2, . . . ,−m− for negative h(j)(x, ξ). We assume
that the eigenvalues of the principal symbol Aprin are simple. Clearly, m =
m+ + m−, because the ellipticity condition detAprin(x, ξ) �= 0 ensures that
all eigenvalues are nonzero. In fact, as our operator is differential, one can
show [29, Remark 2.1] that m can only be even and that we have

m+ = m− =
m

2
. (3.1)

Furthermore, the eigenvalues h(j) of the principal symbol and the correspond-
ing normalised eigenvectors v(j) possess the symmetry

h(−j)(x, ξ) = −h(j)(x,−ξ), v(−j)(x, ξ) = v(j)(x,−ξ), j = 1, . . . ,
m

2
.

(3.2)

Under the above assumptions the spectrum of A is discrete and ac-
cumulates to +∞ and to −∞. We denote eigenvalues and orthonormalised
(smooth) eigenfunctions of A by λk and vk, respectively, enumerated with
account of their multiplicity.

By replacing W with A, one can define the ‘full’ propagator UA(t) for
A via (1.11), as well as the positive, zero mode and negative propagators via
(1.12a)–(1.12c), which we denote by U+

A (t), U0
A and U−

A (t), respectively.
Each eigenvalue h(j)(x, ξ) of the principal symbol can be interpreted as

a Hamiltonian on the cotangent bundle. The corresponding Hamiltonian flow
(x(j)(t; y, η), ξ(j)(t; y, η)), i.e. the (global) solution to Hamilton’s equations

ẋ(j) = h
(j)
ξ (x(j), ξ(j)), ξ̇(j) = −h(j)

x (x(j), ξ(j))

with initial condition (x(j)(0; y, η), ξ(j)(0; y, η)) = (y, η), generates a Lagran-
gian manifold to which one can, in turn, associate a global Lagrangian distri-
bution. See [17, Sect. 2] and references therein for details. In particular, the
singularities of the solution to the initial value problem

(−i∂t + A)v = 0, v|t=0 = v0 (3.3)

propagate along Hamiltonian trajectories generated by the eigenvalues of
Aprin.

3.1. Positive and Negative Propagators: An Abstract Approach

Our aim is to show that U+
A (t) and U−

A (t) can be separately approximated by
a finite sum of global oscillatory integrals. Before doing so, let us state and
prove an abstract preparatory theorem.

Notation 3.1. Let

v ∈ C∞(R × Mx × My), (λ, x, y) �→ v(λ, x, y).
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We write

v = O(|λ|−∞) as λ → ±∞
if for every α > 0, every k ∈ N and every linear partial differential operator
P with infinitely smooth coefficients of order k on Mx × My there exists a
positive constant Cα,P such that

|Pv| ≤ Cα,P |λ|−α for ± λ > 1 ,

uniformly over Mx × My .

Theorem 3.2. Let (T−, T+) ⊆ R be an open interval (possibly, the whole real
line) and let u+(t, x, y), u−(t, x, y), ũ+(t, x, y) and ũ−(t, x, y) be elements of
C∞(Mx × My;D′(T−, T+)), satisfying
(a) u+(t, x, y) + u−(t, x, y) = ũ+(t, x, y) + ũ−(t, x, y) mod C∞((T−, T+) ×

Mx × My) .
Furthermore, assume that for every ζ ∈ C∞

0 (T−, T+) we have
(b) F−1

t→λ[ζ u±] = O(|λ|−∞) as λ → ∓∞,
(c) F−1

t→λ[ζ ũ±] = O(|λ|−∞) as λ → ∓∞.
Then

u±(t, x, y) = ũ±(t, x, y) mod C∞((T−, T+) × Mx × My). (3.4)

Proof. Let ζ ∈ C∞
0 (T−, T+). Multiplying (a) by ζ(t) we get

ζ(t)u+(t, x, y) + ζ(t)u−(t, x, y) = ζ(t) ũ+(t, x, y) + ζ(t) ũ−(t, x, y)
mod C∞

0 (R × Mx × My). (3.5)

Applying the inverse Fourier transform F−1
t→λ to (3.5), letting λ → +∞ and

using assumptions (b) and (c) we obtain

F−1
t→λ[ζ u+] = F−1

t→λ[ζ ũ+] + O(|λ|−∞) as λ → +∞. (3.6)

Here, when dealing with the remainder from (3.5), we used the fact that
the Fourier transform of a compactly supported smooth function is rapidly
decreasing. The compactness of M ensures a uniform estimate in the spatial
variables.

Furthermore, (b) and (c) immediately imply

F−1
t→λ[ζ u+] = F−1

t→λ[ζ ũ+] + O(|λ|−∞) as λ → −∞. (3.7)

Combining (3.6) and (3.7) we arrive at

F−1
t→λ[ζ (u+ − ũ+)] = O(|λ|−∞) as |λ| → +∞,

which implies

ζ (u+ − ũ+) ∈ C∞(R × Mx × My).

As ζ ∈ C∞
0 (T−, T+) in the above formula is arbitrary, we conclude that

u+ − ũ+ ∈ C∞((T−, T+) × Mx × My).

A similar argument gives

u− − ũ− ∈ C∞((T−, T+) × Mx × My). �
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3.2. Construction of Positive and Negative Propagators

Theorem 3.3. Let A be an elliptic self-adjoint first order pseudodifferential
operator acting on m-columns of scalar functions over M , whose principal
symbol has simple eigenvalues. The positive and negative propagators U+

A (t)
and U−

A (t) can be written, modulo an infinitely smoothing operator, as a finite
sum of oscillatory integrals, global in space and in time. More precisely, we
have

U+
A (t) mod Ψ−∞

=
m+
∑

j=1

U
(j)
A (t), (3.8)

U−
A (t) mod Ψ−∞

=
m−
∑

j=1

U
(−j)
A (t), (3.9)

where

U
(j)
A (t) :=

1
(2π)d

∫

T ′M
eiϕ(j)(t,x;y,η) a(j)(t; y, η)

χ(j)(t, x; y, η)w(j)(t, x; y, η) ( · ) ρ(y) dy dη (3.10)

and

• by mod Ψ−∞
= we mean that the operator on the LHS is equal to the

operator on the RHS up to an integral operator with infinitely smooth
integral kernel;

• ( · ) is meant for insertion of f0(y) when computing (U (j)
A f0)(x);

• the phase function ϕ(j) ∈ C∞(R × M × T ′M ;C) satisfies
(i) ϕ(j)

∣∣
x=x(j) = 0,

(ii) ϕ
(j)
xα

∣
∣∣
x=x(j)

= ξ
(j)
α ,

(iii) det ϕ
(j)
xαηβ

∣∣∣
x=x(j)

�= 0,

(iv) Im ϕ(j) ≥ 0;
• the symbol a(j) ∈ S0

ph(R × T ′M ;Mat(m;C)) is an element in the class
of polyhomogeneous symbols of order zero with values in m × m com-
plex matrices, which means that a(j) admits an asymptotic expansion in
components positively homogeneous in momentum,

a(j)(t; y, η) ∼
+∞∑

k=0

a
(j)
−k(t; y, η), a

(j)
−k(t; y, α η) = α−k a

(j)
−k(t; y, η), ∀α > 0;

(3.11)

• the function χ(j) ∈ C∞(R × M × T ′M) is a cut-off satisfying
(I) χ(j)(t, x; y, η) = 0 on {(t, x; y, η) | |h(j)(y, η)| ≤ 1/2},

(II) χ(j)(t, x; y, η) = 1 on the intersection of {(t, x; y, η) | |h(j)(y, η)| ≥
1} with some conical neighbourhood of {(t, x(j)(t; y, η); y, η)},

(III) χ(j)(t, x; y, α η) = χ(j)(t, x; y, η) for α ≥ 1 on

{(t, x; y, η) | |h(j)(y, η)| ≥ 1};
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• the weight w(j) is defined by

w(j)(t, x; y, η) := [ρ(x) ρ(y)]−
1
2

[
det2(ϕ(j)

xαηβ
)
] 1

4
, (3.12)

where the smooth branch of the complex root is chosen in such a way
that

w(j)(0, y; y, η) = [ρ(y)]−1.

Remark 3.4. Note that the weight w(j) is the inverse of a smooth density
in the variable y and a smooth scalar function in all other variables. The
powers of the Riemannian density ρ in (3.12) are chosen in such a way that
the symbol a(j) and the integral kernel

u(j)(t, x, y) :=
1

(2π)d

∫

T ′
yM

eiϕ(j)(t,x;y,η) a(j)(t; y, η)

χ(j)(t, x; y, η)w(j)(t, x; y, η) dη (3.13)

of the operator (3.10) are scalar functions in all variables. The fact that the
symbol is a genuine scalar function on R × T ′M is a crucial feature of our
construction.

Taking the square and then extracting the fourth root in (3.12) serves
the purpose of making the weight invariant under inversion of a single coor-
dinate xα or a single coordinate yα. Note, however, that if one works on an
orientable and oriented manifold, then one can simplify (3.12) to read

w(j)(t, x; y, η) = [ρ(x) ρ(y)]−
1
2

[
detϕ(j)

xαηβ

] 1
2

.

Remark 3.5. The existence of a phase function satisfying conditions (i)–(iv)
is a nontrivial matter. In fact, the space of phase function satisfying these
conditions is nonempty and path-connected, see [38, Lemmata 1.4 and 1.7].

Remark 3.6. Let us emphasise that a phase function ϕ(j) satisfying condi-
tions (i)–(iv) from Theorem 3.2 automatically satisfies

ϕ
(j)
t (t, x(j); y, η) + h(j)(x(j), ξ(j)) = 0, (3.14)

see, e.g., [45, Sect. 2.4.1]. The equation

ϕ
(j)
t (t, x; y, η) + h(j)(x,∇ϕ(j)(t, x; y, η)) = 0 (3.15)

is known in the literature as eikonal equation. Note that when x = x(j)(t; y, η)
formula (3.15) turns into (3.14). In the classical approach to the construction
of hyperbolic propagators, (3.15) is required to be satisfied in some open
neighbourhood of

{(t, x; y, η) ∈ R × M × T ′M | x = x(j)(t; y, η)}. (3.16)

This is a fundamental difference with the approach adopted in the current pa-
per, where (3.15) is only required to be satisfied ‘along the Hamiltonian flow’,
i.e., one only needs (3.14). Indeed, there is no open neighbourhood of (3.16)
where the special phase functions that will be introduced and used in Sect. 5—
the Levi-Civita phase functions—satisfy (3.15). Relaxing the requirements on
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our phase functions is needed in order to accommodate an imaginary part
and, consequently, circumvent obstructions arising from caustics.

Proof of Theorem 3.3. Suppose that we have constructed the symbols a(j)

appearing in the oscillatory integrals (3.10) so that

ŨA(t) :=
∑

j

U
(j)
A (t) =

m+
∑

j=1

U
(j)
A (t) +

m−
∑

j=1

U
(−j)
A (t) (3.17)

satisfies
(

−i
∂

∂t
+ A

)
ŨA(t) mod Ψ−∞

= 0 , (3.18a)

ŨA(0) mod Ψ−∞
= Id . (3.18b)

How to achieve this will be explained in Sect. 3.3.
Put

ũ+(t, x, y) :=
m+
∑

j=1

u(j)(t, x, y),

ũ−(t, x, y) :=
m−
∑

j=1

u(−j)(t, x, y),

so that the Schwartz kernel of the operator ŨA(t) reads

ũ(t, x, y) = ũ+(t, x, y) + ũ−(t, x, y).

Let u(t, x, y), u+(t, x, y) and u−(t, x, y) be the Schwartz kernels of the
operators UA(t), U+

A (t), and U−
A (t), respectively.

Formulae (3.18a) and (3.18b) imply

u(t, x, y) = ũ(t, x, y) mod C∞(R × Mx × My;Mat(m,C)). (3.19)

This fact can be established as follows.
Let

u∞(t, x, y) := u(t, x, y) − ũ(t, x, y).

From the construction algorithm, we know that
[(

−i
∂

∂t
+ A(x)

)
u∞

]
(t, x, y) = f(t, x, y), (3.20)

u∞(0, x, y) = ζ(x, y), (3.21)

where f ∈ C∞(R×Mx ×My;Mat(m,C)) and ζ ∈ C∞(Mx ×My;Mat(m,C)).
Here the superscript in A(x) indicates that the differential operator A acts in
the variable x. Using functional calculus, we can write the functions u∞, f
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and ζ in terms of the eigenfunctions of A as

u∞(t, x, y) =
∑

j,k

ajk(t) vj(x) [vk(y)]∗, (3.22)

f(t, x, y) =
∑

j,k

bjk(t) vj(x) [vk(y)]∗, (3.23)

ζ(x, y) =
∑

j,k

cjk vj(x) [vk(y)]∗. (3.24)

Here the smooth functions bjk and the constants cjk are given, whereas the
functions ajk are our unknowns. Substituting (3.22)–(3.24) into (3.20), (3.21)
we obtain the family of first order ODEs

[(
−i

d

dt
+ λj

)
ajk

]
(t) = bjk(t),

ajk(0) = cjk,

whose solutions are

ajk(t) = e−iλjt

(
cjk + i

∫ t

0

eiλjs bjk(s) ds

)
. (3.25)

Let ζ̂ be the operator with integral kernel ζ(x, y),

ζ̂ : v(x) �→
∫

M

ζ(x, y) v(y) ρ(y) dy .

Then

cjk = 〈vj , ζ̂vk〉 =
1

λl
jλ

n
k

〈Alvj , ζ̂Anvk〉 =
1

λl
jλ

n
k

〈vj , (Alζ̂An)vk〉. (3.26)

The operator Alζ̂An is a pseudodifferential operator of order −∞, so formula
(3.26) and the fact that λk ∼ k1/d when k → ∞ allow one to conclude that the
cjk decay faster than any power of j and k as j, k → ∞. A similar argument
shows that the bjk(t) and their time derivatives decay faster than any power of
j and k as j, k → ∞ uniformly over any bounded open interval in R. Formula
(3.25) now tells us that the same is true for the ajk(t). This, in turn, implies
that the series on the RHS of (3.22) defines a function u∞(t, x, y) which is
smooth in all variables. So we arrive at (3.19), which gives us assumption (a)
in Theorem 3.2 with (T−, T+) = R.

Resorting to standard stationary phase arguments—see, e.g., [45, Ap-
pendix C]—and using the properties (i)–(iv) of our phase functions, it is easy
to see that u± and ũ± satisfy assumptions (b) and (c) of Theorem 3.2. Hence,
Theorem 3.2 gives us (3.8) and (3.9).

The fact that the construction is global in time is guaranteed by [38,
Lemma 1.2]. �

Remark 3.7. If one is prepared to give up globality in time, Theorem 3.3 and
the corresponding proof can be adapted in a straightforward manner to the
more customary case of real-valued—as opposed to complex-valued—phase
functions. This is achieved by prescribing the phase functions to take values
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in R, dropping condition (iv) and replacing everywhere in the statement and
in the proof the time domain R with the interval (T−, T+), where

T+ := min
j

inf{t > 0 | det ϕ
(j)
xαηβ

∣∣∣
x=x(j)

= 0, (y, η) ∈ T ′M} , (3.27)

T− := max
j

sup{t < 0 | det ϕ
(j)
xαηβ

∣
∣∣
x=x(j)

= 0, (y, η) ∈ T ′M} . (3.28)

The values of T± depend on the choice of particular real-valued phase func-
tions, but we always have T− < 0 < T+ . Observe that Theorem 3.2 was
formulated in such a way that it covers both the case of real-valued and
complex-valued phase functions.

The reader will have noticed that the zero mode propagator U0
A does

not appear in our construction. This is due to the fact that, clearly,

U0
A

mod Ψ−∞
= 0.

We end this subsection with the observation that, thanks to the presence
of the weight w(j) in formula (3.10), the scalar matrix-function a

(j)
0 does not

depend on the choice of the phase functions ϕ(j). This motivates the following
definition.

Definition 3.8. We call a(j)
0 the principal symbol of the Fourier integral oper-

ator (3.10).

The above definition agrees with the standard definition of principal
symbol of a Fourier integral operator expressed as a section of the Keller–
Maslov bundle, see [38, Sect. 2.4].

3.3. The Algorithm

The integral kernel (3.13) of U
(j)
A (t) can be constructed explicitly as follows.

Step 1. Choose a phase function ϕ(j) compatible with Theorem 3.3. We
will see later on that for the special case of the Dirac operator we can identify
a distinguished phase function, the Levi-Civita phase function. Furthermore,
set χ(j) ≡ 1. In fact, the purpose of the cut-off is to localise integration in
a neighbourhood of the h(j)-flow and away from the zero section: different
choices of χ(j) result in oscillatory integrals differing by an infinitely smooth
function.

Step 2. Act with the operator −i∂t + A(x) on the oscillatory integral
(3.13). This produces a new oscillatory integral

1
(2π)d

∫

T ′
yM

eiϕ(j)(t,x;y,η) a(j)(t, x; y, η)w(j)(t, x; y, η) dη (3.29)

whose amplitude a(j) ∈ C∞(R × M × T ′M ;Mat(m,C)) is given by

a(j) := e−iϕ(j)
[w(j)]−1

(
−i∂t + A(x)

)(
eiϕ(j)

a(j) w(j)
)

.

By making use of the fact that ϕ(j) and w(j) are positively homogeneous
in momentum η of degree 1 and 0, respectively, one can write down an asymp-
totic expansion for the amplitude a(j) in components positively homogeneous
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in momentum:

a(j)(t, x; y, η) ∼
+∞∑

k=−1

a
(j)
−k(t, x; y, η),

a
(j)
−k(t, x; y, α η) = α−k a

(j)
−k(t, x; y, η), ∀α > 0.

Step 3. As u(j)(t, x, y) is to be the (distributional) solution of the hy-
perbolic equation

(−i∂t + A(x))u(j)(t, x, y) mod C∞
= 0,

one would like to impose the condition a(j)(t, x, y, η) = 0. However, the am-
plitude a(j), unlike the symbol a(j), depends on x, and doing so would result
in an unsolvable system of partial differential equations (PDEs). The current
step consists in excluding the dependence of a(j) on x by means of a proce-
dure known as reduction of the amplitude, to the end of reducing the system
of PDEs to a system of ordinary differential equations instead.

Put3

L(j)
α :=

[
(ϕ(j)

xη )−1
]

α

β ∂

∂xβ

and define

S
(j)
0 := ( · )|x=x(j) , (3.30a)

S
(j)
−k := S

(j)
0

⎡

⎣i [w(j)]−1 ∂

∂ηβ

w(j)

⎛

⎝1 +
∑

1≤|α |≤2k−1

(−ϕ
(j)
η )α

α ! (|α | + 1)
L(j)

α

⎞

⎠L
(j)
β

⎤

⎦

k

,

(3.30b)

where α ∈ N
d, |α| =

∑d
j=1 αj and (−ϕ

(j)
η )α := (−1)|α | (ϕ(j)

η1 )α1 . . . (ϕ(j)
ηd )αd .

The operator (3.30b) is well defined, because the differential operators L
(j)
α

commute [17, Lemma A.2]. Furthermore, the operators S
(j)
−k are invariant

under change of local coordinates x and y.

Remark 3.9. Let f : Rd → R
d, x �→ x̃, be a (locally) invertible map. Then

the operators

L̃α := [(∇xf)−1]αβ ∂

∂xβ

are the pushforward of partial derivatives ∂/∂x̃α along f−1. Hence, the op-
erators L̃α commute because the partial derivatives ∂/∂x̃α commute. An
adjustment of the above argument to our setting with f = ϕ

(j)
η (and with

account of the fact that ϕ(j) is complex-valued) provides an alternative ex-
planation for the commutation of the operators L

(j)
α .

3 Here (ϕ
(j)
xη )−1 is defined in accordance with [(ϕ

(j)
xη )−1]αβ ϕ

(j)

xβηγ
= δα

γ .
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The amplitude-to-symbol operator is defined as

S(j) : C∞(R × M × T ′M) → C∞(R × T ′M) ,

S(j) :=
∞∑

j=0

S
(j)
−k . (3.31)

When acting on a function positively homogeneous in momentum, the
operator S

(j)
−k excludes the dependence on x and decreases the degree of

homogeneity by k.
The reduction of the amplitude is achieved by replacing the amplitude

a(j) in (3.29) by

S(j)a(j) =: b(j),

with

b(j)(t; y, η) ∼
+∞∑

k=−1

b
(j)
−k(t; y, η) , b

(j)
−k =

∑

l+s=k

S
(j)
−l a

(j)
−s .

The oscillatory integral
1

(2π)d

∫

T ′
yM

eiϕ(j)(t,x;y,η) b(j)(t; y, η)w(j)(t, x; y, η) dη

differs from (3.29) only by an infinitely smooth function.
We refer the reader to [17, Appendix A] for further particulars and

detailed proofs concerning the amplitude-to-symbol operator.
Step 4. Set

b
(j)
−k = 0, k = −1, 0, 1, . . . . (3.32)

Equations (3.32), combined with the initial conditions stemming from the
constraint

∑

j

U (j)(0) mod Ψ−∞
= Id, (3.33)

yield a hierarchy of (matrix) transport equations for the homogeneous com-
ponents a

(j)
−k.

Remark 3.10. For the special case of the massless Dirac operator, the first
few equations in the hierarchy (3.32) are given by (5.9)–(5.13).

Let us make a few remarks warranted by formula (3.33).
The m oscillatory integrals appearing on the RHS of (3.8) and (3.9)

are not independent of one another, but they ‘mix’ at t = 0 via the initial
condition (3.33). Now, satisfying (3.33) involves representing the identity
operator on C∞(M ;Cm) in a somewhat nonstandard fashion, as

Id mod Ψ−∞
=

∑

j

1
(2π)d

∫

T ′M
eiϕ(j)(0,x;y,η) s(j)(y, η)

χ(j)(0, x; y, η)w(j)(0, x; y, η) ( · ) ρ(y) dy dη, (3.34)

with s(j) ∈ S0
ph(T ′M ;Mat(m;C)).
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In terms of the symbols a(j), the initial condition (3.33) reads

a(j)(0; y, η) = s(j)(y, η).

From the fact that the principal symbol of the identity operator is the identity
matrix it follows that

∑

j

a
(j)
0 (0; y, η) =

∑

j

s
(j)
0 (y, η) = 1m×m. (3.35)

Furthermore, one can show that

s
(j)
0 (y, η) = v(j)(y, η) [v(j)(y, η)]∗.

However, obtaining formulae for subleading components s(j)−1 is already a chal-
lenging task, see [23, Sect. 4.2]. In general, lower order components of s(j)

depend in a nontrivial manner on the eigenvalues and eigenprojections of the
matrix-function Aprin(x, ξ) and on the choice of phase functions ϕ(j).

The invariant representation of the identity operator—and, more gener-
ally, of pseudodifferential operators—on manifolds is not a well-studied sub-
ject. An initial analysis of the scalar case was carried out in [17, Sect. 6].
For the case of the Dirac operator a more detailed examination of (3.34) will
be provided in Sect. 5.2. A more extensive analysis of (3.34) for a general
operator A is carried out in [15,20,21].

Remark 3.11. All statements and results presented in this section carry over
verbatim to the case where A is an elliptic symmetric first order m×m matrix
pseudodifferential—as opposed to differential—operator, with the following
exceptions:

• formulae (3.1) and (3.2) have to be dropped as they are no longer true;
• ‘Step 2.’ in Sect. 3.3 has to be modified to take into account the action

of a pseudodifferential operator on an oscillatory integral in an invariant
manner, along the lines of [11, Sect. 4.3].

Remark 3.12. Let us point out that in this section we did not use anywhere
the fact that M carries a Riemannian structure. If one replaces the Riemann-
ian density (1.1) with an arbitrary positive density, all statements and results
stay the same.

4. Invariant Description of Pseudodifferential Operators
Acting on Scalar Functions

In order to prepare ourselves to address the issue of initial conditions for our
transport equations in the case of the Dirac operator, we need to discuss first
the more general question of invariant representation of a pseudodifferential
operator. We devote a separate section to this, as we believe this matter to
be of independent interest. Note that we treat the case of a scalar operator
merely for the sake of presentational convenience: all the formulae and ar-
guments in this subsection remain unchanged for matrix pseudodifferential
operators acting on m-columns of scalar functions.
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Definition 4.1. We call time-independent Levi-Civita phase function the func-
tion φ ∈ C∞(M × T ′M ;C) defined by

φ(x; y, η) :=
∫

γ

ζ dz +
iε

2
h(y, η) [dist(x, y)]2 (4.1)

when x lies in a geodesic neighbourhood of y and continued smoothly else-
where in such a way that Im φ ≥ 0. Here γ is the (unique) shortest geodesic
connecting y to x, ζ is the parallel transport of η along γ,

h(y, η) :=
√

gαβ(y) ηαηβ , (4.2)

dist is the geodesic distance and ε is a positive parameter.

Let P be a pseudodifferential operator of order p acting on scalar func-
tions over a Riemannian d-manifold. The operator P can be written, modulo
an integral operator with smooth kernel, in the form

P =
∫

T ′M
eiφ(x;y,η) p(y, η)χ0(x; y, η)w0(x; y, η) ( · ) ρ(y) dy dη, (4.3)

where φ is the time-independent Levi-Civita phase function, p ∈ Sm
ph(T ′M),

χ0 is a cut-off localising integration to a neighbourhood of the diagonal and
away from the zero section (see also (I)–(III) in Theorem 3.2) and

w0(x; y, η) := [ρ(x) ρ(y)]−
1
2
[
det2φxαηβ

(x; y, η)
] 1

4 . (4.4)

Here the smooth branch of the complex root is chosen in such a way that
w0(y; y, η) = [ρ(y)]−1.

Remark 4.2. Note that (4.3) is, effectively, a special case of (3.10) with t = 0.

Formula (4.3) provides an invariant representation of the pseudodiffer-
ential operator P .

Definition 4.3. We call full symbol of the operator P the scalar function

p(y, η) ∼
+∞∑

k=−p

p−k(y, η).

Furthermore, we call the homogeneous functions pp and pp−1 the g-principal
and g-subprincipal symbol, respectively.4

The notions of principal and subprincipal symbols of a pseudodifferential
operator are nowadays standard concepts in microlocal analysis. The former
makes sense for operators acting either on scalar functions or on half-densities,
whereas the latter is only defined for operators acting on half-densities. We re-
fer the reader to [33] for further details. Note that the concept of subprincipal
symbol was introduced by Duistermaat and Hörmander in [27, Eqn. (5.2.8)].

It is easy to see that the concept of principal symbol Pprin and that of g-
principal symbol pp coincide. As far as the subprincipal symbol is concerned,

4Here ‘g’ is a reference to the Riemannian metric used in the construction of the phase
function φ.
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the situation is more complicated, in that before drawing a comparison we
need to turn our operator into an operator acting on half-densities.

Put

P1/2 := ρ1/2 P ρ−1/2 (4.5)

and let Psub be the subprincipal symbol of the operator (4.5) defined in
accordance with [27, Eqn. (5.2.8)].

A natural question to ask is: what is the relation between Psub and
pp−1?

Theorem 4.4. The invariant quantities Psub and pp−1 are related as

pp−1 = Psub +
i

2
(Pprin)yαηα

+
i

2
Γα

βγ

[
ηα(Pprin)ηβ

]
ηγ

− ε

2
gβγ

[
h (Pprin)ηβ

]
ηγ

. (4.6)

Theorem 4.4 implies that, in particular, the two notions of subprincipal
symbol coincide when the principal symbol does not depend on η, i.e. when
P is a pseudodifferential operator of the type “multiplication by a scalar
function plus an operator of order −1”. Note that the identity operator,
whose invariant representation was investigated in [17, Sect. 6], falls into this
class.

Remark 4.5. A tedious, yet straightforward, calculation shows that the RHS
of (4.6) is a scalar function on the cotangent bundle. In fact, the second
and third summands on the RHS of (4.6) admit an invariant representa-
tion in terms of the Laplace–Beltrami operator associated with the neu-
tral metric n on the cotangent bundle T ∗M , which, in local coordinates
(x1, . . . , xd, ξ1, . . . , ξd), reads

njk(x, ξ) =
(−2 ξγ Γγ

αβ(x) δα
μ

δν
β 0

)
, j, k ∈ {1, . . . , 2d}. (4.7)

The adjective ‘neutral’ refers to the fact that the metric n has signature (d, d).
It turns out that the neutral metric is an effective tool in the development of
an invariant theory of pseudodifferential operators on Riemannian manifolds.
As the analysis of this matter requires a lengthy discussion and would take
us away from the core subject of our paper, we plan to address it in detail
elsewhere. See also [46].

Proof of Theorem 4.4. Consider the pseudodifferential operator P and turn
it into an operator on half-densities P1/2 via (4.5). In what follows we work
in an arbitrary coordinate system, the same for x and y.

Dropping the cut-off, the integral kernel of P1/2 now reads

1
(2π)d

∫

T ′
yM

eiφ(x;y,η) p(y, η)
√

det φxη dη . (4.8)
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Our phase function (4.1) admits the expansion

φ(x; y, η) = (x − y)αηα +
1
2
Γα

βγ ηα(x − y)β(x − y)γ

+
iεh

2
gαβ(x − y)α(x − y)β + O(‖x − y‖3), (4.9)

which implies that
√

det φxη = 1 +
1
2
[Γα

αβ + iεh−1ηβ ](x − y)β + O(‖x − y‖2). (4.10)

Substituting (4.9) and (4.10) into (4.8), we get

1
(2π)d

∫
ei(x−y)αηα

{
pp +

(
1
2

[iΓα
βγ ηα − εhgβγ ] (x − y)β(x − y)γ

+
1
2
[
Γα

αβ + iεh−1ηβ

]
(x − y)β

)
pp + pp−1 + O(‖η‖p−2)

}
dη . (4.11)

Excluding the x-dependence from the amplitude in (4.11) by acting with the
operator

Sright( · ) :=
[
exp

(
i

∂2

∂xμ ∂ημ

)
( · )

]∣∣∣∣
x=y

, (4.12)

we arrive at
1

(2π)d

∫
ei(x−y)αηα

{
pp − i

2
[
ηα Γα

βγ (pp)ηβ

]
ηγ

+
ε

2
[
h gγβ (pp)ηβ

]
ηγ

+pp−1 + O(‖η‖p−2)
}

dη . (4.13)

Computing the subprincipal symbol of (4.13) and using the fact that pp =
Pprin = (P1/2)prin , we obtain (4.6). Note that the sign in front of the correc-
tion term

i

2
(Pprin)yαηα

is opposite to the usual one, see, for example, [19, Eqn. (A.3)]. This is
due to the fact that in this paper we use the right—as opposed to left—
quantization. �

5. Global Propagator for the Dirac Operator

In this section we will start the analysis of the global propagator for the Dirac
operator, specialising Theorem 3.3 to the case A = W .

We denote by

Wprin(y, η) := σα(y) ηα (5.1)

the principal symbol of W and by

W0(x) := − i

4
σα(x)σβ(x)

(
∂σβ

∂xα
(x) + Γβ

αγ(x)σγ(x)
)

(5.2)

its zero order part, see Definition 1.1.
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The principal symbol Wprin(y, η) has eigenvalues h± = ±h, where h is
given by (4.2), compare with (3.2). This fact, which can be easily established
by writing down (5.1) in local coordinates, shows that the Dirac operator is
indeed elliptic.

It is well-known that the Hamiltonian flow (x+(t; y, η), ξ+(t; y, η)) gen-
erated by h is (co-)geodesic. The two flows (x±(t; y, η), ξ±(t; y, η)) are related
as

(x−(t; y, η), ξ−(t; y, η)) = (x+(t; y,−η),−ξ+(t; y,−η)). (5.3)

Our goal is to write down explicitly the positive and negative propaga-
tors (1.12a) and (1.12c) in the form (3.10) for a distinguished choice of phase
functions.

To this end, we give the following definition (see also [17, Sect. 4]).

Definition 5.1. We call positive (+), resp. negative (−), Levi-Civita phase
function the infinitely smooth function ϕ± ∈ C∞(R × M × T ′M ;C) defined
by

ϕ±(t, x; y, η) =
∫

γ±
ζ± dz +

i ε

2
h(y, η) dist2(x, x±(t; y, η)) (5.4)

for x in a geodesic neighbourhood of x±(t; y, η) and continued smoothly else-
where in such a way that Im ϕ± ≥ 0. Here dist is the Riemannian geodesic
distance, the path of integration γ± is the shortest geodesic connecting x±

to x, ζ± is the result of parallel transport of ξ±(t; y, η) along γ± and ε is a
positive parameter.

The positive and negative Levi-Civita phase functions are related as

ϕ−(t, x; y, η) = −ϕ+(t, x; y,−η). (5.5)

Let us point out that the way one continues ϕ± outside a neighbourhood
of the flow does not affect the singular part of the propagators. The choice

of a different smooth continuation results in an error mod Ψ−∞
= 0, as one can

show by a straightforward (non)stationary phase argument.

Remark 5.2. The time-independent phase function φ introduced in the pre-
vious section is the restriction to t = 0 of the phase functions ϕ±,

φ(x; y, η) = ϕ+(0, x; y, η) = ϕ−(0, x; y, η). (5.6)

It is easy to see that the positive and negative Levi-Civita phase func-
tions satisfy conditions (i), (ii) and (iv) from Theorem 3.3. Furthermore, [45,
Corollary 2.4.5] implies that condition (iii) is also satisfied. Hence, Theo-
rem 3.3 ensures that the integral kernel of U± can be written as a single
oscillatory integral

u±(t, x, y) :=
1

(2π)3

∫

T ′
yM

eiϕ±(t,x;y,η) a±(t; y, η)

χ±(t, x; y, η)w±(t, x; y, η) dη, (5.7)

where ϕ± is the positive/negative Levi-Civita phase function.
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Definition 5.3. We define the full symbol of the positive (resp. negative) prop-
agator to be the scalar matrix-function a+ (resp. a−), obtained through the
algorithm described in Sect. 3.3 with Levi-Civita phase functions.

We define the subprincipal symbol of the positive (resp. negative) prop-
agator to be the scalar matrix-function a+

−1 (resp. a−
−1) obtained the same

way.

As to the principal symbol, this object was defined earlier, see Defini-
tion 3.8.

We stress that the mathematical objects contained in the above defi-
nition are uniquely and invariantly defined. They only depend on the phase
functions which, in turn, originate from the geometry of M in a coordinate-
free covariant manner, cf. Definition 5.1.

To the best of our knowledge, there is no accepted definition of full
symbol or subprincipal symbol for a Fourier integral operator available in
the literature to date. The geometric nature of our construction allows us
to provide invariant definitions of full and subprincipal symbol of the Dirac
propagator, analyse them, and give explicit formulae. This paper, alongside
[17], aims to build towards an invariant theory for pseudodifferential and
Fourier integral operators on manifolds.

Before moving on to computing the principal and subprincipal symbols
of the positive (resp. negative) Dirac propagator, an important remark is in
order. In addition to what was discussed in Sect. 3 for the general case, the
construction of the Dirac propagator has to be consistent with the gauge
transformation (1.5), (1.6). In particular, the action of the gauge transforma-
tion needs to be carefully accounted for by the construction process.

The transformation (1.6) leads to the transformation

a±(t; y, η) �→ G∗(x) a±(t; y, η)G(y).

in the oscillatory integral (5.7). Note that this introduces an x-dependence
which has to be handled by means of amplitude-to-symbol reduction (3.31).

5.1. Transport Equations

By acting with the Dirac operator W on (5.7) in the variable x and dropping
the cut-off, we obtain

Wu±(t, x, y) =
1

(2π)3

∫

T ′
yM

eiϕ±(t,x;y,η) a±(t; y, η)w±(t, x; y, η) dη,

where

a = −ie−iϕ±
(w±)−1∂t

(
eiϕ±

a± w±
)

+
[
−ie−iϕ±

(w±)−1σα∂xα

(
eiϕ±

w±
)

+ W0

]
a±

=
(
ϕ±

t + σαϕ±
xα

)
a± − ia±

t +
[−i(w±)−1

(
w±

t + σαw±
xα

)
+ W0

]
a±.

Put

a ∼
+∞∑

k=−1

a−k, (5.8)
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where

a±
1 :=

(
ϕ±

t + Wprin(x, ϕ±
x )

)
a±
0 (5.9)

and

a±
−k :=

(
ϕ±

t + Wprin(x, ϕ±
x )

)
a±

−k−1 − i(a±
−k)t

+
[−i(w±)−1

(
w±

t + σαw±
xα

)
+ W0

]
a±

−k (5.10)

for k ≥ 0. Note that the a±
−k, k ≥ −1, are positively homogeneous in momen-

tum of degree −k.
Our transport equations read

S±
0 a±

1 = 0, (5.11)

S±
−1a

±
1 + S±

0 a±
0 = 0, (5.12)

S±
−2a

±
1 + S±

−1a
±
0 + S±

0 a±
−1 = 0, (5.13)

. . .

Recalling that v± are the normalised eigenvectors of Wprin correspond-
ing to the eigenvalues ±h, denote by

P±(y, η) := v±(y, η) [v±(y, η)]∗ (5.14)

the spectral projections along the eigenspaces spanned by v±. Of course,

Wprin = h (P+ − P−), (5.15)

Id = P+ + P−, (5.16)

and

P± =
1
2

(
Id ± Wprin

h

)
. (5.17)

Let us label the transport equations with nonnegative integer numbers
in increasing order, so that (5.11) is the zeroth transport equation, (5.12) is
the first transport equation and so on. Direct inspection of (5.9) and (5.10)
reveals that

• multiplication of the n-th transport equation by P∓(x±, ξ±) on the left
allows one to determine

P∓(x±, ξ±)a±
−n(t; y, η), n ≥ 0, (5.18)

algebraically;
• multiplication of the (n + 1)-th transport equation by P±(x±, ξ±) on

the left and the use of (5.18) allows one to determine

P±(x±, ξ±)a±
−n(t; y, η), n ≥ 0, (5.19)

upon solving a matrix ordinary differential equation in the variable t.

Summing up (5.18) and (5.19) one obtains a±
−k(t; y, η), in view of (5.16).
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5.2. Pseudodifferential Operators U±(0)
This subsection is devoted to the examination of operators U±(0). We need to
examine these operators because, as explained in Sect. 3.3, their full symbols
determine the initial conditions a±

−k(0; y, η) for our transport equations.
We have

U±(0) = θ(±W ), (5.20)

where

θ(λ) :=

{
1 for λ > 0,

0 for λ ≤ 0.

We see that the operators U±(0) are self-adjoint pseudodifferential operators
of order zero, orthogonal projections onto the positive/negative eigenspaces of
the operator W . The operator Id−U+(0)−U−(0) is the orthogonal projection
onto the nullspace of the operator W , hence

U+(0) + U−(0) mod Ψ−∞
= Id.

The principal symbols of the operators U±(0) read

[U±(0)]prin = P±(y, η), (5.21)

where P± are the orthogonal projections onto the positive/negative eigen-
spaces of the principal symbol of the operator W , see (5.14).

The analysis of the full symbol of U±(0) is a delicate task which was
investigated, to a certain extent and in a somewhat different setting, in [23].
In order to develop the ideas from [23] we have to address a number of issues.

• We are now dealing with scalar fields as opposed to half-densities.
• We are now making full use of Riemannian structure.
• We are now working in the special setting of a system of two equations

in dimension three with trace-free principal symbol.
• Unlike [23,24], we are aiming to evaluate the actual matrix-functions

[U±(0)]sub and not only their traces.

In order to calculate the subprincipal symbols of the pseudodifferential
operators U±(0) we will need the following auxiliary result.

Theorem 5.4. Fix a point y ∈ M and let {ẽ}3
j=1 be a framing on M . Let

G ∈ C∞(M ;SU(2)) be a gauge transformation such that G(y) = Id and let

ej
α :=

1
2

tr(sj G∗ sk G) ẽk
α. (5.22)

Then

∇αG(y) = − i

2

[
∗
Kαβ(y) −

∗
K̃αβ(y)

]

σβ(y), (5.23)

where K (resp. K̃) is the contorsion tensor of the Weitzenböck connection
(see Appendix A) associated with the framing {ej}3

j=1 (resp. {ẽj}3
j=1), the star

stands for the Hodge dual applied in the first and third indices, see formula
(A.7), and σα(y) is defined by (1.3).
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Proof. The proof is provided in Appendix B.1. �
Remark 5.5. Let {ẽ}3

j=1 and {e}3
j=1 be a pair of framings related in accor-

dance with (5.22), and let W̃ and W be the corresponding Dirac operators,
see Definition 1.1. Then

W = G∗W̃G. (5.24)

The following theorem is the main result of this subsection.

Theorem 5.6. We have

[U±(0)]sub(y, η) = ± 1
4(h(y, η))3

∗
Tαβ(y) ηαηβ Id , (5.25)

where T is the torsion tensor of the Weitzenböck connection (see Appendix A)
associated with the framing {ej}3

j=1 encoded within the Dirac operator W (see
Definition 1.1) and the star stands for the Hodge dual applied in the second
and third indices, see formula (A.6).

Proof. Let us fix a point y ∈ M and choose normal geodesic coordinates
x centred at y such that ej

α(y) = δj
α . Consider the (local) operator with

constant coefficients

W̃ := −isα ∂

∂xα
, (5.26)

where the sα are the standard Pauli matrices (1.2). Let us choose a smooth
special unitary 2 × 2 matrix-function G such that

G(0) = Id,

[W ]prin = [G∗W̃G]prin + O( ‖η‖ ‖x‖2 ) ,

compare with (5.24). It is easy to see that such a matrix-function G(x) exists
and is defined uniquely modulo O(‖x‖2).

Let us now compare the subprincipal symbols of the pseudodifferential
operators θ(±W ) and θ(±G∗W̃G), with G∗W̃G understood as an operator
acting in Euclidean space (constant metric tensor gαβ(x) = δαβ). It can be
shown that at the origin we have

[W ]sub(0, η) = [G∗W̃G]sub(0, η).

Thus, the proof of the Theorem 5.6 has been reduced to the case when we
are in Euclidean space and the operator W is given by formulae (5.24) and
(5.26).

We have

θ(±W̃ ) =
1

(2π)3

∫

T ′R3
ei(x−z)αηα P±(η) ( · ) dz dη , (5.27)

where

P±(η) =
1
2

(
Id ± 1

‖η‖sβηβ

)
. (5.28)

Formulae (5.27) and (5.28) imply that

θ(±G∗W̃G) =
1

(2π)3

∫

T ′R3
ei(x−z)αηα Q±(x, z, η) ( · ) dz dη ,
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where

Q±(x, z, η) = G∗(x)P±(η)G(z) =
1
2

G∗(x)
(

Id ± 1
‖η‖sβηβ

)
G(z) .

Excluding the z-dependence from the amplitude Q± by acting with the op-
erator

Sleft( · ) :=
[
exp

(
−i

∂2

∂zμ ∂ημ

)
( · )

]∣∣∣∣
z=x

,

compare with (4.12), we arrive at

θ(±G∗W̃G) =
1

(2π)3

∫

T ′R3
ei(x−z)αηα Q±(x, η) ( · ) dz dη ,

where

Q±(x, η) = Q±
0 (x, η) + Q±

−1(x, η) + O(‖η‖−2) , (5.29)

Q±
0 (x, η) =

1
2

G∗(x)
(

Id ± 1
‖η‖sβηβ

)
G(x) , (5.30)

Q±
−1(x, η) = − i

2
G∗(x)

(
Id ± 1

‖η‖sβηβ

)

ημ

Gxμ(x) . (5.31)

In the Euclidean setting the standard formula [27, Eqn. (5.2.8)] for the
subprincipal symbol reads

[θ(±G∗W̃G)]sub = Q±
−1 +

i

2
(Q±

0 )xμημ
. (5.32)

Substituting (5.30) and (5.31) into (5.32) and setting x = 0, we get

[θ(±G∗W̃G)]sub = ± i

4

[

G∗
xμ

(
1

‖η‖sβηβ

)

ημ

−
(

1
‖η‖sβηβ

)

ημ

Gxμ

]

= ± i(δβ
μ‖η‖2 − ηβ ημ)

4‖η‖3

[
G∗

xμsβ − sβGxμ

]
. (5.33)

Theorem 5.4 tells us that Gxμ = i
2

∗
Kμν sν . Substituting this into (5.33), and

using standard properties of Pauli matrices and (A.10), we get

[θ(±G∗W̃G)]sub = ±δβ
μ‖η‖2 − ηβ ημ

8‖η‖3

[
sνsβ + sβsν

] ∗
Kμν

= ± 1
4‖η‖3

( ∗
Kγ

γδμν −
∗
Kμν

)
ημην Id

= ± 1
4‖η‖3

∗
Tμν ημ ην Id .

The above argument combined with (5.20) yields (5.25). �

Observe that formula (5.25) implies

tr [U±(0)]sub(y, η) = ± 1
2(h(y, η))3

∗
Tαβ(y) ηαηβ ,

which agrees with [23, formula (1.20)] and [24, formula (4.1) with c = +1].
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6. Principal Symbol of the Global Dirac Propagator

In this section we provide an explicit geometric characterisation of the prin-
cipal symbols of the positive and negative Dirac propagators.

Theorem 6.1. The principal symbols of the positive and negative Dirac prop-
agators are

a±
0 (t; y, η) = ζ±(t; y, η) [v±(y, η)]∗, (6.1)

where ζ±(t; y, η) is the parallel transport of v±(y, η) along x± with respect to
the spin connection, i.e.

(
d

dt
+ [ẋ±]α

1
4
σβ

(
∂σβ

∂xα
+ Γβ

αγσγ

))
ζ± = 0, ζ±|t=0 = v±. (6.2)

Proof. It is known [43, Sect. 3.4], [44] that the principal symbols a±
0 are

independent of the choice of the phase function and read

a±
0 (t; y, η) = v±(x±, ξ±) [v±(y, η)]∗ e−i

∫ t
0 q±(x±(τ ;y,η),ξ±(τ ;y,η)) dτ , (6.3)

where

q± = [v±]∗ Wsub v± − i

2
{[v±]∗,Wprin − h±, v±} − i [v±]∗{v±, h±} , (6.4)

and

Wsub(y) := W0(y) +
i

2
σα(y) Γβ

αβ(y) +
i

2
[Wprin(y, η)]yαηα

. (6.5)

In formula (6.4) curly brackets denote the Poisson bracket

{B,C} := ByαCηα
− Bηα

Cyα

and the generalised Poisson bracket

{B,C,D} := ByαCDηα
− Bηα

CDyα

on matrix-functions on the cotangent bundle. In formula (6.5) the second
term on the RHS is the result of switching to half-densities, see (4.5).

Introducing the shorthand q±(t) := q±(x±(t; y, η), ξ±(t; y, η)), the task
at hand is to show that

ζ±(t; y, η) = e−i
∫ t
0 q±(τ) dτ v±(x±, ξ±).

More explicitly, we need to show that

ei
∫ t
0 q±(τ) dτ

(
d

dt
+ [ẋ±]α

1
4
σβ

(
∂σβ

∂xα
+ Γβ

αγσγ

))

×
[
e−i

∫ t
0 q±(τ) dτ v±(x±, ξ±)

]
= 0, (6.6)

where we premultiplied our expression by ei
∫ t
0 q±(τ) dτ for the sake of conve-

nience.
We shall prove (6.1) for a+

0 , which corresponds to the upper choice of
signs in (6.6). The proof for a−

0 is analogous.
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Let us begin by computing

ei
∫ t
0 q+(τ) d

dt

(
e−i

∫ t
0 q+(τ) dτ v+(x+, ξ+)

)
= −iq+(t) v+ + v+

xα [ẋ+]α + v+
ξα

[ξ̇+]α

= −iq+(t) v+ + {v+, h}. (6.7)

To this end, let us choose geodesic normal coordinates centred at x+(t; y, η) =
0 and such that [ξ+(t; y, η)]α = δ3α. Furthermore, up to a global rigid rotation
of the framing, we can assume that

ej
α(0) = δj

α.

In our special coordinate system we have

v+(0, ξ+) =
(

1
0

)
, v−(0, ξ+) =

(
0
1

)
, (6.8)

and we can expand our framing about x+ = 0 as
⎛

⎝
e1

1(x) e1
2(x) e1

3(x)
e2

1(x) e2
2(x) e2

3(x)
e3

1(x) e3
2(x) e3

3(x)

⎞

⎠ =

⎛

⎝
1 l3(x) −l2(x)

−l3(x) 1 l1(x)
l2(x) −l1(x) 1

⎞

⎠

+O(‖x‖2) as x → 0, (6.9)

where lk(x) = O(‖x‖), k = 1, 2, 3.
The fact that ([v+]∗v+)(x, ξ) = 1 implies

{[v+]∗, P+, v+}(0, ξ+) = [v+
xα ]∗ v+ [v+]∗ v+

ξα − [v+
ξα

]∗ v+ [v+]∗ v+
xα = 0,

which, in turn, yields

{[v+]∗,Wprin, v+} = h {[v+]∗, 2P+ − Id, v+} = −h {[v+]∗, v+}. (6.10)

A standard perturbation argument gives us

h {[v+]∗, v+}(0, ξ+) = − i

2

(
∂l1

∂x1
+

∂l2

∂x2

)∣
∣∣∣
x=0

(6.11)

and

{v+, h}(0, ξ+) =
i

2

⎛

⎝
0

∂l1

∂x3
+ i

∂l2

∂x3

⎞

⎠

∣∣∣∣
∣∣
x=0

. (6.12)

Furthermore, combining (6.9) with (1.3) and (6.5), we get

Wsub(0) = − 1
2

(
∂l1

∂x1
+

∂l2

∂x2
+

∂l3

∂x3

)∣∣
∣∣
x=0

Id. (6.13)

Substituting (6.8), (6.10) and (6.11)–(6.13) into (6.4), and then (6.4)
and (6.12) into (6.7), we conclude that

ei
∫ t
0 q+(τ) d

dt

(
e−i

∫ t
0 q+(τ) dτ v+(x+, ξ+)

)

=
i

2

⎛

⎝
∂l3

∂x3

0

⎞

⎠

∣
∣∣∣∣∣
x=0

+
i

2

⎛

⎝
0

∂l1

∂x3
+ i

∂l2

∂x3

⎞

⎠

∣
∣∣∣∣∣
x=0

. (6.14)
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Similarly, in our special coordinate system we have

[ẋ+]α
1
4
σβ

(
∂σβ

∂xα
+ Γβ

αγσγ

)
v+

∣∣∣∣
x=0, ξ=ξ+

=
1
4
σβ

(
∂σβ

∂x3

)(
1
0

)∣∣∣∣
x=0

= − i

2

⎛

⎜
⎝

∂l3

∂x3

∂l1

∂x3
+ i

∂l2

∂x3

⎞

⎟
⎠

∣∣∣∣∣
∣∣
x=0

. (6.15)

Summing up (6.14) and (6.15) we arrive at (6.6). �

7. Explicit Small Time Expansion of the Symbol

Even though the presence of gauge degrees of freedom represents an addi-
tional challenge in the analysis of the propagator, one can put this freedom
to use and exploit it to obtain a small time expansion for the propagator.

Our strategy goes as follows.

1. Compute the principal and subprincipal symbols of the positive (resp.
negative) propagator for a conveniently chosen framing;

2. Using the gauge transformation (1.7), (1.6), switch to an arbitrary fram-
ing with the same orientation;5

3. Express the final result in terms of geometric invariants.

7.1. Special Framing

Let us fix an arbitrary point y ∈ M and let Vj ∈ TyM , j = 1, 2, 3 be defined
by

Vj := ej(y).

Definition 7.1. (Levi-Civita framing) Let U be a geodesic neighbourhood of
y. For x ∈ U , let ẽloc

j (x), j = 1, 2, 3, be the parallel transport of Vj along
the shortest geodesic connecting y to x. We define the Levi-Civita framing
generated by {ej}3

j=1 at y to be the equivalence class of framings coinciding
with {ẽloc

j }3
j=1 in a neighbourhood of y.

With slight abuse of notation, in the following we will identify the Levi-
Civita framing with one of its representatives, denoted by {ẽj}3

j=1. The choice
of a particular representative does not affect our results.

Using the Levi-Civita framing is especially convenient due to the fol-
lowing property.

Lemma 7.2. In normal coordinates centred at y, the Levi-Civita framing ad-
mits the following expansion:

5Recall that in our paper the orientation is prescribed from the beginning.
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ẽj
α(x) = ej

α(y) +
1
6
ej

β(y)Rα
μβν(y)xμxν + O(‖x‖3), j = 1, 2, 3,

(7.1)

where R is the Riemann curvature tensor6.

Proof. In normal geodesic coordinates centred at y, the unique geodesic con-
necting y to x can be written as

γα(t) =
xα

‖x‖E
t, (7.2)

where ‖ · ‖E is the Euclidean norm, so that γ(‖x‖E) = x. Assuming t and
‖x‖E to be small and of the same order, let us perform an expansion in
powers of t of ẽj .

The parallel transport equation defining the framing {ẽj}3
j=1 reads

˙̃ej
α(γ(t)) = −γ̇β(t) Γα

βμ(γ(t)) ẽj
μ(γ(t)), j = 1, 2, 3. (7.3)

Since ẽj(0) = Vj and Γ(0) = 0, at linear order in t we have ˙̃ej(γ(t)) = O(t),
which implies

ẽj(γ(t)) = Vj + O(t2). (7.4)

Substituting (7.4) into (7.3), we get

˙̃ej
α(γ(t)) = −xβ xν

‖x‖2
E

∂νΓα
βμ(0)Vj

μ t + O(t2),

so that

ẽj
α(γ(t)) = Vj − 1

2
xβxν

‖x‖2
E

∂νΓα
βμ(0)Vj

μ t2 + O(t3)

and

ẽj
α(x) = ẽj

α(γ(‖x‖E)) = Vj
α − 1

2
∂νΓα

βμ(0)Vj
μ xβxν + O(‖x‖3), (7.5)

j = 1, 2, 3. Formula (7.1) follows at once from (7.5) and the elementary
identity

∂νΓα
βμ(0) = −1

3
(Rα

βμν + Rα
μβν)(0). (7.6)

�

Corollary 7.3. In normal coordinates x centred at y, the Pauli matrices σ̃α(x)
projected along the Levi-Civita framing (see (1.3)) satisfy

σ̃α(y) = σα(y), [σ̃α]xβ (y) = 0,

[σ̃α]xμxν (y) =
1
6

[Rα
νβμ(y) + Rα

μβν(y)] σβ(y).
(7.7)

Proof of Corollary 7.3. Formula (7.7) follows immediately from (7.1). �

6The Riemann curvature tensor R has components Rκ
λμν defined in accordance with

Rκ
λμν := dxκ(R(∂μ , ∂ν) ∂λ) = ∂μΓκ

νλ − ∂νΓκ
μλ + Γκ

μηΓη
νλ − Γκ

νηΓη
μλ.



IEOT Global Dirac Operator Page 33 of 56    30 

Corollary 7.4. Let W̃ be the Dirac operator (1.4) corresponding to the choice
of the Levi-Civita framing. Then, in normal coordinates centred at y, its zero
order part W̃0 (see formula (5.2)) admits the following expansion:

W̃0(x) =
i

4
Ricαβ(y) σ̃β(y)xα + O(‖x‖2). (7.8)

Here Ric is the Ricci tensor, Ricαβ := Rγ
αγβ.

Proof. Formula (7.8) is obtained by expanding the RHS of (5.2) in powers
of x in normal coordinates centred at y, substituting (7.6) and (7.7) in and
performing a lengthy but straightforward calculation. It is a somewhat non-
trivial fact that the coefficient of the linear term in (7.8) turns out to be
trace-free. �
7.2. Small Time Expansion of the Principal Symbols

The first step towards computing small time expansions for principal and
subprincipal symbols of W is to obtain an expression for these objects in
a neighbourhood of a given point y ∈ M for the choice of the Levi-Civita
framing generated by our framing {ej}3

j=1 at y. Observe that, as we are after
a small time expansion of the symbols, it is enough to restrict our attention
to a small open neighbourhood of y.

In the following, we will denote with a tilde objects associated with the
Dirac operator W̃ corresponding to the choice of the Levi-Civita framing.

Theorem 7.5. For the choice of the Levi-Civita framing, the positive and neg-
ative principal symbols are independent of t and read

ã±
0 (t; y, η) = P̃±(y, η). (7.9)

Proof. In accordance with Theorem 6.1, the principal symbols are determined
by the eigenvectors of W̃prin and their parallel transport with respect with
the spin connection along the Hamiltonian trajectories. Hence, it suffices to
show that

ζ̃±(t; y, η) = ṽ±(y, η). (7.10)

Once this is achieved, (7.9) follows from the fact that

W̃prin(y, η) = Wprin(y, η).

In normal coordinates centred at y the parallel transport equation (6.2)
reads

[
d

dt
+ [ẋ±]α

1
4
σ̃β(x±)

(
∂σ̃β

∂xα
(x±) + Γβ

αγ(x±)σ̃γ(x±)
)]

ζ̃± = 0,

ζ̃±|t=0 = ṽ±. (7.11)

We claim that

[ẋ±]α
(

∂σ̃β

∂xα
(x±) + Γβ

αγ(x±)σ̃γ(x±)
)

= 0. (7.12)

In fact, we have

[ẋ±]α
(

∂σ̃β

∂xα
(x±) + Γβ

αγ(x±)σ̃γ(x±)
)

= [ẋ±]α(∂xα ẽj
β + Γβ

αγ ẽj
γ)(x±) sj
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and

[ẋ±]α(∂xα ẽj
β + Γβ

αγ ẽj
γ)(x±) = 0 for j = 1, 2, 3

in view of Definition 7.1 and the properties of the Hamiltonian flows x±,
i.e. that x+( · ; y, η) is geodesic and relation (5.3). By substituting (7.12) into
(7.11) we arrive at (7.10). �
7.3. Small Time Expansion of the Subprincipal Symbols

Let us now turn our attention to the subprincipal symbols ã±
−1.

Unlike the principal symbols, the subprincipal symbols depend on the
choice of phase functions. As here we are only interested in small time ex-
pansions and the injectivity radius Inj(M, g) is strictly positive, we can work,
without loss of generality, in a neighbourhood of y with no conjugate points
to y. The absence of conjugate points allows us to construct positive and
negative propagators for small times by means of the algorithm described in
Sect. 3.3 for the choice of real-valued Levi-Civita phase functions

ϕ±(t, x; y, η) =
∫

γ±
ζ± dz,

cf. Definition 5.1 for ε = 0.
In the remainder of this subsection we adopt the same coordinates for

x and y and we choose normal geodesic coordinates centred at y. We remind
the reader that, in such coordinates,

[x±]α(t; 0, η) = ±ηα

h
t. (7.13)

According to [17, Eqns. (8.7) and (8.12)] and (5.5), we have

ϕ±(t, x; 0, η) = xαηα ∓ h t ± t

3h
Rα

μ
β

ν(0)ηαηβ xμxν + O(‖x‖4 + t4)

(7.14)

and

w±(t, x; 0, η) = 1 +
1
12

Ricμν(0)xμ xν ∓ t

3h
Ricμ

ν(0) ημ xν + O(‖x‖3 + |t|3).
(7.15)

Recall that the weight w is defined by (3.12).
As explained in Sect. 5.1, the subprincipal symbols are determined by

the first and the second transport equations, (5.12) and (5.13). More precisely,
if we are interested in expansions with remainder O(t2), we need to determine
(5.13) up to zeroth order in t and (5.12) up to first order in t.

To this end, we begin by observing that formulae (7.14) and (7.15), see
also (3.30), imply that the differential evaluation operators S±

−2 and S±
−1

admit the following expansions in normal coordinates centred at y.

Lemma 7.6. We have
(a)

S±
−2 =

1
2

[
i

∂2

∂xα∂ηα

]2

( · )
∣∣
∣∣∣
t=0, x=0

+ O(t), (7.16)
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(b)

S±
−1 = iS±

0

(
∂2

∂xα∂ηα
± t

2
hηαηβ

∂2

∂xα∂xβ

)
+ O(t2). (7.17)

Proof. (a) It is an immediate consequence of (7.13), (7.15) and

L±
α =

∂

∂xα
+ O(‖x‖ + |t|). (7.18)

(b) Substituting (7.15) into (3.30) with k = 1 and recalling that

ϕ±
η

∣∣
x=x± = 0,

we get

S±
−1 = S±

0

[
i

∂2

∂xα∂ηα
− i

2
ϕ±

ηαηβ
L±

α L±
β

]
+ O(t2). (7.19)

Formula (7.18) and the fact that

ϕ±
ηαηβ

∣∣
∣
x=x±

= ∓t hηαηβ
+ O(t3) (7.20)

yield (7.17). �

In order to be able to compute the subprincipal symbols, we need to
determine the initial condition ã±

−1|t=0 first.

Lemma 7.7. For the choice of real-valued Levi-Civita phase functions, the
positive and negative subprincipal symbols ã±

−1 vanish at t = 0:

ã±
−1(0; y, η) = 0. (7.21)

Proof. The subprincipal symbols are scalar functions, so it enough to estab-
lish (7.21) in one specific coordinate system. Let us choose normal coordinates
centred at y = 0 such that ẽj

α(0) = δj
α. We observe that the torsion of the

Weitzenböck connection generated by the Levi-Civita framing at y vanishes
at y, as a consequence of the fact that the first derivatives of the framing are
zero, cf. (7.1) and (A.2)–(A.3). Therefore, Theorem 5.6 tells us that

[U±(0)]sub(0, η) = 0. (7.22)

A straightforward perturbation argument shows that

(v±)xα(0, η) = 0. (7.23)

Substituting (7.22) and (7.23) into (4.6) with P = U±(0) and ε = 0 and
using the fact that Christoffel symbols vanish at y, we arrive at (7.21). �

We are now in a position to examine the first transport equation.

Lemma 7.8. The projection onto the negative (resp. positive) eigenspace of
W̃prim of the subprincipal symbol of the positive (resp. negative) propagator
is given by

P̃∓(x±, ξ±)ã±
−1(t; y, η) =

±it P̃∓(y, η)
[

1
8h3

Ricαβ(y) ηαηβ − 1
4h

Ricαβ(y) ηαP̃±
ηβ

(y, η)
]

+ O(t2).(7.24)
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Proof. We will establish formula (7.24) by expanding the first transport equa-
tion (5.12) up to first order in t and then acting with P̃∓ on the left. Recall
that a±

−k is defined by (5.10).

Working in normal coordinates centred at y and using (7.14)–(7.15), we
obtain

S±
0 ã±

0 (t; 0, η) =
{(

ϕ±
t + W̃prin(x, ϕ±

x )
)
ã±

−1 − i(ã±
−0)t

+
[
−i(w±)−1

(
w±

t + σαw±
xα

)
+ W̃0

]
ã±

−0

}∣∣
∣
x=x±

= (W̃prin(x±, ξ±) ∓ h) ã±
−1(t; 0, η)

+
i t

3h2
Ricαν(0)

(
ηαην ± 1

2
h ηα σ̃ν(0)

)
P̃±(y, η)

± t ηα

h
(W̃0)xα(0) P̃±(y, η) + O(t2).

(7.25)

Furthermore, in view of Theorem 6.1 and Lemma 7.6(b), we have

S±
−1ã

±
1 (t; 0, η)

=
[

∂2

∂xα∂ηα
± t

2
hηαηβ

∂2

∂xα∂xβ

]
×

(
ϕ±

t + W̃prin(x, ϕ±
x )

)
ã±
0

∣∣
∣
x=x∗

+O(t2)

= − 2it
3h2

Ricαν(0) ηαηνP̃± ± it
[

2
3h

Rμ
α

ν
β(0) ημην σ̃β(0)P̃±

]

ηα

±it
ηβ

h

[
(W̃prin)xαxβ (0, η)P̃±

]

ηα

+i t
[
hηαηβ

3h
Rμ

α
ν

β(0) ημην ± 1
2
hηαηβ

(W̃prin)xαxβ (0, η)
]

P̃±

+O(t2). (7.26)

Adding up (7.25) and (7.26) and projecting along P̃∓, we arrive at

P̃∓ã±
−1(t; 0, η)

=
it

h
P̃∓

{
1

12h
Ricαν(0) ηασ̃ν(0)P̃± − iηα

2h
(W̃0)xα(0) P̃±

+
[

1
3h

Rμ
α

ν
β(0) ημην σ̃β(0) P̃±

]

ηα

+
ηβ

2h

[
(W̃prin)xαxβ (0, η)P̃±

]

ηα

+
1
4
hηαηβ

(W̃prin)xαxβ (0, η) P̃± } + O(t2). (7.27)
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Let us compute the summands in (7.27) separately. To this end, let us put

A1 :=
1

12h
Ricαν(0) ηασ̃ν(0)P̃±,

A2 := − iηα

2h
(W̃0)xα(0) P̃±,

A3 :=
[

1
3h

Rμ
α

ν
β(0) ημην σ̃β(0) P̃±

]

ηα

,

A4 :=
ηβ

2h

[
(W̃prin)xαxβ (0, η)P̃±

]

ηα

,

A5 :=
1
4
hηαηβ

(W̃prin)xαxβ (0, η) P̃±.

• A1: It ensues from elementary properties of P̃± that

P̃∓σ̃αP̃± = P̃∓[W̃prinP̃±]ηα
− P̃∓W̃prinP̃±

ηα
= ±2h P̃∓P̃±

ηα
. (7.28)

Hence

P̃∓A1 = P̃∓
(

±1
6

Ricαβ(0) ηαP̃±
ηβ

)
. (7.29)

• A2: Combining Corollary 7.4 with the identity

hηαηβ
=

h2 δαβ − ηαηβ

h3
(7.30)

and using (7.28), we get

P̃∓A2 = P̃∓
(

±1
4

Ricαβ(0) ηαP̃±
ηβ

)
. (7.31)

• A3: We have

A3 =
[

1
3h

Rμ
α

ν
β(0) ημην σ̃β(0) P̃±

]

ηα

=
1
3h

Rμ
α

ν
β(0) σ̃β(0)

[
ημην P̃±

]

ηα

= − 1
3h

Ricμν(0) ημ σ̃ν(0) P̃± ± 1
6h2

Ricμβ(0) ημηβ Id,

so that, by (7.28),

P̃∓A3 = P̃∓
(

∓2
3

Ricαβ(0) ηαP̃±
ηβ

± 1
6h2

Ricαβ(0) ηαηβ

)
. (7.32)

• A4: Recalling (7.7), we have

A4 =
ηβ

2h
(σ̃μ)xαxβ (0)

[
ημ P̃±

]

ηα

= − 1
12h

Ricαβ(0) ηασ̃β(0) P̃± ∓ 1
24h2

Ricαβ(0) ηαηβ Id,

so that, by (7.28),

P̃∓A4 = P̃∓
(

∓1
6

Ricαβ(0) ηαP̃±
ηβ

∓ 1
24h2

Ricαβ(0) ηαηβ

)
. (7.33)
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• A5: In view of (7.30) and (7.7), we have

A5 =
1
4

(
δαβ

h
− ηαηβ

h3

)
1
6

[Rμ
βνα + Rμ

ανβ ] (0) σ̃ν(0) ημ P̃±

=
1

12h
Ricμν(0) ημσ̃ν(0) P̃±,

so that, by (7.28),

P̃∓A5 = P̃∓
(

±1
6

Ricαβ(0) ηαP̃±
ηβ

)
. (7.34)

Substituting (7.29), (7.31), (7.32), (7.33) and (7.34) into (7.27) we arrive
at (7.24). �

Let us now move to the second transport equation.

Lemma 7.9. The projection onto the positive (resp. negative) eigenspace of
W̃prin of the subprincipal symbol of the positive (resp. negative) propagator is
given by

P̃±(x±, ξ±)ã±
−1(t; y, η)

= ∓it P̃±
[

1
24h

R(0) +
1

8h3
Ricαβ(0) ηα ηβ +

1
4h

Ricαβ(0) ηα P̃±
ηβ

]

+O(t2). (7.35)

Proof. We will establish formula (7.35) by computing the second transport
equation (5.13) up to zeroth order in t and then acting with P̃± on the left.

With account of Lemma 7.6, we have

S±
−2ã

±
1

∣∣
∣
t=0

= −1

2

∂4

∂xα∂ηα∂xβ∂ηβ

(
ϕ±

t + W̃prin(x, ϕ±
x )

)
a±
0

∣∣
∣∣
x=0,t=0

= −1

2

∂4

∂xα∂ηα∂xβ∂ηβ

(
∓h ± 1

3 h
Rγ

μ
ρ

ν(0) ηγ ηρ xμ xν + O(‖x‖3)

+σ̃α(0)(ηα + O(‖x‖3))P̃ ±
)∣∣
∣
x=0,t=0

= − ∂2

∂ηα∂ηβ

(
± 1

3 h
Rγ

α
ρ

β(0) ηγ ηρ +
1

2
(W̃prin)xαxβ (0, η)

)
P̃ ±, (7.36)

S±
−1ã

±
0

∣∣∣
t=0

= i
∂2

∂xα∂ηα

[(
∓h + W̃prin(x, η)

)
ã±

−1(0; y, η) − i(ã±
0 )t

+

(
± iημ

3h
Ricμ

ν(0) xν + − i

6
Ricμν(0) σ̃μ(0) xν + O(‖x‖2)

)
P̃ ±

+W̃0(x)P̃ ±
]∣∣∣

t=0,x=0

= ∓ ∂

∂ηα

( ημ

3h(j)
Ricμ

α(0)P̃ ±
)

+
1

6
Ricαμ(0) σ̃μ(0) P̃ ±

ηα

+i (W̃0)xα(0)P̃ ±
ηα

(7.37)
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and

S±
0 ã±

−1

∣∣
t=0

= (∓h + W̃prin(0, η))ã±
−2(0) − i (ã±

−1)t|t=0. (7.38)

In carrying out the above calculations we used Theorem 7.5 and Lemma 7.7.
Note that, when multiplying on the left by P̃±, the terms containing ã±

−2

disappear. Summing up (7.36), (7.37) and (7.38), and projecting along P̃±,
we obtain

(P̃±ã±
−1)t (0; y, η)

= iP̃± ∂2

∂ηα∂ηβ

[(
± 1

3h
Rγ

α
ρ
β(0) ηγ ηρ +

1
2
(W̃prin)xαxβ (0, η)

)
P̃±

]

±iP̃± ∂

∂ηα

[ημ

3h
Ricμ

α(0)P̃±
]

− i

6
Ricαμ(0) σ̃μ(0) P̃±

ηα

+P̃±(W̃0)xα(0)P̃±
ηα

+ O(t). (7.39)

Using the identity

± ∂

∂ηβ

[
1
3h

Rγ
α

ρ
β(0) ηγ ηρP̃

±
]

= ∓ημ

3h
Ricμ

α(0)P̃± ± 1
3h

Rγ
α

ρ
β(0) ηγ ηρP̃

±
ηβ

,

formula (7.39) becomes

(P̃±ã±
−1)t (0; y, η) =

i

2
P̃± ∂2

∂ηα∂ηβ

[
(W̃prin)xαxβ (0, η)P̃±

]

±iP̃± ∂

∂ηα

[
1
3h

Rγ
α

ρ
β(0) ηγ ηρ P̃±

ηβ

]

− i

6
Ricαμ(0) σ̃μ(0) P̃±

ηα
+ P̃±(W̃0)xα(0)P̃±

ηα
+ O(t). (7.40)

Let us put

B1 :=
i

2

[
(W̃prin)xαxβ (0, η)P̃±

]

ηαηβ

,

B2 :=
i

3h
Rγ

α
ρ
β(0) ηγ ηρ P̃±

ηβ
,

B3 := − i

6
Ricαμ(0) σ̃μ(0) P̃±

ηα
+ (W̃0)xα(0)P̃±

ηα
.

(7.41)

• B1: It follows from (5.17), Corollary 7.3 and (7.30) that

P̃± B1 =
i

6
P̃±

[
Rμ

βνα ημ σ̃ν 1
2

(
Id ± ηρ σ̃ρ

h

)]

ηαηβ

= ± i

12
P̃±Rμ

βνα σ̃ν σ̃ρ
(ημ ηρ

h

)

ηαηβ

= ±
(

− i

12h
R(0) +

i

12h3
Ricαβ(0) ηαηβ

)
P̃±.

(7.42)
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• B2: Differentiating (5.17) with respect to ηβ yields

P̃±
ηβ

= ± 1
2h

(W̃prin)ηβ
∓ ηβ

2h3
W̃prin

= ±1
2

(
σ̃β

h
− ηβ ηρ σ̃ρ

h3

)
.

(7.43)

Substituting (7.43) into B2 in (7.41) we obtain

±P̃± B2 =
i

6
P̃± Rμ

α
ν

β

[

σ̃β
(ημην

h2

)

ηα

+ σ̃ρ

(
ημηνηβηρ

h4

)

ηα

]

= − i

6h2
P̃± Ricμ

β(0) ημ σ̃β(0).

(7.44)

• B3: By means of Corollary 7.4 and formula (7.43) we get

B3 =
(

± i

4
Ricαβ(0)σα ∓ i

6
Ricαβ(0)σα

)
1
2

(
σβ

h
− ηβ σρηρ

h3

)

= ± i

24
Ricαβ(0)σα

(
σβ

h
− ηβ σρηρ

h3

)

= ±
(

i

24h
R(0) Id − i

24h3
Ricαβ(0) ηβηρσ

α(0)σρ(0)
)

.

(7.45)

Now, since P̃± σ̃ρ(0)ηρ = P̃± W̃prin(0, η) = ±h P̃± and σ̃ασ̃ρ = −σ̃ρσ̃α+
2 δαρ Id, formula (7.45) implies

P̃ ±B3 = P̃ ±
(

± i

24 h
R(0) +

i

24 h2
Ricαβ(0) ηα σ̃β ∓ i

12h3
Ricαβ(0) ηαηβ

)
. (7.46)

Summing up (7.42), (7.44) and (7.46) we arrive at

(P̃ ±ã±
−1)t (0; y, η) = iP̃ ±

(
∓ 1

24h
R(0) − 1

8h2
Ricαβ(0) ηα σ̃β(0)

)
+ O(t). (7.47)

A straightforward calculation shows that

P̃±σ̃α = ±P̃±
(

ηα

h
+ 2hP̃±

ηα

)
.

Substituting the above expression into (7.47) and integrating in time with
initial condition (7.21), we obtain (7.35). �

The pieces of information from Lemma 7.8 and Lemma 7.9 can be com-
bined to give the following result.

Theorem 7.10. For the choice of the Levi-Civita framing, the subprincipal
symbols of the positive and negative propagators admit the following small
time expansion:

ã±
−1(t; y, η)

= ∓it

(
1

24h
R(y) P̃±(y, η) − 1

8h2
Ricαβ(y) ηα (W̃prin)ηβ

(y, η)
)

+ O(t2) .

(7.48)
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Proof. Summing up formulae (7.24) and (7.35), we obtain

ã±
−1(t; y, η) = ∓ it

24h
R(y) P̃±(y, η) ∓ it

8h4
Ricαβ(y) ηα ηβ W̃prin(y, η)

− it

4h
Ricαβ(y) ηα P̃±

ηβ
(y, η) + O(t2) .

The substitution of (7.43) into the RHS of the above equation gives (7.48). �

Note that if the manifold is Ricci-flat then ã±
−1(t; y, η) = O(t2).

7.4. Invariant Reformulation

In the previous subsections we derived the quite elegant and compact for-
mulae (7.9) and (7.48), which were obtained under the assumption that the
chosen framing is the Levi-Civita framing at y. Now the task at hand is to ob-
tain similar formulae for the Dirac operator W corresponding to an arbitrary
framing {ej}3

j=1.
Given a framing {ej}3

j=1 and a point y ∈ M , there exits a special unitary
matrix-function G, defined in a neighbourhood of y, such that {ej}3

j=1 and
the Levi-Civita framing {ẽj}3

j=1 generated by {ej}3
j=1 at y are related in

accordance with

ej
α(x) =

1
2

tr(sj G∗(x) sk G(x)) ẽk
α(x), G(y) = Id, (7.49)

cf. (5.22) and (1.7). The symbols ã± and a± are related as

a± = S±[G∗(x) ã± G(y)], (7.50)

cf. Sect. 5. Note that on the RHS of (7.50) the transformed symbol is acted
upon by amplitude-to-symbol operators (3.31). The latter are needed because
the gauge transformation G introduces an x-dependence in the amplitude,
which has to be excluded.

Working in normal coordinates centred at y, formula (7.50), combined
with (7.13) and (7.9), implies

a±
0 = G∗(x±)P±

= P± ± t ηα

h
G∗

xα(y)P± +
t2

2
ηαηβ

h2
G∗

xαxβ (y)P± + O(t3)

= P± ± t ηα

h
∇αG∗(y)P± +

t2

2
ηαηβ

h2
∇α∇βG∗(y)P± + O(t3).

(7.51)

Similarly, by means of (7.13) and Lemma 7.6, from (7.50) we get

a±
−1 = S±

−1[G
∗(x) ã±

0 ] + S±
0 [G∗(x) ã±

−1]

= iG∗
xα(y)P±

ηα
± itG∗

xαxβ (y)
(

hηβ
P±

ηα
+

1
2
hηαηβ

P±
)

+ ã±
−1 + O(t2)

= i∇αG∗(y)P±
ηα

± it∇α∇βG∗(y)
(

hηβ
P±

ηα
+

1
2
hηαηβ

P±
)

+ ã±
−1 + O(t2).

(7.52)
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The last step towards expressing (7.51) and (7.52) invariantly is writing
∇G and ∇∇G in terms of geometric invariants. Theorem 5.4 tells us that

∇αG(y) = − i

2

∗
Kαβ(y)σβ(y). (7.53)

The following theorem provides an expression for the second covariant deriva-
tives of the gauge transformation.

Theorem 7.11. Let us fix a point y and let the special unitary matrix-function
G be such that our framing {ej}3

j=1 and the Levi-Civita framing {ẽj}3
j=1 gen-

erated by {ej}3
j=1 at y are related in accordance with (7.49) in a neighbourhood

of y. Then we have

∇α∇β G(y) = − i

4

(
∇α

∗
Kβμ(y) + ∇β

∗
Kαμ(y)

)
σμ(y) − 1

4

∗
Kαμ(y)

∗
Kβ

μ(y) Id,

(7.54)

where K is the contorsion tensor of the Weitzenböck connection (see Appen-
dix A) associated with the framing {ej}3

j=1 and the star stands for the Hodge
dual applied in the first and third indices (see formula (A.7)).

Proof. The proof is given in Appendix B.2. �

Remark 7.12. Note that, remarkably, the curvature of the Levi-Civita con-
nection does not appear in the RHS of (7.54).

Substituting (7.53) and (7.54) into (7.51) and (7.52) we arrive at the
following result.

Theorem 7.13. Let W be the Dirac operator (1.4). Then the the principal
and subprincipal symbols of the positive and negative propagators admit the
following small time expansions:

a±
0 =

[
Id ± it

2
hηα

∗
Kαβ (Wprin)ηβ

]
P±

+
t2

8
ηαηβ

h2

[
i
(∇α

∗
Kβμ(y) + ∇β

∗
Kαμ(y)

)
(Wprin)ημ

−
∗
Kαμ(y)

∗
Kβ

μ(y)
]

P±

+O(t3), (7.55)

a±
−1 = −1

2

∗
Kαβ (Wprin)ηβ

P±
ηα

∓it

(
1

24h
RP± − 1

8h2
Ricαβ ηα (Wprin)ηβ

)

∓ t

4

(
∇α

∗
Kβμ + ∇β

∗
Kαμ

)
(Wprin)ημ

(
hηβ

P±
ηα

+
1
2
hηαηβ

P±
)

∓ it

4

∗
Kαμ

∗
Kβ

μ

(
hηβ

P±
ηα

+
1
2
hηαηβ

P±
)

+ O(t2), (7.56)

where
∗
K denotes the Hodge dual in the first and third indices of the contorsion

tensor of the Weitzenböck connection associated with the framing {ej}3
j=1.
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8. An Application: Spectral Asymptotics

In this section we will compute the third Weyl coefficient for the Dirac op-
erator. In doing so we will use the same notation as in Sect. 1—recall in
particular formulae (1.17), (1.13) and the definition of the function μ.

Theorem 8.1. The third local Weyl coefficients for the Dirac operator are

c±
0 (y) = − 1

48π2
R(y), (8.1)

where R is scalar curvature.

Proof. Let us fix a point y ∈ M and choose normal geodesic coordinates x
centred at y. Let us also choose a Levi-Civita framing {ẽj}3

j=1, see Defini-
tion 7.1; here we make use of the fact that Weyl coefficients do not depend
on the choice of framing.

We have

(N ′
+ ∗ μ)(y, λ) = F−1 [F [

(N ′
+ ∗ μ)

]]
(y, λ) = F−1 [tr u+(t, y, y) μ̂(t)] , (8.2)

(N ′
− ∗ μ)(y, λ) = F−1 [F [

(N ′
− ∗ μ)

]]
(y, λ) = F−1

[
tr u−(t, y, y) μ̂(t)

]
, (8.3)

where u± is the Schwartz kernel of the propagator U± and tr stands for
the matrix trace. Note that at each point of the manifold the quantity
tru±(t, y, y) is a distribution in the variable t and the construction presented
in preceding sections allows us to write down this distribution explicitly, mod-
ulo a smooth function.

Our task is to substitute (5.7) into the right-hand sides of (8.2) and
(8.3) and expand the resulting quantities in powers of λ as λ → +∞. Thus,
the problem reduces to the analysis of explicit integrals in four variables,
η1, η2, η3 and t, depending on the parameter λ . In what follows we drop the
y in our intermediate calculations.

The construction presented in preceding sections tells us that the only
singularity of the distribution tru±(t, y, y) μ̂(t) is at t = 0. Hence, in what
follows, we can assume that the support of μ̂ is arbitrarily small. In particular,
this allows us to use the real-valued (ε = 0) Levi-Civita phase functions ϕ±.

Theorems 7.5 and 7.10 imply that

tr ã±
0 (t; η) = 1 , (8.4)

tr ã±
−1(t; η) = ∓ i

24 ‖η‖ R t + O(t2) . (8.5)

Formula [17, (B.11)] reads ϕ+(t, η) = −‖η‖ t+O(t4) , which, in view of
(5.5), implies

ϕ±(t, η) = ∓‖η‖ t + O(t4) . (8.6)

Using formulae (8.2)–(8.6) and arguing as in [17, Appendix B], we con-
clude that

(N ′
± ∗ μ)(y, λ) =

S2

(2π)4

∫

R2

(
r2 − 1

24
R
)

ei(λ−r)t μ̂(t) dr dt

+O(λ−1) as λ → +∞, (8.7)
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where S2 = 4π is the surface area of the 2-sphere. But
1
2π

∫

R2
rm ei(λ−r)t μ̂(t) dr dt = λm, m = 0, 1, 2, . . . ,

so (8.7) can be rewritten as

(N ′
± ∗ μ)(y, λ) =

1
2π2

λ2 − 1
48π2

R(y) + O(λ−1) as λ → +∞.

�

Remark 8.2. Let us compare the spectrum of the Dirac operator with the
spectrum of the Laplacian. Working on the same 3-manifold, let Δ be the
Laplace–Beltrami operator and let N(y, λ) be the local counting function for
the operator

√−Δ . Then

(N ′ ∗ μ)(y, λ) = c2(y)λ2 + c1(y)λ + c0(y) + . . . as λ → +∞,

where the values of the first three Weyl coefficients are provided by [17,
Theorem B.2]. Comparing these with (1.19) and (8.1), we conclude that

c±
2 (y) = c2(y) , c±

1 (y) = c1(y) = 0 , c±
0 (y) = −1

2
c0(y) .

We see that the large (in modulus) eigenvalues of the Dirac operator are
distributed approximately the same way as the eigenvalues of the operator√−Δ , differing only in the third Weyl coefficient.

Remark 8.3. There are, of course, alternative ways of computing the third
Weyl coefficients. One can, for example, calculate c±

0 by examining the quan-
tities

Tr e−W 2 t and TrW e−W 2 t,

which are related to the counting functions via the Mellin transform, as in
[14,26]. See also [22].

9. Examples

In this section we present two explicit examples, which show how our con-
structions work in practice and which give us an opportunity to double-check
our formulae.

The specific choice of examples is motivated by the fact that the first,
M = S

3, is isotropic in momentum whereas the second, M = S
2 × S

1, is
anisotropic in momentum.

9.1. The Case M = S
3

Let R
4 be Euclidean space equipped with Cartesian coordinates xα, α =

1, 2, 3, 4, and put

ê4 =

⎛

⎜⎜
⎝

0
0
0
1

⎞

⎟⎟
⎠ .
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Consider the 3-sphere7

S
3 := {x + ê4 ∈ R

4 | ‖x‖ = 1}
with orientation prescribed in accordance with [28, Appendix A], equipped
with the standard round metric g and with the global framings {V±,k}3

k=1

defined as the restriction to S
3 of the vector fields in R

4

V±,1 := (1 − x4)
∂

∂x1
∓ x3 ∂

∂x2
± x2 ∂

∂x3
+ x1 ∂

∂x4
,

V±,2 := ±x3 ∂

∂x1
+ (1 − x4)

∂

∂x2
∓ x1 ∂

∂x3
+ x2 ∂

∂x4
,

V±,3 := ∓x2 ∂

∂x1
± x1 ∂

∂x2
+ (1 − x4)

∂

∂x3
+ x3 ∂

∂x4
.

(9.1)

It is easy to check that the vector fields (9.1) are tangent to S
3, so that

they restrict to smooth vector fields on the 3-sphere. Note that (9.1) is an
adaptation of [28, Eqn. (C.1)] to the case at hand.

Let us introduce coordinates on S
3 with the north pole excised by stere-

ographically projecting it onto the hyperplane tangent to the 3-sphere at the
south pole. The stereographic map is given by

σ : R3 → S
3 \

⎛

⎜⎜
⎝

0
0
0
2

⎞

⎟⎟
⎠ ,

⎛

⎝
u
v
w

⎞

⎠ �→

⎛

⎜⎜
⎝

x1

x2

x3

x4

⎞

⎟⎟
⎠ =

1
1 + f2

⎛

⎜⎜
⎝

u
v
w

2f2

⎞

⎟⎟
⎠ ,

where

f2 :=
1
4

(u2 + v2 + w2).

It is easy to see that the coordinate system (u, v, w) has positive orientation.
In stereographic coordinates the metric reads

g =
1

(1 + f2)2
[
du2 + dv2 + dw2

]
(9.2)

and our framings are given by

2V±,1 = (2 − 2f2 + u2)
∂

∂u
+ (uv ∓ 2w)

∂

∂v
+ (uw ± 2v)

∂

∂w
,

2V±,2 = (uv ± 2w)
∂

∂u
+ (2 − 2f2 + v2)

∂

∂v
+ (vw ∓ 2u)

∂

∂w
,

2V±,3 = (uw ∓ 2v)
∂

∂u
+ (vw ± 2u)

∂

∂v
+ (2 − 2f2 + w2)

∂

∂w
.

(9.3)

A straightforward calculation shows that {V±,k}3
k=1 are positively oriented

framings formed by (orthonormal) smooth Killing vector fields with respect
to the metric g.

The framings {V±,k}3
k=1 define, via (1.4), two Dirac operators W± re-

lated in accordance with

W− = G∗W+G,

7We shifted the sphere so as to place the south pole at the origin.
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where

G :=
1

4(1 + f2)

(
u2 + v2 + (w − 2i)2 4(v − iu)

−4(v + iu) u2 + v2 + (w + 2i)2

)
. (9.4)

is the SU(2) gauge transformation relating the two framings via (7.49) with
ẽk = V+,k and ek = V−,k.

Let us deal with W+ first. On account of the symmetries of the 3-
sphere, we will write formulae for principal and subprincipal symbols of the
propagator of W+ at the south pole (y = (0, 0, 0)) for the choice of momentum
η = (0, 0, 1).

The principal symbol (W+)prin has eigenvalues h±(y, η) = ±‖η‖, whose
Hamiltonian flows in stereographic coordinates read

z±(t; 0, η) = ±2 tan(t/2)
η

‖η‖ , ξ±(t; 0, η) = cos2(t/2) η, (9.5)

see also formula (5.3). Direct inspection of the parallel transport equation
(6.2) reveals that the parallel transport of

v+(0, η) =
(

1
0

)
, v−(0, η) =

(
0
1

)

along z+ and z−, respectively, is given by

ζ+(t; 0, η) = e− it
2

(
1
0

)
, ζ−(t; 0, η) = e

it
2

(
0
1

)
,

so that Theorem 6.1 gives us

a+
0 (t; 0, η) = e− it

2

(
1 0
0 0

)
, a−

0 (t; 0, η) = e
it
2

(
0 0
0 1

)
. (9.6)

Let us now move to the subprincipal symbol. Careful examination of
formula (9.3) shows that

∗
K = −g , (9.7)

which means that this particular framing has the ‘Einstein property’, namely,
that the Hodge dual of contorsion is proportional to the metric. Formula (9.7)
implies that

∇
∗
K = 0. (9.8)

In view of (9.7) and (9.8), Theorem 7.13 gives us

a+
−1(t; 0, η) =

1 − it

4‖η‖ Id +O(t2), (9.9)

a−
−1(t; 0, η) = −1 − it

4‖η‖ Id − it

2‖η‖
(

η3 η1 − iη2

η2 + iη2 −η3

)
+ O(t2). (9.10)

In particular, formulae (9.9) and (9.10) imply

a+
−1(t; 0, η) =

1
4

(
1 − it 0

0 1 − it

)
+ O(t2),

a−
−1(t; 0, η) = −1

4

(
1 + it 0

0 1 − 3it

)
+ O(t2).

(9.11)
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Let us now deal with W− . Arguing as above, one obtains the following
expressions for the principal symbols

a+
0 (t; 0, η) = e

it
2

(
1 0
0 0

)
, a−

0 (t; 0, η) = e− it
2

(
0 0
0 1

)
. (9.12)

The subprincipal symbols are calculated in a similar fashion, only now we
have

∗
K = +g , (9.13)

compare with (9.7). Combining (9.13) with Theorem 7.13 we get

a+
−1(t; 0, η) = −1 + it

4‖η‖ Id +O(t2), (9.14)

a−
−1(t; 0, η) =

1 + it

4‖η‖ Id − it

2‖η‖
(

η3 η1 − iη2

η2 + iη2 −η3

)
+ O(t2). (9.15)

In particular, formulae (9.14) and (9.15) imply

a+
−1(t; 0, η) = −1

4

(
1 + it 0

0 1 + it

)
+ O(t2),

a−
−1(t; 0, η) =

1
4

(
1 − it 0

0 1 + 3it

)
+ O(t2).

(9.16)

Of course, the principal symbols of positive and negative propagators
of W− at (t; 0, η) can also be obtained from (9.6) by means of the gauge
transformation (9.4) evaluated at z±(t; 0, η),

G|(u,v,w)=z±(t;0,η) =
(

e∓it 0
0 e±it

)
. (9.17)

Namely, multiplying (9.6) from the left by the Hermitian conjugate of (9.17),
we arrive at (9.12).

Finally, let us run a test for Theorem 8.1. It is well known [9,10,49,50]
that the eigenvalues of the Dirac operator on the round 3-sphere are

±
(

k +
1
2

)
, k = 1, 2, . . . ,

with multiplicity k(k + 1). Therefore, in view of (8.2), we have

Fλ→t[N ′
+ ∗ μ](y, t) =

1
2π2

e− it
2

+∞∑

k=1

k(k + 1)e−ikt. (9.18)
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Note that the quantity 2π2 appearing in the RHS of (9.18) is the volume of
the 3-sphere. Taking the Fourier transform of the RHS of (9.18) we get

F−1
t→λ

[
1

2π2
e− it

2

∞∑

k=1

(k2 + k)e−iktμ̂(t)

]

=
1

4π3

+∞∑

k=1

∫ +∞

−∞
eit(λ− 1

2−k) (k2 + k) μ̂(t) dt

=
1

4π3

+∞∑

k=−∞

∫ +∞

−∞
e−itk (k2 + k)

(
eit(λ− 1

2 )μ̂(t)
)
dt + O(λ−∞)

=
1

2π2

(
(λ − 1

2
)2 + (λ − 1

2
) + O(λ−∞)

)

=
1

2π2

(
λ2 − 1

4
+ O(λ−∞)

)
. (9.19)

Combining (9.19) and (9.18) we arrive at

[N ′
+ ∗ μ](y, λ) =

1
2π2

(
λ2 − 1

4
+ O(λ−∞)

)
as λ → +∞. (9.20)

Since R(y) = 6, formula (9.20) is in agreement with (8.1).

9.2. The Case M = S
2 × S

1

Let M = S
2 × S

1 be endowed with the metric g = gS2 + dϕ2, where gS2 is
the round metric on the 2-sphere. Let y ∈ M be given. In this subsection we
shall compute the small time expansion for the subprincipal symbols of the
Dirac propagator W̃ associated with a Levi-Civita framing at y. In this case,
the result will not be isotropic in momentum η, because, unlike the previous
example, (S2 × S

1, g) is not an Einstein manifold.
Without loss of generality, we assume that y coincides with the north

pole when projected onto S
2. The exponential map expy : TyM → M is

realised explicitly by

(u, v, w) �→ (θ =
√

u2 + v2, φ = arctan(v/u), ϕ = w), (9.21)

where (θ, φ) are standard spherical coordinates on S
2. Formula (9.21) de-

fines geodesic normal coordinates (u, v, w) in a neighbourhood of y. In such
coordinates, the metric g reads

g(u, v, w)

=
1

u2 + v2

⎛

⎜
⎜
⎜
⎜
⎝

u2 +
v2 sin2(

√
u2+v2)

u2+v2 uv

(
1 − sin2(

√
u2+v2)

u2+v2

)
0

uv

(
1 − sin2(

√
u2+v2)

u2+v2

)
v2 +

u2 sin2(
√

u2+v2)

u2+v2 0

0 0 u2 + v2

⎞

⎟
⎟
⎟
⎟
⎠

. (9.22)

We will assume that normal coordinates are chosen so that the Levi-Civita
framing satisfies ẽj

α(y) = δj
α. In this case, the Hamiltonian flows generated
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by the eigenvalues of W̃prin read, simply,

z±(t; 0, η) = ±t
η

‖η‖ , ξ±(t; 0, η) = η.

The Ricci curvature of g in normal coordinates (u, v, w) is given by

Ric(u, v, w)

=
1

u2 + v2

⎛

⎜⎜
⎝

u2 + v2 sin2(
√

u2+v2)
u2+v2 uv

(
1 − sin2(

√
u2+v2)

u2+v2

)
0

uv
(
1 − sin2(

√
u2+v2)

u2+v2

)
v2 + u2 sin2(

√
u2+v2)

u2+v2 0

0 0 0

⎞

⎟⎟
⎠ . (9.23)

Hence, Theorem 7.10 tells us that

ã±
−1(t; y, η)

= ∓it

(
1

12‖η‖ P̃ ±(y, η) − 1

8‖η‖2 (η1 σ1(y) + η2 σ2(y))

)
+ O(t2)

= ∓ it

24‖η‖2
[
‖η‖ Id+(−3 ± 1) ηα σα(y) + 3 s3 ηβ ẽ3

β(y)
]

+ O(t2), (9.24)

where the sj and the σα are defined by formulae (1.2) and (1.3) respectively,
and ẽ3 is the vector field ∂/∂ϕ (unit vector field along the positive direction
of the circle S

1).
Let us stress once again that, even though the intermediate steps depend

on the choice of coordinates, the final result (9.24) is a scalar matrix-function,
thus independent of the choice of coordinates. The only assumption involved
in the derivation of formula (9.24) is that we used a particular Levi-Civita
framing at the point y, one which respects the product structure of the man-
ifold. The presence of the vector field ẽ3 in formula (9.24) is a manifestation
of anisotropy.

Appendix A: The Weitzenböck Connection

In this appendix we recall the main properties of the Weitzenböck connection
and fix our sign conventions, which are chosen in agreement with [42].

Let M be an oriented Riemannian 3-manifold and let {ej}3
j=1 be a global

orthonormal framing.

Definition A.1. The Weitzenböck connection is the affine connection ∇W on
M defined by the condition

∇W
v (f i ei) = v(f i) ei , (A.1)

for every vector field v and f i ∈ C∞(M ;R), i = 1, 2, 3.

The Weitzenböck connection is a curvature-free metric-compatible con-
nection. Formula (A.1) implies

0 = ∇W
ek

ej
α = ek

β ∂ej
α

∂xβ
+ ek

β Υα
βγ ej

γ ,
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which, in turn, yields a formula for the Weitzenböck connection coefficients
Υα

βγ in terms of the framing:

Υα
βγ = − ej

γ
∂ej

α

∂xβ
= ej

α ∂ej
γ

∂xβ
. (A.2)

Here ej
α := δjk gαβ ek

β . The torsion tensor associated with ∇W is

Tα
βγ = Υα

βγ − Υα
γβ (A.3)

and the curvature tensor vanishes identically. The Weitzenböck connection
coefficients and the Christoffel symbols are related via the identity

Υα
βγ = Γα

βγ +
1
2

(Tα
βγ + Tβ

α
γ + Tγ

α
β) , (A.4)

see [42, Eqn. (7.34)]. The second summand on the RHS of (A.4)

Kα
βγ :=

1
2

(Tα
βγ + Tβ

α
γ + Tγ

α
β) (A.5)

is called contorsion of ∇W . Note that the torsion tensor is antisymmetric in
the second and third indices, Tα

βγ = −Tα
γβ , whereas the contorsion tensor

is antisymmetric in the first and third ones, Kαβγ = −Kγβα (the first index
was lowered using the metric). Torsion and contorsion can be expressed one
in terms of the other and capture the geometric information encoded within
the framing.

In dimension three antisymmetric tensors of order two are equivalent to
vectors. Therefore, we define

∗
Tαβ :=

1
2
Tα

μν Eμνβ , (A.6)
∗
Kαβ :=

1
2
Kμ

α
ν Eμνβ , (A.7)

where

Eαβγ(x) := ρ(x) εαβγ , (A.8)

ρ is the Riemannian density and ε is the totally antisymmetric symbol, ε123 :=
+1. It is often convenient to use (A.6) and (A.7) instead of T and K because
the former have lower order—two instead of three.

As a final remark, we observe that formulae (A.6), (A.7) and (A.5)
imply

∗
Kαβ =

∗
Tαβ − 1

2

∗
T γ

γ gαβ , (A.9)
∗
Tαβ =

∗
Kαβ −

∗
Kγ

γ gαβ . (A.10)

Appendix B: Some techincal proofs

B.1. Proof of Theorem 5.4

In the following we work in normal coordinates centred at y = 0 such that

ej
α(0) = ẽj

α(0) = δj
α.
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Since G ∈ C∞(M ;SU(2)) and G(0) = Id, there exist smooth real-valued
functions Ak, k = 1, 2, 3, such that Ak(0) = 0 and

G(x) = eisk Ak(x) (B.1)

in a neighbourhood of y = 0. Differentiating (B.1) with respect to x and
evaluating the result at 0, we obtain

Gxα(0) = isk Fkα, (B.2)

where Fkα := [Ak]xα(0).
Now, differentiating (5.22) with respect to x and evaluating the result

at 0, we obtain

∂ej
α

∂xβ
(0) =

1
2

tr
[
sj G∗

xβ (0) sk + sj sk Gxβ (0)
]
ẽk

α(0) +
∂ẽk

α

∂xβ
(0)

=
1
2

tr
[
[sj sk Gxβ (0)]∗ + sj sk Gxβ (0

]
ẽk

α(0) +
∂ẽk

α

∂xβ
(0)

= Re tr
[
sj sk Gxβ (0)

]
ẽk

α(0) +
∂ẽk

α

∂xβ
(0).

(B.3)

Contracting (B.3) with ej
γ(0) = ẽj

γ(0) = δj
γ , using (A.2) and rearranging,

we obtain

Υ̃α
βγ(0) − Υα

βγ(0) = Re tr
[
i sjs

ksl
]

Flβ δj
γ δk

α

= −2 εγ
αl Flβ .

(B.4)

In view of (A.3), formula (B.4) implies

Tα
βγ(0) − T̃α

βγ(0) = 2 εγ
αl Flβ − 2 εβ

αl Flγ . (B.5)

Contracting (B.5) with 1
2Eσ

βγ(y) = 1
2εσ

βγ , cf. (A.8), we get

∗
Tα

σ(0) −
∗
T̃α

σ(0) = 2εσ
βγ εγ

αlFlβ

= 2δβl Flβ δσ
α − 2δσ

l Flα.
(B.6)

Inverting (B.6) so as to express F in terms of [
∗
T −

∗
T̃ ](0), we arrive at

− 2Fkβ = δk
α [

∗
T −

∗
T̃ ]αβ(y) − 1

2
δkβ [

∗
T −

∗
T̃ ]γγ(0)

= δk
α
[ ∗
K −

∗
K̃

]
αβ

(0). (B.7)

Substitution of (B.7) into (B.2) gives (5.23).

B. 2. Proof of Theorem 7.11

Recall that according to formula (7.49) we have G(y) = Id. In the following
we work in a sufficiently small neighbourhood U of y and we choose normal
coordinates centred at y = 0 such that ẽj

α(0) = ej
α(0) = δj

α.
Since G ∈ C∞(M ;SU(2)) and G(0) = Id, there exist smooth real-valued

functions Ak, k = 1, 2, 3, such that vk(0) = 0 and

G(x) = eisk Ak(x) (B.8)
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in a neighbourhood of y = 0. Differentiating (B.8) twice with respect to x
and evaluating the result at zero we obtain

Gxαxβ (0) = isk [Ak]xαxβ (0) − 1
2
sk sj (FkαFjβ + FjαFkβ)

=isk Hkαβ − δjk IdFjαFkβ .
(B.9)

Here Hkαβ := [Ak]xαxβ (0) and Fkα := [Ak]xα(0). The task at hand is to
express H in terms of the contorsion tensor K and its derivatives.

Differentiating the identity

Υα
βγ(x) = ek

α(x)
∂ek

γ

∂xβ
(x)

with respect to xμ, evaluating the outcome at y = 0 and resorting to Lem-
ma 7.2, we obtain

[Υα
βγ ]xμ (0) =

∂ek
α

∂xμ
(0)

∂ek
γ

∂xβ
(0) + ek

α(0)
∂2ek

γ

∂xβ∂xμ
(0)

= −Υα
μρ(0)Υρ

βγ(0)

+ δk
α Re tr[sk G∗

xβxμ(0) sl + sk G∗
xβ (0) sl Gxμ(0)] δl

γ

+ δk
α [ẽk

γ ]xβxμ(0)

= −Υα
μρ(0)Υρ

βγ(0) + δk
αδl

γ Re tr[sl s
k G∗

xβxμ(0)]

+ δk
αδl

γ Re tr[sk G∗
xβ (0) sl Gxμ(0)] + δk

α [ẽk
γ ]xβxμ(0).

(B.10)

Straightforward calculations show that

−Υα
μρ(0)Υρ

βγ(0) = −Re tr [sα G∗
xμ(0)sρ] Re tr [sρ G∗

xβ (0)sγ ]

= 4δα
γF r

βFrμ − 4δαj δγ
k FjβFkμ,

(B.11)

δk
αδl

γ Re tr[sl s
k G∗

xβxμ(0)] = −2εα
γ

r Hrβμ − 2δα
γ F r

β Frμ (B.12)

and

δk
αδl

γ Re tr[sl G
∗
xβ (0) sk Gxμ(0)]

= 2(δαkδj
γ + δαjδk

γ)FjμFkβ − 2δα
γ F r

β Frμ. (B.13)

Substituting (B.11)–(B.13) into (B.10) we obtain

[Υα
βγ ]xμ (0)

= −2εα
γ

r Hrβμ + 2(δαjδk
γ − δαkδj

γ) FjμFkβ + δk
α [ẽk

γ ]xβxμ(0). (B.14)

Summing up (B.14) and (B.14) with indices β and μ swapped, we arrive at

[Υα
βγ ]xμ (0) + [Υα

μγ ]xβ (0) = −4εα
γ

r Hrβμ + 2δk
α [ẽk

γ ]xβxμ(0). (B.15)

Now, formula (A.4) and the fact that the Christoffel symbols vanish at y = 0
imply

εα
γ

ρ Υα
μγ(0) = εα

γ
ρ Kα

μγ(0) = 2
∗
Kμρ(0). (B.16)

Hence, by contracting (B.15) with εα
γ

ρ, substituting (B.16) in, and resorting
to the identity

εα
γ

ρ εα
γ

r = 2δρ
r,
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we obtain

[
∗
Kβρ]xμ(0) + [

∗
Kμρ]xβ (0) = −4 δρ

r Hrβμ + εα
γ

ρ δk
α [ẽk

γ ]xβxμ(0). (B.17)

We claim that

εα
γ

ρ δk
α [ẽk

γ ]xβxμ(0) = 0. (B.18)

To see this, let us observe that formula (7.1) implies

ẽk
γ(x) = ek

γ(0) − 1
6
ek

ρ(0)Rγτ
ρ
ν(0)xτxν + O(‖x‖3), j = 1, 2, 3,

so that

δk
α [ẽk

γ ]xβxμ(0) = −1
6

(Rγβ
α

μ + Rγμ
α

β) (0). (B.19)

The RHS of (B.19) is symmetric in α and γ, whereas εα
γ

ρ is antisymmetric
in the same indices, so (B.18) follows.

All in all, (B.9), (B.17) and (B.18) give us

∇α∇β G(0) = − i

4
[∇α

∗
Kβρ(0) + ∇β

∗
Kαρ(0)]σρ(0) − δjk IdFjαFkβ . (B.20)

Finally, substitution of (B.7) with K̃(0) = 0 (which is the case for the Levi-
Civita framing) into (B.20) yields (7.54).
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Applications, 276 Birkhäuser Verlag, 120–153 (2020)

[8] Bär, C.: Metrics with harmonic spinors. Geom. Funct. Anal. 6, 899–942 (1996)

[9] Bär, C.: The Dirac operator on space forms of positive curvature. J. Math.
Soc. Jpn. 48, 69–83 (1996)

[10] Bär, C.: Dependence of the Dirac spectrum on the spin structure. Sémin. Congr.
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de métriques. Commun. Math. Phys. 144, 581–599 (1992)

[14] Branson, T.P., Gilkey, P.B.: Residues of the eta function for an operator of
Dirac type. J. Funct. Anal. 108, 47–87 (1992)

[15] Capoferri, M.: Diagonalization of elliptic systems via pseudodifferential projec-
tions. J. Differ. Equ. 313, 157–187 (2022)

[16] Capoferri, M., Dappiaggi, C., Drago, N.: Global wave parametrices on globally
hyperbolic spacetimes. J. Math. Anal. Appl. 490, 124316 (2020)

[17] Capoferri, M., Levitin, M., Vassiliev, D.: Geometric wave propagator on Rie-
mannian manifolds. Preprint arXiv:1902.06982,: to appear in Commun. Anal.
Geom. (2019)

[18] Capoferri, M., Murro, S.: Global and microlocal aspects of Dirac operators:
propagators and Hadamard states. Preprint arXiv:2201.12104 (2022)

[19] Capoferri, M., Saveliev, N., Vassiliev, D.: Classification of first order sesquilin-
ear forms. Rev. Math. Phys. 32, 2050027 (2020)

[20] Capoferri, M., Vassiliev, D.: Invariant subspaces of elliptic systems I: pseudo-
differential projections. J. Funct. Anal. 282(8), 109402 (2022)

[21] Capoferri, M., Vassiliev, D.: Invariant subspaces of elliptic systems II: spectral
theory. J. Spectr. Theory 12(1), 301–338 (2022)

http://arxiv.org/abs/1902.06982
http://arxiv.org/abs/2201.12104


IEOT Global Dirac Operator Page 55 of 56    30 

[22] Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math.
Phys. 186, 731–750 (1997)

[23] Chervova, O., Downes, R.J., Vassiliev, D.: The spectral function of a first order
elliptic system. J. Spectr. Theory 3(3), 317–360 (2013)

[24] Chervova, O., Downes, R.J., Vassiliev, D.: Spectral theoretic characterization
of the massless Dirac operator. J. Lond. Math. Soc. 89, 301–320 (2014)

[25] Downes, R.J., Levitin, M., Vassiliev, D.: Spectral asymmetry of the massless
Dirac operator on a 3-torus. J. Math. Phys. 54 (2013)

[26] Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators
and periodic bicharacteristics. Invent. Math. 29(1), 39–79 (1975)
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