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Abstract 

Background: Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissi-
bility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolu-
tionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in 
detecting emerging variants that can more successfully navigate the immune landscape.

Methods: We present phylogenetic relationships and lineage dynamics within England (a country with high levels of 
immunity), as inferred from a random community sample of individuals who provided a self-administered throat and 
nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Dur-
ing round 14 (9 September–27 September 2021) and 15 (19 October–5 November 2021) lineages were determined 
for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the 
previous month.

Results: We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in 
their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a repro-
duction number 15% (95% CI 8–23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated 
with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 
and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/
early November, with only the lineage AY.6 exhibiting clustering towards the South of England.

Conclusions: As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from 
random community samples can augment routine surveillance data without the potential biases introduced due to 
higher sampling rates of symptomatic individuals.
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Background
Since its first documented case in India in November 
2020 [1] the Delta variant of SARS-CoV-2 has spread 
rapidly across the world and by 16 November 2021 was 
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responsible for 99.7% of all SARS-CoV-2 infections [2]. 
Its rapid rise to dominance has been attributed to greater 
levels of transmissibility [3, 4] than previously circulat-
ing variants with the reproduction number estimated to 
be over two-fold higher [5], as well as possible reduced 
vaccine effectiveness against infection [6]. Since its global 
dissemination, continued adaptive evolution has led to a 
diverse set of Delta sub-lineages, with distinct combina-
tions of mutations (especially on the spike protein) [7, 8].

Since July 2021 the lineage AY.4.2 (Pango nomenclature 
[9]), a descendant of the original Delta variant (hence-
forth B.1.617.2) has increased in proportion in routine 
surveillance data for England from 8.5% the week begin-
ning 4 October [10] to 14.7% the week beginning 31 
October [11]. AY.4.2 was declared a variant under inves-
tigation (VUI) by the UK Health Security Agency on 20 
October 2021 [12]. Globally AY.4.2 had been detected 
in 43 countries by 22 November 2021 [13] but had only 
been estimated at a cumulative proportion greater than 
1% in Poland [14]. AY.4.2 has two defining mutations in 
the spike protein, Y145H and A222V, but is otherwise 
similar to AY.4, a lineage that is far more widespread. 
AY.4 was the most prevalent lineage in England on 29 
October 2021 [11] and had been detected in 87 coun-
tries by 22 November 2021 [15], in some of which it had 
already been reported as the most prevalent lineage (by 
23 November 2021) [16, 17].

England has recorded high levels of SARS-CoV-2 infec-
tion over the course of the pandemic [4, 18] and vacci-
nated, as part of its mass vaccination campaign (Pfizer/
BioNTec, Oxford/AstraZeneca and Moderna), a large 
proportion of its population (80.3% of over 12 year olds 
double vaccinated by 27 November 2021), with further 
booster jabs (Pfizer/BioNTec or Moderna) being rolled 
out in adults (30.5% of over 12 year olds having received 
a booster dose by 27 November 2021) [18]. This has led 
to high levels of antibodies against coronavirus with 
92.8% of adults in England estimated to test positive for 
antibodies (IgG antibodies against the SARS-CoV-2 tri-
meric spike protein) in the week beginning 1 November 
2021 [19]. With high vaccination coverage in the popula-
tion it is likely that there is substantial selective pressure 
on SARS-CoV-2 towards immune escape and vaccine 
breakthrough infections. Genomic surveillance in highly 
immunised regions is crucial to detect emerging variants 
that can more successfully navigate the immune land-
scape that has been created by both natural infection and 
vaccination.

The REal-time Assessment of Community Transmis-
sion-1 (REACT-1) study is a series of cross-sectional sur-
veys of the population of England that seeks to estimate 
the prevalence of SARS-CoV-2 on a monthly basis [4, 
20], with genomic sequencing performed on all positive 

samples with a low enough cycle threshold (Ct) value (a 
proxy for viral load) and high enough volume. Due to its 
sampling procedure it does not suffer from the biases of 
routine surveillance that can be heavily biased towards 
symptomatic individuals [21]; symptom status can be 
highly dependent on levels of immunity [22]. Here we 
present the genomic analysis of the (N = 2163) posi-
tive samples for round 14 and round 15 which were col-
lected from 9 to 27 September 2021 and 19 October to 5 
November 2021 respectively.

Material and methods
Viral genome sequencing
The methods of the REACT-1 study have been described 
elsewhere [23]. REACT-1 is a repeat cross-sectional 
study whereby in each round a random subset of the 
English population (selected from the National Health 
Service general practitioners’ patient list) is invited to 
obtain a self-administered swab test (parent/guard-
ian administered for 5–12  year olds). These tests are 
then sent to a laboratory to undergo rt-PCR testing for 
the presence of SARS-CoV-2. A round of the study cov-
ers a ~ 2- to 3-week period and has occurred approxi-
mately monthly since May 2020 with between 100,000 
and 185,000 individuals taking part in each round. Since 
round 8 in January 2021 all positive samples with a low 
enough N-gene Ct value (the threshold was 34 in rounds 
14 and 15 presented here) and sufficient volume have 
been sent for genome sequencing. Amplification of the 
extracted RNA was performed using the ARTIC proto-
col [24] (version 4 primers), with sequence libraries pre-
pared using CoronaHiT [25]; sequencing was performed 
on the Illumina NextSeq 500 platform. Raw sequences 
were analysed using the bioinformatic pipeline [26] and 
then uploaded to CLIMB [27]. Lineages were assigned 
using PangoLEARN [28] (database version 2021-11-04), 
a machine learning-based assignment algorithm, using 
Pango nomenclature [9]. For some sequences of low 
overall quality, a lineage designation was not possible and 
so they were not included in the analyses. Samples with 
less than 50% of bases covered were further excluded 
from the analysis. Of the 1322 lineages determined dur-
ing rounds 14 and 15, 1160 individuals provided informa-
tion on their symptoms in the previous month with 314 
(27.1%) reporting no symptoms.

Phylogeographic model
For all sequences from REACT-1 rounds 11 (15 April–3 
May 2021), 12 (20 May–7 June 2021), 13 (24 June–12 July 
2021), 14 (9 September–27 September 2021) and 15 (19 
October–5 November 2021), in which the lineage des-
ignated was Delta or a Delta sub-lineage, a maximum 
likelihood phylogenetic tree was constructed using a 
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HKY model implemented in IQ-TREE [29]. An uncor-
related relaxed clock model implemented in TreeTime 
[30], assuming a normal distribution of rates with mean 
0.0008 substitutions per site per year and a single coales-
cent rate for the time scale, was then fit to the maximum 
likelihood phylogenetic tree producing a time-resolved 
phylogenetic tree. The mutation rates at the tree’s tips 
were extracted from the model and a Gaussian regres-
sion model was fit to the samples obtained during round 
14 and 15 for the 8 most prevalent lineages (AY.39, AY.4, 
AY.4.2, AY.43, AY.44, AY.5, AY.6, B.1.617.2) including lin-
eage and round as covariates. A mugration model (imple-
mented in TreeTime [30]) was run on the time-resolved 
phylogenetic tree, treating the region in which each sam-
ple was isolated as a discrete state. This allowed estimates 
of the migration rates between regions to be calculated 
(assumed to be symmetric).

Statistical analyses
The 95% confidence intervals for lineage proportions 
were calculated using the Wilson method [31] assuming 
a Binomial distribution. This method is preferred when 
the number of positives is low but is still valid when this 
is not the case [32]. Higher accuracy in confidence inter-
val estimates for when the number of positives is low was 
chosen so that lower bounds on case numbers for rarer 
lineages were as accurate as possible.

Estimates of the true number of swab-positive infec-
tions in England during round 14 and round 15 for line-
ages in which only one sample was detected in a round 
were calculated by multiplying the estimated proportion 
of the lineage for each round, the weighted prevalence 
estimated for each round [33], and the population size 
of England [34]. The 95% confidence intervals were esti-
mated by simulating the entire distribution for propor-
tion and weighted prevalence and multiplying the two 
together. The distribution of weighted prevalence was 
estimated by randomly sampling from a normal distri-
bution with mean value the central estimate, and stand-
ard deviation the width of the 95% confidence interval 
divided by 3.92 (2 times 1.96). The distribution of the 
lineage proportion was estimated by calculating the Wil-
son confidence intervals at different levels (0.00001 to 
0.99999 in intervals of 0.00001).

The significance of differences in proportions of par-
ticular lineages by age group and region was calculated 
using Fisher’s exact test with a binary outcome variable 
(lineage of interest or not). Differences with a p-value less 
than 0.05 were considered statistically significant. Analy-
sis was only completed for a lineage in a round if there 
were more than 90 samples (AY.4 round 14, AY.4 round 
15, AY.4.2 round 15, B.1.617.2 round 15), so that there 

were, on average, more than 10 samples per parameter (9 
regions in England).

Shannon diversity was calculated using all data for 
round 14 and round 15, and for each region for round 14 
and round 15 [35]. The significance of any differences in 
Shannon diversity between round 14 and 15 (for all data) 
and between regions in each round was assessed using 
the Hutcheson T-test [36] and its associated p-value.

The relative growth rate of a lineage compared to all 
other lineages was estimated using a Bayesian logistic 
regression model fit to the binary outcome variable (line-
age of interest or not) over time. The two model param-
eters (intercept and gradient) were given uninformative 
constant prior distributions. The probability that the 
growth rate was greater than zero was calculated from 
the model’s posterior. Lineages were deemed to be dif-
ferent to zero if the posterior probability that the growth 
rate was greater than zero was greater than 0.975 or less 
than 0.025, similar to a p-value threshold of 0.05.

The growth rates of AY.4.2 and AY.4 infected individu-
als were estimated by fitting an exponential model to 
the daily weighted prevalence using all REACT-1 data 
(all negatives and all AY.4/AY.4.2 associated positives) 
for rounds 14 and 15 assuming a Binomial likelihood. 
Weightings for individual REACT-1 samples were calcu-
lated using rim weighting [37] by: sex, deciles of the IMD, 
LTLA counts and ethnic group. Growth rates were then 
converted to estimates of the reproduction number R 
assuming a gamma-distributed generation time with the 
shape parameter, n = 2.29, and rate parameter, b = 0.36 
[38] through the equation (1+ r

b
)n [39]. The multiplica-

tive R advantage of AY.4.2 over AY.4 was estimated using 
the entire posterior distribution of RAY .4.2/RAY .4 with the 
median and 95% credible interval reported.

For each lineage with more than 1 sample in a round 
the presence of clustering was assessed. The pairwise dis-
tance matrix between all n samples that were designated 
to a specific lineage was calculated and from this a mean 
pairwise distance was calculated for the lineage. Next, 
10,000 random combinations of n positive individuals (n 
positive individuals chosen each time without replace-
ment), for which any lineage was determined, were 
selected and for each combination the distance matrix 
and mean distance was calculated. The proportion of the 
10,000 estimated mean distances below the lineage-spe-
cific mean distance was then calculated. Clustering was 
deemed to be significant if this proportion was less than 
0.05.

For the 8 most prevalent lineages across rounds 14 and 
15 Gaussian regression was performed to estimate the 
mean N- and E-gene Ct values for each lineage and p-val-
ues used to assess the significance of any difference to 
the reference lineage (AY.4). Models were run on all data 
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(rounds 14 and 15 combined) and then run on data from 
each individual round as a sensitivity analysis.

The proportion of individuals reporting any symp-
toms in the month prior to swabbing and any of the most 
predictive COVID-19 symptoms in the month prior to 
swabbing was calculated for the 8 most prevalent line-
ages across rounds 14 and 15. P-values were estimated 
for each lineage relative to AY.4 by performing logistic 
regression with the symptom status as a binary variable 
(any symptoms vs no symptoms, and separately most 
predictive COVID-19 symptoms vs none of the most 
predictive COVID-19 symptoms). The sensitivity of the 
results that AY.4.2 is less likely to exhibit the most predic-
tive COVID-19 symptoms, relative to AY.4, was assessed 
by fitting further logistic regression models including 
age, round of study and N-gene Ct value as covariates 
(E-gene was also investigated but was no different to 
using N-gene and so this was not included).

Results
Lineage diversity.

In round 14 the lineage was determined for 481 of 
764 positive samples. All lineages were Delta or a Delta 

sub-lineage with the four most prevalent lineages being 
AY.4 at 65.1% (60.7%, 69.2%, n = 313), AY.43 at 6.0% 
(4.2%, 8.5%, n = 29), B.1.617.2 (original Delta variant) at 
5.2% (3.6%, 7.6%, n = 25) and AY.4.2 at 4.6% (3.0%, 6.8%, 
n = 22) (Fig.  1-A, Additional file  2: Table  S1). In round 
15 the lineage was determined for 841 of 1399 positive 
samples. Again all samples were Delta or a Delta sub-lin-
eage with the most prevalent lineages again being AY.4 at 
57.6% (54.2%, 60.9%, n = 484), B.1.617.2 at 12.8% (10.8%, 
15.3%, n = 108), AY.4.2 at 11.8% (9.8%, 14.1%, n = 99) and 
AY.43 at 4.8% (3.5%, 6.4%, n = 40). The next four most 
prevalent lineages over both rounds combined were AY.5, 
AY.6, AY.39, and AY.44. However, even a single detection 
of a lineage corresponded nationally to an average of 971 
(95% CI [171, 5463]) individuals that would test swab-
positive on any given day during round 14 and 1051 (95% 
CI [185, 5928]) individuals that would test swab-positive 
on any given day during round 15. During rounds 14 and 
15 there were 33 and 31 unique lineages detected, respec-
tively with 44 unique lineages detected overall. There 
was no apparent difference in genetic diversity between 
the two rounds as estimated by the Shannon diversity 
(p = 0.831) (Additional file 2: Table S2).
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Fig. 1 Proportion of positives by Delta sub-lineage. A The proportion of positives samples by round designated to the 8 lineages most prevalent 
over both rounds 14 and 15 (AY.39, AY.4, AY.4.2, AY.43, AY.44, AY.5, AY.6, B.1.617.2). B–D Proportion of positive samples by round and region with 
lineage designated as B B.1.617.2, C AY.4 and D AY.4.2. For all figures, point estimates of proportion are shown (bars) with 95% confidence intervals 
(error-bars)
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Distribution by region and age
During round 15 the proportion of B.1.617.2 was found 
to be highest in London at 22.1% (14.9%, 31.4%), being 
greater than the proportion in South East, East of Eng-
land and Yorkshire and The Humber (Fig. 1B, Additional 
file 2: Table S3). Conversely, in round 14 and 15 the pro-
portion of AY.4 was lowest in London at 48.1% (35.4%, 
61.1%) and 44.2% (34.6%, 54.2%) respectively and was 
found to be higher in North West, West Midlands and 
Yorkshire and The Humber during both rounds (Fig. 1C, 
Additional file  2: Table  S3). This reduced proportion of 
the nationally most prevalent lineage (AY.4) in London 
coincided with a higher level of genetic diversity in Lon-
don. The Shannon diversity was highest in London dur-
ing both rounds at 1.814 in round 14 and 1.809 in round 
15 (p < 0.001 and p = 0.002 respectively, reference = West 
Midlands, Additional file  2: Table  S2). Higher levels of 
genetic diversity were also found during both rounds in 

the South East and South West, relative to the West Mid-
lands (which showed the lowest levels of genetic diversity 
in round 14 and the second lowest in round 15). There 
were no regional differences in the proportion of AY.4.2 
during round 15 (Fig.  1D, Additional file  2: Table  S3). 
Regional differences during round 14 and regional dif-
ferences for other lineages could not be investigated due 
to small sample sizes but numbers are provided in Addi-
tional file 2: Table S4.

Sub-regional analysis was performed in order to inves-
tigate the presence of clustering in each round for each 
lineage (see Methods). Despite being highly geographi-
cally dispersed (Fig. 2) clustering was detected in round 
14 for AY.4 (p = 0.037) and AY.4.2 (p = 0.029) (Addi-
tional file 2: Table S5). However, during round 15 cluster-
ing was no longer evident for both AY.4 (p = 0.706) and 
AY.4.2 (p = 0.067). The only lineage for which clustering 
was detected in round 15 was AY.6 (p = 0.003) which was 

Fig. 2 Geographic distribution of all positive samples with a lineage designation (Green) with overlaid distribution of AY.4.2 (Pink, left), AY.4 (Purple, 
centre) and AY.6 (Orange, right) for both round 14 (top) and round 15 (bottom). The lineages shown had either a significant level of clustering in 
round 14 (AY.4 and AY.4.2) or round 15 (AY.6)



Page 6 of 17Eales et al. BMC Infectious Diseases          (2022) 22:647 

found mainly in London and towards the South coast of 
England.

During round 15 the proportion of B.1.617.2 was 
higher in individuals ages 25–34  years old at 24.2% 
(12.8%, 41.0%) relative to those aged 35–44  years old 
at 8.0% (4.1%, 15.0%) (p = 0.026) (Additional file  2: 
Table  S6). The proportion of AY.4 was found to be 
lower in 5–12 year olds at 52.1% (44.6%, 59.5%) relative 
to 35–44 year olds in which the proportion of AY.4 was 
65.0% (55.3%, 73.6%) (p = 0.042) in round 15, while it was 
not in round 14.There were no differences between age 
groups in the proportion of AY.4.2 during round 15. Dif-
ferences between age groups during round 14 for AY.4.2 

and other lineages could not be investigated due to small 
sample sizes but numbers are provided in Additional 
file 2: Table S7.

Detection of increasing sub‑lineages
Logistic regression models were fitted to the proportion 
of each lineage detected in either round 14 or 15, allow-
ing daily growth rates in proportion to be estimated 
(Fig.  3, Additional file  2: Table  S8). Of the 44 unique 
lineages detected, 6 were estimated to have growth 
rates different to zero. AY.4, AY.39, AY.98.1 and AY.111 
were decreasing in proportion, whereas AY.4.2 and 
B.1.617.2 were increasing in proportion. The decrease in 

Fig. 3 A Estimated daily growth rate of the log odds of each lineage detected relative to all other lineages. Shown are both lineages with a growth 
rate in proportion not significantly different to zero (black) and those with a growth rate in proportion significantly different to zero (coloured). B–G 
Raw estimates of the daily proportions (points) with 95% confidence intervals (error bars) for lineages with a growth rate in proportion significantly 
different to zero: B.1.617.2 (B, pink), AY.4.2 (C, yellow), AY.4 (D, dark green), AY.111 (E, orange), AY.39 (F, purple), AY.98.1 (G, light green). Also shown is 
the best-fit Bayesian logistic regression model with central estimate (solid line) and 95% credible interval (shaded region)
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proportion of AY.4 corresponded to a daily growth rate 
of − 0.009 (− 0.015, − 0.003). The increase in proportions 
of B.1.617.2 and AY.4.2 corresponded to growth rates of 
0.029 (0.017, 0.041) and 0.028 (0.016, 0.041) respectively.

Comparing estimates of the reproduction number 
R from round 14 to round 15 for AY.4 and AY.4.2 (see 
Methods) we estimate a multiplicative R advantage of 
1.15 (1.08, 1.23), assuming no change in the generation 
time distribution.

Differences in cycle threshold values
There were quantitative differences between lineages in 
the N- and E-gene Ct values. The mean N- and E-gene Ct 
values were lowest for AY.6 though not materially lower 
than the values obtained for AY.4 (Fig.  4, Additional 
file 2: Table S9). Mean N-gene Ct value was 22.14 (20.30, 
23.99) for AY.6 compared to 23.98 (23.68, 24.28) for AY.4 
(p = 0.054). Mean E-gene Ct value was 20.74 (18.90, 
22.59) for AY.6 compared to 22.46 (22.16, 22.76) for AY.4 
(p = 0.071). Mean N- and E-gene Ct values were found to 
be comparable to AY.4 for both AY.4.2 and AY.5. Relative 

to AY.4, mean N- and E-gene Ct values for AY.43, AY.44, 
AY.39 and B.1.617.2 were all higher.

Differences in symptomatology
The proportion of individuals exhibiting the most pre-
dictive COVID-19 symptoms (loss or change of sense 
of taste, loss or change of sense of smell, new persistent 
cough, fever) in the month prior to swabbing was lower 
(p = 0.029) in those infected with AY.4.2 at 42.1% (33.1%, 
51.5%) relative to those infected with AY.4 at 53.4% 
(49.7%, 57.1%) (Fig. 5A, Additional file 2: Table S10). This 
difference was not explained by patterns in age, round of 
the study or N-gene Ct value (Fig. 5B, Additional file 2: 
Table S11).

In addition, 68.6% (59.8%, 76.3%) of those infected 
with AY.4.2 reported any symptoms in the month prior 
to swabbing compared to 75.4% (72.2%, 78.3%) for those 
infected with AY.4 (p = 0.119). There were no differences 
evident in symptom reporting between AY.4 infected 
individuals and the other 6 most prevalent lineages 
(B.1.617.2, AY.5, AY.6, AY.43, AY.44 and AY.39).

Fig. 4 Estimated mean N-gene (A) and E-gene (B) Ct values for the 8 lineages most prevalent over rounds 14 and 15 (AY.39, AY.4, AY.4.2, AY.43, 
AY.44, AY.5, AY.6 and B.1.617.2) as calculated using Gaussian regression. Point estimates (points) and 95% confidence intervals (lines) are shown for 
estimates obtained using data from both rounds (blue), data from just round 14 (green) and data from just round 15 (purple)
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Phylogeographic analysis
A relaxed molecular clock model was fit to the data 
and used to estimate a time-resolved phylogenetic 
tree (Fig. 6). AY.4.2 was found to populate two closely 
related clades that emerged in June/July 2021. AY.43, 
AY.5 and AY.6 were also observed to have distinct 
clade groupings having emerged around June/July 2021 
as well. The mutation rates inferred at the tree’s tips 
showed a large degree of variation in all of the 8 most 
prevalent lineages. The mean mutation rate for AY.4.2 
was found to be 0.57 (< 0.01, 1.10)×10

−4 lower than the 
mean mutation rate of AY.4 (p = 0.050) (Fig.  6, Addi-
tional file 2: Table S2). The mean mutation rate inferred 

for samples collected in round 15 was found to be 1.00 
(0.70, 1.40)×10

−4 lower than the mean mutation rate 
for samples collected in round 14 (p < 0.001).

A mugration model was run on the time-resolved phy-
logenetic tree to estimate the relative virus migration 
rates between regions, a measure of inter-region trans-
mission (Additional file  2: Table  S13). Overall levels of 
inter-region transmission were lowest for the North East 
during round 14 and 15. The highest overall level of inter-
region transmission was observed for the North West 
during round 14 and 15, but looking at individual rounds 
there were higher levels for Yorkshire and The Humber 
in round 14 and for the South East in round 15. High 

Fig. 5 A Proportion of positive individuals reporting any symptoms or reporting one of the four most predictive COVID-19 symptoms (loss or 
change of sense of taste, loss or change of sense of smell, new persistent cough, fever) in the last month by lineage of infection, for the 8 lineages 
most prevalent during rounds 14 and 15 (AY.39, AY.4, AY.4.2, AY.43, AY.44, AY.5, AY.6 and B.1.617.2). Point estimates of proportion are shown (bars) 
with 95% confidence intervals (error-bars). B Odds ratios of reporting the most predictive COVID-19 symptoms in the last months for multivariable 
logistic regression models including lineage (AY.4.2 with reference AY.4, red), age (relative to change of 10 years in age, blue), round of study (round 
15 with reference round 14, green) and N-gene Ct value (relative to change in Ct value of 5, purple). The central estimates of odds ratios are shown 
(points) with 95% confidence intervals (error-bars)
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rates of transmission during round 14 and 15 were found 
between the North West and Yorkshire and The Humber, 
the West Midlands and the South East, and also between 
the South East and London.

Discussion
The proportion of AY.4.2 was found to be increasing 
between 9 September and 5 November 2021, as also 
reported in the routine data surveillance for England 
[11]. In round 15, AY.4.2 represented 11.8% of infections 
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in line with other estimates [11]. This increase in pro-
portion corresponded to a 15% increase in transmission 
advantage although this assumes the generation time dis-
tribution has remained constant; a decrease of the gen-
eration time distribution for AY.4.2 would also explain 
the increased growth but we are unable to test for this 
with prevalence data. In the past, the A222V mutation, 
associated with AY.4.2, increased in frequency but this 
was eventually deemed to be due to a founder effect and 
not a transmission advantage [40, 41]. Given the high lev-
els of geographic dispersion (though with some cluster-
ing) during rounds 14 and 15 it is highly unlikely that a 
founder effect can explain the current growth, though we 
can not rule out a similar effect due to higher proportions 
of AY.4.2 in school-aged children (prevalence increased 
to a greater extent in school-aged children than in adults 
from July to September 2021 [4, 42]). However, as the 
proportion AY.4.2 was approximately constant by age in 
round 15 this growth advantage would not be detected 
into the future if this was the case.

Observed distributions of N- and E-gene Ct values 
were similar in AY.4.2 and AY.4 and so it is unlikely that 
the transmission advantage observed can be attributed 
to a higher viral load (a Ct 1 unit lower corresponds to 
an approximate twofold increase in viral load [43]). 
However, a reduced proportion of AY.4.2 infected indi-
viduals reporting symptoms could explain the increased 
transmissibility in multiple ways. Higher levels of 
asymptomatic infection could lead to greater levels of 
asymptomatic transmission. Further current testing 
procedures and government isolation advice in England 
heavily focus on the most predictive COVID-19 symp-
toms, which are reported less often by AY.4.2 infected 
individuals compared with AY.4. Thus, symptom-based 
policies could introduce an advantage for AY.4.2 over 
AY.4. Finally, the reduced level of symptom report-
ing could be indicative of greater levels of re-infection 
if AY.4.2 were more successful at evading the immune 
response. However, studies have found that vaccines 
are no less effective against AY.4.2 than other Delta 
sub-lineages [11] and vaccine-induced antibody neu-
tralisation titres for AY.4.2 are similar to those for AY.4 
and B.1.617.2 [44]. However, any possible evasion of 
the immune response caused by natural infections has 
yet to be investigated and the numbers reporting previ-
ous infection is too small and the proportion vaccinated 
too large in this REACT-1 dataset to allow a meaningful 
comparison (715 of 817 [87.5%] individuals aged 18 and 
over reported having had two vaccine doses). We found 
a moderately reduced mutation rate of AY.4.2 relative to 
AY.4 which may also have introduced a fitness advantage 
due to a smaller number of deleterious mutations [45, 
46].

Other lineages
Though we have focused on AY.4.2 we have detected a 
diverse set of Delta sub-lineages, with even a single detec-
tion corresponding to approximately 1000 swab-positive 
infections in the community at one time during the study 
period. The short time over which AY.4.2 went from 
being an undeclared lineage to a variant under inves-
tigation shows how crucial it is to have careful surveil-
lance of all lineages irrespective of frequency. For 38 of 
the 44 detected lineages, it was unable to be determined 
whether the proportion was increasing or decreasing.

Between rounds 14 and 15 a reduction in the mean 
mutation rate of the virus was detected suggesting a 
reduction in the rate of evolution. However, despite this 
slowdown evolution is still occurring and we observed an 
increase in the proportion of B.1.617.2, an indicator that 
the number of undeclared B.1.617.2 sub-lineages was 
increasing, suggesting even further diversity of Delta sub-
lineages that have yet to be given a unique lineage desig-
nation. Further, though we capture the dynamics within 
England, SARS-CoV-2 is a global problem and new vari-
ants of concern can arise anywhere in the world and then 
spread through international travel. Higher proportions 
of B.1.617.2 were detected in London as well as higher 
levels of diversity; this likely reflects the role London con-
tinues to play in the introduction of international vari-
ants [47]. Within England, the North West region played 
a major role in the dissemination of the virus, having the 
greatest inferred rate of inter-region transmission.

Analysis of N- and E-gene Ct values found decreased 
levels in AY.4 and AY.4.2, which is unsurprising given 
both have successfully disseminated across the coun-
try, but AY.5 and AY.6 were also found to have similarly 
low Ct values suggesting similar viral loads; the mean 
N- and E-gene Ct value appeared slightly lower for 
AY.6 compared to AY.4. Clustering was also detected in 
round 15 for AY.6; careful consideration of AY.6 should 
be given in the future in case the current lack of growth 
so far reported [11] has only been due to its geographic 
isolation.

Limitations
We have presented the inferred dynamics between Delta 
sub-lineages in England between 9 September and 5 
November 2021. Our sample’s main strength over those 
obtained from routine surveillance is the random nature 
of the testing program leading to a relatively unbiased 
set of positive samples. However, as the sample sizes 
we obtain are relatively small compared with routine 
national surveillance our estimates have lower precision. 
Lineages were only successfully determined for ~ 61% 
of positive samples, with the ability to determine a line-
age heavily influenced by a sample’s Ct value; this has 
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potentially led to biases with lineages with lower Ct val-
ues more heavily represented in the dataset. Detecting 
distinct sub-lineages is a high-dimensional problem, with 
often many common mutations being shared between 
distinct lineages with only a small number of distinguish-
ing mutations. This is exacerbated when all the lineages 
are highly related, as in the current nature of the pan-
demic in England where all samples are descendants of 
Delta (B.1.617.2), and can lead to incorrect designations 
[48]. Further, only sub-lineages that have been defined 
are able to be assigned to a sample. During the emer-
gence of a new sub-lineage there is a phase of ambiguity 
when numbers are small and it is unclear if the mutations 
present warrant the declaration of a new sub-lineage. 
This can be seen in the detection of AY.4.2 and AY.43; 
both lineages had been circulating for months by Octo-
ber 2021 [11] but were not yet declared sub-lineages by 
pangoLEARN [28] in early October 2021, and so did not 
appear in the publicly available technical briefings [49]. 
The analysis of mutation rates using Gaussian regression 
may also have included biases as individual measure-
ments of mutation rates would not have independent and 
identically distributed normal errors, a key assumption of 
these linear models.

Conclusions
Since the beginning of the pandemic, selective pressure 
has led to rapid evolution in the spike protein [50] driv-
ing leaps in transmissibility [5]. However, as a greater 
proportion of the population acquires immunity through 
either infection or vaccination there will be a shift in 
evolutionary pressure towards immune escape. Even in 
England where there are high levels of vaccination and 
past infection, new variants such as AY.4.2 have emerged 
with advantages over previous strains. With the con-
tinued emergence of variants able to evade population 
immunity and undergoing transmission, SARS-CoV-2 
is highly unlikely to ever undergo local extinction and 
is likely moving towards a state of endemicity. At the 
point of endemicity it is probable that adaptive evolu-
tion would more closely resemble the continual antigenic 
drift observed in influenza H3N2 [51, 52]. As the evolu-
tionary phase of SARS-CoV-2 progresses towards ende-
micity, continued surveillance is paramount in not only 
detecting increased levels of transmissibility for specific 
lineages, but in also better characterising the mechanism 
behind such changes and informing policy around test-
ing (including case definitions). Representative commu-
nity studies such as REACT-1 can be useful in measuring 
the relative growth of lineages and in characterising dif-
ferences in viral loads, symptomatology and geographic 
distribution.
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