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Abstract

Paths are vital in facilitating network connectivity and have been traditionally charac-

terised by global graph theoretic measures. However, motivated by large or dynamic

complex networks, alternative analysis methods have been become popular, based

on assessing the presence of induced substructures. These typically involve profiling

networks based on the under of over representation of particular induced triads. We

examine in detail how induced triads support paths and network connectivity. We begin

by considering a triadic census derived from all possible shortest paths as compared

to a triadic census from the full network. We find distinct differences, and present a

classification for induced triads based on the extent to which their edges can be used

in a shortest path. This leads to a new binary classification for edges, called overt or

covert, based on supporting flooding across induced triads. We develop these concepts

to create local centrality measures that are computationally efficient and which can be

used to express the potential for containment or spread from a path. We extend these

measures to introduce a convenient edge criticality measure, and compare it against

conventional criticality metrics. Results are demonstrated through networks from the

literature and synthesised networks.
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Chapter 1

Introduction

This thesis proposes new measures and techniques that consider how the links present

within induced triads relate to network connectivity, specifically concerning paths.

Triads are a cornerstone of complex network analysis, regarded as a useful unit for

analysis. However the composition of a triad imposes different connectivity roles on

its constituent edges and considering the edges of induced triads in a network gives an

alternative basis to assess paths, connectivity and edge criticality. We formalise this as a

new concept and examine it in detail.

We discuss relevant background in complex networks (Section 1.1), focusing on the role

of edges, and role of triads in complex networks. Figure 1.3 exemplifies the motivation

for the different roles edges play in triads, which is the main issue that we consider as a

metric to analyse paths and connectivity in networks. We then move to discussing the

research questions addressed in this thesis (Section 1.2) before discussing the thesis

structure and relevant contributions given within each chapter (Section 1.2).

There is now a wealth of data available that captures the online and real-world social

relationships within different groups and organisations, offering the potential for us

to gain a much deeper understanding of the roles of individual nodes within different

community structures. Accordingly a number of data sets are used throughout the thesis,

as outlined in Section 2.5.
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1.1 Background

A complex network is a type of mathematical graph, composed of nodes (or vertices)

representing objects or entities, with edges between vertices representing their relation-

ship. The point of differentiation with classical graph theory occurs due to the scale

and possible dynamism of complex networks, where for example nodes and edges may

frequently change, appear or disappear. To incorporate these phenomena, new forms of

analysis beyond static graph theory have been introduced, often involving techniques

from theoretical physics.

Throughout this thesis we will refer to the mathematical object as a graph. We always

assume a graph G = (V (G), E(G)) is built on a vertex set V (G) and an edge set E(G),

where (u, v) ∈ E(G) is an edge if u, v ∈ V (G) are connected. When we assign what

the nodes and edges represent (i.e in terms of data sets) we refer to a graph as a network.

Graphs can be undirected or directed, depending on whether the edges have direction

(i.e the vertex pair representing the edge is ordered). Throughout the rest of the thesis

we will discuss directed graphs; thus for simplicity we will simply called these graphs,

and specifically refer to graphs which are not directed as undirected graphs.

The importance of complex networks has grown with the progression of science and

availability of data sources through which modelling can take place. Typically, complex

networks are used in a real-world context to understand non-trivial features relevant

to a particular scenario. Examples where the study of complex networks has been

useful include the Internet, emails and social networking. For example, Mastrobuoni

and Patacchini [51] use various network metrics to identify key figures within mafia

networks. They use various metrics to identify different roles of players within the mafia,

and are even able to compare these statistics with various factors such as age, in order

to profile the typical characteristics of mob bosses. Due to the scale and complexity

of complex networks we cannot often easily observe the whole network, and instead

methodologies in this field rely on metrics to characterise and profile them in other

ways.
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Much of the development in studying complex networks has involved generalising the

concept of an edge. For example, Przulj [66] generalises the concept of node degree (i.e

how many edges are attached to a node) by generalising to the number of substructures

attached to a node, and uses this to generalise the degree distribution of a network.

Edges in a graph can be thought of as induced substructures of the most basic kind, each

involving just a pair of nodes. They represent an atomic substructure on which further

insights can be built.

Complex network theory has taken this a step further by looking at the induced sub-

structures from larger subsets of nodes, known as graphlets. For example, graphlets

involving three nodes have been commonly studied, representing triads of nodes and

the relationship between them.

We formally define an induced triad in Definition 1:

Definition 1. Let G = (V (G), E(G)) be a graph. Then let V (T ) ⊂ V (G) be a subset

of three vertices in G . An induced triad, T , is itself a graph with vertex set V (T ) and

edge set E(T ) such that (u, v) ∈ E(T ) if an only if (u, v) ∈ E(G).

Similarly to graphs, induced triads can be undirected or directed. For simplicity, unless

explicitly stated as undirected, when we talk about a substructure (dyad, triad or tetrad)

we are referring to the directed induced substructure throughout the rest of the thesis.

There are 16 possible isomorphism classes of triads: those which are connected (i.e

contain at least two edges, such that every vertex in a triad is incident with at least one

edge) and those which are unconnected (such that not every vertex in a triad is incident

with one edge). The 13 possible connected triads are shown in Figure 1.1, each with

their own unique label using Holland and Leindhardt’s MAN labelling [39]. The first

unit represents the number of mutual (reciprocated) ties, the second unit the number

of asymmetric ties and the third unit the number of null ties in the triad. Sometimes

a fourth character is present to distinguish between triads that would otherwise have

the same labelling, and represents additional characteristics of the triad. T is used
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in transitive triads (see Chapter Two [75]), C represents a cycle formed by the edges

present in the triad. D represents down, U represents up. For example, 030C has zero

mutual ties, three asymmetric ties, zero null ties and is cyclic.

We are interested in triads because they are the smallest non-trivial substructure. Dyads

(substructures on two vertices) are constructed on two vertices and the edges between

them. Therefore, although dyads can be used to identify reciprocity between vertices in

a network, their interpretation stops at identifying interactions between vertices within a

group setting.

Triads, in contrast, can identify a variety of patterns such as such as social balance

[34, 13]. That is, then tendency for the edge (i, k) to exist given the existence of (i, j)

and (j, k) within a triad. Triads also allow more information to be encoded relevant to

a scenario, such as pairs of nodes that may act together to provide influence on a third

node, for example. In fact interest in triads naturally arise naturally in many different

contexts, concerning issues such as representation of logical structure, redundancy

or social concepts in behavioural networks. For example, consider Figure 1.2. This

example contains two triads where the central node plays a very different role in both

triads. In 021D node j holds influence (or potential power) over the other nodes.

However in 021U no single node holds influence over the others, and here j has no

influence.

Larger substructures, such as tetrads, may present local characteristics which cannot be

present in triads due to their small size, such as bridging within the substructure [23]

(in tetrads, bridging occurs when three vertices are connected, yet only one is adjacent

to a fourth). However, increasing the number of vertices in a substructure exponentially

increases the number of isomorphism classes for the substructure. Whilst there are

just 16 isomorphically different triads, there are 218 different tetrads. This makes it

extremely difficult to observe and compare the behaviour of all possible classes of tetrad

in a graph: indeed, much of the literature relating to tetrads focuses on a specific subset

of induced tetrad (for example, [52], [23]) or investigates only undirected tetrads (such
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021D 021U 021C

111D 111U 030T

030C 201 120D

120U 120C 210

300

Figure 1.1: The 13 isomorphism classes of connected triad [75], using Holland and
Leindhardt’s MAN labelling [39]. The first unit represents the number of mutual
(reciprocated) ties, the second unit the number of asymmetric ties and the third
unit the number of null ties in the triad. Sometimes a fourth character is present
to distinguish between triads that would otherwise have the same labelling, and
represents additional characteristics of the triad. T is used in transitive triads (see
Chapter Two [75]), C represents a cycle formed by the edges present in the triad.
D represents down, U represents up. For example, 030C has zero mutual ties,
three asymmetric ties, zero null ties and is cyclic.
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i k

j

021D

i k

j

021U

Figure 1.2: Two triads 021D and 021U (see Figure 1.1). The role of the central
node j differs greatly in between both these triads.

as Milo et al. [56]). Further, finding and classifying all possible tetrads in a graph is

more computationally complex than finding and classifying all possible triads because

there are fewer nodes and edges in a triad.

Further understanding networks through triads motivates our research, given that triads

are widely used as units of analysis for studying the entire network in many complex

network scenarios. This includes the analysis of motifs [71], being induced triads that

are significantly over represented in complex networks, which has gained to much

popularity in recent years. Motifs were first introduced by Shen-Orr et al. [71] who

found motifs present in networks across biochemistry, neurobiology, ecology, and

engineering and noted that the motifs found in one classification of network may differ

from those found in another. This approach takes networks, typically those of scale, and

profiles then to determine the under or over representation of induced triads relative to

the induced triads found from sampling a corpus of comparable randomly generated

networks. The profile of motifs induced by a network provides a useful characterisation

of its latent features, from which distinct classes of network have been established. This

form of network analysis has mainly supported inter-network comparison based on

assessing the relative volume of induced substructures. Famously Milo et al [56] study

similarities in local structure of networks through profiling triadic motifs, outlining

several superfamilies of otherwise unrelated networks.

However, as a consequence of this analysis approach, there are many papers in the

literature where interpretation of results stops with identification of graphlets that

represent motifs. While these may have domain-specific interpretations, it is also the
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case that networks are often compared between different application areas. In these

cases, it is rational to question in general terms, what the differences between induced

substructures may mean in terms of general connectivity, for example what are the

implications of a 111U (see Figure 1.1) triad dominating in a complex network as

compared to a 102U triad?

These questions motivate further consideration of the role of different induced triads

in network connectivity. We believe there is a need for a general method to interpret

the implications of particular triads being present in a network structure, based on the

configuration of their edges. Edge structure within triads affects the potential paths

between nodes at a local level. It is possible that the simple nature of triads has led to

the mis-conception that there is little to be gained from considering the role of edges

within them. However, the position and direction of edges within the triad in relation to

the triad’s other edges is highly influential with respect to connectivity.

A useful example of our approach to classify edges within a triad can be seen in Figure

1.3. Consider Figure 1.3 in terms of communication along a path which includes the

edge (i, j). Here the edge (i, j) holds different significance in Triad One than in Triad

Two - specifically communication on edge (i, j) can subsequently be conveyed by j to

k in Triad One but this is not the case in Triad Two. Thus if communication across (i, j)

is sensitive, Triad One offers less potential for the message to spread than Triad Two.

Conversely, if third party contagion is desirable, (i, j) in Triad One would be preferential.

In Chapter Four, we will formally define the terms overt and covert to classify an edge

based on its direction in relation to the direction and existence of its neighbours; which

can be applied to describe whether an edge enables or hinders communication with

a third party. Note also that because edges often participate in multiple induced sub-

graphs, it is possible that an edge may play different roles in different induced triads.

Thus as networks increase in complexity, edges provide different degrees of freedom

in supporting the nature of an intended communication in terms of potential spread or

containment.
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Triad One

i k

j

Triad Two

i j

k

Figure 1.3: Different roles edges can play in connected triads. In Triad One, the
edge (i, j) can support flooding the triad, but it does not in Triad Two. In Chapter
Four we define edges as overt or covert, where in this example (i, j) acts as overt
in Triad One and covert in Triad Two. Were this to represent communication on
edge (i, j), then when (i, j) is overt (Triad One).

Throughout this thesis, we only discuss connected triads and so refer to these as triads

from now on.

1.2 Hypothesis and Research Questions

We are interested in network connectivity: which is one of the most fundamental, basic

concepts of graph theory. A graph is connected if every vertex is reachable from every

other vertex via a path. Connectivity asks for the minimum number of elements that

need to be removed to disconnect the graph, separating it into multiple subgraphs.

Triads are fundamental because they are the smallest, non-trivial substructure and act as

the building blocks for graphs, yet existing literature is preoccupied with identifying

motifs (triads which occur more frequently than at random). We propose to instead

explore the link between triads and connectivity. In particular, we look to the role

the edges (representing relationships between two vertices) of a triad play in graph

connectivity.

We hypothesise that classifying the role of edges in providing connectivity in networks

with respect to induced triads, can provide additional insights to conventional graphlet-

based analysis, that are beyond standard metrics of network connectivity.
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This hypothesis is intended to complement existing complex network analysis ap-

proaches where the unit of reference is the triad. From this perspective, it is natural to

consider edges in a network taking into account the role that they play in triads. This

leads us to develop new concepts that characterise edges relative to induced triads. It

also provides a new bridge between complex-network analysis based on the presence of

triads, and graph theoretic approaches to network analysis which address a network’s

structure through features aligned to edges and nodes.

The following specific research questions are addressed.

RQ1: The role of triads in paths: if connectivity in a graph is dependent on the existence

of paths, then what is the relationship between triads and paths?

RQ2: The role of edges in triad connectivity: if connectivity within the triad is depend-

ent on the arrangement of its edges, then how do we identify which edges are most

fundamental to enabling connectivity within the triad?

RQ3: The role of edges of a triad in paths: combining RQ1 and RQ2, how can the

edges which enable connectivity within the triad affect paths, and thereby connectivity

within a graph?

These research questions are addressed using both theoretical and empirical observations

and wide ranging data sources (Section 2.5).

1.3 Thesis Structure and Contributions

In this section we discuss the thesis structure, where each heading represents a chapter

of the thesis. We highlight the relevant contributions in each chapter which investigate

research questions RQ1-3.

Chapter Two - Background and Literature Review: The related literature and

works can be found in Chapter Two. This is divided into three major sections. In
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preparation for introducing overt and covert as classifications for edges in triads (Chapter

Four), we highlight the relevant definitions of edges in triads such as local clustering

coefficient and transitivity. Secondly, since we develop overt and covert classification

for edges as a centrality metric in Chapter Four, (i.e. a measure of the importance of a

node or edge within a network) to highlight edge importance, we introduce other key

centrality metrics for complex networks. In particular, we highlight centrality metrics

related to induced substructures and centrality metrics related to edges. We note that

our centrality metric relates to both, highlighting its novelty in the literature. Finally,

we discuss criticality metrics to determine importance of edges in terms of network

structure.

Chapter Three - Alternative Census Measures for Triads Based on Their Occur-

rence Across Paths: Chapter Three serves as an introduction to the behaviour of

triads across paths. Since paths are inherent to connectivity within a graph, and our new

classification of edges introduced in Chapter Four can be applied to manage spread, we

take a triad census of triads which occur along paths. We offer two new census measures

to assess importance of triads to shortest paths, and demonstrate that they allow insight

beyond the standard Graph Triadic Census measure. This leads to our first contribution:

C1 New triad census measures to establish the proportion of triads that occur more

frequently along shortest paths, as compared with the entire network. This

addresses research question RQ1.

Chapter Four - The Centrality of Edges Based on their Role in Induced Triads:

In Chapter Four, we introduce the classification of edges as either overt or covert. This

leads to our second contribution:

C2 A new classification for edges based on their role in supporting connectivity

within triads. This addresses research question RQ2.
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We note that an edge can be present in multiple triads and play different roles sim-

ultaneously. This leads to arguments establishing how many triads as edge acts as

overt or covert. We present this as an entirely local new centrality measure for edges

to determine their importance: satisfying the gap in the literature between centrality

measures concerning substructures and centrality metrics concerning edges. We outline

this as the third contribution:

C3 A new local centrality metric for edges based on our new edge classification in

C2. This addresses research question RQ2.

We use our centrality metric to profile 34 real world networks by taking frequency

distributions of the two centrality metrics. Further, we compare our new centrality

metrics with some existing centrality metrics by taking the Spearman’s rank correlation.

The Role of Overt and Covert Edge Centrality in Paths: As our centrality metrics

highlight the importance of edges in terms of their ability to enable connectivity within

the triad we apply our metrics in Chapter Five to paths to investigate the effect on

graph connectivity through investigating the impact on paths. We control for overt-

ness/covertness of paths in various generated networks, observing the difference in

between these controlled paths and shortest paths. We offer this as an method to minim-

ise the spread of information to unintended parties when sending a message between

two individuals through a series of intermediaries, discussing our results in terms of

cost/benefits to a system. This is our fourth contribution:

C4 A new method to understand spread of a message through applying the new

centrality metric C2 to path problems in networks. This addresses research

question RQ3.

Chapter Six - Edge Criticality in Networks Based on Overt and Covert Centrality:

Chapter Six also explores the link between overt/covert edges and graph connectivity,
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but instead of constructing paths, we investigate how removing edges breaks a graph

into multiple connected components. We combine the overt and covert centrality into a

single metric to determine an edge’s criticality. Critical edges are important to network

structure as the network breaks down when these edges are removed. We follow by

comparing our overt and covert criticality metric to existing criticality metrics. Chapter

Six offers contribution C5.

C5 A new locally derived criticality metric for edges based on the centrality metric

in C2 to observe the importance of an edge with respect to maintaining overall

network connectivity. This addresses research question RQ3.

These contributions have formed the following peer-reviewed paper:

Hudson, L., Whitaker, R., Allen, S., Turner, L., & Felmlee, D. (2021). The

Centrality of Edges Based on their Role in Induced Triads. ASONAM 2021 -

The 2021 IEEE/ACM International Conference on Advances in Social Network

Analysis and Mining (08-11 November 2021). The Hague, Netherlands.
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Chapter 2

Background and Literature Review

2.1 Introduction

Complex networks are a fundamental area studied through mathematics, physics and

computer science. These networks differ from other classes of networks such as random

networks and lattices, exhibiting non-trivial characteristics such as long tailed degree

distributions [6]. With the emergence of new technology that enables access to large

data sets and the computational tools to analyse them, the study of complex networks

has become more accessible. As such this area of research is interdisciplinary and

therefore relates to a large body of research. We focus on the areas most relevant to

our work. These concern: i) characterising edges in triads (Section 2.2), ii) centrality

metrics for complex networks (Section 2.3), iii) criticality metrics for networks (Section

2.4) and iv) potential data sets (Section 2.5).

In Section 2.2 we address the classifications of triads based on the existence of particular

edges, most notably the Global [49] and Local Clustering Coefficient [76]. Clustering

is a feature dominant in complex networks, in particular social networks, where ver-

tices form tightly knit groups [76, 37]. This is relevant to our development of a new

classification for edges (Chapter Four), based on the role of edges within triads.

In Section 2.3 we discuss various centrality metrics. Centrality characterises edges or

vertices as important (or central), differing based upon their interpretations of import-

ance. We highlight centrality metrics built on edges, noting there are not many and
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furthermore, most are generalisations of vertex-based variations [72]-[73] on between-

ness centrality [26]. We also highlight centrality metrics built on substructures, such

as [19, 66, 10], noting that these do not take into account the role of edges. In Chapter

Four we utilise our classification for edges based on their role within induced triads as a

new centrality metric, which bridges the gap in the literature between centrality metrics

on edges and centrality metrics on substructures.

Section 2.4 relates to edge criticality [79]: an alternative to centrality in determining the

importance of an edge to the overall structure of the network. This is fundamental to

Chapter Six, where we construct a new criticality metric from our centrality metrics, and

compare this with existing measures. We note that in social networks, counter intuitively

weak ties are the most critical to network structure and their removal dissolves a network

more quickly [61], through breaking it into a larger number of connected components.

We explore some existing criticality metrics built on cliques (an easily computable

metric), most notably the Bridgeness Index [77] and the Betweenness Centrality and

Clique model [79] to establish those most critical edges.

Finally, in Section 2.5 we identify and display features of the 34 data sets to test our

edge metrics on.

2.2 Defining Edges in a Triad

The role of vertices within triads has been extensively studied, most notably in terms of

global [49] and local clustering coefficient [76]: measures to highlight the degree of ties

between neighbours of neighbours of a vertex. In real world networks (particularly social

networks) verticies tend to cluster together, forming tightly knit groups [76, 37]. We

begin by highlighting these concepts and their role in supporting network connectivity.

We note that these measures cannot be applied to weighted or directed networks; moving

to developments taken to rectify this such as the weighted clustering coefficient [64] or

transitivity [75] in weighted networks [64]. We discuss the limitations of these measures,
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highlighting their dependence on vertices and lack of information relative to edges.

Global Clustering Coefficient

Measuring the global clustering coefficient was first attempted by Luce and Perry [49].

They turn to adjacency matrices of graphs to calculate the number of open and closed

triplets (though they do not explicitly call them open and closed), summing the non-

diagonal cells of the squared adjacency matrix to calculate the number of open triplets,

and summing the diagonal cells of the cubed adjacency matrix to calculate the number

of closed triplets [64]. A triplet is defined as three vertices that satisfy the property of

having at least two undirected edges between them (in other words - a connected triad,

although triplets are built on undirected networks in this context). A triplet is closed if

there are three edges between the vertices, or open otherwise. For example, consider

Example 2.2.1.

Example 2.2.1. Suppose there exists two triples T1 and T2, both with vertex set: {i, j, k}

and edge sets E(T1) = {(i, j), (j, k)} and E(T2) = {(i, j), (j, k), (i, k)} as shown in

Figure 2.1. Then T1 is an open triplet, whereas T2 is a closed triplet.

i k

j

T1

i k

j

T2

Figure 2.1: Example of two triplets, where T1 is an open triplet and T2 a closed
triplet.

Recalling Figure 1.3 from Chapter One, we discuss the different roles edges can play in

connecting triads, in terms of ability to flood the triad (overt or covert, later formally

defined in Chapter Four). This classification relies on the presence of a particular edge

within a triad relative to the edge we are classifying, i.e: relying on the existence of a
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neighbour of a neighbour. Open and closed triplets are a similar, primitive definition;

also relying on the presence of a neighbour of a neighbour, but instead classifying the

whole triad rather than the triad’s edges. This definition is for undirected graphs, though

can be extended to directed graphs, as seen with transitive triads.

The global clustering coefficient C of a graph G is the fraction of closed triplets which

exist of all possible triples in the entire network, i.e:

C =
Number of Closed Triplets

Number of All Triplets
(2.1)

C is bound between 0 and 1. In a random network, C −→ 0 as the graph increases in

size; whereas in a completely connected network C = 1.

One major limitation of the standard global clustering coefficient [49] is that it can’t

be applied to weighted networks. Were the weights of edges to represent the strength

of ties, then the global clustering coefficient would not recognise this and therefore

may characterise similarly two networks with very different weight distributions [64].

Tore and Opsahl [64] offer a solution to this with their global clustering coefficient for

weighted networks (see Section 2.2). Further, the global clustering coefficient cannot be

applied to directed networks, where reciprocity of relationships is another important

factor. Transitivity [75] as defined on directed networks extends this, and can be applied

to networks in the same manner as global clustering coefficient (see Section 2.2).

Local Clustering Coefficient

In contrast to the global clustering coefficient, the local clustering coefficient (Watts

and Strogatz) [76] measures the cliquishness in neighbourhoods. The definition for

local clustering coefficient is still built on the existence of closed triplets, but allows to

distinguish the degree of clustering pivoting on a single vertex.

Suppose that for some graph G with vertex set V (G) and edge set E(G), a vertex
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v ∈ V (G) has kv neighbours; then at most kv(kv−1)
2

edges can exist between them (this

occurs when every neighbour of v is connected to every other neighbour of v). Then the

local clustering coefficient Cv on vertex v denotes the fraction of these allowable edges

that exist, i.e:

Cv =
|{(i, j) ∈ E(G)|i, j ∈ N(v)}|

kv(kv−1)
2

=
2|{(i, j) ∈ E(G)|i, j ∈ N(v)}|

kv(kv − 1)
(2.2)

where N(v) represents the neighbourhood of v.

For example, consider Example 2.2.2.

Example 2.2.2. Suppose there exists some vertex v ∈ V (G) with neighbourhood

N(v) = {u1, u2, u3} where ni ∈ V (G). Suppose that (u1, u2), (u2, u3) ∈ E(G) as

shown in Figure 2.2.

u1 v

u2

u3

Figure 2.2: Example for computing the local clustering coefficient Cv of vertex v.

Then the maximum possible number of edges between neighbours of v is 3, i.e the

edges (u1, u2), (u2, u3), (u1, u3). Since only two of these exist, then the local clustering

coefficient for v is Cv = 2
3
.

Local clustering coefficient [76] suffers from similar problems to the global clustering

coefficient, namely that it cannot be applied to weighted or directed networks in its

current formulation in Equation 2.2 [64]. There have been several attempts to generalise

local clustering for weighted networks such as in [7, 48, 62, 80]. Further, local clustering

coefficient is biased by a vertex’s degree. The higher the degree of a vertex, the greater

the number of neighbours and therefore the higher the likelihood it is contained in more
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open triplets, decreasing the clustering coefficient [64] This correlation may be even

stronger in preferential attachment networks [64]

Clustering Coefficient for Weighted Networks

A major limitation of the both clustering coefficients is that they cannot be applied to

weighted networks [64]. Opsahl and Panzarasa [64] generalised the global clustering

coefficient to account for weighted networks. To calculate a generalised global clustering

coefficient, Cw, for a graph G they propose:

Cw =
Total Weight of Closed Triplets

Total Weight of Triplets
(2.3)

The authors take care to ensure that under their measure, the properties Cw −→ 0 as

network size increases and Cw = 1 in a completely connected network still hold. They

extend their argument for directed networks under the guise of a generalised transitivity

measure, which we outline in Section 2.2.

Transitive Triads

A further limitation of the global clustering coefficient is that it cannot be applied

to directed networks. Transitivity instead defines a more refined concept for triplets,

which can be applied to undirected networks and share results with global clustering

coefficient [59, 21]. We note that transitivity is not always consistent in the literature:

sometimes the global clustering coefficient is called the transitivity coefficient, which

is counter-intuitive because (as we will see) Waserman and Faust’s [75] definition of

transitivity applies only to directed networks, whereas the global clustering coefficient

is only applicable to networks which are undirected. However, were we to map the

edges of a directed triad to undirected edges, Wasserman and Faust’s [75] definition

of a transitive triad would map to a closed triplet, whilst an intransitive or vacuously
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transitive triad would map to an open triplet; hence the definition is equivalent under

this mapping. For consistency, we will always refer to Wasserman and Faust’s definition

[75] of transitivity and refer to local [76] and global clustering [49] coefficients as the

undirected version defined in Equations 2.1 and 2.2 in Sections 2.2 and 2.2 respectively.

Transitive triads are an example of structures that relate network theory to human

behaviour and relationships between groups of three people. Balance theory is the

study of attitude change, first introduced by Heider [34], which was extended to triadic

analysis in social networks by Harary and Cartright [13]. In particular, triads in this

context can highlight possible relations such as “A friend of a friend is also my

friend ”. These relations are naturally transitive, i.e if i ~ j and j ~ k then i ~ k where

~ represents the relationship of ‘liking’. This extends to triads through Waserman and

Fausts’ definition of transitivity in triads [75].

Definition 2. A triad (i, j, k) is transitive if whenever there is a directed edge from i

to j and from j to k, then there is a directed edge from i to k [75]. If no edge (i, j) or

(j, k) exists then a triad is vacuously transitive. Otherwise, it is intransitive.

Consider Example 2.3.

Example 2.2.3. Suppose there exists three triads T1, T2 and T3 on vertex set: {i, j, k}

and edge sets E(T1) = {(i, j), (j, k)(i, k)}, E(T2) = {(i, j), (j, k)} and E(T3) =

{(i, j), (i, k)} as shown in Figure 2.3. Then T1 is a transitive triad, whereas T2 is

intransitive. T3 is vacuously transitive as there is an edge from i to j and i to k, yet no

edge from j to k.

i k

j

T1

i k

j

T2

i k

j

T3

Figure 2.3: Example of three triads T1, T2 and T3 where T1 is transitive, T2 is
intransitve and T3 is vacuously transitive..



2.2 Defining Edges in a Triad 20

Tore and Opsahl [64] define Tw in order to apply a global clustering coefficient to

directed networks. They further their generalised clustering coefficient for weighted

networks (Equation 2.3 to a generalised transitivity coefficient for weighted networks

through defining Tw as:

Tw =
Total Weight of Transitive Triplets

Total Weight of Triplets
(2.4)

When T and Tw are defined this way, they exhibit the same properties as global clustering

coefficient and generalised global clustering coefficient for weighted networks, namely:

T −→ 0 and Tw −→ 0 as the network size increases in random networks, and T = 1

and Tw = 1 in completely connected networks.

These measures are designed to employ triads to assess global characteristics of a

network, but in doing so they focus on particular triads and the importance of particular

edges is not captured.

Clustering focuses on the existence of a third edge when the two other edges are present

between three vertices. All measures are either vertex based (i.e local clustering focuses

on a single vertex) or focus on the whole triad (i.e the global clustering coefficient

focuses on prevalence of triads in a network). They focus on existence of edges

to determine if vertices are present in closed triads. They do not focus on the role

of individual edges within these triads or differentiate between them. This lack of

classification of edges makes it impossible to understand the local edge impact on

spread throughout a network. Whilst global and local clustering discuss the cliquishness

of groups within a network, they do little to control the spread of messages throughout

the cliques. For example, the triad 030T is transitive, yet the edge which enables the

transitivity of the triad itself cannot flood the triad, as shown in Example 2.2.4. Here,

triad T is transitive because there exists an edge from i to j. However, were we to

traverse the edge from (i, j) then you could traverse no further edges. The same is not

true for edge (i, k), where you are able to flood all vertices in the triad by traversing
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this edge. In other words, not all edges in the triad are equal in this regard.

Example 2.2.4. Consider the triad T = 030T on vertex set V (T ) = {i, j, k} and edge

set E(T ) = {(i, j), (i, k), (j, k)} as in Figure 2.4.

i k

j

Figure 2.4: Example of transitive triad T , where edges (i, j) and (i, k) play differ-
ent roles in terms of flooding the triad.

Structural balance theory was born from Heider’s [34] study on the ability of friends of

friends to become friends. But what if we wanted to ensure that a message was delivered

to one friend without being delivered to the third friend in the closed triad? In this regard

not all friends are equal, and early modelling fails to consider such differentiation.

In Example 2.2.4, we could say we wanted to send a message from i to j without the

same message reaching k, this is entirely possible due to the nature of (i, j) in relation

to other edges in the triad T . The same does not hold for getting a message from i to k.

Alternatively, we could pose that i wants to pass a message to both friends in as little

steps as possible. In this case, it is best to pass a message to k who will in turn deliver

the message to j.

Noting this case, throughout the literature we see there is little discussion of the role

of edges in triads with respect to supporting local connectivity. We turn our attention

to centrality metrics, which have the ability to classify importance, and show there is

little to bridge the gap between centrality measures on edges and centrality measures on

induced substructures. However, this leaves a fundamental concept open for considera-

tion that has possible application in controlling for spread on content or artifacts across

networks.
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2.3 Centrality Metrics for Complex Networks

Generally speaking, centrality metrics are able to characterise particular edges or vertices

as important. They differ based upon alternative interpretations of importance.

Starting with the basic concepts, the degree of a vertex in a graph is the number of edges

incident with that vertex. In directed graphs, there are two forms of degree: namely

the in-degree (i.e the number of edges directed into the vertex) and the out degree (the

number of edges directed out of the vertex). Degree centrality [27] is simply the degree

of a vertex: those with a higher degree have more links and typically are seen as more

important to a network. Many vertices with a high degree centrality also score highly in

other centrality measures.

Degree centrality is useful for determining how many links a vertex has, but does not

always tell us about the importance of a vertex to a group, as the edges may not be

very important in terms of connectivity. An alternative measure to degree centrality

that considers connectivity is closeness centrality [9]. Closeness centrality was first

developed by Bavelas [9] who wanted to out the relative position of a vertex in a graph

relative to other vertices. It is the average distance (in terms of length of a shortest path)

of a vertex from every other vertex in the network. A similar measure is local reaching

centrality [57]. This is the number of vertices in a network reachable via a path from a

singular vertex. Both of these measures concern the connectivity: vertices which are

more central are those which are more connected to other vertices in the network.

All of the aforementioned centrality metrics are vertex based. In the upcoming sections

we discuss particular centrality metrics built on substructures and other centrality metrics

that concern edges, noting there is little literature that addresses both. This supports our

work in Chapter Four, where we introduce a centrality metric built on the definition of

edges in substructures.
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2.3.1 Edge Based Centrality Metrics

Vertex betweenness centrality was first proposed by Freeman [26] and later refined by

Freeman et al. [28] by generalising the measure to network flows. The betweenness

centrality of a vertex u is the number of shortest paths that pass through u. In this

approach centrality is defined as having more control over the flow of information.

In [28] Freeman references the following to highlight its application: “that a person

who is more close to other people will have several benefits over others, be it: greater

information access higher status, power or influence.”

There are several limitations to betweenness centrality, namely that it exclusively focuses

on shortest paths [28]. This may not necessarily be true for human communication,

which may not rely on shortest paths to link a pair of people [28]. Further, the standard

betweenness centrality measure takes into account shortest paths of any length; yet very

long paths may not be a realistic representation of friendship [12]. The measure only

works for connected graphs, as the distance between vertices which are not connected

is undefined [12]. Borgatti [11] discusses this further, surmising that the way the

flow of information as defined by Freeman [26] is unsuitable for the dissemination of

many categories of spread: such as infection or gossip, which is often untargeted and

unlikely to reach the target through a shortest possible path. There are many variations

on the definition for betweenness centrality to address these issues, particularly other

alternative approaches considering the role of edges including various forms of network

flow (e.g., [28, 11, 12]). However, many of these are vertex-based measures, and we

will instead focus on edges.

Girvan and Newman [29] generalise Freeman’s measure for edges, in order to find

which edge is more between other pairs of vertices [29]. A high betweenness centrality

represents a bridge-like connector. The formal definition for the betweenness centrality
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of an edge (u, v) is given by B(u, v), where:

B(u, v) =
∑

i,j∈V (G)

σij(u, v)

σij
(2.5)

and where σij is the number of shortest paths from i to j, and σij(u, v) is the number of

shortest paths from i to j passing through edge (u, v).

Other edge based centrality measures are generalisations of vertex-based variations

of betweenness centrality. For example, Sun et al. [72] instead modify betweenness

centrality to include all paths (not just the shortest ones). Meo et al. [15] restrict their

attention to paths flowing through an edge where the path length is restricted. They

build their measure κ-path edge centrality based on Alahakoon et al.’s [4] vertex based

κ-path centrality, a modification to betweenness centrality. Meo et al. [15] define the

κ-path edge centrality Lκ(u, v) of edge (u, v) by:

Lκ(u, v) =
∑

s∈V (G)

σκs (u, v)

σκs
(2.6)

where s are all possible source vertices, σκs is the number of paths of length at most

κ which start on source vertex s , and σκs (u, v) is the number of these paths flowing

through (u, v).

Fortuna et al. [25] take a centrality metric that makes long paths undesirable. The

efficiency of a network is built on the assumption that the further apart two vertices are,

the less efficient their communication, and thus is the inverse proportion to distance

[45, 43]. The authors extended Latora and Marchio [44, 46] vertex based centrality

metric based on network efficiency to an edge based measure. Fortuna et al. [25] define

the information centrality CI
(u,v) of edge (u, v) by:

CI
(u,v) =

NE(G)−NE(G′(u,v))

NE(G)
(2.7)

where G′ denotes the graph obtained by removing the edge (u, v) from G, NE(G) is
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the network efficiency of G [45, 43], i.e:

NE(G) =
1

n(n− 1)

∑
vi 6=vj∈V (G)

1

dvivj
(2.8)

Their measure is built on the reduction in network efficiency through the removal of an

edge in order to determine how central such edge is.

Teixeira et al. [73] replace shortest paths flowing through an edge with minimum

spanning trees, although this is only applicable to undirected and weighted networks

present an edge betweenness based on the fraction of minimum spanning trees an edge

is present. They define the spanning edge betweenness δG(u, v) as:

δG(u, v) =
τG(u, v)

τG
(2.9)

where τG is the number of minimum spanning trees for G and τG(u, v) is the number of

these that run through edge (u, v).

In general, there are far fewer examples of edge-based centrality metrics than vertex

based centrality metrics, and most of the centrality metrics discussed are simply general-

isations of vertex based variations on betweenness centrality. Though these variations on

betweenness centrality may paint a better picture of how social interactions work in the

real world than betweenness centrality in its original form, they do not explicitly outline

how the edges interact with one another. We can assess which edge is most central in

terms of number of (specified) paths flowing through it, but we don’t necessarily know

much about adjacent edges to this edge (other than that there is another edge that forms

a path with this edge). In other words, of the discussed literature, there is an apparent

lack of edge based centrality metrics that take into account local features. This means

we potentially ignore some information that may be critical to exploring how messages

spread, as we know in complex networks such as social networks, local dissemination

of information is crucial. Further, the lack of local information means that measures
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require knowledge of the overall network (for example, knowledge of all shortest paths

in the network, or the minimum spanning trees), making them computationally complex.

2.3.2 Substructure Based Centrality Metrics

While there are few edge based centrality metrics, there are far fewer subgraph-based

centrality metrics. In this section we address Estrada and Rodríguez-Velázquez [19]

subgraph centrality measure which aims to satisfy this gap in the literature. We also

look to Przulj [66] graphlet degree distribution, which generalises the degree of a vertex

by considering the number of orbits (pieces of induced substructures) incident with a

vertex. The authors offer this to be used in degree distributions, although this could be

used as a centrality metric to generalise degree centrality [27]. However, first we define

network motifs [54]: those substructures which occur more frequently than expected in

a network, which can be used to profile the networks themselves. [71, 55, 56].

Motifs and Triadic Census

A Triadic Census of a network counts the number of triads present for each of the 16

triad isomorphism classes given in Figure 1.1 [75]. Taking a Triadic Census provides

a method of summarising information about a whole network into a vector of length

16. This was first introduced by Holland and Leindhart [38]. Triads which are over-

represented by a Triadic Census on a network are known as network motifs. These were

first discovered in gene-regulatory networks by Shen-Orr, Milo, Alon et al. [54] and

generalised to any network by Milo et al. [55]. This approach involves normalising the

frequency of induced triads against those which might occur in a sample of random

networks. A motif profile allows us to categorise and identify particular types of

network. A considerable number of studied have been conducted on motifs, though

motif detection and remains computationally challenging, with many contributions to

the literature in motif-mining algorithms. Other contributions focus on applying network
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motifs to uncover deep information on network profiling [71, 55, 56]. Currently there

appears to be limited interpretation of substructures in their own right. In other words,

many analyses present the over or under representation of induced substructures with

limited assessment of the agency that the induced substructures provide to the edges

involved within them.

Subgraph Centrality Measure

Estrada and Rodríguez-Velázquez [19] introduce a subgraph centrality measure for

complex networks. They define the subgraph centrality of a vertex i ∈ V (G) as the sum

of all closed walks starting and ending at vertex i, Cs(i):

Cs(i) =
∞∑
k=0

µk(i)

k!
(2.10)

where µk(i) represents the local spectral moment, or the number of walks of length k

starting and ending on vertex i. Their work is biased so that short walks have more

influence on the subgraph centrality, to align with motifs in real networks being based

on small induced subgraphs [19]. They define their subgraph centrality metric on closed

walks in order to enable computation from the corresponding adjacency matrix of a

graph, however this has some drawbacks. A path of length k could be a trivial walk that

passes through the same vertex multiple times and therefore yields a smaller subgraph

than a substructure on k edges.

Graphlet Degree Distribution

Przulj [66] doesn’t build a new centrality metric based on subgraphs, but rather gen-

eralises the degree of a vertex, and uses this to generalise the degree distribution of

a network. This could be used as a generalisation of degree centrality, although not

explicitly used for this purpose in the paper. The author notes that an edge is simply a

graphlet built on two vertices (a dyad) an the degree of a vertex is how many graphlets



2.3 Centrality Metrics for Complex Networks 28

on two vertices touch the vertex. Therefore, it is possible to generalise degree by

extending the definition to a vertex touching a graphlet on more vertices. The authors

define 29 specific graphlets (all possible undirected graphlets of orders two to five). This

is complicated by the number of automorphism orbits a graphlet has, as a vertex that

touches a graphlet can do so in different ways depending the structure of the graphlet.

The 29 graphlets defined in [66] yield 73 total automorphism orbits; and the authors

count the graphlet degree distributions for each of the 73 orbits.

Graphlet Orbits

Przulj’s [66] automorphism orbits and graphlet degree distribution provides an important

tool for analysing the local toplogy of vertices; used particularly in bioinformatics in

papers such as in [35, 36]. This provides an alternative approach to the global profiling

of networks using network motifs. These applications are based on the assumption that

the vertex’s local topology is related to some property [36].

Formally, an isomorphism on a graph is a bijective homomorphism from one graph to

another ie.:

Definition 3. [16] Let G and H be graphs on vertex set V (G), V (H) and edge set

E(G), E(H) respectively. Let θ be a mapping fromG toH such that θ : V (G)→ V (H)

. Then θ is an isomorphism if and only θ is bijective and if ∀i, j ∈ V (G), ij ∈ E(G)⇔

θ(i)θ(j) ∈ E(H).

An automorphism is an isomorphism from one graph to itself. The set of all automorph-

isms on a graph G form a group, denoted Aut(G). The automorphism orbit of a vertex

i in G is all the set of all other vertices in G that map i under some automorphism from

Aut(G), i.e:

Definition 4. [16] Let G be a graph on vertex set V (G) and edge set E(G), and

i ∈ V (G). Then the automorphism orbit of i, Orb(i) = {j ∈ V (G)|θ(i) = j for some

θ ∈ Aut(G)}.
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Figure 2.5: Automorphism Orbits of all possible undirected graphlets of up to five
vertices. Each automorphism orbit class is labelled by a new number, whilst a new
isomorphism class of graphlet is labelled by Gk.

Przulj [66] gives all automorphism orbits for undirected orbits of up to five vertices,

shown in the image taken from their paper in Figure 2.5.

Automorphisms preserve structure within a graph, and thus in this case, the auto-

morphism orbits of a vertex are all the other vertices within the same graphlet that

are structurally the same. For example, in G2, all vertices are structurally identical up

to relabelling. However, in G1, the central vertex acts differently from the two outer

vertices as it always has a degree of two, whilst the external vertices have a degree of one.

The outer vertices are structurally the same and therefore lie in the same orbit, whilst the

central vertex lies in a different orbit. Therefore G1 partitions into two automorphism

orbits, whereas G2 has one. These measures are largely vertex-based rather than edge

based. Estrada and Rodríguez-Velázquez [19]’s subgraph centrality metric could be

seen as another generalisation of betweenness centrality: this time, where instead of

shortest paths flowing through a vertex, the focus is on the number of closed walks

flowing through a vertex. There are some limitations to this measure, namely that it

takes into account both trivial and non-trivial closed walks. This means that in graphs

that contain multi-edges, the subgraph centrality is not specifically picking up graphlets
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and could just be picking up dyads on multiple loops. Przulj [66] potentially builds

a measure closer to what we are interested in with their generalised vertex degree -

counting the number of automorphism orbits of a particular graphlet incident with a

vertex. This does highlight the different positions of a vertex within a substructure

having a different effect and so counts the orbits separately. However, all these measures

are vertex based and predominantly concerned with volume of substructures rather than

the behaviour of edges in substructures. Even Przulj, although investigating separate

orbits, focuses on the volume of substructures touching a vertex, and not the effect

the different positioning of vertices may have. Further, Przulj’s work is restricted to

undirected networks and therefore hasn’t been applied to directed triads.

To conclude, we have looked at the most relevant centrality metrics given our interest in

edges and induced substructures. We note that there are few edge based centrality met-

rics and even fewer induced substructure centrality metrics. Whilst we are able to find

examples of centrality metrics on edges and centrality metrics on induced substructures,

we have not found evidence for any measure that encompass both. Further, most central-

ity metrics we’ve discussed are based on volume of paths flowing through and edge (in

the case of edge based centrality metrics) or volume of induced substructures incident

with a vertex (in the case of substructure based centrality metrics).This aligns with

motif profiling of networks, which focuses on the occurrence of induced substructures

which appear more frequently than one would expect. This focus on volume ignores

the behaviour of edges (based on their location and direction in relation to other edges

within a substructure) within induced substructures, which collectively could have a

large effect on message spread throughout a network.

2.4 Criticality Metrics for Networks

Edge criticality [79] (otherwise known as edge significance [77]) offers an alternative

indication of edge importance in terms of maintaining network structure and connectivity.
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This has emerged from percolation theory, which describes the behaviour of a network

when vertices or edges are added. Critical edges are determined by gradually removing

edges from a network, and observing the effect of their removal on the global network

structure. Typically, the size of the giant component or the susceptibility index are used

to judge the critical point at which a network breaks down, leading to an increase in the

number of connected components and decrease in the size of connected components.

Perhaps somewhat counter intuitively, in social networks edges which may be most

critical to network structure may be those with the weakest ties [61, 78]. Weak Ties

theory [32] states that overlapping friendship circles strengthen ties between two indi-

viduals, and as such their removal will only cause the network to shrink through local

disintegration but will not cause the collapse of the overall network [61]. In contrast,

the removal of weak ties will cause quick network disintegration as the weak ties act

as bridges between the highly connected communities [61]. The weak ties hypothesis

[32] means that weak ties exhibit high betweenness centrality. This is unique to social

networks and directly contradicts the global efficiency principle [30, 50] where the

strength of a tie directly correlates with its betweenness centrality as it is optimised to

create maximum network flow [61]. In most technological and biological networks the

global efficiency principle holds true, and it is believed that the removal of these strong

ties is believed to cause the collapse of a network [61].

Onnela et al. [61] observe the effect of removing ties in mobile phone networks on

the network stability, weighting ties based on the aggregated duration of calls between

individuals. They compare this to some other hypotheses, namely the dyadic hypothesis

and the global efficiency principle [30, 50], showing that the weak ties hypothesis

appears to hold true for mobile phone networks, and removing weak ties first causes

fastest network collapse. Tie strength can be hard to determine, and the processes

for doing so are probably complicated and time consuming [77]. Cheng et al. [77]

and Yu et al. [79] offer alternative metrics to tie strength in order to determine an

edge’s criticality. Both papers [78, 79] base their criticality metrics on cliques, the
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former using the bridgeness index [77], and the latter constructing their algorithm,

Betweenness Centrality and Clique Model (BCCMod) [79] to determine critical edges.

In the next sections (Sections 2.4 and 2.4) we discuss these metrics further. We note that

betweenness centrality of edges [29] as defined in Equation 2.5 (which can also be used

as a criticality metric on edges) is commonly used as benchmark comparisons within

the literature. To understand measures built on cliques, we must first define a clique.

Definition 5. Suppose G is a graph on vertex set V (G) and edge set E(G). Then the

graph G′ on vertex set V (G′) and edge set E(G′) where V (G′) ⊂ V (G) is a clique if

and only if there is an edge between every pair of vertices in V (G′).

Bridgeness Index

A bridge is a link between two vertices that joins two components that would be

disconnected from each other if the bridge did not exist [3]. Cheng et al. [77] introduce

the bridgeness index for edges based on clique sizes of the vertices included in an edge

and the edge itself. They propose this as a local measure that is entirely topological, but

exhibits the weak ties phenomenon [32]. They discuss the correlation of the bridgeness

index with the strength of ties. Edges which act as a bridge are usually weak ties, but

connect cliques together, and thus underpin the structure of the network - removing

them causes the network to collapse into smaller connected components. The authors

run their index on document networks, where two documents are more likely to be

connected if they are conceptually relevant.

The bridgeness index [77] B of edge (u, v) in G is given by:

B =

√
SuSv
S(u,v)

(2.11)

where Su, Sv and S(u,v) denote the clique sizes (i.e the size of the maximum clique

containing this vertex or edge [70, 69] of u,v and the edge (u, v) respectively).

The authors discuss that the bridgeness index leads to a faster network disintegration
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than when compared with their comparison metrics. Therefore, edges with a high

bridgeness index may be more critical to the structure of a network.

Betweeness Centrality and Clique Model

Yu et. al [79] create their criticality metric, The Betweeness Centrality and Clique model

(BCCMod), in order to combine both local features of an edge in a network (specifically,

degree of vertices and cliques) with global features (i.e betweenness centrality). The

Betweeness centrality and clique model [79] of an edge (u, v) in G is defined by:

BCCMOD =
kukvBC(u, v)∑n

i=3C(u, v)i
(2.12)

where BC(u, v) is the betweenness centrality of (u, v), ku and kv are the degrees of

vertices u and v respectively, C(u, v)i is the number of cliques of size i containing

(u, v).

The authors show that BCCMod [79] often outperforms (in terms of collapsing the

network) various comparable criticality metrics across a variety of networks (including

social networks, technological networks, etc) when edges are removed in descending

order and the susceptibility index is taken; meaning that edges with a high BCCMod

score are the most critical to the structure of a network.

BCCMod [79], bridgeness index [77] and betweenness centrality of edges [29] are

computationally complex, as they require knowledge of entire cliques, or all the paths

that flow through an edge. However, considering edge criticality does highlight the

importance of edges to a network; namely their importance to network structure through

observing the disintegration of the network when they are removed. Criticality measures

have the power to demonstrate that edges hold communities together in a network,

something that cannot be determined from a vertex alone. Criticality measures built on

cliques rely on network substructures, however cliques are not as fundamental as small

induced substructures, such as triads.
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To recap the themes visited across the literature review, we have summarised the

information in Tables 2.1, 2.3 and 2.2.

Type of measure: classifying and counting triads based on their edges
Measure Formula Description Global /

Local
Comments

Global clus-
tering coef-
ficient

C = Number of Closed Triplets
Number of All Triplets Determines

proportion
of cluster-
ing present
in network

Global Can’t be
applied to
weighted
or directed
networks.

Local clus-
tering coef-
ficient

Cv = 2|{(i,j)∈E(G)|i,j∈N(v)}|
kv(kv−1) Measures

cliquish-
ness in
neighbour-
hoods by
pivoting
on a single
vertex.

Local Can’t be
applied to
directed
networks;
inverse
correlation
between
node degree
and local
clustering
coefficient.

Weighted
clustering
coefficient

Cw = Total Weight of Closed Triplets
Total Weight of Triplets Generalised

clustering
coeffi-
cient for
weighted
networks.

Global Can’t be
applied to
directed
networks.

Weighted
Transitivity
coefficient

Tw = Total Weight of Transitive Triplets
Total Weight of Triplets Weighted

clustering
coefficient
for directed
networks.

Global Can’t be
applied to
directed
networks.

Do not focus on edges within the triad play in maintaining the triad connectivity.

Table 2.1: Recap of key themes in Section 2.2
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Type of measure: centrality measures
Measure Formula Description Substructure

/ Edge
Comments

Betweenness
centrality
for edges

B(u, v) =
∑

i,j∈V (G)
σij(u,v)

σij
Proportion
of shortest
paths
passing
through an
edge.

Edge based Requires
global
knowledge
of all
shortest
paths.

Motifs Z(G′) = FG(G′)−µR(G′)
σR(G′)

Finds tri-
ads which
are over-
represented
in a net-
work.

Substructure
based

Highlights
substruc-
ture im-
portance;
focuses on
abundance,
little inter-
pretation
of substruc-
tures in
their own
right.

Subgraph
centrality

Cs(i) =
∑∞

k=0
µk(i)
k!

Sum of
all closed
walks start-
ing and
ending on
the vertex. i

Substructure
based

Counts
closed
loops, con-
cerned with
volume
rather than
behaviour
of edges in
substruc-
tures.

Graphlet
Degree Dis-
tribution

djG(k) = number of vertices
in G touching the graphlet k
times on orbit j

Generalises
degree of
a node to
number of
graphlets it
touches.

Substructure
based

Concerned
with
volume
rather than
behaviour
of edges in
substruc-
tures.

No overlap between edge based and substructure based centrality measures.

Table 2.2: Recap of key themes in section 2.3
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Type of measure: edge criticality measures
Measure Formula Description Comments
Tie Strength N/A Assigns strength

to an edge based
on some data (eg.
duration of phone
calls).

Can be hard to
determine; pro-
cesses for doing
so are probably
complicated and
time consuming.

Bridgeness In-
dex

B =
√
SuSv

S(u,v)
Indentifies edges
which act as
bridges between
two otherwise
disconnected
subgraphs.

Requires know-
ledge of all
cliques in graph.

Betweenness
centrality for
edges

B(u, v) =
∑

i,j∈V (G)
σij(u,v)

σij
Proportion of
shortest paths
passing through
an edge

Requires global
knowledge of all
shortest paths.

Betweeness
centrality and
clique model

BCCMOD = kukvBC(u,v)∑n
i=3 C(u,v)i

Combines global
knowledge
(betweenness
centrality) and
local know-
ledge (degree
of vertices and
clique).

Requires know-
ledge of all
cliques in graph.

No overlap between edge based and substructure based centrality measures.

Table 2.3: Recap of key themes in Section 2.4
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2.5 Data sets

To test, develop and compare concepts, it is useful to adopt open data sources that

have been adopted in other studies. Accordingly we consider a range of such data sets

that represent a spread of different scenarios. Networks of interest are collated from

a variety of sources, including the Cosin Project [14], Stanford’s Snap data sets [14],

NeuroData’s Network Database Connectomes [58], Toreopsahal.com data set collection

[63], amongst others [74, 1, 5]. They have been organised by their category, which

are: Airport, Electrical Circuit, Ecological Food web, Peer-To-Peer Internet, Neural,

Organise, Metabolic, Regulatory, Trust/Social and World Wide Web networks.

We use these data sets as they represent different natural phenomena well established in

the literature. Newman’s Review [59] provides a good summary of empirical studies of

the structure of networks and loosely categorises data structures into four types based

on their source: social, biological, information and technological networks. These

categories are deliberately loose as some networks can overlap more than one category

(for example, the world wide web is both technological and social). We have further

sorted our networks into sub-classes of Newman’s categories. For example, Food web,

Neural and Regulatory Networks are all biological networks.

Classifications of networks is an evolving area of research so we cannot fully describe

any category of network in terms of its topology. What we do know is that different

structural properties are exhibited by different classes of network. For example, Food

web networks are generally very small (less than 200 vertices) due to the difficulty in

recording every species in the environment and every interaction between them [14].

Some information networks, such as citation networks, do not contain closed loops

[59]. Social networks may exhibit ‘community structure ’, where vertices are clustered

in tightly knit groups, with only weak ties between different groups [29]. There are

a number of properties established in the literature that real world networks have in

common, namely the ‘Small World ’effect [53], long-tailed degree distributions and

clustering [76].
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Name |V | |E| Density Clustering Reciprocity BC DC RC Diameter

Airport Flights Networks
US Airports [42] 1572 28235 0.011 0.50 0.78 0.0013 0.023 0.059 8
Open Flights [67] 2905 30442 0.0036 0.44 0.97 0.0010 0.0072 0.0072 14

Electrical Circuit Networks
s420 [5] 252 399 0.0063 0.028 0.00 0.0062 0.013 0.66 13
s838 [5] 512 819 0.0031 0.027 0.00 0.0037 0.0063 0.67 15

Ecological Food Web Networks
Mangwet [74] 97 1492 0.16 0.26 0.062 0.011 0.32 0.11 3
Baywet [74] 128 2106 0.13 0.18 0.029 0.0091 0.26 0.19 3
Little Rock Lake [42] 183 2476 0.074 0.17 0.034 0.00094 0.15 0.82 4
Ythan [1] 92 414 0.049 0.11 0.00 0.0011 0.099 0.79 4
St. Marks Seagrass [14] 49 223 0.095 0.13 0.00 0.0048 0.19 0.74 4
Grassland [14] 88 137 0.018 0.17 0.00 0.00033 0.036 0.97 6

Peer-to-peer Internet Networks
p2p-gnutella04 [47] 10876 39994 0.00034 0.0031 0.00 0.00021 0.00068 0.6 10
p2p-gnutella05 [47] 8842 31837 0.00040 0.0036 0.00 0.00024 0.00081 0.6 9
p2p-gnutella06 [47] 8717 31525 0.00041 0.0033 0.00 0.00024 0.00083 0.61 10
p2p-gnutella08 [47] 6299 20776 0.00052 0.0054 0.00 0.00030 0.0010 0.63 9
p2p-gnutella09 [47] 8104 26008 0.00040 0.0048 0.00 0.00024 0.00079 0.65 10

Neural Networks
C. Elegans [40] 297 2345 0.027 0.17 0.17 0.01 0.053 0.13 5
Drosophila Medilla 1 [58] 1770 9624 0.0030 0.15 0.15 0.00083 0.0061 0.14 6
Mouse Visual Cortex 2 [58] 193 214 0.0058 0.010 0.00 0.00 0.012 0.24 8
Mouse Retina 1 [58] 1076 90811 0.079 0.30 0.00 0.00046 0.16 0.56 4
Rattus Norvegicus [58] 503 27667 0.11 0.78 0.34 0.0018 0.22 0.0020 3

Organise Networks
Cross Parker Consulting [63] 44 521 0.28 0.62 0.77 0.021 0.55 0.047 4
Freemans EIES n48 1 [63] 34 540 0.48 0.69 0.85 0.016 0.96 0.00 2
Freemans EIES n48 2 [63] 34 708 0.63 0.77 0.85 0.012 1.26 0.00 2
Cross Parker Manufacturing [63] 77 1452 0.25 0.67 0.80 0.012 0.50 0.013 3
Eva [41] 4475 4662 0.00023 0.0060 0.0043 0.00 0.00047 0.28 18

Regulatory Networks
E. coli transcription [5] 328 456 0.0043 0.055 0.00 0.00 0.0085 0.020 13
Yeast transcription [5] 662 1063 0.0024 0.025 0.0019 0.00 0.0049 0.12 15

Trust/Social Networks
Bitcoin Alpha [47] 3670 22639 0.0017 0.15 0.85 0.00065 0.0034 0.12 10
Bitcoin OTC [47] 5551 32007 0.0010 0.14 0.84 0.00042 0.0020 0.16 14
Email EU Core [47] 986 24929 0.026 0.37 0.71 0.0014 0.051 0.16 7
Prison Inmate [5] 67 182 0.040 0.23 0.44 0.034 0.082 0.34 7
UCIrvine [63] 1893 20292 0.0057 0.088 0.64 0.00080 0.011 0.29 8
WikiVote [47] 7066 103663 0.00208 0.082 0.056 0.00 0.0042 0.089 7

World Wide Web Networks
Political Blogs[2] 1222 19021 0.013 0.22 0.24 0.0013 0.025 0.13 8

Table 2.4: Networks and metrics used to describe them. |V | denotes the number
of vertices in the network, |E| the number of edges. Clustering represents the
mean global clustering coefficient. Reciprocity is a measure of global reciprocity.
RC, DC and BC denote the global reaching centrality, mean degree centrality
and mean betweenness centrality respectively. Diameter is taken using the undir-
ected version of the network. Self loops have been removed from the original data
set, so we are testing on the largest connected component of the original data set.
Decimal places are rounded to two significant figures.

We have applied various standard metrics on our networks in effort to describe their

structure further. These results are presented in Table 2.4. Here we compare network

connectivity (through measuring their density, global clustering coefficient and mean

degree centrality), directionality (in terms of the reciprocity and reaching centrality of a

network) and also review the importance of vertices in paths (in this case, betweenness

centrality).
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Density represents the fraction of edges that exist out of all possible edges. Clustering

coefficient [49] also indicates density of ties, but differs in that it indicates to what

degree groups of vertices cluster together. A graph could have low density but could

have an area of high clustering. Similarly, degree centrality represents the number of

ties a vertex has, indicating importance in terms of popularity. From Table 2.4 we infer

that generally Organise networks have a high level of clustering as well as a higher

degree centrality, and are more dense than the other networks we compare. This could

indicate that organise networks form tightly knit groups. Similarly, Airport networks

also have a high level of clustering but a far lower degree centrality and are sparse.

In contrast, e-circuit networks have low clustering and degree centrality. Peer-to-peer

Internet networks and Regulatory networks present similar structure. Other networks

sit somewhere in the middle. For example, food web networks present a mid level

of clustering and degree centrality but have low density. Social networks are sparse,

but have mid levels of clustering. Neural networks vary greatly depending on which

network we are referring to: for example, the network Rattus Norvegicus [58] has a

higher level of clustering, whereas the network Mouse Visual Cortex [58] has very low

levels of clustering.

Betweeness centrality [26] also measures the importance of vertices, but unlike degree

or reaching centrality, betweeness centrality measures how many shortest paths pass

through a vertex. Betweeness centrality is low across all networks we studied. Diameter

is also linked to shortest paths, measuring the longest shortest path in the network.

Diameter varies greatly across our networks: with the largest diameter belonging to

the Yeast Transcription Regulatory network (with a diameter of 15), and the shortest

being shared by Freemans EIES 1 and 2 [63] networks (with a diameter of two). High

diameter seems to occur in networks where density is lower.

Reciprocity represents the likelihood of vertices in a network being mutually linked

[60]. Reciprocity is high across those networks in which clustering is high (Airport

and Organise networks, with the exception of Eva [41]), but is also found to be high
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in trust/social networks (with the exception of WikiVote [47]). This may be due the

mutuality of to trust/social links. Reciprocity is low across networks where clustering

and density (such as peer-to-peer Internet, Electrical circuit and Regulatory networks),

but is also found to be low in food web networks. This is likely due to the way the food

web networks are structured: a lack of reciprocity exists due to the likelihood that no two

species predate each other. In networks where reciprocity is higher, reaching centrality

tends to be lower and visa versa. Reaching centrality [57] is another directional metric,

but instead of measuring mutual ties, captures the degree of hierarchy in a network.

Reaching centrality is generally high in electrical circuit networks, ecological food

web networks, peer-to-peer Internet networks and the Mouse Retina [58] network.

Trust/social and Neural networks, as well as Political Blogs [2] and Eva [41] tend to

present mid-levels of reaching centrality, with low levels being observed in Organise,

Eegulatory and Airport networks.

2.6 Conclusions

In this chapter we have explored literature relating to the study of complex networks

that encompasses the contributions made within this thesis. We first explored alternative

classifications for triads based on the role of their edges. We looked to the global

clustering coefficient [49], which works on the basis of closed and open triplets in a

network. We also looked to the local clustering coefficient [76], and explored Tore and

Opsahl’s [64] generalisation of the local clustering coefficient for weighted networks.

We note that clustering coefficient is not sufficient for directed networks, and so explore

the more refined concept of transitivity [75] in networks; defining what it means for

a triad to be transitive, vacuously transitive or intransitive. Tore and Opsahl [64] also

generalise a transitivity coefficient for weighted complex networks. We conclude that

whilst these measures are based on the existence of edges to classify triads, they do

not focus on the role individual edges play within these triads or differentiate between

the edges. This could have potential implications concerning the spread of messages
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when edges with different roles are layered on top of one another. There is generally a

gap in the literature for the role of edges, motivating our new classification for edges

(Contribution C1) based on their role within triads in Chapter Four.

Additionally, in Chapter Four we transform our classification for edges into a local

centrality metric for edges (Contribution C2). In this literature review we explore

various edge-based centrality metrics. Most notably, we look to Girvan and Newman

[29] for their generalisation of Freeman’s [26] vertex-based centrality metric to edges.

We note that other edge-based centrality measures are generalisations of variations on

the vertex-based betweenness centrality [72][15][25]. Since our classification of edges

is based on their roles within induced substructures, our centrality metric in Chapter

Four is not only an edge based centrality metric, but one also grounded in induced

substructures. In this chapter we highlight other induced-substructure based centrality

metrics such as Estrada and Rodríguez-Velázquez’s subgraph centrality metric [19] or

Przulj’s graphlet degree distribution [66]. We conclude that there is little to no overlap

between edge based and subgraph based centrality metrics.

Finally, we looked at edge criticality as an alternative measure of edge importance to

edge centrality. Edge criticality [79] focuses on the importance of edges to maintaining

structure in the overall network. We learn that in social networks (and potentially further

classes of network) weak ties are fundamental to network structure [61], and whilst the

removal of strong ties may result in a reduction in network size, the removal of weak ties

quickly disintegrates the network into connected components [61]. We look to existing

criticality metrics that are easily computable, specifically the bridgeness index of an

edge [77] and the betweenness centrality and clique model [79]. Both of these measures

are built on cliquishness of edges. In addition to our centrality measure’s application

to minimising spread (Chapter Five), it may highlight those edges most critical to the

structural integrity of a network.



42

Chapter 3

Understanding graph Connectivity

through Paths and Induced Triads

Within a graph, the way in which edges in support connectivity is influenced by their

role in paths between vertices. This presents an interesting starting point for detailed

analysis. Specifically when the unit of analysis is the triad, as often used in analysis

of complex graphs, do paths of different types (such as shortest paths) tend to favour

composition involving edges from particular types of triads? As far as we can establish,

this is not known. It is also relevant to developing subsequent metrics on the connectivity

role of edges in triads, as introduced in Chapter Four.

In Chapter One, we introduced triads and showed the 16 isomorphism classes for triads

in Figure 1.1. In this chapter we explore which of the classes of connected triad occur

most frequently across paths. A Triadic Census on a graph G counts the number of

each class of induced triad present in G. This provides a method of summarising

information about a whole graph into a vector of length 13. To assess the induced triads

that are incident with important paths, we construct a novel measure: the triadic edge

betweenness census, that counts the induced triads occurring on all shortest paths in a

graph. This happens when the shortest path and an induced triad share at least one edge

in common. This is an edge based Triadic Census measure, and for completeness in this

context, we also construct the vertex-based equivalent: the induced Triadic Census.

Through this approach, we can compare these census measures against census measures
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for the whole graph, using the data sets discussed in Section 2.5. This gives a basis to

understand the under or over representation of induced triads that belong to shortest

paths, as compared to the whole graph. Accordingly we are able to discover which

triads are more prevalent in supporting shortest paths.

We also classify a triad according to how many of its edges can simultaneously occur

in the same shortest path, enabling us to observe in which graphs the proportion of

these induced triads occurring across shortest paths (i.e the triadic edge betweenness

census (Definition 25) may be greater than across the proportion across the whole graph.

This chapter serves as an introductory chapter to the rest of the thesis, where we further

explore the role of the individual edges within triads (Chapter Four). Later we apply this

to shortest paths to observe the effect on message spread (Chapter Five) and develop it

further in the context of edge criticality (Chapter Six).

3.1 Overview

Triadic Census was first introduced by Holland and Leindhardt [39], who used it to

construct various subgraph configurations (subgraphs in which only some of the edges

between vertices are of interest [39]) and compared subgraph counts in real-world graphs

against those found in random graphs. A Triadic Census is valuable as it summarises

the information about a graph into a vector of length 13. Further, structural properties

about a graph, such as transitivity [75], can be tested using a Triadic Census (for an

overview, see Waserman and Faust [75]).

Faust [20] argues that much of a Triad Census can be explained by lower order graph

properties, specifically the dyad census and graph density, because they constrain triadic

outcomes. Dyads are the building blocks of triads and thus, for example, networks with

a high volume of asymmetric dyads (edges with no reciprocated links) will contain

mostly triads of type 030T and 030C [20]. Therefore, these two lower order properties

constrain the triad census. However, Faust [20] also argues that in social networks,
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substantial triadic tendencies occur which are only partially explained by the dyad

census. Whilst the region of possible triad census which can occur based on network

density and dyad census is relatively small, and comparison of networks with different

dyad censuses largely explains their differing triad censuses, there is large variability

between triad census in networks with similar dyad profiles. Therefore, we can deduce

that triad census of a network offers new information, that cannot be wholly derived

from the dyad census and network density, about a network in a concise way.

Triads which are over-represented in a Triadic Census are known as network motifs [55].

This approach involves normalising the frequency of induced triads against those which

might occur in a sample of random networks. The authors do this through introducing

the Z-score for a particular triad type, i.e:

Definition 6. The Z-score for triad type i in graph G is given by:

Zi =
Nreal(i)− < Nrand(i) >

std(Nrand(i))
(3.1)

where Nreal(i) is the number of times triad i appears in graph G and < Nrand(i) >

and std(Nrand(i)) are the mean occurrence and standard deviation of i in a randomised

esemble of random graphs with the same degree sequence as G [55].

The significance profile (SP) of i is the normalised Z-score, computed by dividing

through by the sum of Z-scores for all 13 triads, in order to understand the relative

presence of a particular triad type i.e:

Definition 7. The significance profile for triad type i in graph G is given by:

SPi =
Zi

(
∑i=13

i=1 Z2
i )1/2

(3.2)

where Zi is the Z-score of triad i in G [55].

Profiling networks by observing their motifs allows us to categorise and identify particu-

lar types of network. A considerable number of studied have been conducted on motifs,
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though motif detection and remains computationally challenging. At present, Z-scores

and significance profiles for networks are based on static networks. Further, exploring

the motifs present in a network does is preoccupied with identification: there is little

interpretation of substructures in their own right. Finally, observing only structures

that appear more frequently than at random ignores triads which may hold significant

influence over network structure or connectivity, but are not themselves frequently oc-

curring. Instead, we propose to explore connectivity within a graph through modifying

the triadic census.

To use the concept of Triadic Census in the context of connectivity, we need to begin by

considering the basic concept of a path. In graph theory, a path p is defined as a walk

where all vertices are distinct. Paths are of significance to graphs as they represent chains

of interaction between individual vertices. In particular, we may want to know whether

it is possible to deliver a message from one vertex to another through a collection

of intermediaries (something exhibited, for example, in neurological graphs, where

neurons communicate via electrical impulses propagated from one neuron to another

[24]; or could represent chains of infection from individual to individual). Paths are

inherent to many important measures and properties within graphs. The existence

of path in a graph underpins the definition for connectivity: whether every vertex is

reachable every other through a path.

Definition 8. A walk from u to v in a graph G = (V (G), E(G)) is a sequence of the

form w(u, v) = (u = u0, u1, u2, . . . , v = un) where u0, u1, . . . un ∈ V (G) and for

1 6 i 6 n, (ui−1, ui) ∈ E(G).

Definition 9. A path from u to v in a graph G = (V (G), E(G)) is a sequence of the

form p(u, v) = (u = u0, u1, u2, . . . , v = un) where u0, u1, . . . un are distinct vertices

in V (G) and for 1 6 i 6 k, (ui−1, ui) ∈ E(G). The length of the path is given by the

number of edges, and denoted by l(p) = |p(u, v)| − 1.

Amongst different types of path, shortest length paths are fundamental. In many real

world systems, the shortest path represents the most efficient system to minimise cost or
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time moving within the network. For example, many mobile map apps are developed

using shortest paths to minimise the time it takes to travel from one point to another.

Betweenness centrality [26] is also built on shortest paths, where a vertex [26] (or an

edge [29]) is determined more important based on the number of shortest paths that

overlap on the edge. The average shortest path length can highlight how tight-knit

communities are, for example: small world networks are those which exhibit small

average shortest path length [76].

Paths underpin such an important structural property of graphs, and Triadic Census

may yield much information about a graph, yet the relationship between a Triadic

Census and the triads that a shortest path induces is not well understood. However,

the occurrence of triads across paths may have a part to play in the dissemination of

information (or infection) in graphs. Therefore, in this chapter we explore which triads

are most prevalent (or important) to paths. Some triads may be more present in shortest

paths than elsewhere in the graph, or visa versa. In particular – we ask whether the

Triadic Census is an accurate or useful proxy for the characteristics of a graph when

paths between vertices are the primary concern.

In this chapter, we modify the Triadic Census to investigate the volume of each triad

class which have at least one edge in common with a shortest path in a graph. We call

this measure Triadic Edge Betweenness Census. Since this is an edge based measure,

we construct the vertex based equivalent, Induced Triadic Census, for comparison with

Triadic Census. We also construct the edge based equivalent of Triadic Census, All

Edge Census, for comparison with Triadic Edge Betweenness Census. In doing so, we

investigate which triads may be more present across shortest paths than at a network

level, and therefore may have a greater role in maintaining network connectivity. Further,

we also investigate which triads may be more present at network level but have a lesser

role in shortest paths; which may demonstrate the lack of information about network

connectivity gained when solely looking at a network’s motifs. We proceed to run our

census measures on a handful of networks and make these comparisons, noting that
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triads can be categorised according to how many of their edges can be simultaneously

contained within the same shortest path.

3.2 Methodology for Path-based Census

3.2.1 Triadic Census on Graphs

The following definitions are introduced to enable Triadic Census to be carried out in

the context of paths.

Let T be the ordered set of triad types of interest (the 13 possible connected classes of

triads from Figure 1.1) i.e:

T = (021D, 021U, 021C, 111D, 111U, 030T, 030C, 201, 120D, 120U, 120C, 210, 300)

Let tk(G) denote the number of distinct triads (i.e triads which have at most two vertices

in common) of type k ∈ T present in G.

Definition 10. A Triadic Census on G is given by T (G), where:

T (G) = (tk(G))k∈T

To calculate T (G) in this thesis, we apply the Triadic Census algorithm proposed by

Vladimir Batagelj and Andrej Mrvar [8], to compute the Triadic Census designed by

Holland and Leindhart [37]. Algorithm 1 adapts and simplifies Batagelj and Mrvar’s

algorithm by ignoring triads 003, 102 and 120 from calculations, which represent the

possible disconnected triads. Before we do this, we first remind ourselves of the relevant

information from Batagelj and Mrvar [8], defining the functions Link and Tricode as

follows:
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Definition 11. LetG = (V (G), E(G)) be a graph and let u, v ∈ V (G) such that u 6= v.

Then Link(u, v) [8] is defined as:

Link(u, v) =

 1 if (u, v) ∈ E(G)

0 otherwise
(3.3)

Definition 12. Let G = (V (G), E(G)) be a graph and let u, v, w ∈ V (G) such that

u 6= v 6= w. Then Tricode(v, u, w) [8] is defined as:

Tricode(u, v, w) = Link(u, v) + 2(Link(v, u) + 2(Link(u,w) + (3.4)

2(Link(w, u) + 2(Link(v, w) + 2Link(w, v))))) (3.5)

Tricode outputs an integer value which is mapped to a unique triad type under the

function TriType. The mapping is given by Table 3.1. To demonstrate the Link

and Tricode functions computing the triad types formed by three vertices, we refer to

Example 3.2.1.

Example 3.2.1. Suppose G = (V (G), E(G)) is a simple graph on vertices V (G) =

{x, u, v, w} and edges E(G) = {(x, u), (u, v), (v, w)}, as shown in Figure 3.1.

u v

w

x

Figure 3.1: Graph G = (V (G), E(G)) where V (G) = {x, u, v, w} and E(G) =
{(x, u), (u, v), (v, w)}.

Then Link(u, v) = 1, Link(x, u) = 1 and Link(v, w) = 1 since (u, v), (x, u) and

(v, w) ∈ E(G).

Then following Definition 12, Tricode(u, v, w) = 1 + 2(0 + 2(0 + 2(1 + 2(0)))) = 9.
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code type code type code type code type
0 003 16 012 32 012 48 102
1 012 17 021C 33 021U 49 111D
2 012 18 021D 34 021C 50 111U
3 102 19 111U 35 111D 51 201
4 012 20 021U 36 021C 52 111D
5 021D 21 030T 37 030T 53 120D
6 021C 22 030T 38 030C 54 120C
7 111U 23 120U 39 120C 55 210
8 012 24 021C 40 021D 56 111U
9 021C 25 030C 41 030T 57 120C

10 021U 26 030T 42 030T 58 120U
11 111D 27 120C 43 120D 59 210
12 102 28 111D 44 111U 60 201
13 111U 29 120C 45 120U 61 210
14 111D 30 120D 46 120C 62 210
15 201 31 210 47 210 63 300

Table 3.1: Triad codes and their corresponding triad type under function TriType
[8].

According to Table 3.1, TriType(9) = 021C. Thus triad (u, v, w) is of type 021C.

Similarly Tricode(x, u, v) = 9, and TriType(9) = 021C, thus (x, u, v) is of type

021C .

Using the Tricode formula and Table 3.1 we introduce the algorithm CENSUS, a Triadic

Census (T (G)) on a graph G (Algorithm 1).

Algorithm 1 only considers neighbouring vertices v once u is determined (and similarly,

w must be a neighbour of u and v). This prevents the need to run the Tricode function

on every triplet of vertices in a graph through only considering those which form a triad.

We define the neighbourhood of a vertex in Definition 13:

Definition 13. Let G = (V (G), E(G)) be a graph and let u ∈ V (G). Then the

neighbourhood of u, N(u) is defined by:

N(u) = {v ∈ V (G)|(u, v) ∈ E(G)} (3.6)
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Looping over all triples of vertices must be done with care, as each may appear in

six different orderings. To ensure every non-null triad is counted exactly once in

Algorithm 1, Batagelj and Mrvar [8] index vertices by integers. Hence, we give each

vertex in the graph a unique integer value, and say the ordering if canonical if for

u, v, w ∈ V (G): u < v < w,

Algorithm 1 CENSUS(G): Performs Triadic Census T (G) [8]
Input: Graph G.
Output: Triadic Census vector.

1: tk = 0 ∀k ∈ T . Initialise counts
2: for u ∈ V (G) do
3: for v ∈ N(u) such that u < v do . Count each pair once only
4: for w ∈ N(u) ∪N(v)− {u, v} do . Only consider connected triads
5: if v < w or (u < w and w < v and (u,w), (w, u) /∈ E(G)) then
6: k = TriTypes[Tricode(u, v, w)]
7: tk = tk + 1

return T (G) = (tk)k∈T

We are also interested in finding the Triadic Census for a single edge in a graph. This

later enables us to build more complex census measures along paths, such as the Path

Induced Triadic Census (Definition 22) or Triadic Edge Betweenness census (Definition

25). An edge census (Definition 16) on edge (u, v) finds all (non-trivial) triads which

contains (u, v). To construct an edge census, we first define the induced subgraph of G

on a subset, S:

Definition 14. Let G = (V (G), E(G)) be a graph. For S ⊆ V (G), the induced

subgraph of G on S, denoted G[S], is the graph with vertex set S and edge set

E(G[S]) = {(u, v)|u, v ∈ S, (u, v) ∈ E(G)}.

Defining the induced subgraph of G on S allows us to construct a Triadic Census on an

induced subgraph, i.e:
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Definition 15. A Triadic Census TG(S) for a subset of vertices S ⊆ V (G) is defined

as:

TG(S) = T (G[S]) (3.7)

where G[S] denotes the induced subgraph of G on S.

We are now in a position to define a Triadic Census on a single edge:

Definition 16. A Triadic Census TG(u, v) on an edge (u, v) ∈ E(G) is defined by:

TG(u, v) =
∑

w∈V (G)−{u,v}

TG({u, v, w}) (3.8)

To calculate TG(u, v), we apply EDGECENSUS (Algorithm 2), a modification to

CENSUS (Algorithm 1).

Algorithm 2 EDGECENSUS(G, u, v): Performs Triadic Census TG(u, v) of an edge
(u, v).

Input: Graph G, (u, v) ∈ E(G).
Output: Triadic Census vector.

1: tk = 0 ∀ k ∈ T . Initialise counts
2: for w ∈ N(u) ∪N(v)− {u, v} do . Only consider connected triads
3: k = TriTypes[Tricode(u, v, w)]
4: tk = tk + 1

5: return TG(u, v) = (tk : k ∈ T )

We want to investigate the difference between the Triadic Census performed on shortest

paths as compared to the whole graph for a range of data sets. Specifically, we want

to explore which triads may be found more frequently than we would expect across

shortest paths, as compared to the whole graph. To achieve this we introduce two forms

of census: (Definition Path Induced Triadic Census I(G) (Algorithm 22) and Triadic

Edge Betweenness Census B(G) (Algorithm 25). Path Induced Triadic Census will be

built on vertices and so can be compared with Triadic Census (a census on the whole
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graph). Triadic Edge Betweenness Census will be built on edges, and therefore we

require an edge based metric equivalent to Triadic Census. We therefore build the

adaptation: Edge Triadic Census A(G) 17):

Definition 17. The Edge Triadic Census on G is defined as A(G) where:

A(G) =
∑

(u,v)∈E(G)

TG(u, v) (3.9)

We compute the Edge Triadic Census (A(G)) by running a Triadic Census on each

edge in turn. Hence, A(G) counts the number of triads of each type that each edge is

contained within.

Constructing EDGETRIADICCENSUS requires summing two censuses, which we define

below (Definition 18):

Definition 18. Let S and T denote two Triadic Censuses on a graph G, where S =

(sk)k∈T and T = (tk)k∈T . Then the sum of censuses, S + T is defined by:

S + T = (sk + tk)k∈T . (3.10)

EDGETRIADICCENSUS (Algorithm 3) is an adaptation on CENSUS (Algorithm 1) to

compute A(G). The complexity of the algorithm depends on the number of edges in

the graph, since it runs EDGECENSUS on each edge. That is: for each edge in the graph,

each w ∈ N(u)∪N(V )−{u, v} must be found, the Link function must be applied six

times (once per possible edge between v, u and w) and the Tricode function applied

once.
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Algorithm 3 EDGETRIADICCENSUS(G): Computes the Edge Triadic Census A(G) on
graph G.

Input: Graph G.

Output: Edge Triadic Census vector A(G).

1: A = (0)k∈T

2: for (u, v) ∈ E(G) do

3: A = A+ EDGECENSUS(G, u, v)

4: return A

Note that individual triads containing more than one edge contribute to A(G) multiple

times. Consider Example 3.2:

Example 3.2.2. Suppose there exists some graph G = (V (G), E(G)) on vertices:

V (G) = {u, v, u1, u2, u3} and edges E(G) = {(u, v), (u1, u), (u2, u), (v, u3)} as

shown in Figure 3.2. Then the Triadic Census on the edge (u, v) (Definition 16)

is given by

TG(u, v) = (0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). That is, (u, v) is contained in three triads:

t1 = (u, v, u3), t2 = (u1, u, v) and t3 = (u2, u, v), which are all of the form 021C.

u2

u

v

u3

u1

Figure 3.2: Graph G = (V (G), E(G)) where V (G) = {u, v, u1, u2, u3} and
E(G) = {(u, v), (u1, u), (u2, u), (v, u3)}.

The edge (u1, u) is contained in two triads: t2 (above, of form 021C) and t4 = (u1, u,u2)
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of type 021U. Hence TG(u1, u) = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Note that t1 has

been counted twice, once in TG(u, v) and once in TG(u1, u).

Similarly, edge (u2, u) is contained in two triads: t3 (above, of type 021C) and t4

(above, of type 021U.) Hence TG(u2, u) = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Note that

t3 has been counted twice TG(u, v) and once in TG(u2, u); and t4 has been counted

twice, once in TG(u1, u) and once in TG(u2, u).

Edge (v, u3) is contained in one triad: t1 (above, of type 021C). Then TG(v, u3) =

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Note that t1 has been counted twice TG(u, v) and once

in TG(v, u3).

Then the Edge Triadic Census, A(G) = T (u1, u) + T (u2, u) + T (u, v) + T (v, u3) =

(0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), but this has only been constructed from four triads:

t1, t2, t3 and t4.

In general, Edge Triadic Census (A(G)) counts every triad once per edge of the triad.

Edge Triadic Census and Triadic Census (T (G), Definition 10) assess the relative

presence of each triad across a graph. Triadic Census is vertex-centric, whilst Edge

Triadic Census uses edges.

We are now in a position two build the two new census measures we will be investigating:

Path Induced Triadic Census (22) and Triadic Edge Betweenness Census (Definition

25). These census measures will assess the relative presence of each triad across a graph

(with Path Induced Triadic Census being vertex-based, whilst Triadic Edge Betweenness

Census is edge-based); offering a direct comparison to Edge Triadic Census A(G) and

Triadic Census T (G).

3.2.2 Triadic Census on Paths

Since shortest paths are at the focus of our new measures, we first introduce the set of

all shortest paths between a pair of vertices.
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Definition 19. Suppose G = (V (G), E(G)) is a graph and let u, v ∈ V (G). Then a

shortest path between u and v is a path between u and v which contains the minimum

number of edges. We denote the length of a shortest path from u to v as δs(u, v).

Definition 20. Suppose G = (V (G), E(G)) is a graph and let u, v ∈ V (G). Let

P (u, v) denote the set of all paths between u and v. Then the set of all paths of least

length between u and v, Ps(u, v) ⊆ P (u, v) is denoted by:

Ps(u, v) = {p ∈ P (u, v)|l(p) = δs(u, v)} (3.11)

We define a Path Induced Triadic Census between vertices u and v by summing the

Triadic Census TG(e) for each edge e in path p ∈ Ps(u, v). This is normalised over the

number of paths in Ps(u, v).

Definition 21. Let Ps(u, v) be the set of all shortest paths between u, v ∈ G. Then a

Path Induced Triadic Census IG(u, v) between u and v is given by:

IG(u, v) =
1

|Ps(u, v)|
∑

p∈Ps(u,v)

TG(p) (3.12)

By running a Path Induced Triadic Census (Definition 21) on every pair of vertices, we

can induce a Path Induced Triadic Census on a graph, i.e:

Definition 22. The Path Induced Triadic Census on G is given by I(G) where:

I(G) =
∑

u,v∈V (G)

IG(u, v) (3.13)

To calculate I(G), we apply Algorithm 5, PATHINDUCEDTRIADICCENSUS, which

performs a TRIADCENSUS (Algorithm 1) on each induced subgraph of G[p] for each
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shortest path p, where each shortest path is generated using Dijkstra’s shortest path

algorithm [17].

Algorithm 4 PATHINDUCEDTRIADICCENSUS(G): Computes the Path Induced Triadic
Census I(G) on a graph G.

Input: Graph G.
Output: Triadic Census vector.

1: I = (0)k∈T
2: {Ps(u, v) : u, v ∈ V (G), u 6= v} = DIJKSTRA_ALL_PAIRS(G) . Find all shortest

paths using Dijkstra’s Algorithm [17]
3: for u, v ∈ V (G) such that u 6= v and P (u, v) 6= ∅ do
4: T = (0)k∈T
5: for p ∈ P (u, v) do
6: T = T+ CENSUS(G[V (p)])

7: I = I + 1
|P (u,v)|T

8: return I

Path Induced Triadic Census has the property of counting triads multiple times according

to how many shortest paths the vertices of a triad are contained in. Further, I(G) will

only count triads present in the induced subgraph G[p] of a shortest path p on G, which

are precisely the triads with all three vertices present in p. We demonstrate in Examples

3.2.3 and 3.2.4 two different scenarios: in Example 3.2.3 we show that G[p] only

contains triads where all three of it’s vertices are all present in p, and in 3.2.4 we shown

that I(G) counts each triad in G the same number of times as the number of shortest

paths all three vertices of the triad are contained in.

Example 3.2.3. Suppose there exists some graph G = (V (G), E(G)) as shown in

Figure 3.3. The 030T triad t = (u2, u4, u5) is highlighted in red.

If p is a shortest path from u1 to u8 in G, then p = (u1, u2, u3, u4, u5, u6, u7, u8). Then

the induced subgraph of p on G, G[p], contains all the same vertices and edges as G,

thus is identical to Figure 3.3. We see in this figure that t is present in G[p].

Now suppose we modify G through adding the edge (u1, u3) and call the resulting graph

G′, as shown in Figure 3.5, where edge (u1, u3) is shown in blue. This creates a shortcut
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u1u8

u2 u3

u4u5

u7

u6

Figure 3.3: Graph G, with the 030T triad t highlighted in red.

from u1 to u3 bypassing u2, hence u2 will no longer be contained in shortest paths from

u1 to u8.

u1u8

u2 u3

u4u5

u7

u6

Figure 3.4: Graph G′, a modification to G through adding the blue edge (u1, u3).

Hence if p′ is a shortest path from u1 to u8 in G′, then p = (u1, u3, u4, u5, u6, u7, u8).

Then the induced subgraph G′[p′] is shown in Figure 3.4. We see in this figure that t is

not present in G′[p′] because u2 ∈ t is not present in p′, and therefore edges incident

with u2 will not be present in G′[p′].

Hence, since an induced subgraph of a shortest path p onG contains the vertices present

p, then G[p] will only contain triplets of vertices where all three vertices are present in

p.

Example 3.2.4. Consider Figure 3.3 and triad t = (u2, u4, u5) again. Then the ver-

tices of t are all simultaneously contained in the following shortest paths: p1 =
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u1u8

u3

u4u5

u7

u6

Figure 3.5: Induced subgraph G′[p′] of shortest path p′ on G′.

(u1, u2, u3, u4, u5), p2 = (u1, u2, u3, u4, u5, u6), p3 = (u1, u2, u3, u4, u5, u6, u7) and

p4 = (u1, u2, u3, u4, u5, u6, u7, u8). Then t will be present in the induced subgraphs

G[p1], G[p2], G[p3] and G[p4]. Hence I(G) will count t four times, once per shortest

path of which all three vertices of t occur.

Suppose a message was transmitted through a graph from vertex u to v. We are

interested in the number of triads of each type that such a message would encounter or

pass through, assuming it is sent along a shortest path. In particular, we are interested

in whether certain triad types are more prevalent on shortest paths than in the whole

graph. Since there are likely to be several shortest paths between every such pair of

vertices, we follow the same approach as the betweenness centrality measure, and take

their average census.

We first define a Triadic Edge Betweenness Census on a shortest path, then build to a

Triadic Edge Betweenness Census on a graph. Triadic Edge Betweenness Census looks

at every triad in the graph G incident with the vertices in path p.

Definition 23. Let p = (u = u0, u1, . . . , v = un) be a path of length n between u and

v ∈ V (G). A Triadic Edge Betweenness Census on p is given by BG(p) where:

BG(p) =
n∑
i=1

TG(ui−1, ui) (3.14)
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We next calculate the Triadic Edge Betweenness Census over all possible shortest paths

between u and v. This is normalised over the total number of shortest paths between u

and v.

Definition 24. Let Ps(u, v) be the set of all shortest paths between u, v ∈ G. Then a

Triadic Edge Betweenness Census for u, v is given by BG(u, v):

BG(u, v) =
1

|Ps(u, v)|
∑

p∈Ps(u,v)

BG(p) (3.15)

Finally, we can define the Triadic Edge Betweenness Census on a graph:

Definition 25. The Triadic Edge Betweenness Census B(G) on graph G is defined as:

B(G) =
∑

u,v∈V (G)

BG(u, v) (3.16)

To calculate B(G), we apply Algorithm 5: TRIADICEDGEBETWEENNESSCENSUS.

Triadic Census of edges are cached once computed, hence in TRIADICEDGEBETWEEN-

NESSCENSUS, an EDGECENSUS (Algorithm 2) is only completed on each each unique

edge once.

B(G) will count triads multiple times, according to how many edges of the triad are

contained in each shortest path. To demonstrate this, consider Example 3.2.5.

Example 3.2.5. Suppose there exists some graph G = (V (G), E(G)) where V (G) =

{u1, u2, u3, u4,

u5} andE(G) = {(u1, u2), (u2, u3), (u3, u4), (u4, u5)} as shown in Figure 3.6. Suppose

p = (u1, u2, u3, u4, u5) is a shortest path of length four between u1 and u5.

There are two factors which affect how many times each triad is counted by B(G): the

degree to which shortest paths overlap and how many edges of a triad are contained in

a shortest path.
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Algorithm 5 TRIADICEDGEBETWEENNESSCENSUS(G)

Input: Graph G.
Output: Triadic Census vector.

1: B = (0)k∈T
2: ec← empty dictionary . Cache for edge Triadic Censuses
3: {Ps(u, v) : u, v ∈ V (G), u 6= v} = DIJKSTRA_ALL_PAIRS(G)
4: for u, v ∈ V (G) such that u 6= v and P (u, v) 6= ∅ do
5: T = (0)k∈T
6: for p ∈ Ps(u, v) do
7: for (a, b) ∈ E(p) do
8: if (a, b) 6∈ ec then . First encounter of edge
9: ec[(a, b)] =EDGE_CENSUS(G, a, b) . Calculate and cache

10: T = T + ec[(a, b)] . Retrieve from cache
11: B = B + 1

|Ps(u,v)|T

12: return B

u1 u2 u3 u4 u5

Figure 3.6: Graph G = (V (G), E(G)) on vertices V (G) = {u1, u2, u3, u4, u5} and
edges E(G) = {(u1, u2), (u2, u3), (u3, u4), (u4, u5)}.

The triad t1 = {u1, u2, u3} is a triad of type 021C in p. Two edges of t1 are contained

in p: (u1, u2) and (u2, u3). Then B(G) will count t1 twice in p.

Similarly, the triads t2 = {u2, u3, u4} and t3 = {u3, u4, u5} will all be counted twice in

p. Hence, the number of edges of a triad which are contained in a shortest path affects

the number of times each triad is counted. In addition, the number of overlapping

shortest paths affects how many times a triad is counted.

There are several subpaths of p which are themselves shortest paths:

• There are four subpaths of length 1: p1 = (u1, u2), p2 = (u2, u3), p3 = (u3, u4), p4 =

(u4, u5). Depending on position in p, each subpath may lie on one or the intersec-

tion of two 021Cs: p1 and p4 both lie on one 021C; p2 and p3 both lie on two

021Cs.
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• There are three subpaths of length 2: p5 = (u1, u2, u3), p6 = (u2, u3, u4), p7 =

(u3, u4, u5). Paths p5 and p7 lie on three 021Cs; p6 lies on four 021Cs.

• There are two subpaths of length 3: p8 = (u1, u2, u4, u4) and p9 = (u2, u3, u4, u5).

Both lie on five 021Cs.

Then B(G) counts 32 total 021Cs, even though there are only three distinct (i.e they at

most share one edge) 021Cs in G.

Even though some of these counts may count triads multiple times, this is not necessarily

something that needs to be eliminated, but rather a measure of importance. For example,

B(G) will count those triads with more edges in shortest paths or which are contained

in many overlapping shortest paths more frequently than to the remaining triads in the

graph. The proportion of the census will therefore tend towards triads which are more

important to constructing shortest paths. Likewise, A(G) will count more frequently

those triads with a greater number of edges, and therefore of greater importance to

edges structure of the graph.

We have introduced three new measures: Edge Triadic Census A(G), Path Induced

Triadic Census I(G) and Triadic Edge Betweenness CensusB(G). Each of these census

measures produce a vector of length 13. In all cases, it makes sense to use a normalised

vector to enable comparisons between the metrics. We shall define these normalised

vectors as: Â(G), B̂(G) and Î(G), with the addition of the normalised Triadic Census

T̂ (G). We define what it means to be a normalised vector below (Definition 26:

Definition 26. Suppose x = (x1, x2, . . . , xn) is a vector of length n. Then we define

the normalised vector x̂ as:

x̂ =
(x1, x2, . . . , xn)∑n

k=1 xk
(3.17)
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3.3 Results

In this section, we compare the relative presence of triads in shortest paths against

their presence across the general network. We do this through comparing vertex based

measures (i.e T̂ (G) from Definition 10 and Î(G) from Definition 22) and edge based

measures (i.e Â(G) from Definition 17 and B̂(G) from Definition 25), where B̂(G) and

Î(G) are based on shortest paths. These measures have all been normalised according

to Definition 26. We are doing this because we wish to determine whether particular

triad types are more prevalent, and therefore possibly more important to shortest paths.

To analyse the results, we categorise triads into three sub-types: Type I, II and III triads

based on the number of edges a triad may have in a shortest path. This also allows us to

hypothesise which of these sub-types of triad may be higher in B̂(G) and Î(G), and

therefore potentially be more important in paths, and which of these sub-types of triad

may be higher in T̂ (G) and Â(G).

We apply our four census measures on a combination of networks from Section 2.5. Due

to complexity of Algorithms 1 - 5, our census measures could run to completion only

on smaller networks in a reasonable time. The networks in question are: the electrical

circuit networks s420 [5] and s838 [5]; the food web networks Baywet [74], Grassland

[14], Little Rock Lake [42], Mangwet [74], St.Marks Seagrass [14] and Ythan [1]; the

organise networks Cross Parker Consulting [63], Freemans EIESn48 1 [63], Freemans

EIES n48 [63] and Cross Parker Manufacturing [63]; the regulatory networks E.coli

transcription [5] and yeast transcription [5]; the neural network C.Elegans [68] and

the social network Prison Inmate [5]. All of these networks have a small number of

vertices, with the largest data set being C.Elegans on 297 vertices, and the smallest

data set being Freemans EIES n48 1 and 2 on 34 vertices. The data sets have varying

properties, demonstrating that our measures are applicable to a number of different

network types, and ensuring that our results are collated from a range of sources to

minimise bias from the network type. On one hand, organise networks are relatively

dense and exhibit high levels of clustering, reciprocity and small diameters; indicating
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(a) s420 [5] (b) s838 [5]

Figure 3.7: Census Measures of Electrical circuit networks.

that vertices form highly connected tightly knit groups with lots of two-way interactions.

Contrast this with e-circuit networks, which are relatively sparse, exhibiting very little

reciprocity and clustering, and long diameters. Other classes of networks sit somewhere

in between: for example, food web networks have small diameters, with medium levels

of clustering and density (which could indicate grouping of vertices), yet exhibit little

to no reciprocity as mutual predation in species is very unlikely.

For each network, we compute the four census measures by running each of the Al-

gorithms 1 - 5 in turn on the input network and normalising each census measure by

dividing through by the sum of the elements under Definition 26. For each network,

we plot the number of triads occurring according to each census measure (represented

through four coloured bars) for each class of triad. The results for this can be found in

Figures 3.7 - 3.11. T̂ (G) is represented by a blue bar, Î(G) a red, B̂(G) an orange and

Â(G) a green. We compare vertex based measures T̂ (G) (blue bar) with Î(G) (red bar);

and edge based measures Â(G) (green bar) with B̂(G) (orange bar).

The relationship between the presence of a triad in shortest paths relative to the whole

network seems to be dependent on two factors:

1 The maximum number of edges of a triad that can be simultaneously contained in

the same shortest path.

2 The maximum number of shortest paths that overlap on one edge of a triad.
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(a) Baywet [74] (b) Grassland [14]

(c) Little Rock Lake [42]) (d) Mangwet[74]

(e) St.Marks Seagrass [14]) (f) Ythan [1]

Figure 3.8: Census Measures of Food web networks.

We categorise all connected triads into following three types according to (1): the

maximum number of edges simultaneously contained in the same shortest path:

• Type I triads have at most one edge in a path.

• Type II triads have can have up to two edges simultaneously in a shortest path.

• Type III triads have two edges in a path, but at most one edge in a shortest path.

By exhaustive analysis of all connected triads, it is possible to uniquely specify each

triad as having one type. This is presented in Table 3.2.

030T, 120D, 120U and 300 are all Type III triads. They all contain 2-paths; but every
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(a) Cross Parker Consulting [63] (b) Freemans EIESn48 1 [63]

(c) Freemans EIES n48 [63] (d) Cross Parker Manufacturing [63]

Figure 3.9: Census Measures of Organise networks.

(a) E.coli transcription [5] (b) Yeast transcription [5]

Figure 3.10: Census Measures of Regulatory networks.

2-path has a corresponding edge which ’shortcuts’ the 2-path, and therefore the 2-path

would not be in a shortest path. This is demonstrated in Figure 3.12.

Type I Type II Type III
021D 021C 030T
021U 111D 120D

111U 120U
030C 300
201
120C
210

Table 3.2: 13 connected triad types categorised into Type I, Type II and Type III.
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(a) C.Elegans [68]) (b) Prison Inmate [5]

Figure 3.11: Census Measures of miscellaneous networks.

030T 120U 120D

300 300 300

Figure 3.12: 030T, 120D, 120U and 300. The red edges represent a 2-path, with
the corresponding shorcut in blue.

The categorisation of triads by type allows us to observe high-level patterns concerning

the prevalence of triads. Accordingly we present Observations O1 - O3.

Observation O1: In general, Type I triads are more prevalent across the networks

as compared to shortest paths.

From Figures 3.7 - 3.11 we observe:

• T̂021U(G) > Î021U(G) and Â021U(G) > B̂021U(G).

• T̂021D(G) > Î021D(G) and Â021D(G) > B̂021D(G) (except in Baywet [74]).
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Observation O2: In general, Type II triads are more prevalent across shortest

paths as compared to the whole networks.

From Figures 3.7 - 3.11 we observe:

• T̂021C(G) < Î021C(G) and Â021C(G) < B̂021C(G) (except in Mangwet [74]).

• T̂030C(G) < Î030C(G) and Â030C(G) < B̂030C(G).

• T̂111D(G) < Î111D(G) and Â111D(G) < B̂111D(G).

• T̂111U(G) < Î111U(G) and Â111U(G) < B̂111U(G).

• T̂120C(G) < Î120C(G) and Â120C(G) < B̂120C(G).

• T̂120D(G) < Î120D(G) and Â120D(G) < B̂120D(G).

• T̂120U(G) < Î120U(G) and Â120U(G) < B̂120U(G).

• T̂201(G) < Î201(G) and Â201(G) < B̂201(G).

To explain observations O1 and O2, we consider the number of edges of the triad that

can be contained in a shortest path. Type I triads cannot have more than one edge

in a path. Therefore, for every shortest path containing the Type I triad; B̂(G) will

only count the triad once. Type II triads can have up to two edges in a shortest path.

Therefore, for every shortest path containing the Type II triad; B̂(G) will count the triad

up to two times.

An induced subgraph of each shortest path of length two onG computed in the algorithm

for Î(G) cannot contain a triad of Type I. Further, we know induced subgraphs will only

contain triads where all three vertices are contained in a shortest path. Since Type II

triads may contain two edges in a shortest path, this is more likely than in Type II triads

than in Type I triads, where at most one edge is contained in a shortest path.
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Hence when computing B(G) and I(G) there will be a greater number of Type II triads

present than in T (G) and A(G). The same is not true for Type I triads, which can be

more present in B(G) and I(G) than in T (G) and A(G) but at a rate lower than Type II

triads, or potentially be even less present in B(G) and I(G) than in T (G) and A(G).

Hence there will be a greater proportion of Type II triads computed by B̂(G) and Î(G)

and a low proportion of Type I triads as compared with T (G) and A(G).

Type III triads are more complex. We can expect them to behave similarly to Type I

triads, due to only having at most one edge in a shortest path. However, there are many

examples in Table 3.2 where this is not true. Hence, we make the following observation

on Type III triads (O3).

Observation O3: Type III triads are generally more prevalent in paths or net-

works depending on (2): the maximum number of shortest paths that overlap on

one edge of a triad. This depends on the structure of the network.

From Figures 3.7 - 3.11 we observe:

• T̂030T (G) > Î030T (G) and Â030T (G) > B̂030T (G) in Baywet [74], Little Rock

Lake [42], Mangwet [74], St. Marks Seagrass [14], Metabolic, C. Elegans [40],

Cross Parker Consulting [63], Freemans EIES n48 1 [63], Freemans EIES n48

2 [63], Cross Parker Manufacturing [63] and Prison Inmate [5].

• T̂030T (G) < Î030T (G) and Â030T (G) < B̂030T (G) in Ythan [1], E. coli transcrip-

tion [5] and Yeast transcription [5].

• T̂120U(G) > Î120U(G) and Â120U(G) > B̂120U(G) in Cross Parker Consulting [63],

Freemans EIES n48 1 [63], Freemans EIES n48 2 [63], Cross Parker Manufactur-

ing [63] and Prison Inmate [5].

• T̂120U(G) < Î120U(G) and Â120U(G) < B̂120U(G) in Baywet [74], Little Rock

Lake [42], Mangwet [74] and C. Elegans [40].
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• T̂120D(G) > Î120D(G) and Â120D(G) > B̂120D(G) in Cross Parker Consulting [63],

Freemans EIES n48 1 [63], Freemans EIES n48 2 [63], Cross Parker Manufactur-

ing [63] and Prison Inmate [5].

• T̂120D(G) < Î120D(G) and Â120D(G) < B̂120D(G) in Baywet [74], Little Rock

Lake [42], Mangwet [74] and C. Elegans [40].

We might expect Type III triads to behave similarly to Type I triads due to the property

that at most one of their edges may be contained in a shortest path. Hence for every

shortest path containing the Type III triad, B̂(G) will not count this triad twice. Î(G)

will only count this triad if all three of its vertices are contained in the shortest path;

which is less likely in a triad that has at most one edge contained in a shortest path, and

impossible in shortest paths of length two.

However, from the results we observe that Type III triads do not always behave like

Type I triads. In many cases, primarily in Food web networks, Type III triads behave like

Type II triads (namely they are more prevalent across shortest paths than the network).

The behaviour of Type III triads may instead be due to (2) : the maximum number of

shortest paths a triad is contained within. This is due to the underlying structure of the

network.

We note that all the networks where Type III triads behave like Type II triads are

hierarchical. They have a high abundance of 021C, 021D and 021U and crucially, a low

abundance of the Type III triad of concern. Therefore, it is important to note it is possible

that a single Type III triad acts as a bridge in these networks, that creates many new

paths between vertices that would not otherwise have a path between them.Therefore,

the number of these triads present in the network can be low, but the number of shortest

paths it occurs in can be high. It is also important to note that a single Type I triad may

have the same effect, but these are already very abundant in the network and therefore

are not more prevalent in paths. We exemplify this in Example 3.3.1:
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Example 3.3.1. Suppose there exists some graph G = (V (G), E(G)) where V (G) =

{u1, u2, u3, u4,

u5, u6, u7, u8, u9} as shown in Figure 3.13. G is hierarchical. The only triads G

contains are 021C, 021U and 021D, examples of which are highlighted in blue, red

and green respectively.

u1 u2 u3 u4

u5 u6 u7

u8 u9

Figure 3.13: A heirarchy graph G, with examples of 021C, 021U and 021D high-
lighted in blue, red and green respectively.

u1 u2 u3 u4

u5 u6 u7

u8 u9

Figure 3.14: The addition of the edges (u2, u3) and (u3, u2) to G from Figure 3.13

Suppose we add a reciprocated edge to the graph between vertices u2 and u3 in Figure

3.14. Adding this extra edge between u2 and u3 forms the 120U triad: t = (u2, u3, u6).

There is only one 120U triad in the entire graph. However, adding this edge has created

many new paths in the graph. This is because now there exists a path from u2 to every

neighbour of u3 which is not a neighbour of u2; and visa versa. The span of the new

paths is highlighted in red. The new paths in question are:
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p1 = (u2, u3), p2 = (u2, u3, u7), p3 = (u2, u3, u7, u9), p4 = (u3, u2), p5 = (u3, u2, u5), p6 =

(u3, u2, u5, u8).

Since these paths are the only paths between the source and terminal vertex, they are

also the shortest path between the two vertices in question. Therefore, although there is

only one 021U present in the graph, it has many shortest paths incident with one edge.

3.4 Summary

In this Chapter we have shown that a Triadic Census for a graph does not adequately

represent the role of triads in shortest paths. In other words, when a census is induced by

shortest paths, a different profile is exhibited. To demonstrate this, we have constructed

two new census measures that use Triadic Census in different ways: B̂(G) and Î(G).

B̂(G) counts triad based on edges contained in shortest paths, whilst Î(G) is vertex-

based and counts triads based on presence in induced substructures of shortest paths.

We have compared these measures with their respective edge or vertex based graph

census measures: Â(G) and T̂ (G).

The importance of a triad to shortest paths is determined by two factors: the maximum

number of edges of a triad that can be simultaneously contained in the same shortest

path and the maximum number of shortest paths that overlap on one edge of a triad.

Furthermore, we have shown that triads can be usefully categorised according to how

many of their edges can be contained in a single shortest path. Triads that can only

contain up to one edge in a shortest path are more prevalent across the census for the

graph than the census for shortest paths. On the other hand, triads that may contain up

to two edges in a shortest path are more prevalent across shortest paths than the rest of

the graph.

Triads that may contain two edges in a path, but only one edge in a shortest path can act

either way; their importance to shortest paths is instead determined by the maximum
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number of shortest paths that overlap on one edge of the triad, which is determined

by the structure of the graph. These triads are more important to shortest paths in

graphs with a higher volume of 021C, 021D and 021U but a low volume of the triad

in question. Otherwise, these triads are more prevalent in the graph than across shortest

paths.

Overall, these results show that connectivity (i.e., shortest paths) in graphs leave par-

ticular signatures through their incidence with certain triads over others. This arises

from the way in which edges in triads can be used to provide connectivity, as indicated

through the categorisation of triads introduced in this chapter. This motivates further

examination of the role of edges in triads, concerning their role in supporting graph

wide connectivity.

This chapter addresses the first research question:

RQ1: The role of triads in paths: if connectivity in a graph is dependent on the existence

of paths, then what is the relationship between triads and paths?

We do this through adapting triadic census to look at which triads occur more frequently

in paths, resulting in the first contribution:

C1 New triad census measures to establish the proportion of triads that occur more

frequently along shortest paths, as compared with the entire graph. This addresses

research question RQ1.
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Chapter 4

The Centrality of Edges Based on their

Role in Induced Triads

In this chapter we use connected triads to characterise the local importance of an edge,

based on its role in providing connectivity within a particular triad. As demonstrated

in the last chapter, particular triads play more significant roles in supporting network

connectivity through shortest paths. Here we address this by further differentiating the

roles that edges within triads play in terms of supporting connectivity. We introduce

a new form of edge centrality that captures the role that an edge plays in providing

connectivity relative to a particular triad in a directed network. Critically, we note that

relative to facilitating a path to the third node, an edge can be characterised in one of

two alternative states, which we call overt and covert.

We introduce these concepts and demonstrate them through weighting edges of a

network according to how many triads such an edge occurs in as overt or covert. This

represents a new centrality measure for networks. We examine 34 publicly available

networks representing a range of different scenarios and plot the distribution of overt and

covert centrality, using this to observe the inherent similarities and differences between

networks. For a range of synthesised networks, we also consider the differences in

structure between minimally overt/covert paths as compared to shortest paths.
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4.1 Overview

As presented in the literature review (Chapter Two), analysing complex networks

through induced substructures (a.k.a graphlets) has gained much popularity in re-

cent years. This approach assumes that induced substructures are the basic ‘building

blocks’ for the network. This form of network analysis has mainly supported inter-

network comparison based on assessing the relative volume of induced substructures

(i.e those graphlets which occur significantly more in a network than in an ensemble of

comparable random networks are called motifs). Much less attention has been paid to

using graphlets to better understand the connectivity within a network.

In particular, the presence of particular substructures remains important and our results

from Chapter Three indicate that certain categories of induced triad can be important

to sustaining connectivity, based on edges supporting shortest paths. Recall we are

interested in triads because they are the smallest non-trivial graphlet after dyads and

vertices, yet still partition into relatively few isomorphism classes as compared with

tetrads or higher order substructures. The categorisation we introduced in Chapter Three

came from the positioning of edges within triads, and the viability of shortest paths

being able to take multiple edges from a triad.

Taking this a step further, in this chapter we consider the role that edges within an

induced substructure can play locally, in terms of edges supporting paths within a

graphlet. This is a very local consideration of connectivity, and presents an additional

perspective through which network connectivity can be characterised. Furthermore,

this complements the existing use of graphlet analysis for networks, leading to a new

centrality measure aligned to graphlet based analysis.

4.1.1 Edge Centrality and Graphlets

Centrality is a general concept for assigning importance to an edge or node for some

particular reason. In this chapter we introduce a new centrality metric for edges that
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addresses edge importance based on the connectivity roles that an edge plays for multiple

triads. Within one triad in isolation, we have a very simple scenario, that can be built

upon. As triads have just three nodes, connectivity from a node can be characterised by:

1. A node’s direct reach (i.e., can the node communicate directly with other nodes);

2. A node’s potential for indirect communication with other nodes (i.e., a path of

length two to another node).

These aspects govern how local communication can take place in triads and the role

that individual edges play, which can be seen by imaging potential for communication

between nodes in a triad. In this scenario, an edge may facilitate direct communication

only between a pair of nodes i, j in the triad (i.e., there is an edge (i, j) but no edge

(j, k)) or an edge (i, j) may facilitate all communication to all nodes in the network

(i.e., there is also a edge (j, k) in the triad where k is the third node). This means that an

edge can have different significance based on the presence of other edges in the triad.

As a further example, consider Figure 4.1. Edge (i, j) holds a different role in Triad

One than in Triad Two, because in Triad Two, once the edge (i, j) is traversed, it is still

possible to traverse the edge (j, k) to reach node k. We call this the ability to ‘flood’ the

triad. If we were sending a message from node i and we were interested in limiting

dissemination, it would be desirable to have network structure in Triad Two rather than

Triad One. The reverse would be true if our intent was contagion. We also note that

an edge can play both these roles simultaneously for different triads when an edge is

contained in multiple triads.

In this chapter we formally define this ability of an edge to support flooding a triad in the

manner above as overt, otherwise we classify an edge as covert. Using edges in this way

is convenient for a number of reasons – firstly it is a simple binary definition that can be

used to assess the local connectivity in triads. Secondly it can be used to interpret and

compare different triads, should graphlet analysis be the basis for comparison between

networks. Thirdly the definition allows for overlap between triads to be assessed, noting
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Triad One

i k

j

Triad Two

i k

j

Figure 4.1: Different roles edges can play in connected triads. In Triad One, the
edge (i, j) can support flooding the triad, but it does not in Triad Two.

also that an edge can play different roles (covert and overt) across the triads in which it

participates. Finally we note that the concept can be imposed to assess relations between

nodes of particular interest to a scenario. Thus the extent that an edge is overt or covert

in the triads that it participates represents a basis for a centrality measure, that expresses

the importance of edges relative to induced triads. We proceed by formalising these

concepts.

4.2 Defining the Role of Edges

In this section, we formalise the concept of overt and covert edges. We assume a

graph G = (V (G), E(G)) is represented by the set of nodes V (G) and the set of edges

E(G). We assume that edges are directed, with an edge from node u to v if and only if

(u, v) ∈ E(G). For an induced triad t, we refer to its vertices as V (t) ⊆ V (G) and its

edges as E(t) ⊆ E(G).

Definition 27. Let t be an induced triad in G = (V (G), E(G)) with vertex set V (t) =

(i, j, k) where there is a directed edge from i to j (i.e., (i, j) ∈ E(t)). Edge (i, j) is

overt with respect to t if and only if (j, k) ∈ E(t), otherwise edge (i, j) is covert.

Note that in a triad representing communication involving nodes i, j and k, when (i, j)

is an overt edge, dissemination of content from i to j may reach k indirectly from i, via

j. Conversely, when (i, j) is covert, i is assured that dissemination to j will not reach

k. Therefore local awareness of the status of edges gives nodes some agency in either
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the containment of information along a path involving that edge (i.e., the edge (i, j) is

covert), or the potential for content to be more widely disseminated across a network

due to the use of that edge (i.e., the edge (i, j) is overt). Example 4.2.1 demonstrates

this.

Example 4.2.1. For example, consider the triad t in Figure 4.2 where V (t) = {i, j, k}

and E(t) = {(i, j), (j, k)}. Then (i, j) is overt because (j, k) is contained in E(t) but

(j, k) is covert as no edge (k, i) exists in E(t).

i k

j

Figure 4.2: Triad t where (i, j) is overt and (j, k) covert. If t represents com-
munication, then (i, j) enables message spread within the triad, whilst (j, k) does
not..

Because overt and covert are defined upon triad structure, they can be applied to

networks where message spread or contagion is not appropriate. For example, in food

web networks an edge represents predator/prey trophic links (i.e if there is an edge

from i to j, then j predates i). In this case, an overt edge represents a trophic link

between prey and a primary predator: there is a secondary predator present in the triad

who predates the primary predator. Since a reciprocated link would represent mutual

predation (a very unlikely event) then a covert edge generally indicates a trophic link

between prey (or primary predator) and a predator (primary or secondary) who, in terms

of the triad, has no further predators. Therefore, overt and covert may enable us to

establish which vertex is who in a food web. Alternatively, in airport networks an edge

between two vertices i and j represents a flight from i to j. Therefore, in terms of a triad,

an overt edge would represent a connecting flight whilst a covert edge a direct flight.

In general, an overt edge is a relationship between two vertices which itself enables a

further, adjacent relationship.

Figure 4.3 shows all possible connected triads with overt and covert edges indicated.
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Note that there is high variability on the presence of overt and covert edges, between

triads. This gives a new way to view all triads, noting the role that there edges play.

C C

021D

C C

021U

O C

021C

O

C
C

111D

C

C
O

111U

C C

O

030T

O

O

O

030C

O

C

O
C

201

OO

C
C

120D
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O
O

120U

OO

O
C

120C

O

C

O
O

O

210

O O

O

O
O

O

300

Figure 4.3: All connected triad types with overt and covert edges indicated by O
and C respectively.
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4.3 Relationship with Transitivity

In Chapter Two, we highlighted the clustering coefficient (Section 2.2) for networks

[49] looking into definitions for transitive triads as defined by Wasserman and Faust

[75] (Section 2.2). Transitive triads and overt edges in triads have some aspects in

common. Transitive triads focuses on the existence of a third edge when the two other

edges are present between three nodes. This is not dissimilar to our definition of an

overt edge, which involves another edge in a triad being present. However in this section

we point out why our classification for edges in triads as overt is related but distinct

from transitive triads.

Recall the definition of a transitive triad [75] from Section 2.2:

Definition 28. A triad (i, j, k) is a transitive triad if whenever there is a directed edge

from i to j and from j to k, then there is a directed edge from i to k [75]. If no edge

(i, j) or (j, k) exists then a triad is a vacuously transitive triad. Otherwise, it is an

intransitive triad.

Consider Example 4.4.

Example 4.3.1. Suppose there exists three triads T1, T2 and T3 on vertex set: {i, j, k}

and edge sets E(T1) = {(i, j), (j, k)(i, k)}, E(T2) = {(i, j), (j, k)} and E(T3) =

{(i, j), (i, k)} as shown in Figure 2.3. Then T1 is a transitive triad, whereas T2 is

intransitive. T3 is vacuously transitive as there is an edge from i to j and i to k, yet no

edge from j to k.

i k

j

T1

i k

j

T2

i k

j

T3

Figure 4.4: Example of three triads T1, T2 and T3 where T1 is transitive, T2 is
intransitve and T3 is vacuously transitive.
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Transitive triads are defined upon a structural relationship, though they have strong

semantic interpretations dependent on the network type. For example, transitive triads

are important in social networks because they highlight the relationship ‘The friend of

my friend is also my friend ’. Similarly in food web networks, a transitive triad could

indicate the relationship ‘The predator of my predator is also my predator ’, or in airport

networks such triads could indicate the same end destination for a direct and connecting

flight.

We are interested in showing that transitive triads and overt/covert edges are not two

different interpretations of the same underlying structure. In Proposition 1 and Example

4.3.2 we show that the existence of an overt edge in a triad is necessary but not sufficient

for the triad to be a transitive triad.

Proposition 1. Suppose the triplet t = (i, j, k) is a transitive triad. Then t necessarily

contains an overt edge.

Proof. If t is a transitive triad, then the edges (i, j), (j, k), (i, k) are contained in t, as

shown in Figure 4.5.

i k

j

Figure 4.5: Transitive triad t, where t necessarily contains the overt edge (i, j).

Since (j, k) is contained in t, then (i, j) is overt.

Note that in Figure 4.5 both (i, k) and (j, k) are covert since the edges (k, j) and (k, i)

(which would make each edge (i, k) and (j, k), respectively, covert) are not contained in

t. However, these edges could be contained within t without prevent t being a transitive

triad, hence covert edges are not necessary for t to be a transitive triad.

The converse of Proposition 1 is not true: if a triad contains an overt edge, the triad is

not necessarily a transitive triad. This is demonstrated by Example 4.3.2.
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Example 4.3.2. Suppose the triad t = (i, j, k) contains the overt edge (i, j). Then (j, k)

is also contained in t. Then t can be a transitive triad, an intransitive triad or vacuously

transitive triad. Figure 4.6 shows one example where t is an intransitive triad.

i k

j

Figure 4.6: Triad t where the edge (i, j) is overt yet t is an intransitive triad.

Proposition 1 and Example 4.3.2 highlight a crucial difference between the clustering

coefficient and overt edges, that it is necessary but not sufficient that a transitive triplet

contain an overt edge.

4.4 Profiling Data Sets using Overt and Covert Central-

ity

In Section 4.2 we defined overt and covert as a categorisation for an edge based on its

role within a triad. However, an edge can be present in multiple triads simultaneously.

Further, an edge may play different roles across different triads. Consider Example

4.4.1:

Example 4.4.1. Consider the simple graph G involving two induced triads: t1 =

(x, u, v) and t2 = (u, v, w). Edge (u, v) is involved in both triads t1 and t2. (u, v) is

covert in t1 and (u, v) is overt in t2, as shown in Figure 4.7.

Centrality measures assigning importance to an edge or vertex for some particular

reason. In this section we introduce Propositions 2, 3 and 4 that enable enumeration

of the number of triads in which an edge is overt or covert, which we call the overt

centrality of an edge and the covert centrality of an edge. The overt and covert edge
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u v

w

x

Figure 4.7: The simple graph G containing overlapping triads in which the same
edge acts as both overt and covert.

counting approaches we introduce involve quick computation using the neighbourhood

of nodes belonging to the edge of interest. This local approach means that in contrast to

some alternative edge centrality metrics, computing overt and covert centrality is highly

scalable. To understand the presence and implications of overt and covert centrality,

we apply these metrics as edge weights to real world data sets. To exemplify this we

determine the frequency distribution for overt/covert centrality across 34 test networks

from different real world scenarios (Figures 4.9 to 4.41).

Assigning overt and covert centrality to edges has various applications based on what the

edges in a network represent. Our motivating study is the dissemination of a message

through sending a message via an edge from vertices i to j. In this example, the overt

centrality of an edge represents the number of unintended recipients that a message can

reach in one step. Therefore, the edges in a network which have a high overt centrality

are important because they enable message spread within the network. Edges with a

high covert centrality may be important because they supress spread. In alternative

scenarios, overt and covert centrality have different semantics. The overt centrality of

an edge is a measure of how important the relationship it represents is in terms of the

number of adjacent relationships it enables. For example, in an airport network, the

overt centrality of an edge represents the number of times a flight from i to j acts as a

connecting flight to a destination one step away. Edges are assigned importance based

on their ability to provide further passage to a greater number of destinations once the

initial flight is taken. In a food web network, the overt centrality represents the number

of times a prey’s predator is itself the prey for another predator. Therefore, an edge

may be interpreted as important because it enables further predator/prey links. Overt
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and covert centrality assign edge importance based on the direction and existence of

adjacent edges: in application they assign importance based on what is happening one

step away. Therefore, it is natural to question what happens in terms of edge importance

multiple steps away? We discuss this further in Chapter Five by applying overt and

covert centrality to path problems in networks.

4.4.1 Computing Overt and Covert Centrality

Definition 29. The overt centrality of an edge (u, v) is the number of induced triads in

which (u, v) is overt. Similarly, the covert centrality of an edge (u, v) is the number of

induced triads in which (u, v) is covert.

As shown by example in Figure 4.7, an edge may be present in multiple triads and

may take different roles in each (i.e., overt and covert). This means that edges can

simultaneously hold non-zero overt and covert centrality.

Therefore computing overt and covert centrality for all edges is necessary. The following

propositions present counting arguments to characterise this in general. We use d−v and

d+v to respectively denote the in-degree and out-degree of a node v. We let N(v) denote

the undirected neighbourhood of v, and N(v)− and N(v)+ respectively denote the in

and out-neighbourhood of v.

Proposition 2. Let (u, v)p denote the number of induced connected triads in which

(u, v) ∈ E(G) is present. Then:

(u, v)p = |N(u) ∪N(v)− {u, v}| (4.1)

Proof. Let A = N(u)∪N(v)−{u, v}. Suppose (u, v)p > |A|. Then there exists some

q ∈ V (G) such that (u, v, w) is a connected triad but w /∈ A. Then w is not in the

neighbourhood of u or v. So either w /∈ {u, v} or w ∈ {u, v}. In both cases (u, v, w) is

not a connected triad which contradicts the assumptions for w. Hence (u, v)p ≤ |A|.
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Alternatively suppose (u, v)p < |A|. Then there exists some w ∈ A such that (u, v, w)

is not a connected triad. Since w ∈ A then w 6= u and w 6= v and w ∈ N(u) ∪N(v).

Then this forces (u, v, w) to be a connected triad, contradicting the assumptions for w.

Hence (u, v)p ≥ |A|.

Since (u, v)p ≤ |A| and (u, v)p ≥ |A| then (u, v)p = |A|.

Proposition 3. Let (u, v)o denote the number of triads in which (u, v) ∈ E(G) is an

overt edge. Then:

(u, v)o = |N+(v)− {u}| (4.2)

Proof. Let A = {w|(v, q) ∈ E(G) and w 6= u,w 6= v}. Suppose (u, v) ∈ E(G) where

(v, u) /∈ E(G) Then |A| = d+v .

Suppose (u, v)o > d+v . Then ∃ w ∈ V (G) such that (v, w) ∈ E(G) but w /∈ A. Then

w = v or w = u. If w = v then (u, v, w) is not a triad hence (u, v) is not overt. Hence

w = u, but then (v, u) ∈ E(G), contradicting the assumption that (v, u) /∈ E(G).

Therefore, (u, v)o 6 d+v .

Alternatively, suppose (u, v)o < d+v . Then ∃ w ∈ A such that (v, w) /∈ E(G). This is

impossible by definition of A. Hence (u, v)o > d+v .

Since (u, v)o 6 d+v and (u, v)o > d+v then (u, v)o = d+v . The proof for (u, v)o = d+v − 1

if (v, u) ∈ E(G) follows similarly.

The function OVERTCENTRALITY(G, u, v) in Algorithm 6 is used to compute the

number of triads in which the edge (u, v) is overt, based on the previous counting

arguments.

Proposition 4. Let (u, v)c denote the number of connected triads in which (u, v) ∈

E(G) is a covert edge. Then:

(u, v)c = |N(u)+ ∪N(u)− ∪N(v)− −N(v)+ − {u, v}| (4.3)
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Algorithm 6 OVERTCENTRALITY(G, u, v)

Input: Graph G, (u, v) ∈ E(G)
Output: (u, v)o

1: if (v, u) ∈ E(G) then
2: (u, v)o = d+v − 1
3: else
4: (u, v)o = d+v
5: return (u, v)o

Proof. LetA = N(u)+∪N(u)−∪N(v)−−N(v)+−{u, v}. Suppose that (u, v)c 6= |A|.

Firstly we assume that (u, v)c > |A|. Then there exists somew ∈ V (G) such that (u, v, w)

is a connected triad and (u, v) is a covert edge, but w /∈ A. Hence w ∈ N(v)+ or

w ∈ {u, v}. If w ∈ {u, v} then w = u or w = v. Then (u, v, w) is not a connected

triad, contradicting our definition of w. Hence w ∈ N(v)+. This implies (v, w) ∈ E(G)

so (u, v) is an overt edge in (u, v, w), contradicting our definition of w again. Then no

such w exists, hence (u, v)c ≤ |A|.

Alternatively suppose (u, v)c < |A|. Then there exists some w ∈ A such that (u, v) is

an overt edge in the connected triad (u, v, w) or (u, v, w) not a connected triad. Since

w ∈ A thenw ∈ N(u) orN(v)− andw 6= u andw 6= v so (u, v, w) must be a connected

triad. Then (u, v) must be overt in the connected triad (u, v, w). Then (v, w) ∈ E(G)

but since w ∈ A then w /∈ N(v)+ so this contradicts our definition of w. Hence no such

w exists so (u, v)c ≥ |A|. Since (u, v)c ≤ |A| and (u, v)c ≥ |A| then (u, v)c = |A|.

The function COVERTCENTRALITY(G, u, v) in Algorithm 7 is used to compute the

number of triads in which the edge (u, v) is covert, based on the above counting

argument.

Algorithm 7 COVERTCENTRALITY(u, v)

Input: Graph G, (u, v) ∈ E(G).
Output: (u, v)c

1: (u, v)c = |N(u)+ ∪N(u)− ∪N(v)− −N(v)+ − {u, v}|
2: return (u, v)c
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Note that (u, v)p = (u, v)o + (u, v)c. In other words, the number of induced triads in

which an edge participates is the sum of its overt centrality and covert centrality.

An edge (u, v) having high overt centrality indicates that in a large number of triads,

edge (u, v) contributes to a path from u to the third node w. Conversely, an edge (u, v)

having high covert centrality indicates that in a large number of triads, edge (u, v) is

not involved in a path from u to the third node w.

To compute overt and covert centrality of a whole graph, we apply function NETWORK-

CENTRALITY(G) in Algorithm 8, using Algorithms 6 and 7 from section 4.4.1.

Algorithm 8 NETWORKCENTRALITY(G)
Input: Graph G
Output: Weighted graph.

1: for (u, v) ∈ E(G) : do
2: if u 6= v then
3: (u, v)o = OVERTCENTRALITY(u, v) . Add edge weights
4: (u, v)c = COVERTCENTRALITY(u, v)

5: return G

4.4.2 Results

To explore overt and covert centrality, we apply the techniques from Section 4.4.1 using

the 34 real-world data sets from Section 2.5. We find the overt centrality for each edge

in the network and plot the frequency of occurrence of each centrality value. We repeat

this for covert and then for every network. The frequency distributions of the overt and

covert centrality are presented in Figures 4.9 to 4.42. The results are verified because

Algorithms 6 and 7 are constructed using Propositions 3 and 4, which we conclusively

prove to be true for every case in Section 4.4.1.

Interestingly we see that in many cases, the resulting frequency distributions are effective

in associating networks originating from same context or domain. For example, the

airport flights data sets [42, 67] have long tail distributions with a relatively slow drop off

as compared to the peer-to-peer Internet data sets [47]. Other classes of network, such as
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the Organise networks [63] exhibit distinctive increasing profiles in frequency of overt

centrality. Some classes of network also exhibit greater weighting for one particular type

of centrality, such as the electrical circuit scenarios [5] where covert edges show greater

prevalence. In general, we are able to classify the networks into three categories based

on the shape of their overt and covert centrality profiles. There are those networks, such

as Prison Inmate [5], where the overt centrality and covert centrality profiles are long

tailed (i.e there are many edges with a proportionately very low overt/covert centrality,

and a rapidly decreasing number of edges with proportionately higher overt/covert

centralities). Within this classification, there are those networks where the difference

between the number of edges with low overt/covert centrality and the number of edges

with higher overt/covert centrality is less extreme (i.e the ‘drop off ’in the long-tailed

distribution is less pronounced), such as US Airports [42] or Political Blogs [2], or those

where the drop off is more pronounced, such as Prison Inmate [5] or p2p-gnutella04 [47].

The second classification of network are those where the overt centrality profile is long-

tailed, yet the covert centrality profiles are not. This categorisation includes food web

networks such as Mangwet [74] , or neural networks such as Rattus Norvegicus [58].

Finally, there are networks whose overt and covert centrality profiles both form a bell

curve, such as the food web networks Ythan [1] or St.Mark’s Seagrass [14], or any of

the organise networks (with the exception of Eva [41]).

To understand what drives these classifications, we observe how the latent network

features may affect overt or covert centrality of an edge. In Chapter Two, Table 2.4,

we offer a number of measures to give information about each of the data sets, such as

network density or average betweenness centrality.

There are three network features in Table 2.4 which may affect the possible induced

triads which can occur in a network: namely density, clustering coefficient and recipro-

city. For each of these measures, we observe Figure 4.3 and count the total number of

overt and covert edges amongst the triads that exhibit features relevant to the measure.

The restrictions on the possible induced triads occurring may affect the likelihood an
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edge behaves as overt or covert within a triad, and therefore its overt or covert centrality.

However: it is important to note this isn’t the whole picture. Overt and covert centrality

are also affected by the way the triads in a network overlap, thus an edge may have a

higher overt or covert centrality than another simply because it is contained in more

triads. Thus, if measures such as clustering coefficient are skewed by an area of high

clustering in the network, this could mean many closed triplets overlap in one area and

therefore contribute to an area of edges with high overt and covert centrality simply

due to the abundance of overlapping triads in this area. Nevertheless, it is useful to

consider the triads in isolation as they partially explain the proportion of overt to covert

centralities in a network.

Clustering coefficient relates to the number of closed triplets (i.e triplets where there

is an edge from each vertex in the triad to every other vertex) in the undirected equi-

valent of a network (see Section 2.2). Amongst the triads in Figure 4.3, we observe

that 021D, 021U, 021C, 111D, 111U and 201 are open triplets, whilst 030T,

030C, 120D, 120U, 120C, 210 and 300 are closed triplets. Amongst the

seven closed triplets there are a total of eight covert edges and 21 overt edges, whilst

amongst the six open triplets there are a total of three overt edges and nine covert edges.

Thus we expect that closed triplets are more likely to induce overt than covert edges,

whilst open triplets the opposite. Therefore, we predict a network which exhibits a

greater volume of clustering will also exhibit a greater proportion of overt edges to

covert edges; and visa versa.

An edge (u, v) is reciprocated if there also exists the edge (v, u). Amongst the 13 triads

in Figure 4.3, eight exhibit at least one reciprocated edge, they are: 111D, 111U,

201, 120D, 120U, 120C, 210 and 300. Amongst these, there are a total of 21

overt edges and 12 covert edges. Five triads contain no reciprocated edges, namely:

021D, 021U, 021C, 030T and 030C. Amongst these there are a total of five

overt edges (three of which are contained in the triad 030C) and seven covert edges.

Thus, we predict a network which exhibits a greater volume of reciprocity will also
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exhibit a greater proportion of overt edges to covert edges; and visa versa.

Finally, density is the proportion of edges in a network which exist. This may affect

the number of edges present in triads (for example, in a network of density 1, then

the only possible triads are type 300). Amongst the triads on two edges (021D,

021U, 021C) there are five total covert edges and one overt edge. Amongst triads

on three edges (111D, 111U, 030T, 030C) there are six total covert and overt

edges, though three of the overt edges are derived from 030C. There are nine overt and

seven covert edges across the triads on four edges (201, 120D, 120U, 120C),

four overt and one covert edge in 210 (the only triad on five edges), and all six edges in

300 are overt. Thus, we predict a network which exhibits a greater density will also

exhibit a greater proportion of overt edges to covert edges; and visa versa.

We have partitioned the set of thirteen triads according to isolated features they exhibit,

but we can combine features to partition the set further. For example, amongst closed

triplets, those which exhibit reciprocity (i.e 120D, 120U, 120C, 210 and 300)

contain a total of 17 overt edges and six covert edges. Incidentally, these triads are the

most dense amongst the thirteen. For example, 300 is simultaneously the most dense

triad and contains the greatest number of reciprocated edges amongst the 13 triads.

Aside from reciprocity, density and clustering coefficient, which we have discussed

as features which may affect the possible triads induced by a network, there are other

network features from Table 2.4 that relate to the possible number of triads which

overlap on one edge. If more triads overlap on one edge, then this edge will have a

greater total overt and covert centrality because it is present in more triads. For example,

degree centrality counts the number of edges incident with a vertex. All edges incident

with a single vertex are adjacent to one another, and therefore form triads. Thus, edges

incident with a vertex with a higher degree centrality will be contained in a greater

number of overlapping triads, and therefore will have a greater total overt and covert

centrality. Similarly, betweenness centrality assesses the number of shortest paths which

overlap on an edge. Every pair of adjacent edges of a path form a triad, thus if more
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paths overlap on an edge then it is likely a greater volume of triads overlap on this edge,

and therefore the edge may have a greater total overt and covert centrality.

We predict that the higher the average reciprocity, clustering coefficient and density of

a network, the less long-tailed the overt and covert centrality profiles become, where

the covert centrality profile more rapidly becomes bell-shaped (rather than long-tailed)

as these values increase than the overt centrality profile. We focus on reciprocity,

clustering coefficient and density because, as observed in Table 2.4, the average mean

degree centrality and betweenness centrality are particularly low amongst all networks..

Certainly, from Figures 4.9 to 4.42 our predictions appear true. For example, consider

the Organise networks (Figure 4.29 and 4.30). From Section 2.5 we know that Organise

networks (with the exception of Eva [41]) have the highest density amongst all the

data sets. They also exhibit relatively high levels of clustering and high reciprocity.

Overt centrality profiles tend to be more bell-shaped than covert centrality profiles,

with a greater proportion of edges with a higher overt centrality. This could mean

that there is such a high abundance of overt edges due to the density, reciprocity and

clustering exhibited in these networks, that in fact there are not many covert edges

present. Contrast this with the Internet data sets (Figure 4.19 and Figure 4.20): where

there is a very high proportion of edges with a low (or zero) overt centrality. Amongst

the data sets, from Section 2.5 we know that Internet networks have the lowest densities

by a significant margin, as well as very little clustering and no reciprocity. There are still

many edges with a low overt centrality, telling us that there are many edges contained

in a low number of triads in which they behave as overt. This corresponds with other

sparse networks, such as the organise network Eva [41]. Further, since Eva [41] is an

organise network yet its profiles do not fit the trend of other organise networks and are

instead more similar to the profiles exhibited by internet networks, we believe that overt

and covert centrality profiles are restricted by network structure , and not the particular

domain or context.

Since Internet and Organise networks are so different across all features, it is difficult
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to unpick which feature is influencing the overt and covert centrality profiles the most,

though it is likely it is a combination of factors. Thus, we look to compare networks

where most features are of similar value, but differ in one feature.

US airports [42] exhibit relatively low density but a surprisingly high volume of recipro-

city, with relatively high clustering. Therefore, they are a good candidate to compare

with organise networks. US Airports [42] and Cross Parker Consulting [63] exhibit

the similar values for clustering and reciprocity, yet US Airports [42] has a low density

(0.011) whilst Cross Parker Consulting [63] has a much higher density (0.28). Certainly,

overt and covert centrality profiles for US Airports [42] (Figure 4.9) are long-tailed,

whilst Cross Parker consulting exhibit bell-shaped profiles (Figure 4.29). Therefore,

density may play a significant role in the shape of the overt and covert centrality profiles.

In contrast, when comparing the neural network Mouse Retina [58] with the food web

network Mangwet [74] (which have similar levels of clustering and reciprocity but

different densities) we observe the centrality profiles look similar. In fact, the denser

network Mangwet [74] (with a density of 0.16) exhibits a more pronounced peak in

covert centrality than in the sparser network Mouse Retina [58] (with a density of

0.079).

Our data sets do not offer two networks where density and reciprocity are similar

yet clustering is very different. Instead, to understand both reciprocity and clustering

coefficient we can compare networks where density is similar but both reciprocity

and clustering are different. Food web networks are useful because they have similar

densities to many other networks amongst our data sets, yet contain very little reciprocity

due to the rarity of mutual predation. They do also exhibit some clustering, much higher

than clustering values found for Internet or Regulatory networks. In contrast, we know

Airport networks exhibit very high levels of reciprocity, though they do also exhibit

higher levels of clustering than food web networks. Accordingly, we compare the

airport network US Airports [42] with the food web network Grassland [14] due to

their similar densities (0.011 and 0.018 respectively). Whilst both overt centrality
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profiles for US Airports [42] and Grassland [14] are long-tailed, the covert centrality

profile for Grassland [14] is more bell shaped than US Airports [42], which also has a

long-tailed covert centrality distribution. This could be because US Airports has such

high levels of reciprocity the types of triad induced in airport networks do not contain

many covert edges, and indeed, the overt centrality profile for US Airports [42] exhibits

a less extreme drop-off than the overt centrality profile for Grassland [14].

However, there are other networks that do not behave as we have predicted. For example,

consider the Social network Prison Inmate [5]. Prison Inmate exhibits similar density

and clustering to Food web networks (particularly Ythan [1]), with a much higher level

of reciprocity (0.44 in Prison Inmate CITE, 0 in Ytahan CITE). Similarly to comparisons

of Grassland with US Airports [42], whilst Ythan [1] has a long-tailed overt centrality

with relatively slow drop off and a bell shaped covert centrality profile, Prison Inmate [5]

has a long-tailed profile for both overt and covert centrality with a fast drop off, despite

exhibiting greater reciprocity. Indeed, the overt and covert centrality profiles for Prison

Inmate CITE oappear similar to Internet networks, which we have discussed as having

very low values in density, reciprocity and clustering coefficient. Though surprising,

other social networks such as Bitcoin Alpha [47] and UCIrvine [63] also have similar

profiles. This could signify that, contrary to our predictions, perhaps clustering and

reciprocity are not so important to determining the overt and covert centralities of edges.

Perhaps these results are caused by some other latent feature present in social networks,

such as a hub-and-spoke structure, which are not featured in food web networks, which

are hierarchical.

A network is ‘hub-and-spoke’if it contains many vertices with relatively low degrees

(the ‘spokes’) centred around a vertex with a relatively high degree (the ‘hubs’). Spoke

vertices may attach to each other, but they are more likely to attach to the hub vertex

(i.e they exhibit ‘preferential attachment ’). Further, if there are several hub vertices, the

spoke vertices tend to cluster around one particular hub vertex, not attaching to other

hub vertices. Many complex networks are hub-and-spoke, characterised by long-tailed
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or scale free degree distributions. It is possible that if a network exhibits hub-and-spoke

structure this may affect the overt and covert centrality of edges and therefore the

centrality profiles due to the number of triads that can possibly overlap on an edge.

Consider Example 4.4.2.

Example 4.4.2. Consider the very simple hub-and-spoke graph G, as shown in Figure

4.8. In G, each ui and vi vertex has an out-degree of one, whilst u and v both have an

in-degree of three.

u1

u2

u3

u v v1

v2

v3

Figure 4.8:

Each edge (ui, u) forms a triad with the edge (u, v), and a triad with each edge (uj, u)

where j 6= i. Similarly, each edge (vi, v) forms a triad with the edge (u, v), and a

triad with each edge (vj, v) where j 6= i. In other words, they can only form triads

with other edges adjacent to the same hub node, and therefore the number of triads

containing the edge is entirely dependent on the degree of the hub vertex. In contrast,

(u, v) forms triads with each edge (ui, u) and triads with each edge (v, vi). Therefore

the number of triads the edge between two hub vertices is contained in is dependent on

the degree of both hub vertices. Since an edge can only act as overt or covert in triads it

is contained in, then an edge contained in more triads has a higher combined overt and

covert centrality than edges contained in fewer triads, and therefore edges connecting

hub nodes have a higher combined overt and covert centrality than edges connecting a

hub node with a spoke node.

In Example 4.4.2, we show that in a network that is hub-and-spoke, edges between hub



4.4 Profiling Data Sets using Overt and Covert Centrality 94

nodes may have a higher total overt and covert centrality (dependent on the degree of

both hub nodes) than edges between spoke and hub nodes (dependent on the degree

of the hub node). Thus, in terms of overt and covert centrality profiles, this would

correspond to some edges having a very high centrality, and many edges having a much

lower centrality: which could result in long tailed centrality profiles. This could explain

why social networks exhibit long tailed overt and covert centrality profiles despite

having higher levels of reciprocity and clustering than other comparable networks.

These results demonstrate that overt centrality and covert centrality distinguish different

networks by the role that their edges play within triads. This offers the potential to

characterise networks in a new way, which is aligned to triadic census, as commonly

used for characterising complex networks. Note that this is complementary to the

commonly used technique of motif analysis, however in our case, comparison is based

on the role edges play within induced triads, rather than the types of induced triads that

are over or under represented.
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(a) Overt Centrality Frequency Distribution

(b) Covert Centrality Frequency Distribution

Figure 4.9: US Airports [42]
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(a) Overt Centrality Frequency Distribution

(b) Covert Centrality Frequency Distribution

Figure 4.10: Open Flights [67]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.11: s420 [5]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.12: s838 [5]



4.4 Profiling Data Sets using Overt and Covert Centrality 99

(a) Overt Centrality Frequency Distribution

(b) Covert Centrality Frequency Distribution

Figure 4.13: Mangwet [74]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.14: Baywet [74]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.15: Little Rock Lake [42]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.16: Ythan [1]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.17: St. Marks Seagrass [14]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.18: Grassland [14]
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(a) Overt Centrality Frequency Distribution

(b) Covert Centrality Frequency Distribution

Figure 4.19: p2p-gnutella04 [47]
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(a) Overt Centrality Frequency Distribution

(b) Covert Centrality Frequency Distribution

Figure 4.20: p2p-gnutella05 [47]



4.4 Profiling Data Sets using Overt and Covert Centrality 107

(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.21: p2p-gnutella06 [47]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.22: p2p-gnutella08 [47]
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(a) Overt Centrality Frequency Distribution

(b) Covert Centrality Frequency Distribution

Figure 4.23: p2p-gnutella09 [47]
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(a) Overt Centrality Frequency Distribution

(b) Covert Centrality Frequency Distribution

Figure 4.24: C. Elegans [40]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.25: Drosophila Medilla 1 [58]
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(a) Overt Centrality Frequency Distribution

(b) Covert Centrality Frequency Distribution

Figure 4.26: Mouse Visual Cortex 2 [58]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.27: Mouse Retina 1 [58]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.28: Rattus Norvegicus [58]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.29: Cross Parker Consulting [63]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.30: Freemans EIES n48 1 [63]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.31: Freemans EIES n48 2 [63]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Eva [41] Covert Centrality Frequency Distribution

Figure 4.32: Cross Parker Manufacturing [63]
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(a) Susceptibility Index Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.33: Eva [41]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.34: Bitcoin Alpha [47]



4.4 Profiling Data Sets using Overt and Covert Centrality 121

(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.35: Bitcoin OTC [47]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.36: Email EU Core [47]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.37: Prison Inmate [5]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.38: UCIrvine [63]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.39: WikiVote [47]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.40: E. coli transcription [5]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.41: Yeast transcription [5]
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(a) Overt Centrality Frequency Distribution Comparison

(b) Covert Centrality Frequency Distribution

Figure 4.42: Political Blogs[2]
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4.5 Comparing Overt and Covert Centrality with Ex-

isting Metrics

In this section, we compare our overt and covert centrality metrics with some key

existing metrics that are commonly used in Social network analysis. This involves

assessing the correlation between metrics across the 34 datasets from Section 2.5 used

throughout the thesis. This allows us to assess the relationship between other related

concepts.

We apply metrics as follows. We find the mean overt and covert centrality of edges,

by averaging over the total centrality (i.e., overt plus covert centrality) of edges. We

normalise this mean count by dividing through by the maximum possible overt/covert

centrality of an edge (the number of edges in the network minus 2). The additional

social network analysis metrics that we consider are defined in Table 2.4 in Section 2.5.

Concerning correlations, we calculate the Spearman rank correlation (since the data

does not follow a normal between metrics using all 34 data sets to provide a sample for

each comparison, as seen in Figure 4.43. A positive correlation indicates a monotonic

increasing relationship, whilst a negative correlation indicates a monotonic decreasing

relationship. The closer to 1 (or -1) the value, the stronger the relationship. In particular,

a correlation between 0.4 and 0.6 we have classed as moderate, whilst between 0.6 and

0.8 strong and above 0.8 as very strong. We display this in a correlation matrix as shown

in Figure 4.43. In Figure 4.44 we colour ingsignficiant correlation results in green, to

show which of the correlations in Figure 4.43 are significant.

Results

Figure 4.43 indicates that all significant relationships between overt/covert centrality

with existing metrics from Table 2.4 are at least moderate, though many are strong

or very strong. In particular, we observe very strong correlation between mean cov-
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Figure 4.43: The correlation matrix comparing the spearman correlation of each
metric across all 34 data sets.

ert weight of a network and the network density (0.87) and degree centrality (0.87).

Mean overt weight of the network follows similarly, with the addition of very strong

relationships with betweeness centrality (0.82) and global clustering (0.91). This in-

dicates that mean overt weight, which is easy to locally calculate, is a useful proxy for

these particular global centrality measures. Mean overt and covert weight of networks

correlate very strongly with each other (0.8). Interestingly, there was no significant

correlation between normalised average covert weight and reciprocity, and global reach-

ing centrality. For overt centrality, there was no significant correlation with number of

edges. We discussed in Section 4.4.2 the link between reciprocity, density and global

clustering with overt and covert centrality. From this discussion we would expect a

strong correlation between density, reciprocity and clustering with overt centrality, and

a progressively weakening relationship with covert centrality. The reason we expect a

weakening relationship with covert centrality and not a negative correlation is because

increasing density, reciprocity and clustering in a network with low density, reciprocity
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Figure 4.44: The correlation matrix comparing the spearman correlation of each
metric across all 34 data sets, with insignificant correlation results indicated by
green cells (p >0.05).

and clustering increases number of possibilities for covert edges at first, until a point is

reached where density and reciprocity are high enough to force triads to progressively

contain fewer and fewer covert edges. Figure 4.43 seems to indicate that indeed, density

is very important to average overt centrality but to a lesser extent covert centrality.

However, Figure 4.43 also shows that reciprocity does not have particularly strong

correlations with overt or covert centrality (a correlation of 0.21 with covert centrality

and 0.56 with overt centrality). Indeed, we saw in Section 4.4.2 that Social networks,

which exhibit higher reciprocity than comparable networks, form long-tailed overt and

covert centrality distributions. We concluded in Section 4.4.2 that solely looking to
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density, reciprocity and clustering may not paint a full picture for overt and covert

centrality, instead overt and covert centrality may rely on network structure and the

number of triads that overlap on a single edge. Figures 4.43 strengthen this argument,

showing that reciprocity may not be so important in controlling overt/covert centrality.

Structural measures such as degree centrality or betweenness centrality may be a better

representation of how many triads overlap on an edge, and therefore have a greater

effect than density, reciprocity or clustering on the overt/covert centrality of edges,

though we have not explored this in Section 4.4.2 because these measures were very

low amongst all data sets (this may be due to averaging: there may be few areas of high

betweenness/degree centrality but many areas with low degree/betweenness centrality).

We now see in Figure 4.43 that betweenness centrality has a moderate correlation with

covert edge weight and a very strong correlation with overt edge centrality (0.52 and

0.82 respectively), whilst degree centrality has a very strong correlation with both overt

and covert edge centrality (0.87 and 0.94 respectively). This makes density, clustering

and degree centrality the biggest factors affecting overt and covert centrality. Interest-

ingly, the number of shortest paths flowing through an edge has more effect on overt

centrality than covert centrality: meaning overt edges may be more important to paths.

The existence of significant, directed correlations motivates further investigation through

direct comparison of the mean overt/covert centrality with each metric for each data set,

the results for which are found in Figure 4.45-4.52. We observe in Figures 4.45-4.52

that results are different depending on comparison with mean overt or covert centrality.

For example, when comparing reaching centrality with mean covert weight the Social

networks category of data points cluster together. When comparing reaching centrality

with mean overt weight, the data points are more dispersed along the x axis, pulling

apart this cluster of nodes. The same effect can also be seen when comparing diameter

with the average overt and covert weight in Social networks.

These results show that overt and covert centrality measures have a role to play in

differentiating the alternative network classes. Without overt and covert centrality,
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the data points in Figures 4.45-4.52 would project onto the y-axis, with little or no

differentiation between some classes of network in many cases. One such example is

the Clustering measure, where average overt centrality is able to distinguish alternative

classes of network with similar clustering values (i.e., separate in the x-axis). This is

particularly the case for low clustering levels (e.g., 0.3 or lower).

Figure 4.45: Scatter plots showing the relationship between number of nodes in a
network and mean covert and overt edge centrality.

Figure 4.46: Scatter plots showing the relationship between density of a network
and mean covert and overt edge centrality.
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Figure 4.47: Scatter plots showing the relationship between clustering of a net-
work and mean covert and overt edge centrality.

Figure 4.48: Scatter plots showing the relationship between reciprocity in a net-
work and mean covert and overt edge centrality.
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Figure 4.49: Scatter plots showing the relationship between reciprocity in a net-
work and mean covert and overt edge centrality.

Figure 4.50: Scatter plots showing the relationship between average degree cent-
rality and mean covert and overt edge centrality.
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Figure 4.51: Scatter plots showing the relationship between average reaching cent-
rality and mean covert and overt edge centrality.

Figure 4.52: Scatter plots showing the relationship between average diameter and
mean covert and overt edge centrality.

4.6 Summary

We have introduced a novel and fundamental approach to characterising the centrality of

edges in networks based on their role in supporting connectivity within induced triads.

This constitutes a binary classification of edges with respect to a particular induced triad

within which they participate. This concept is important because triads are the smallest

possible (non-trivial) induced substructure in a network. Therefore our definition of
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overt and covert centrality with respect to edges captures the lowest level at which

non-trivial network connectivity can be considered, beyond the concept of an edge itself.

Using counting arguments based on in and out degrees within a triad, we have derived

formula to determine the both overt and covert edge centrality. This means that overt

and covert centrality can be determined without recourse to lengthy search - the concept

is locally defined and therefore scalable.

To demonstrate these concepts on ‘real-world’ scenarios, we have applied it to data

derived from 34 public data sets. From profiling the overt and covert centrality distribu-

tions across these networks, we have shown that the frequency of overt and covert edges

is useful in presenting further insights both within and between different classes of

network. These concern the relative dependency that networks have on the prevalence

of edges with key roles concerning connectivity. On the one hand, overt edges play

a role in potential containment of content transferred through an edge, since the edge

cannot support dissemination to the third node in the triad. Alternatively, overt edges

align with the potential for onward local dissemination, since by definition an overt

edge supports a path to the third node in the triad. This provides an alternative lens

through which global network connectivity can be considered at a local level.

We have additionally compared overt and covert centrality with a number of conven-

tional social network analysis metrics, including global reach centrality, mean degree

centrality, betweenness centrality, density, clustering, reciprocity and diameter. Potential

significant correlations have been considered with a view to understanding relation-

ships with these metrics. By examining the relationship between these metrics and

overt/covert centrality across 34 networks, we have found that overt/covert centrality can

provide additional insights. These relate to distinguishing between classes of network,

which the global social network metrics would fail to achieve in isolation, for numerous

cases.

In summary, we observe that overt and covert centrality are important concepts for

characterising a network’s structural potential for dissemination and contagion, based
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on consideration of a network’s underlying building blocks. Overt and covert centrality

of an edge may depend upon the density or reciprocity of a network (therefore affecting

the type of triads induced by the network, and thereby the likelihood an edge is overt

or covert) or the number of triads overlapping on an edge (affected by the structure of

the network, thereby giving edges which overlap on more triads a higher overt/covert

centrality).

This chapter addresses the second research question, namely:

RQ2: The role of edges in triad connectivity: if connectivity within the triad is depend-

ent on the arrangement of its edges, then how do we identify which edges are most

fundamental to enabling connectivity within the triad?

We do this through classifying edges as overt or covert, resulting in the second contribu-

tion: C2: A new classification for edges based on their role in supporting connectivity

within triads.

We also consider multiple triads through creating overt and covert centrality measures

for edges, resulting in the third contribution: C3: A new local centrality metric for

edges based on our new edge classification in C2.
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Chapter 5

The Role of Overt and Covert Edge

Centrality in Paths

Paths are the fundamental entity in graphs that enable connectivity, using intermediate

vertices to relay communication or sustain a relationship, depending on the context.

This introduces the potential for intermediate vertices to relay knowledge from the path

to other vertices. Generally speaking, two extreme scenarios can be envisaged - on

the one hand a path may connect two vertices while minimising risks of dissemination

beyond those vertices in the connecting path. Alternatively widespread dissemination

from vertices on the connecting path might be desirable. The choice of edges in a path

fundamentally affects this.

In this chapter we examine how the distribution of edges in paths affects this problem,

using overt and covert edge centrality. These measures are highly valuable because they

locally characterise the potential for containment along, or dissemination from, a path.

For example, an edge with high covert centrality and low overt centrality is potentially

useful if spreading knowledge beyond a selected path is undesirable. The measures of

overt and covert provide this characterisation by directly considering the role of edges

within induced triads that participate in a path.

In considering this problem, it leads to possible trade offs due to different potential

objectives. For example, shortest paths in a graph can be defined by the total number

of edges along a path, but if containment is important, then minimising total overt
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centrality of edges on a path may be more important, leading to a longer path, in terms

of number of edges. The metrics of overt centrality and covert centrality allow such

trade-offs to be assessed, which have previously not been undertaken. We examine this

in the context of different test graphs, to understand the extent that there is freedom and

compromise in trade-offs for path selection. Because this issue is highly sensitive to

structure and density of edges, we synthesise a number of different classes of network

and examine the differences.

5.1 Overview

To characterise paths we consider the hypothetical situation where messages are being

transmitted along paths from a source to a single destination. Specifically, suppose in a

graph G we were interested in sending a message between two vertices through a series

of intermediaries. To do this, we send a messages along edges from the source vertex

to intermediary vertices until the target vertex is reached. In other words, we need to

construct a path between two vertices.

Definition 30. Let p(u, v) = (u1 = u, u2, . . . un = v) denote a path from u to v, where

ui ∈ V (G) for i = 1, . . . , n and (ui, ui+1) ∈ E(G) for i = 1, . . . , n− 1. The length of

the path p(u, v) is given by the number of edges, and denoted by l(p) = |p(u, v)| − 1 =

n− 1.

In many networks, particularly those with high connectivity, there are often many paths

between pair of vertices. Therefore, we can define additional criteria to choose the best

path to suit the objectives of the scenario. For example, sending a message on a path

with the minimum number of edges would provide the quickest way to transmit the

message. A path of minimum edge length is known as ashortest path, formally defined

as follows.

Definition 31. Let G = (V (G), E(G)) be a graph. Then suppose every edge (x, y) ∈

E(G) has a weight, wx,y. Then a shortest path from u to v, for u, v ∈ V (G) is a path
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p(u, v) = (u = u1, u2, . . . , un = v) such that

∑
(ui,ui+1)∈P

wui,ui+1
(5.1)

is minimised. When w(x,y) is equal for every edge, then
∑

(ui,ui+1)∈P wui,ui+1
finds a

path of minimum length.

Throughout the rest of the thesis, we will refer to a shortest path (or minimum length

path) as a path between a pair of vertices such that the number of edges is minimised

(i.e, from Definition 31 a shortest path where the weight of each edge is equal). We refer

to least weight, or minimum overt/covert paths as, from Definition 31, a shortest path

between a pair of vertices where the weight of its edges are equal to their overt/covert

centrality .

In the hypothetical case that a message we want to send contains sensitive information,

and beyond using technology to encode information (e.g., in a human social network)

we may wish to consider the local graph positioning of individuals that are in the path

as these individuals have the opportunity to relay to others. Thus in such a scenario,

when sending this message across a path we may want to minimise the number of

vertices the message can reach outside of the path. This may be applicable in military

scenarios where, supposing information is secretive and passed through a chain of

intermediaries, overt edges may not be trustworthy as they enable further spread of

secretive information to third parties outside the chain of intermediaries: the message

has been ‘leaked ’.

For modelling purposes we assume that any edge directed out of a vertex and into

another has potential to spread this message to a third party. In other words, any edge

that is overt (see Definition 27 in Chapter 4) has the potential to spread a sensitive

message. Therefore, if our aim is to minimise potential spread, then in this scenario we

want to find a path where the total overt centrality of edges is minimal. We explain this

further in Example 5.1.1.
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Example 5.1.1. Suppose there exist two vertices u1 and u5 in graph G with two paths

between them, p1 = (u1, u2, u3, u4, u5) and p2 = (u1, u6, u7, u5), as shown in Figure

5.1. Suppose there also exist the edges (u6, u9), (u6, u10) and (u6, u11). Suppose we

want to send a message down either path from u1 to u5 down the edges in the graph

and want to ensure that potential spread of the of the message is minimised. Then, p2 is

shorter than p1 in terms of edge length, yet the number of vertices the message could

potentially spread to (highlighted through the traversing the red edges) in p2 is greater

than the number of vertices the message could reach by traversing p1 (highlighted

through the traversing the blue edges). Therefore, choosing p1 over p2 would promote

containment of the message, at the expense of needing an extra edge in the path.

u1 u2 u3 u4 u5

u6 u7

8u9 u10 u11

Figure 5.1: The graph G, with paths p1 = (u1, u2, u3, u4, u5) and p2 =
(u1, u6, u7, u5). The potential spread of a message sent down p1 is highlighted in
blue, whereas the potential spread of a message sent down p2 is highlighted in red.

Following this example, it is important to explore the relationship between shortest

paths and paths of minimum total overt centrality. We also investigate minimum total

covert centrality, as this could represent an alternative scenario: where maximising

spread of knowledge from a path is desirable. This may be applicable to other scenarios,

such as infection control, where we can model how to achieve maximum spread and

take measures to mitigate this.

Paths of minimum overt/covert centrality may represent different scenarios in networks

where edges do not represent communication. As discussed in Chapter Four, identifying
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edges with a high overt centrality identifies which relationships enable the greater

number of further relationships (or visa versa for covert). These ‘further relationships

’ themselves enable further relationships, which enable further relationships, etc. In

other words, these naturally forming paths. Therefore, considering paths which control

for minimum/maximum overt/covert centrality may recognise those paths made up

of edges which which enable the greater number of further relationships; acting as

a backbone for the entire network. In the language of food web networks, where

an edge highlights a trophic relation between prey and predator, paths of maximally

overt paths represent individual food chains that enable the greatest number of trophic

relations outside of the path, and therefore may be vital to enabling the survival of the

greater species present in the food web. In the language of airport networks, identifying

maximally overt paths may identify core flight paths between two airports which enable

the greatest number of possible further connecting destinations. In short, identifying

which paths are maximally overt may identify which paths are crucial to maintaining

network structure.

5.2 Methodology

In this section we seek to construct four trade-off metrics that allow us to consider the

relationship between path length (based on number of edges) when seeking to control

for the overt and covert centrality characteristics of a path. We introduce overt and

covert path weights to assess the total overt/covert centrality of the edges in a path in

Section 5.2.1. We then use these path weights to construct sets of minimal paths: those

with minimal weight, and those with minimal length in Section 5.2.2. We construct

our trade-off measures: the overt-length/covert-length trade-off (Section 5.2.3) and

length-overt/length-covert trade-off (Section 5.2.4). We then transform these trade-off

measures into a global metric, the average improvement in edges, which allows us to

observe the overall effect on the graph when choosing paths which contain edges that

are less overt/covert over a path of minimum length.
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5.2.1 Overt and Covert Path Weights

Let G = (V (G), E(G) be a graph throughout. We define the overt weight of a path as

the sum of overt centralities of all the edges in the path as follows.

Definition 32. The overt weight, wo(p), of a path p = p(u, v) = (u1 = u, u2, . . . un =

v) is given by the sum of the overt centralities of the edges contained in p. Therefore:

wo(p) =
n−1∑
k=1

(uk, uk+1)o (5.2)

The function to compute wo(p) can be found in Algorithm 9. This utilises the function

OVERTCENTRALITY from Algorithm 6 in Chapter 4 to determine the overt centrality

of an edge.

Algorithm 9 OVERTPATHWEIGHT(p): Computes the total overt weight wo(p) of a path
p.

Input: Path p = (u1 = u, u2, . . . , un = v) between vertices u and v in a graph G

Output: The overt weight of the path, wo(p)

1: wo(p) = 0

2: for (uk, uk+1) ∈ E(p) do

3: wo(p) = wo(p) + (uk, uk+1)o

4: return wo(p)

Similarly to overt weight of a path, we make the following definition for covert weight:

Definition 33. The covert weight of a path p = p(u, v) = (u1 = u, u2, . . . un = v) is

given by:

wc(p) =
n−1∑
k=1

(uk, uk+1)c (5.3)
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The function to compute wc(p) can be found in Algorithm 10. This utilises the function

COVERTCENTRALITY from Algorithm 7 in Chapter 4 to determine the covert centrality

of an edge.

Algorithm 10 COVERTPATHWEIGHT(p): Computes the total covert weight wc(p) of a
path p.

Input: Path p = (u1 = u, u2, . . . , un = v) between vertices u and v in a graph G

Output: The covert weight of the path, wc(p)

1: wc(p) = 0

2: for (uk, uk+1) ∈ E(p) do

3: wc(p) = wc(p) + (uk, uk+1)c

4: return wc(p)

5.2.2 Choosing Minimal Paths

We are interested in understanding the relationship between key metrics when consider-

ing paths in the context of overt/covert centrality – specifically the minimum number

of edges, and the best overt or covert weight that can be achieved. These metrics

clearly trade-off against each other. To examine this, we apply Dijkstra’s [17] shortest

path algorithm with path length as the first objective and overt (or covert) weight as

a secondary objective, and then vice versa. In our notation, we use the convention of

subscripts to denote the first objective, and superscripts to denote the second.

Clearly multiple alternative shortest paths may exist (i.e., different paths having the

same shortest possible length). We define the set of all these shortest paths between a

pair of vertices in Definition 34.

Definition 34. Let P (u, v) denote the set of all paths between u and v. Let δs(u, v)

denote the length of a shortest path from u to v (in terms of hops), i.e.:

δs(u, v) = min
p∈P (u,v)

l(p)
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Then Ps(u, v) ⊆ P (u, v) denotes the set of all paths of least length between u and v,

where:

Ps(u, v) = {p ∈ P (u, v)|l(p) = δs(u, v)} (5.4)

We can now search amongst the shortest paths to find the subset which have the minimum

overt weight:

Definition 35. Given a set of paths P , let ∆s(P ), ∆o(P ) and ∆o(P ) denote the min-

imum of their lengths, overt weights and covert weights respectively as:

∆s(P ) = min{l(p)|p ∈ P} (5.5)

∆o(P ) = min{wo(p)|p ∈ P} (5.6)

∆c(P ) = min{wc(p)|p ∈ P} (5.7)

For a given vertex pair u and v, we define the subset of shortest paths that have minimum

overt weight as P o
s (u, v) ⊆ Ps(u, v) where:

P o
s (u, v) = {p ∈ Ps(u, v)|wo(p) = ∆o(Ps(u, v))} (5.8)

Similarly, we let P c
s (u, v) denote the subset consisting of the least covert paths of those

between u and v that have shortest length, where:

P c
s (u, v) = {p ∈ Ps(u, v)|wc(p) = ∆c(Ps(u, v))} (5.9)

Thus P o
s (u, v) and P c

s (u, v) respectively contain the least overt and covert paths among

those with shortest length between u and v.



5.2 Methodology 147

As well as considering the weight of the shortest path between vertices, we can alternat-

ively consider the least weight overt/covert path between a pair of vertices. Note that

the least weight overt/covert path may contain more edges than a shortest path (but

never fewer), and may have a lower overt/covert weight than a shortest path. To explore

this further, consider Definition 36.

Definition 36. Let δo(u, v) denote the weight of a least overt path from u to v:

δo(u, v) = min
p∈P (u,v)

wo(p).

We define Po(u, v) as the set of all possible paths of least overt weight between u and v,

where:

Po(u, v) = {p ∈ P (u, v)|wo(p) = δo(u, v)} (5.10)

Similarly, we define Pc(u, v) as the set of all possible paths of least covert weight

between u and v:

Pc(u, v) = {p ∈ P (u, v)|wc(p) = δc(u, v)} (5.11)

For a given vertex pair u and v, define the subset of minimum overt paths with fewest

edges as P s
o (u, v) ⊆ Po(u, v) where:

P s
o (u, v) = {p ∈ Po(u, v)|l(p) = ∆s(Po(u, v))} (5.12)

Similarly we define P s
c (G) ⊆ Pc(u, v) as the subset of these least covert paths that have

the fewest edges, i.e:

P s
c (u, v) = {p ∈ Pc(u, v)|l(p) = ∆s(Pc(u, v))} (5.13)
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5.2.3 Overt-Length and Covert-Length Trade-off

The difference between the length of a shortest path as compared to the minimum length

of a least weight overt (or covert) path is of interest as it indicates the extent to which

shortest paths through the graph are aligned to edges that can potentially forward content

to the remaining members of an induced triad. We define the overt-length trade-off for

a pair of vertices u and v in Definition 37:

Definition 37. The overt-length trade-off for u and v ∈ V (G) is defined by tos(u, v),

where:

tos(u, v) = ∆s(P
s
o (u, v))− δs(u, v) (5.14)

Therefore tos(u, v) represents the number of additional edges that results when prior-

itising overt edges. The covert-length trade-off is defined similarly and denoted by

tcs(u, v):

Definition 38. The covert-length trade-off for u and v ∈ V (G) is defined by tcs(u, v),

where:

tcs(u, v) = ∆s(P
s
c (u, v))− δs(u, v) (5.15)

Algorithm 11 highlights the function OVERTLENGTHTRADEOFF, which computes the

overt-length trade-off tos(u, v). The algorithm for the function COVERTLENGTHTRADEOFF

to compute the covert length trade-off T cs (u, v) for u and v follow similarly.
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Algorithm 11 OVERTLENGTHTRADEOFF(G, u, v): Computes tos(u, v).

Input: Graph G, u, v ∈ V (G)

Output: The overt length trade-off between u and v: tos(u, v).

1: Ps(u, v) =DIJKSTRA_ALL_PAIRS(G, u, v)

2: for (x, y) ∈ E(G) do . Calculate dummy weights

3: w(x,y) = (x, y)o(|V (G)| − 1) + 1

4: P s
o (u, v) =DIJKSTRA_ALL_PAIRS(u, v, weights = w)

5: tos(u, v) = l(p2)− l(p1) for any p1 ∈ Ps(u, v), p2 ∈ P s
o (u, v)

6: return tos(u, v)

In Algorithm 11, when computing the overt-length trade-off on vertices u and v, we

compare a path of least length between u and v (i.e a path in Ps(u, v)) with a least

overt path with the fewest edges (i.e a path in P s
o (u, v)). To find a path in P s

o (u, v) we

are optimising for two variables: finding least overt path with respect to minimising

length. In order to do this we introduce dummy variables to weight edges when running

Dijkstra’s Algorithm.

Note that to optimise a a with respect to b in paired weight (a, b), edges must be

weighted as: aUb + b where Ub denotes an upper bound on b. Similarly to optimise b

with respect to a, edges must be weighted as bUa + a where Ua is an upper bound on a.

Thus, to find paths in P s
o (u, v) we must give edges the dummy weight aUb + b where

a denotes the overt weight of an edge and b denotes the length of an edge. Then

a = wo(x, y) and b = 1. An upper bound on path length is set as Ub = |V (G)| − 1.

Hence aUb + b = (wo(x, y)(|V (G)| − 1)) + 1.

We can consider the overt-length trade off across all possible paths in a graph. We define

the global overt-length trade-off in Definition 39.

Definition 39. Let C(G) be the set of all pairs of vertices of G connected by a path, i.e:

C(G) = {(u, v)|u, v ∈ V (G),∃p(u, v)} (5.16)
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Then we define the global average overt-length trade-off as:

T os (G) =

∑
(u,v)∈C(G) t

o
s(u, v)

|C(G)|
(5.17)

The global average covert-length trade-off in path length is defined similarly and is

denoted by T cs (G).

Definition 40. We define the global average covert-length trade-off as:

T cs (G) =

∑
(u,v)∈C(G) t

c
s(u, v)

|C(G)|
(5.18)

We are particularly interested in the subset of paths that show an improvement in the

shortest length when ignoring overt weight. We define the average improvement in

edges (for overt length trade-off) in Definition 41.

Definition 41. Let Co
s (G) denote the set of vertices where the overt-length trade-off is

non-zero, i.e:

Co
s (G) = {(u, v)|tos(u, v) > 0, u, v ∈ V (G)} (5.19)

Then the average improvement in edges (for overt-length trade-off) is the normalised

sum of the non-zero overt-length trade-offs, which is given by:

Ios (G) =

∑
(u,v)∈Co

s (G) t
o
s(u, v)

|Co
s (G)|

(5.20)

The average improvement in edges for covert-length trade-off, Ics(G), is defined simil-

arly.

Definition 42. Let Cc
s(G) denote the set of vertices where the covert-length trade-off is

non-zero, i.e:

Cc
s(G) = {(u, v)|tcs(u, v) > 0, u, v ∈ V (G)} (5.21)
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Then the average improvement in edges (for covert-length trade-off) is the normalised

sum of the non-zero covert-length trade-offs, which is given by:

Ics(G) =

∑
(u,v)∈Cc

s(G) t
c
s(u, v)

|Cc
s(G)|

(5.22)

The function to determine Ios (G) is highlighted in Algorithm 12. The function to

determine Ics(G) follows similarly.

Algorithm 12 AVERAGEIMPROVEMENTOVERTLENGTH(G): Computes the average
improvement in edges Ios (G).

Input: Graph G

Output: The average improvement in edges Ios (G)

1: c = 0 . Count improvements

2: T = 0 . Total improvement

3: for u, v ∈ C(G) do . Loop over all connected pairs

4: tos(u, v) =OVERTLENGTHTRADEOFF(u, v)

5: if tos(u, v) > 0 then . Non-zero trade-off

6: c = c+ 1

7: T = T + tos(u, v)

8: Ios (G) = T
c

9: return Ios (G)

5.2.4 Length-Overt Trade-off

Alternative to considering the differences in path length due to minimising overt and

covert centrality, we can also consider the differences in overt and covert weight, when

comparing optimised weight paths against the least weight of a shortest path.

We define the length-overt trade-off for a pair of vertices u and v in Definition 43.
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Definition 43. The length-overt trade-off for u and v ∈ V (G) is defined by tso(u, v),

where:

tso(u, v) = ∆o(P
o
s (u, v))− δo(u, v) (5.23)

That is, tso(u, v) represents the increase in overt weight that results when prioritising

shortest paths. Similarly, the length-covert trade-off in weight between a pair of vertices

is denoted by tsc(u, v).

Definition 44. Then the length-covert trade-off for u and v ∈ V (G) is defined by

tsc(u, v), where:

tsc(u, v) = ∆c(P
c
s (u, v))− δc(u, v) (5.24)

Algorithm 13 highlights the function LENGTHOVERTTRADEOFF, which computes the

length-overt trade-off tso(u, v). When computing the length-overt trade-off on vertices

u and v we compare a least overt path between u and v (i.e a path in Po(u, v)) with a

shortest path between u and v with the least overt weight edges (i.e a path in P o
s (u, v)).

Using the same notation from Algorithm 11 to find paths in P o
s (u, v) we must minimise

path overtness with respect to length. Letting a denote the overt weight of an edge and

b denote the length of an edge, we must weight edges with the dummy variable bUa + a

under Dijkstra’s Algorithm to compute P o
s (u, v). An upper bound on overt path weight

Ua = (|V (G)| − 1)(|V (G)| − 2) = |V (G)|2 + 3|V (G)|+ 2. The algorithm for covert

follows similarly.
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Algorithm 13 LENGTHOVERTTRADEOFF(G, u, v): Computes tos(u, v).

Input: Graph G, u, v ∈ V (G)

Output: The length overt trade-off between u and v: tso(u, v).

1: for (x, y) ∈ E(G) do

2: v(x,y) = wo(x, y)

3: Po(u, v) =DIJKSTRA_ALL_PAIRS(u, v, weights = v)

4: for (x, y) ∈ E(G) do . Calculate dummy weights

5: w(x,y) = |V (G)|2 − 3|V (G)|+ 2 + wo(x, y)

6: P o
s (u, v) =DIJKSTRA_ALL_PAIRS(u, v, weights = w)

7: tso(u, v) = wo(p1)− wo(p2) for any p1 ∈ P o
s (u, v), p2 ∈ Po(u, v)

8: return tos(u, v)

As for path length, we also consider trade-off at a graph level. We define the average

improvement in edges (for length-overt trade-off) in Definition 45:

Definition 45. Let Cs
o(G) denote the set of vertices where the length-overt trade-off is

non-zero, i.e

Cs
o(G) = {(u, v)|tso(u, v) > 0, u, v ∈ V (G)} (5.25)

The average improvement in edges (for length-overt trade-off) is then given by:

Iso(G) =

∑
(u,v)∈Cs

o(G) t
s
o(u, v)

|Cs
o(G)|

(5.26)

We define the average improvement in edges (for length-covert trade-off) Isc (G) sim-

ilarly, where the average improvement in edges represents the mean non-zero length-

covert trade-off:

Definition 46. Let Cs
c (G) denote the set of vertices where the length-covert trade-off is

non-zero, i.e

Cs
c (G) = {(u, v)|tsc(u, v) > 0, u, v ∈ V (G)} (5.27)
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The average improvement in edges (for length-overt trade-off) is then given by:

Isc (G) =

∑
(u,v)∈Cs

c (G) t
s
c(u, v)

|Cs
c (G)|

(5.28)

The functions to compute Iso(G) and Isc (G) follow similarly to Algorithm 12.

5.2.5 Summary of Notation

In Table we summarise the notation used in Section 5.2. We should note that overt-

length trade-off refers to the additional edges that result when prioritising overt edges,

whilst length-overt trade-off refers to the increase in overt weight that results when

prioritising shortest paths. Covert follows similarly.

Name Notation
Overt weight of a path p wo(p)

Total covert weight of a path p wc(p)
Overt-length trade-off for u and v tos(u, v)
Covert-length trade-off for u and v tcs(u, v)
Length-overt trade-off for u and v tso(u, v)
Length-covert trade-off for u and v tsc(u, v)
Length-covert trade-off for u and v tsc(u, v)

Average improvement in edges for overt-length trade-off Ios (G)
Average improvement in edges for covert-length trade-off Ics(G)
Average improvement in edges for length-overt trade-off Iso(G)
Average improvement in edges for length-covert trade-off Isc (G)

Table 5.1: A summary of the notation used in Section 5.2

5.3 Results

To understand how potential graph structure and edge density affect the presence and

trade-offs concerning overt centrality, covert centrality and shortest paths, we assess

synthesised networks having particular properties.
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We construct directed Erdos-Renyi networks [18] (ER networks) with uniform random

selection of edges and compare them against networks constructions designed to obtain

long tailed distributions (random k-out and scale free network constructions originating

from networkX [33]).

ER networks are random models, where we can control for density and number of nodes.

Random k-out and scale free networks may more closely represent phenomena in real

life, but we cannot control for larger densities. We acknowledge that these properties

are typically employed in very large-scale networks (i.e., high number of vertices),

however in order to maintain feasibility of run time for connectivity analysis while

varying density, we control the number of vertices for each network. This also enables

networks to be human interpret-able, and allows us to assess a considerable sample of

networks (e.g., average statistics over 100 networks) when considering results.

For proof of concept purposes, we consider networks with either 25, 30, 35, 40, 45 or

50 vertices, allowing shortest path calculations to be frequently repeated. For random

k-out and scale free constructions, multi-edges are removed. Random k-out network

exhibits preferential attachment. We input the initial weight of each vertex, α, then

out-degree of each node, k, and the number of nodes. Nodes u with degree less than k

are chosen at random, and an edge is plotted from u to node v, where v is chosen with

probability proportional to its weight. The weight of a node increases as its in-degree

increases. Thus, the higher the weight of a node, the more likely there is an edge directed

into a node. For the random k-out construction, we fix the number of edges directed

out of each vertex (k = 3) and vary the initial weight of each vertex (0.1 ≤ α ≤ 1).

Scale free networks are built on four variables: the number of nodes, α, β and γ. α

and γ control for the probability of the addition of nodes connected to existing ones

within the network: α according to the in-degree distribution and γ according to the

out-degree distribution. β controls for the probability of adding an edge between an

existing pair of nodes according to the in and out-degree distribution of the pair of nodes.

For the scale free construction, we vary the probability of adding an edge between two
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existing vertices (0.9 ≤ β ≤ 1.0). The construction parameters α, γ are set in the range

0.0 ≤ α ≤ 0.1 and 0.0 ≤ γ ≤ 0.1.

We emphasise that the scale free network constructions are applied here as a generative

alternative to random networks, and their small |V (G)| limits the presence of statistically

significant long-tail properties, but the construction is a useful alternative case study

for relatively small numbers of vertices, as compared to ER networks. In each case

we vary the density (directly for ER networks, indirectly for random k-out and scale

free networks). For each density level, network size and network type we generate 100

network instances and consider the average value of Ios (G), Ics(G), Iso(G) and Isc (G).

Unfortunately we are unable to directly control density in random-k and scale free

networks, therefore results produced may relate to a single, outlying network with

unique density. This is unlike ER networks, where we can control density directly

and therefore average over repeated instances of ER networks on the same density.

Therefore, results in random-k and scale free networks are inconclusive, as we will see

in Section 5.3.3.

5.3.1 Observations on Increasing Edge Density

Before we discuss results, we first highlight how a change in network density can affect

the overtness/covertness of a path as a means to assess results concerning Ios (G), Ics(G),

Iso(G) and Isc (G) across varying densities in the various generated networks. Ios (G) and

Ics(G) respectively denote the average non-zero overt-length and covert-length trade-

off for G (i.e the number of additional edges that result when prioritising minimising

overtness/covertness over path length), whilst Iso(G) and Isc (G) respectively denote the

average non-zero length-overt and length-covert trade-off for G (i.e the decrease in path

overt/covert weight when prioritising minimising overtness/covertness over path length).

This is useful for interpreting what happens when edge density is changed.

Suppose there exists an edge (u, v) ∈ E(G). There are three ways to increase the covert
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weight of this edge:

1 Add an edge (u1, u) for some u1 ∈ V (G).

2 Add an edge (u, u2) for some u2 ∈ V (G).

3 Add an edge (u3, v) for some u3 ∈ V (G).

This compares to one way to increase the overt weight of the same edge, that is:

4 Add the edge (v, u4) for some u4 ∈ V (G).

Increasing the overt/covert weight of the edge (u, v) simultaneously increases the

overt/covert weight of any path that (u, v) is contained in. In Example 5.3.1, we

consider the effect of adding an edge to an existing network in order to increase the

overt/covert weight of an edge in a path, and observe its affect on the total weight of

path p.

Example 5.3.1. Suppose there exists a path p in network G between two vertices, and

(u, v) is an edge in this path. Suppose there are a further two vertices: u1, u2 ∈ V (G)

such that (u1, u) and (v, u2) are edges in p, as shown in Figure 5.2.

u1 u v u2

Figure 5.2: Path p = (u1, u, v, u2).

To increase the overt weight of (u, v) we follow operation (4) outlined above: adding

the edge (v, u3) for some u3 ∈ V (G), as demonstrated by the red edge in Figure 5.3.

Adding (v, u3) to the network forms the triad t1 = (u, v, u3) of type 021C in which

(u, v) is overt; increasing the overt weight of (u, v), and therefore wo(p), by one. In

addition, the triad t2 = (v, u2, u3) of type 021D is formed, wherein the edge (v, u2) is

covert, hence the wc(p) is increased by one.
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u1 u v u2

u3

Figure 5.3: Path p with the addition of edge (v, u3) in red.

To increase the covert weight of (u, v), we follow operations (1)-(3) outlined above.

Hence, we add the edge either (u4, u), (u, u5) or (u6, v) for some u4, u5, u6 ∈ V (G), as

demonstrated in Figure 5.4 by adding the blue edges. Adding the edge (u4, u) forms

the triad t3 = (u4, u, v) of type 021C in which (u, v) is covert. This also forms the

triad t4 = (u1, u, u4) of type 021U in which (u1, u) is covert. Thus, adding (u4, u)

to the network increases the wc(p) by two. Adding the edge (u, u5) forms the triad

t5 = (u5, u, v) of type 021D in which (u, v) is also covert. Adding this edge also forms

the triad t6 = (u1, u, u5) of type 021C in which (u1, u) is overt. Thus, adding (u, u5) to

the network increases wc(p) by one and the wo(p) by one. Finally, adding (u6, v) to the

network increases the wo(p) by two as it forms the triad t7 = (u, v, u6) of type 021U

in which (u, v) is covert and the triad t8 = (u6, v, u2) of type 021C in which (v, u2) is

covert.

u1 u v u2

u6u4

u5

Figure 5.4: Path p with the addition of (u4, u), (u, u5) or (u6, v).

Therefore, increasing the overt weight of (u, v) increases the overt and covert weight of

p by one. Increasing the covert weight of (u, v) may increase the covert weight of p by

two (if operations (2) and (3) are followed) or increases the overt and covert weight of
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p by one (if operation (1) is followed). These results are dependent on the existence of

edges (u1, u) and (v, u2); as well as the possible triads that can form between vertices.

On first consideration, it would appear that there are more ways to increase the covert

weight of the path than the overt weight through operations (1)-(4). However, it is

important to note that adding an edge to a network forms new triads or changes existing

ones. The new edge can be contained simultaneously in multiple triads that share

between zero and two edges with p. The likelihood of the class of triad the new edge

can be contained may be affected by network density.

We predict that, subject to restrictions on possible triad classes which can occur at

varying densities, carrying out operations (1)-(4) affects the overtness/covertness of

paths in different ways. We also predict these rules affect the ability to perform

operations (1)-(4). We show this in Example 5.3.2.

Example 5.3.2. Recall Figure 5.2. Suppose we increase wc(p) by two by adding the

edge (u4, u) to the network, for some u4 ∈ V (G) (as in Figure 5.4). (u4, u) is contained

in the triad t1 = (u4, a, b) of type 021C. Suppose we now insist that this triad is denser,

and must be of type 111U. Then there must be an additional edge (u, u4) as shown in

Figure 5.5.

u1 u v u2

u4

Figure 5.5: Path p with the addition of (u4, u) and (u, u4) in blue.

Now, (u, v) remains covert in triad t1. However, (u1, u) is now overt in triad t2 =

(u1, u, u4) which has changed from 021U to 111D, so wc(p) is reduced, whilst the

wo(p) is increased.

Therefore we state our first assumption:
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• A1: When modifying an existing network and thereby changing the frequency

of occurrence of each class of induced triad we change and restrict the ability to

increase the overt and covert weight of a path p (wo(p) and wc(p) respectively).

When sparser triads are induced (triads constructed on two edges) there are more

ways to increase wc(p) than wo(p). As denser triads are induced (triads that

contain at least three edges), the number of ways to increase wo(p) grows and

overtakes the number of ways to increase wc(p); and wc(p) may even reduce.

In the following sections, we consider the results by network-type.

5.3.2 ER networks

We now discuss the various results on ER networks. We first look to ER networks

(Between 25 and 50 vertices); first comparing density with Ios (G), Ics(G), Iso(G) and

Isc (G) in Figure 5.6. We then discuss additional analyses on these small networks in

Figures 5.7 - 5.13 and Tables 5.2 - 5.5. We then look to large ER networks in Figure

5.14.

ER networks

Figure 5.6 compares (in a clockwise order) Ios (G), Ics(G), Iso(G) and Iso(G) in ER

networks (number of vertices ranges between 25 and 50 vertices in increments of 5)

on varying density (density ranges between 0 and 1 in increments of 0.05). Values are

averaged over 50 samples of each network.

In Figure 5.6 we see that an increase in network density leads to a decrease in Ios (G).

An increasing number of vertices present in the network decreases the maximum value

Ios (G) can be, causing a more rapid decline in Ios (G) and no further results are produced

at an earlier density. For example, in ER networks on 25 vertices, the maximum Ios (G)

value is 1.24 and no further results are produced at 0.55 density, whereas in ER networks
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Overt Covert

Length

Weight

Figure 5.6: The average values (in a clockwise order) of Ios (G), Ics(G), Isc (G) and
Iso(G) , sampling over 50 instances of an ER-network.

on 35 vertices, the highest Ios (G) value is 1.12 and no further results are produced at

0.45 density. The highest Ios (G) value in all these ER networks is found in networks on

very low density (0.05). Ios (G) in all networks has plateud at 0.3 density (0.2 density in

the largER networks), and no Ios (G) value occurs in networks with greater than 0.55

density (which decreases to 0.4 density in networks on a greater number of vertices).

Conversely, an increase in network density leads to an increase in Ics(G). We observe

in 5.6 that at 0.05 density, Ics(G) hovers around 1.15, which then decreases as density

increases to 0.2. Ics(G) stays fixed until approximately 0.8 density, at which point we

see a rapid increase in Ics(G) until 0.95 density is reached.

Iso(G) does not necessarily follow a similar pattern to Ios (G): whilst some networks see

a decrease in Iso(G) as density increases, others see a spike in cases in higher densities

(such as the largest Iso(G) value in networks on 50 vertices occurs around 0.35 density).

Further Iso(G) values tend to be greater than Ios (G) values. Conversely to Ios (G); an

increasing network size (in terms of number of vertices) relates to a slight increase
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in Iso(G). Isc (G) generally decreases as density increases, although this progression is

jagged in its appearance.

To analyse the results in 5.6 we first make the following assumptions:

• A2: Changing network density affects its triad census through modifying existing

triads, so that the higher the density of the network, the greater the number of

denser triads contained in the network and the fewer the number of sparser triads.

To back-up assumption A1, we investigate the average volume of occurrence of each

triad class through taking a triad census on ER networks sampled on 0.1, 0.5 and 0.9

density. We generate 50 iterations of ER network on each density and take the mean.

The results for this are provided in Table 5.2. We observe that at first exploration, A1

appears to hold true. For example, ER networks on 0.1 density (the lowest density

we sample) contain a majority of triads of class 021D,021U and 021C, all triads

constructed on two edges; whilst maintaining very few triads constructed on three or

more edges. ER networks sampled on 0.9 density (the highest density we sample)

contain a majority of triads of class 120C (four edges), 210 (five edges) and 300 (six

edges), whilst also maintaining a high proportion of triads of class 201,120D and

120U (all constructed on four edges). ER networks on 0.5 density are more balanced,

they contain a number of sparse triads (such as 021D,021U and 021C) and dense

triads (such as 120C,210 and 300; whilst maintaining high volumes of triads of

density somewhere in between (such as 111D,111U,030T, all constructed on three

edges).

We next propose our third assumption, which assumes through A2 that network density

induces a greater volume of denser triads and a lower volume of sparser triads, which in

turn affects the overt/covert centrality of the network’s edges:

• A3: Increasing the density of an empty network at first increases the overt and

covert centrality of its edges. As density increases further, the rate at which the
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021D 021U 021C 111D 111U 030T 030C 201 120D 120U 120C 210 300

ER (0.1) Mean 84.4 86.7 167.5 19.1 19.3 20.5 5.9 1.3 1.2 1.1 2.1 0.2 0.0
ER (0.1) Std. Dev. 37.9 39.4 76.1 13.8 13.3 11.2 4.6 1.5 1.6 1.4 2.0 0.5 0.0

ER (0.5) Mean 184.3 178.4 359.7 398.5 405.0 393.8 131.6 222.7 219.2 216.8 438.0 497.0 94.5
ER (0.5) Std. Dev. 80.3 78.9 160.6 167.3 167.1 174.1 59.1 98.2 91.0 89.9 182.4 226.5 51.1

ER (0.9) Mean 0.8 1.2 2.3 20.7 19.4 19.7 7.0 86.6 87.2 87.0 173.2 1539.6 2256.1
ER (0.9) Std. Dev. 0.8 1.1 2.0 11.0 9.1 9.9 3.9 45.3 42.6 35.7 74.2 624.9 938.0

Random k (0.1) Mean 11.0 363.3 44.0 49.7 1.5 20.4 1.0 1.0 13.7 0.2 1.5 0.8 0.2
Random k (0.1) SD 8.2 123.5 28.7 21.6 2.1 9.8 1.4 1.1 7.9 0.4 1.4 1.0 0.4

Random k (0.5) Mean 35.3 198.2 116.2 36.8 7.1 22.7 3.9 1.0 4.0 0.7 2.2 0.5 0.0
Random k (0.5) SD 13.7 62.1 43.5 12.5 4.9 7.4 2.3 1.0 2.6 0.7 1.3 0.7 0.0

Random k (0.9) Mean 41.1 151.4 128.8 38.0 9.9 17.9 3.8 1.4 3.0 0.7 2.5 0.5 0.0
Random k (0.9) SD 13.0 45.0 40.5 15.5 4.0 6.1 2.3 1.5 2.9 1.0 1.4 0.6 0.0

Scale Free (0.91) Mean 103.7 58.7 88.7 25.0 33.6 8.7 0.0 1.4 4.5 8.8 0.7 1.8 1.0
Scale Free SD 57.3 30.9 42.6 10.3 13.0 7.0 0.0 1.7 2.9 5.3 0.9 1.6 1.0

Scale Free (0.95) Mean 91.6 67.0 97.5 29.2 35.2 7.6 0.0 1.3 5.6 11.6 0.6 1.5 1.8
Scale Free (0.95) SD 41.4 39.6 40.2 16.1 16.6 6.7 0.0 2.4 3.3 5.4 0.8 1.6 1.3

Scale Free (0.99) Mean 102.9 59.2 108.1 33.6 42.4 3.9 0.0 1.8 5.7 11.0 0.9 2.1 2.1
Scale Free (0.99) SD 52.7 34.9 49.4 16.0 18.6 4.3 0.0 2.7 4.0 6.2 0.9 1.7 1.9

Table 5.2: Triadic census over all generated networks, across specific densities.
ER is sampled over p = 0.1, 0.5 and 0.9. Random k is sampled over α = 0.1, 0.5
and 0.9. Scale free is sampled over β = 0.91, 0.95 and 0.99, with α and γ = 1−β

2
in

each case.

overt centrality of edges increases speeds up, whilst the rate of which the covert

centrality of edges increases slows down and eventually the covert centrality of

edges decreases.

To evidence this, we observe the number of overt and covert edges present across all

13 triads classes (see Figure 4.3 in Section 4.2). There are three triads on two edges:

021D,021U and 021C. Of these triads there are five covert edges and one overt edge.

There are four triads on three edges: 111D,111U,030T and 030C. Of these triads

there are six overt edges and six covert edges. There are four triads on four edges:

201,120D,120U and 120C, amongst which there are nine overt edges and seven

covert edges. 210 is the only triad on five edges, which contains one covert and four

overt edges; and 300, the only triad on six edges, contains only overt edges. Therefore,

on triads containing two edges, it is more likely an edge is covert than overt. In triads

containing three edges there is an equal likelihood an edge is overt as covert. In triads

above three edges, there is an increasing likelihood an edge is overt than covert.

We also must note it is possible for covert edges to be transformed into overt edges
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but not visa versa. Therefore the covert centrality of an edge can decrease through

transforming its behaviour from covert to overt in the triads it is contained in. This is

not true for overt: the overt centrality of an edge can only stay the same or increase.

Finally, we are in a position to make our final assumption. Through A3 we have assumed

that increasing the density of a network changes the overt and covert centrality of its

edges. However, we are interested in how changing the overt and covert centrality of

edges of a network affect the overt/covert weight of paths (wo(p) andwc(p) respectively),

in order to explore the overt-length/covert-length (tos(u, v) and tcs(u, v)) and length-

overt/length-covert (tso(u, v) and tsc(u, v)) trade-offs. In Section 5.3.1 we explore how

modifying the overt/covert centrality of an edge affect wo(p) and wc(p), concluding

with the assumption (A1) that restrictions in the network on the frequency of occurrence

of each class of triad affect the ability to increase wo(p) and wc(p). We now make our

final assumption:

• A4: Increasing the density of an empty network at first increases wo(p) and

wc(p), with the initial increase in wc(p) being greater than the initial increase in

the wo(p). As density increases further, the rate at which wo(p) increases speeds

up, whilst the rate of which wc(p) increases slows down and eventually wc(p)

decreases.

These assumptions are important because each assumption is used to build the fol-

lowing assumption, resulting in assumption A4. In Figure 5.6 we repeatedly compare

least length paths with least overt/covert paths. A4 indicates that network density

affects wo(p) and wc(p) of both least length and least overt/covert paths, and thereby

tos(u, v),tcs(u, v) and tso(u, v), tsc(u, v). Crucially, we predict an increase in density

strengthens the relationship between path length and wo(p), whilst weakening the

relationship between path length and wc(p).

Increased wo(p) is derived from increased overt weight of edges within them. This

means that wo(p) is directly influenced by l(p). Therefore to minimise wo(p), the
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number of edges in a path must be minimised (i.e. l(p)). This results in the difference in

length between a minimum overt and a minimum length path decreasing, thus the overt-

length trade-off for a pair of vertices (tos) decreases. After a density of approximately

0.6, accordingly we observe the least weighted path becoming a shortest path, hence no

further results are produced.

In contrast, we expect a reduction in wc(p) as density increases; although it’s plausible

from Figure 5.6 to expect an initial increase in wc(p) at low densities (between 0.05 and

0.2). A reduction in wc(p) weakens the relationship between l(p) and wc(p), giving the

potential for minimum covert paths to be longer. Unlike overt paths, it is possible to

construct weightless covert paths (an example is given in Example 5.3.3):

Example 5.3.3. Suppose there exists a path p = (u1, u2, u3, u4, u5, u6). Then the blue

edges in Figure 5.7 ensure that wc(p) = 0.

u1 u2 u3 u4 u5 u6

wc = 0 wc = 0 wc = 0 wc = 0 wc = 0

Figure 5.7: Example path p = (u1, u2, u3, u4, u5, u6) where wc(p) = 0.

So, from the above we can expect the overt weight of a path, wo(p), to increase as density

increases in the network. This can occur in a minimum length path (increasing the

length-overt trade-off tso(u, v) between a minimum overt path and a path on minimum

edges), a minimum overt path (decreasing the length-overt trade-off between a minimum

overt path and path on minimum edges) or both. Furthermore, either increase in weight

of a minimum edge or minimum overt path could force the algorithm to choose another

path. Therefore, tso(u, v) could stay the same could stay the same, increase or decrease.

Therefore, overall there is no general trend for ISo (G): in Figure 5.6 we see no general

correlation between the difference in overt weight and edge density. We observe that this

occurs up to a density of 0.6, where afterwards least weighted overt paths and shortest
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paths are the same and no further results occur. At the same time, we observe a negative

correlation between edge density and length-covert trade-off between a shortest path

and a path that minimises covert weight (Ics(G)). This is due to covert paths getting

lighter and lighter as edge density increases in ER networks, meaning that there is less

scope for a difference in weight (which may possibly be zero).

Additional Results on ER networks

To gain further insight into Ios (G), Ics(G), Iso(G) and Isc (G), additional analysis is

undertaken on ER networks. Firstly, we compare network with density with proportion

of paths in the network where there is a difference between a minimum overt/covert

path and shortest path (see Figures 5.8 and 5.12). Next, we compare the frequency of

trade-offs tso, t
s
c, t

o
s, t

c
s across the networks that are averaged to provide Ios (G), Ics(G),

Iso(G) and Isc (G) (see Figures 5.9, 5.10, 5.13, and 5.14). Finally, we compare Ios (G),

Ics(G), Iso(G) and Isc (G) against the corresponding average weight and length of shortest

paths in the network (see Figure 5.11).

In Figure 5.8 we counted the total number of least overt paths which are not shortest

paths occurring at each vertex density pair across all 50 simulations of this vertex-

density pair. We then calculate the proportion of these paths of the total number of such

paths at each vertex-density pair.

Figure 5.8 demonstrates that the highest volume least overt paths which are not them-

selves shortest paths (i.e, the paths yielding non-zero overt-length and length-overt

trade-offs) occur when the density of the network is between 0.1 and 0.25 in networks

on 25 vertices; between 0.05 and 0.2 in networks on between 30 and 40 vertices; and

between 0.05 and 0.15 in networks on between 45 and 50 vertices. The peak volume

of these paths occurs in at 0.15 density in networks on 25 vertices; and 0.1 density in

networks on between 30 and 50 vertices. In all cases, low densities indicate a greater

volume of least overt paths of interest. Moreover, we show that these paths occur
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Figure 5.8: Percentage of all least overt paths with non-zero tos and tSo that occur
within one of 50 simulations at each vertex-density pair.

frequently, for instance: in networks on 50 vertices and 0.1 density, 10843 such paths

occur.

In Figure 5.9 we count the frequency of length-overt trade-offs (i.e tos) across all least

overt paths from every simulation we ran to compute the results in Figure 5.6. We plot

the frequency of each tos value in the histograms, which are separated by network size.

Table 5.3 counts the proportion of tos out the total number of trade-offs against each

network size, and tells us the values for the bars in the histrograms in Figure 5.9.

We repeat this process with length-overt trade-offs (i.e tso) in Figure 5.10 and Table 5.4.
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(a) 25 Nodes (b) 30 Nodes

(c) 35 Nodes (d) 40 Nodes

(e) 45 Nodes (f) 50 Nodes

Figure 5.9: Frequency histograms plotting occurrence of tos values, separated by
number of vertices in the network.

Number of vertices 1 2 3 4 5

25 95.00 4.82 0.18 0.00 0.00

30 93.62 5.99 0.38 0.02 0.00

35 93.31 6.37 0.31 0.01 0.00

40 92.94 6.26 0.75 0.05 0.00

45 91.89 7.41 0.63 0.07 0.00

50 91.06 7.97 0.87 0.11 0.00

Table 5.3: Percentage of all least overt paths with non-zero tos for each network
size that have the corresponding tos value, corresponding to Figure 5.9.
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(a) 25 Nodes (b) 30 Nodes

(c) 35 Nodes (d) 40 Nodes

(e) 45 Nodes (f) 50 Nodes

Figure 5.10: Frequency histograms plotting occurrence of tso values, separated by
number of vertices in the network.

Number of Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13

25 53.78 25.61 12.00 4.66 2.52 0.91 0.37 0.08 0.00 0.08 0.00 0.00 0.00

30 47.02 26.73 14.09 6.31 2.86 1.73 0.83 0.21 0.13 0.07 0.03 0.00 0.02

35 45.73 25.35 13.95 7.86 3.85 1.82 0.72 0.51 0.13 0.06 0.01 0.00 0.00

40 45.03 26.09 14.31 7.35 4.03 1.72 0.79 0.42 0.16 0.09 0.01 0.00 0.00

45 44.44 26.40 13.90 7.64 3.76 2.09 0.99 0.46 0.19 0.06 0.03 0.02 0.01

50 43.49 25.70 15.25 7.45 4.12 2.16 0.93 0.51 0.20 0.16 0.03 0.00 0.00

Table 5.4: Percentage of all least overt paths with non-zero tso for each network
size that have the corresponding tso value, corresponding to Figure 5.10.

Figure 5.9 and Table 5.3 shows that most tos values are one (an overwhelming 91-95

percent of length trade-offs are one in networks on 25-50 vertices). There is a minor

decrease in the percentage of paths where the tos equals one as the number of vertices

in the network increases, and a tendency to induce more paths where tos is greater than

one; although the volume is negligible.

In terms of weight, from Figure 5.10 and Table 5.4, whilst the greatest population of

tso values is still one, there is a much greater range than found in Figure 5.9; and the
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percentage of tso values equal to one is much smaller (between 43 and 53 percent in

networks on 25-50 vertices).

In Figure 5.11 we plot Ios (G), Iso(G), Isc (G), Isc (G) from Figure 5.6 against the corres-

ponding length and weight of shortest paths that induced these values.

Overt Covert

Length

Weight

Figure 5.11: The average values of Ios (G), Ics(G), Isc (G) and Iso(G) (in clockwise
order) against the corresponding length/weight of the shortest path, sampling over
50 instances of an ER-network.

Figure 5.11 shows that the highest Ios (G) values (which come from networks on a low

density from Figure 5.6) occur when a shortest path has between 4-5 hops. Figure 5.11

also shows that shorter shortest paths tend to induce smaller Ios (G), and thus occur at

higher densities. However, when there is the highest volume of least overt paths that

induce a overt-length tradeoff from Figure 5.8 (i.e, at 0.15 density in networks on 25

vertices and 0.1 density in networks on between 30 and 50 vertices) shortest paths have

between 3 and 4 hops.

Meanwhile, the highest Iso(G) values occur when the overt weight of a shortest path is

between 30 and 45, although there are many shortest paths of similar weight that do

not induce a high Iso(G). At densities which induce the highest volume of least overt
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paths that induce a length-overt tradeoff, the path weights of the shortest paths cluster

together in Figure 5.11, and are between 12 and 20 total overt weight.

In Figure 5.12 we ran the same process as in Figure 5.8 but this time with least covert

paths which are not shortest paths and therefore yielding non-zero covert-length and

length-covert trade-offs.

Figure 5.12: Percentage of all least covert paths with non-zero tcs and tSc that occur
within one of 50 simulations at each vertex-density pair.

Figure 5.12 demonstrates that the highest volume of least covert paths which yielding

non-zero covert-length and length-covert trade-offs occur when the density of the

network is 0.95 in networks on between 25 and 50 vertices. Figure 5.12 looks very

similar to the Ics(G) results in 5.6; with an initial peak of these paths occurring in

networks on between 0.05 and 0.15 density; although in networks on between 25 and

35 vertices, the lower quartile for the frequency of these paths still occurs at above 0.8

density due to an overwhelming proportion of paths occurring at 0.9 and 0.95 density.

However, in networks on between 40 and 50 vertices, due to a drop in the percentage of

these paths occurring in networks on 0.9 density, we see the lower quartile in frequency
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occurs at a lower density of between 0.05 and 0.15. The upper quartile in frequency sits

between 0.9 and 0.95 density across networks on 25-50 vertices. Therefore, in paths in

networks on between 40 and 50 vertices, there is an increase in the range of densities

corresponding to the interquartile range of frequency of occurrence of these paths in

networks on between 25 and 40 vertices.

In Figure 5.13 and 5.14 we ran the same process as in Figure 5.9 and 5.10 but this

time with least covert paths to calculate the frequency of various tcs and tsc values, with

corresponding Table 5.5 and 5.6.

(a) 25 Nodes (b) 30 Nodes

(c) 35 Nodes (d) 40 Nodes

(e) 45 Nodes (f) 50 Nodes

Figure 5.13: Frequency histograms plotting occurrence of tcs values, separated by
number of vertices in the network.
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Number vertices 1 2 3 4 5 6 7 8

25 79.47 15.76 3.48 1.13 0.15 0.00 0.00 0.00

30 78.31 16.29 4.58 0.65 0.16 0.01 0.00 0.00

35 81.82 15.51 2.19 0.39 0.09 0.01 0.00 0.00

40 85.53 11.79 1.67 0.36 0.29 0.27 0.10 0.00

45 83.83 14.21 1.84 0.13 0.00 0.00 0.00 0.00

50 82.10 14.96 2.09 0.41 0.35 0.09 0.00 0.00

Table 5.5: Percentage of all least covert paths with non-zero tcs for each network
size that have the corresponding tcs value, corresponding to Figure 5.13.

(a) 25 Nodes (b) 30 Nodes

(c) 35 Nodes (d) 40 Nodes

(e) 45 Nodes (f) 50 Nodes

Figure 5.14: Frequency histograms plotting occurrence of tsc values, separated by
number of vertices in the network.

Number vertices 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
25 89.47 4.25 2.94 1.75 0.80 0.04 0.38 0.17 0.13 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 87.33 4.51 2.97 1.77 1.08 0.93 0.50 0.40 0.21 0.12 0.01 0.03 0.05 0.03 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00
35 83.73 5.37 3.71 2.58 1.69 1.16 0.64 0.41 0.31 0.10 0.14 0.08 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40 79.27 6.44 4.43 2.82 2.20 1.76 1.11 0.68 0.46 0.33 0.14 0.13 0.07 0.08 0.06 0.03 0.01 0.00 0.00 0.00 0.00 0.00
45 74.59 7.75 5.46 3.50 2.70 1.89 1.39 1.04 0.54 0.31 0.31 0.17 0.13 0.08 0.04 0.03 0.03 0.01 0.01 0.02 0.00 0.00
50 73.04 6.87 5.41 4.16 3.16 1.77 1.87 1.11 0.83 0.60 0.33 0.28 0.19 0.15 0.09 0.03 0.07 0.01 0.01 0.00 0.00 0.01

Table 5.6: Percentage of all least overt paths with non-zero tsC for each network
size that have the corresponding tsC value, corresponding to Figure 5.14.

Similarly to results in Figure 5.9 , the most frequent tcs value is one (between 79 and
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82 percent of paths in networks on between 25 and 30 vertices). However, there is a

slightly higher volume of tcs values which are not one (eg. 15 percent of paths have a tcs

value of two in networks on 25 vertices, as compared to 4 percent of paths in the same

sized networks have a tos value of two). The range of tcs values is slightly larger than the

range of tos values. In contrast to Figure 5.10; there is a larger proportion of tsc values of

one (between 73 and 89 percent of paths), with a minor decrease in the percentage of

paths as the number of vertices in the network increases. The range of tsc values results

is the greatest out of all cases we’ve considered.

From Figure 5.6 we observe that the highest Ics(G) values occur at 0.95 density, where

from Figure 5.11 these occur where the length of the shortest path is one. There is also

a cluster of Ics(G) that occur at 0.9 density, when the length of the shortest path is also

one.

Conversely, the initial Ics(G) values we see between 0.05 and 0.15 density in Figure 5.6

occur when the shortest path is longer (between 3 and 5 hops in length). From Figure

5.12 we know that the highest volume of contributing paths occur at higher densities,

where from Figure 5.11 the shortest path is shorter.

Highest Isc (G) values occur when the covert weight of a shortest path is between 30 and

40. However, when the highest volume of contributing paths occur at 0.95 density, paths

have between 0 and 10 total covert weight. This decrease in covert weight corresponds

to the shortest paths being shorter.

5.3.3 Hub and Spoke format networks

In Figures 5.16 and 5.15 we consider alternative ‘hub and spoke’type networks created

through scale-free network constructions. Note that in these constructions and unlike

ER networks, density cannot be directly controlled, only influenced by other parameters.

This means that some networks represented in Figures 5.16 and 5.15 may have a unique

density, and therefore the average statistics for a given density may be calculated from a
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single network. As a consequence peaks result in Figures 5.16 and 5.15 which may refer

to potentially outlying results. Furthermore, the nature of these networks, in terms of

their governing long tail degree distributions, does not allow for high density networks

to be constructed.

Overt Covert

Length

Weight

Figure 5.15: The average values of Ios (G), Ics(G), Isc (G) and Iso(G) (clockwise or-
der), sampling over 100 instances of the random k network construction.

We observe that random k-out networks (Figure 5.15) are characterised by the most

frequently occurring connected triads being 021U and 021C. Similarly the most fre-

quently occurring connected triads in the scale free networks (Figure 5.16) are 021D,

021U and 021C. The triad census of these networks do not follow the same trajectory

as ER networks with increasing density, therefore, this means operations (1)-(4) are

performed under a different set of restrictions to ER networks.

In 021D and 021U all edges are covert and in 021C one edge is covert, and another

overt. This means that on average, we predict the covert edge centrality is greater than

the overt edge weight in these networks. We believe that 021C triads are positioned

so that the overt edges do not overlap, resulting in a low overt weight per edge. If true,
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Overt Covert

Length

Weight

Figure 5.16: The average values of Ios (G), Ics(G), Isc (G) and Iso(G) (clockwise or-
der), sampling over 100 instances of a scale-free network construction.

such networks are heavily weighted towards covert edges. These triads also pivot with

high frequency around hub vertices.

The results (Figures 5.16 and 5.15) show the presence of least weight overt and covert

paths that are longer than shortest paths (Ios (G) and Ics(G)), with these appearing more

prevalent for the covert weighting, consistent with covert edges being more prevalent in

the underlying dominant triads.

In terms of edge weights, we find that high levels of jitter are present due to the inability

to sample at a particular density level. However the results establish the presence of

paths weighing less than shortest paths for both overt and covert paths (i.e., Iso(G) and

Isc (G)). This appears marginally more prevalent at lower density (although this is not

established statistically).
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5.4 Summary

In this chapter we have introduced an alternative analysis approach for paths in graphs,

addressing the extent to which they provide opportunity for knowledge or content

travelling along a path to be contained or widely disseminated, depending on the

scenario. Weighting edges using their overt or covert centrality allows us to assess this

using local metrics.

Using these metrics, we have examined the existence of least weight overt and covert

paths and their relationship to shortest paths using two classes of synthesised network

(ER networks and scale-free networks). Synthesised networks have been used because

this problem is sensitive to edge density. Comparing these two classes of paths is ap-

plicable when choosing whether a path of communication need have less steps (through

choosing the shortest path) or control the dissemination of information (minimising

overt path weight of a path would reduce the spread of information, whilst minimising

covert path weight would increase).

We have introduced four measures to discuss the difference between the two classes

of paths: Ios (G), Iso(G), Ics(G) and Isc (G). Ios (G) and Ics(G) respectively denote the

average non-zero overt-length and covert-length trade-off for G (i.e the number of

additional edges that result when prioritising minimising overtness/covertness over path

length), whilst Iso(G) and Isc (G) respectively denote the average non-zero length-overt

and length-covert trade-off for G (i.e the decrease in path overt/covert weight when

prioritising minimising overtness/covertness over path length). These measures are

important as Ios (G) and Ics(G) can be viewed as a cost to a system in terms of number

of hops when choosing a path of minimum overt/covert weight, whilst Iso(G) and Isc (G)

a benefit in terms of dissemination of information. We conclude that major differences

between paths occur in networks which are relatively small in terms of the number of

vertices they are built on.

The values of Ios (G), Iso(G), Ics(G) and Isc (G) are affected by the induced substructures
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which overlap with paths in the network. The type of network and its density affects

which substructures occur and which type of edges are present. At higher densities, the

volume of overt edges in the induced substructures present out weights the volume of

covert edges. In this chapter we have concluded this by looking at the triad census of

networks at varying densities.

Further, we have shown that the highest volume of least overt paths (which are not

themselves shortest paths and therefore produce an overt-length trade-off) occurring

in networks with between 25 and 50 vertices occur when the density of the network

is between 0.05 and 0.25, with a peak in frequency of these paths generally occurring

between 0.1 and 0.15 density. The overt-length and length-overt trade-off is most

frequently one, although this is less pronounced in length-overt trade-off than overt-

length. The highest Ios (G) value occurs when a shortest path is between four and five

hops in length, although, when paths most frequently occur between 0.1 and 0.15

density, the length of a shortest path is between three and four hops. Highest Iso(G)

occur when a shortest path has overt weight between 30 and 45, however, when most

least overt paths occur between 0.1 and 0.15 density the shortest paths have total overt

weight between 12 and 20. To summarise, the biggest difference between paths of

minimum overt weight and paths of minimum edges occur when a network has low

density (0.1-0.15 density), a shortest path is short but not a single edge (3-4 edges long)

and moderate overt weight (12 6 wo(p) 6 20).

We have also shown the highest volume of least covert paths (which are not themselves

shortest paths and therefor produce a covert-length and length-covert trade-off) in

networks on between 25 and 50 vertices occur when the density of the network is

between 0.85 and 0.95; with a significant peak in frequency at 0.95 density. Again,

the most frequent covert-length and length-covert trade-off is one. The highest Ics(G)

values occur when a shortest path has one hop (i.e it is an edge), and highest Isc (G)

occur when a shortest path covert weight is between 30 and 40. The most frequent

paths occur at 0.95 density, when total covert weight of a shortest path is between zero
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and 10 and its length is one. To summarise, the biggest difference between paths of

minimum covert weight and paths of minimum edges occur when a network has high

density density (0.8-0.95 density), a shortest path is a single edge (3-4 edges long) and

moderate overt weight (30 6 wc(p) 6 40).

Overall, this shows that overt and covert characteristics of paths is highly sensitive to

the edge density in networks. Therefore, we conclude that to minimise spread of a

message, it may be useful to control for overtness in low-density networks. Maximum

spread, on the other hand, occurs most in high density networks when choosing longer

paths over single edges.

This chapter revisits the research question:

RQ3: The role of edges of a triad in paths: combining RQ1 and RQ2, how can the

edges which enable connectivity within the triad affect paths, and thereby connectivity

within a graph?

We do this through applying overt and covert centrality to paths and comparing trade-

offs, resulting in the fourth contribution:

C4: A new method to understand the potential spread of a message through a local

centrality metric for path problems in networks.
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Chapter 6

Assessing Edge Criticality through

Overt and Covert Centrality

Continuing with the theme of understanding how graph connectivity can be characterised

through the fundamental properties of overt and covert edges, in this chapter, we turn

attention to the issue of edge criticality. Generally speaking, edge criticality represents

how important an edge is to overall graph connectivity, and may be defined to reflect

particular aspects of connectivity that are important to a scenario. Here we consider the

concepts of overt and covert centrality from Chapter Four in combination, which we call

overt and covert criticality (OCC). We hypothesise that this consideration can capture

how critical an edge is to maintaining the structure of a graph, due to the importance of

an edges role within induced triads. We test this new criticality metric on the 34 datasets

described in Chapter Four, by sequentially removing edges from a graph according

to their rank and observing the disruption in graph structure. We compare this with

betweenness centrality [29], which is a well understood edge criticality metric that has

been shown to identify bridge-like connectors in a graph. This comparison is interesting

because overt and covert criticality is a localised criticality concept, while betweenness

centrality is globally derived, based on the role of edges supporting important paths

between vertices. We examine these differences in detail to understand the similarities

and differences of the localised approach.
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6.1 Overview

In Chapter Two, we defined edge criticality [79] as a measure of edge importance in

terms of maintaining the graph structure. Those edges deemed critical are the ones

which, when removed, cause the graph to separate into a greater number of connected

components (we refer to this as the graph ‘disintegrating’or ‘collapsing’). We formally

define a critical edge in Definition 47:

Definition 47. Let G = (V (G), E(G) be a graph, and let (u, v) ∈ E(G). Let G′ =

G− (u, v) be the resulting graph when (u, v) is removed from G. Then the edge (u, v)

is critical if and only if the number of connected components in G′ is greater than the

number of connected components in G.

Edges which are not critical to the overall structure and connectivity of the graph will

instead cause the graph to shrink (by reducing the number of edges present) but will not

collapse the structure. Consider Example 6.1.1.

Example 6.1.1. Suppose G = (V (G), E(G) is a graph as shown in Figure 6.1. Then

the removal of any black edge will not break down the graph into more components,

instead the removal will just reduce the number of edges in the graph. However, were we

to remove the red edge (u, v) then the graph would break into two connected components,

as shown in Figure 6.2. Therefore, in this example, (u, v) is a critical edge. We should

note that eventually all edges eventually become critical once a sufficient number of

edges are removed from G. For example, if G′ were the resulting graph from removing

(u2, u3), (u3, u2), (u2, u), (u, u2) and (u, u3) from G, then the edge (u3, u) would be

critical to G′.
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u1

u2

u3

u v v1

v2

v3

Figure 6.1: Graph G, where the removal of any black edge will not disconnect the
graph, but the removal of the red edge (u, v) will disconnect the graph.

u1

u2

u3

u v v1

v2

v3

Figure 6.2: G′, the resulting graph by removing (u, v) from G in Figure 6.1. G′
has seperated into two connected components.

In more complex graphs, it can be difficult to determine which edges are critical. Further,

some edges may not be a critical edge in the graph’s present state, but through repeatedly

removing edges and forming new graphs, they may become critical. How then do we

determine which edges to remove first? Criticality metrics on edges are designed to

identify which edges are most critical to a graph. The process of repeatedly removing

edges allows us to assess which edges are more critical to a graph. That is, they cause the

graph to collapse more quickly because they require the removal of fewer edges before

they become a critical edge, than edges which are less critical to a graph. Edges are

weighted under the criticality metric, ordered in terms of their weight and subsequently

removed. Typically, measures such as the susceptibility index (see section) or size of

giant component (see section) are repeatedly taken after the removal of each edge to
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identify the critical point: at which a graph breaks down.

Criticality metrics can be compared by assessing the rate of which a graph decomposes

by edge removal in accordance to the criticality metric, or the amount of damage the

removal of edges causes. In Chapter Two we highlighted various criticality metrics,

including Cheng et al.’s [77] bridgeness index, Girvan and Newman’s [29] between-

ness centrality for edges and Yu et. al.’s [79] betweenness centrality and clique model

(BCCMOD). We also learned that strength of ties can be an important factor in determin-

ing edge criticality: in some graphs (such as social graphs) weak ties can actually be ties

most critical according to the theory of weak ties [32]. This holds true for example 6.1.1,

where (if strength of ties is determined by the degree to which they are reciprocated)

the removal of the weakest tie (u, v) causes the disintegration of the graph.

Criticality metrics are used to assess which edges of a graph, when removed, cause the

graph to most rapidly partition into a more connected components than the original

graph, or cause the graph to partition into the greatest number of connected components.

In mathematics, a similar problem exists, namely the minimum k-cut of a graph. The

minimum k-cut asks for the edges whose removal partitions a graph into k components,

where the total weight of removing edges is minimised.

Definition 48. Let G = (V (G), E(G)) be a graph where each edge (u, v) ∈ E(G) has

weight w(u, v). For some k ∈ {2, 3, . . . |V (G)|}, partition V (G) into k disjoint sets

F = C1, C2, . . . Ck whilst minimising:

k−1∑
i=1

k∑
j=i+1

∑
v1∈Ci,v2∈Cj

w({v1, v2}) (6.1)

The minimum k-cut is equivalent to our problem when certain restrictions are introduced.

Firstly, we weight edges based on their criticality metrics in order to assess which edges

to remove, but we are trying to minimise the number of edges we remove. This is

equivalent to the minimum k-cut problem when all edges have equal weight w(u, v).

Further, k is not a fixed integer: since we simply want the removal of edges to cause the
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graph to break down into a greater number of connected components than the original

graph. Indeed, if k is greater removing a certain subset of edges as compared with

another, then we would conclude the this subset of edges are more critical to the network.

Thus, k is bounded below by the number of connected components in the original graph.

Existing approaches to solve the minimum k-cut problem are complex. For example,

they involve approximating the minimum k-cut through constructing Gometry-Hu trees

[31]; or creating minimum cuts (partitioning the graph into at least two connected com-

ponents) in each connected component and removing the heaviest one. Creating these

constructions are themselves combinatorial problems and require multiple computations.

In contrast, when considering edge criticality through computing OCC is simple: OCC

relies simply on the number of triads an edge acts as overt in, and the number of triads

an edge acts as covert in. In Chapter Four Section 4.4.1 we show this simply relies

on the edges adjacent to the one we are interested in, and therefore is scalable and

computationally simple.

In this chapter we construct our own localised criticality metric from the overt and covert

centrality metrics in Chapter Four. Previously in this thesis we’ve considered these

measures in isolation, but here it is insightful to consider these metrics simultaneously.

Note that this can offer a more local, less computationally complex, approach to

criticality than existing models, which rely either on computation of cliques (such as the

bridgeness index), computation of all shortest paths in a graph (such as in betweenness

centrality for edges) or both (such as in BCCMOD). We define our criticality metric,

OCC in Definition 49:

Definition 49. The joint overt and covert centrality of an edge (u, v) ∈ E(G) is defined

by:

OCC(u, v) = (Ouv, Cuv) (6.2)

where Ouv denotes the overt centrality for (u, v) and Cuv denotes its covert centrality.
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6.2 Considering Overt and Covert Centrality Simultan-

eously

As aforementioned, we have previously considered overt and covert centrality separately.

In this chapter we move to considering the two measures in tandem, using this as a

cricitality metric to apply to edges (OCC). We investigate the effect of both overt and

covert centrality simultaneously through exploring the KDE plots of the joint overt and

covert centrality (OCC) across the 34 data sets. This builds on Chapter Four, which

plots the individual frequency distributions of overt and covert centralities across the 34

data sets.

These KDE Plots visualise the probability of overt or covert centrality. In the following

plots 6.3, - 6.5 across the top of the x axis we plot the KDE plot for overt centrality,

along the top of the y axis we show the KDE plot for covert centrality, and in the centre

of the plot we show the probability of an edge having a joint overt-covert centrality.

This main plot is a contour plot: when lines are closer together this represents a peak in

the third dimension. Multiple data sets are plotted in one plot, differentiated between by

the difference in colour of the lines (which correspond to the line colour in the legend).

From Figures 6.3, 6.4 and 6.5 we can see that the plots loosely fit into three categories.

There are graphs (such as Airport and WWW) whose KDE plot forms a triangle in the

lower quartile of the axes. This means there are some edges with a low overt centrality

but high covert centrality (those which from the point in the triangle at the top of the

y axis but have a low value in the x axis); some edges with a high overt centrality but

low covert centrality (those which form the second point in the triangle high in the x

axis but low in the y axis); and a high concentration of edges with both low overt and

covert centrality. These are characterised by having a greater range in the individual

KDE plots of overt and covert centrality.

In contrast to the triangle in the lower quartile, graphs such as Internet and Organise,
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form a much thinner line, with little variety in the x-axis, but do have variety in the

y axis. These are often heavily centered around a paired overt-covert centrality close

to (0, 0). In the separate overt and covert centrality KDE plots on the axis, these are

characterised by a sharp peak in overt centrality at zero. Covert centrality can also have

a sharp peak close to 0, though this is less sharp. Importantly, it’s the range of values in

covert centrality that are stretching out the plots, making them form this thin line, rather

than a point at (0, 0).

Finally there are a variety of plots that sit somewhere in between, such as Food web

or Neural networks. There is a lot of variety within the category of graph itself; for

example in the Neural networks, Rattus Norvegicus forms three distinct peaks, with the

largest peak being centered on (400, 75), whereas Mouse Retina looks a little like the

thin line plots but with a greater variation in overt centrality.

Observing overt and covert centrality simultaneously like this allows us to observe

the two measures in a new way. Previously we were unable to establish the degree of

overlap between the two metrics. For example, in the organise network Eva: if we were

to only look at the overt centrality KDE plot we would miss the second peak with a

much higher covert centrality that occurs in the paired KDE plot; meaning we would

be unaware of the difference between the edges of low overt centrality and low covert

centrality and the edges with low overt centrality yet high covert centrality. This could

be solved by looking at the covert centrality KDE plot as well, since we would establish

some variety in covert centrality yet little to no variety in overt centrality. However, in

plots where there is more variety in both overt and covert centrality, it becomes much

harder to read results from looking at the KDE plots for the individual metrics. For

example, in Airport graphs we now see that those edges with high overt centrality tend

to have a low covert centrality and visa versa due the triangular shape in the lower

quadrant the KDE plots form. As there are no points in the upper quadrant, we can

establish at lack of edges with both a high overt and high covert centrality.

Overt centrality is built on the basis that edges which are more central to a graph are those



6.2 Considering Overt and Covert Centrality Simultaneously 187

which enable the flow of information to reach nodes one hop away from the intended

recipient, with the intention that this effect on multiple edges will exponentially increase

the number of nodes a message reaches. Covert centrality is built on the opposite

assumption. We therefore hypothesise that those edges that are most overt will be more

critical to the structure of a graph. However, as we’ve seen in the KDE Plots (Figures

6.3, 6.4 and 6.5) it is also important to consider in tandem covert centrality as the edges

with a higher covert centrality, as well as a high overt centrality, may play a different

role from those edges with a high overt centrality but low covert centrality. Therefore,

covert centrality forms the secondary variable in OCC to determine an edge’s criticality.
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(a) Airport (b) eCIRCUIT

(c) Foodweb (d) Internet

Figure 6.3: KDE Contour plots to show the probability of paired overt-covert
weight edges.
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(a) Neural (b) Organise

(c) Regulatory (d) Social

Figure 6.4: KDE Contour plots to show the probability of paired overt-covert
weight edges.
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(a) WWW

Figure 6.5: KDE Contour plots to show the probability of paired overt-covert
weight edges.

6.3 Methodology

We weight edges in terms of theirOCC (see Definition 49), and rank them in descending

order, with overt taking precedence over covert. Edges with a tied value are randomised,

and bi-directional edges are treated as separate edges. To define descending order,

we first consider what it means for the OCC of one edge to be greater than OCC of

another:

Definition 50. Let G = (V (G), E(G) be a graph and (ui, vi) and (ui+1, vi+1) ∈ E(G).

Then OCC(ui, vi) > OCC(ui+1, vi+1) if and only if Oui,vi > Oui+1,vi+1
or Oui,vi =

Oui+1,vi+1
and Cui,vi > Cui+1,vi+1

. OCC(ui, vi) = OCC(ui+1, vi+1) if and only if

Oui,vi = Oui+1,vi+1
and Cui,vi = Cui+1,vi+1

.

We can now define the vector of edges sorted in descending order according to their

OCC:



6.3 Methodology 191

Definition 51. Let G = (V (G), E(G) be a graph on n vertices and OCC(u, v) denote

the overt and covert centrality of an edge (u, v) ∈ E(G).

Then EOCC is the vector containing the edges in G ranked in descending order in terms

of their OCC value, i.e:

EOCC = ((u1, v1)(u2, v2), . . . (un, vn)) (6.3)

where OCC(ui, vi) > OCC(ui+1, vi+1).

The function for sorting edges in descending order according toOCC, EDGESORTOCC,

can be found in Algorithm 14. The algorithm for sorting edges in descending order ac-

cording to their betweenness centrality follows similarly. This algorithm uses functions

OVERTCENTRALITY (Algorithm 6) and COVERTCENTRALITY (Algorithm 7) from

Chapter Four.

Algorithm 14 EDGESORTOCC((G)): Sorts edges in descending order according to
their OCC.

Input: Some graph G.
Output: Edgelist, an ordered list (descending order) of edges according to
OCC.

1: for (u, v) ∈ E(G) do
2: if u 6= v then
3: OCC(u, v) = (OVERTCENTRALITY((u, v)),

COVERTCENTRALITY((u, v)))

4: Edgelist = ((u1, v1), (u2, v2), . . . (un, vn)) OCC((ui, vi)) > OCC((ui+1, vi+1))
. Sort edges in descending order according to their OCC value. Note, we apply a
random shuffle to the original egdelist in G before sorting so that if ties occur, they
appear in Edgelist in a random order, not the original order the programme reads
them in.

From each graph G, we remove each edge in order of their occurrence in EOCC from

G and record the size of the largest weakly connected component (Definition 52) and

susceptibility index (Definition 53).

Definition 52. Let C denote the set of all weakly connected components in a graph

G. Then the size of the largest (in terms of the number of nodes) weakly connected
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component in G is defined by σ(G), where:

σ(G) = max{|V (c)| : c ∈ C} (6.4)

Definition 53. The normalised susceptibility index of a graph G is given by S(G)

where:

S(G) =
∑

s<σ(G)

nss
2

|V (G)|
(6.5)

where σ(G) is the size of the size of largest weakly connected component in G, ns is the

number of components whose size equals s and |V (G)| is the number of vertices in G

[79].

The susceptibility index and size of largest weakly connected component are plotted

as edges are removed. An obvious peak in S(G), or a sharp fall in σ(G) indicates the

precise moment of graph disintegration [77].

The function CRITICALITYOCC for repeatedly calculating the susceptibility index

S(G) and size of largest connected component σ(G) as edges are removed can be found

in Algorithm 15.
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Algorithm 15 CRITICALITYOCC(G): Produces the susceptibility index and size of
largest connected component as edges are removed from G in descending order.

Input: Graph G

Output: Sequence of largest connected component sizes and susceptibility in-

dexes as edges removed

1: lccs = []

2: susceptibilities = []

3: Edgelist = EDGESORTOCC(G)

4: for (u, v) ∈ Edgelist do

5: G = G(V (G), E(G)− (u, v))

6: GCC = (g1, g2, . . . gn) . Ordered connected components i.e.

|V (gi)| ≥ |V (gi+1)|

7: lccs.append(|V (g1)|)

8: slist = []

9: for 0 ≤ s ≤ |V (g1)| do

10: ns = 0

11: for g ∈ GCC do

12: if |V (g)| = s then

13: ns = ns + 1

14: slist.append
(

nss2

|V (G)|

)
15: susceptibilities.append(sum(slist))

16: return lccs, susceptibilities

6.4 Results

In Figures 6.6 to 6.19 we plot the normalised susceptibility index S(G) and size of

largest connected component σ(G) as edges are removed from each data set. We remove

edges in descending order according to their OCC; then compare this with betweenness
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centrality for edges. The parameter p denotes the proportion of edges removed from the

graph G, ie.:

p =
number of removed edges from G

total number of edges in G
(6.6)

We are interested in finding the point at which the graph disintegrates when edges

are removed (that is, the point at which the graph separates into a greater number of

connected components than the original graph). An obvious peak in S(G), or a sharp

fall in σ(G) indicates the precise moment of graph disintegration. A criticality metric

outperforms if it causes a graph to disintegrate more quickly (i.e for smaller p, there is a

peak in S(G) or a decline in σ(G)) or the damage caused to a graph is greater (i.e there

is a larger peak in S(G) or greater fall in σ(G)).

Observing Figures 6.6 - 6.19 there are several instances where OCC outperforms

betweenness centrality in terms of an edge’s importance to the structure of a network.

For instance, across the Internet networks (Figure 6.10 and 6.11) the peak in S occurs at

a smaller p when removing edges according to their OCC than betweenness centrality.

This is consistent across all Internet networks, and in some cases there is no obvious

peak for betweenness centrality at all; yet there is an obvious peak for OCC (p2p-

gnutella04, p2p-gnutella05 and p2p-gnutella06 [47]). This corresponds to the results

for largest connected component. Across networks p2p-gnutella04 to p2p-gnutella09

there is at first a faster decrease in σ for betweenness centrality, although it appears that

this only represents a decrease in network size and not disintegration of the network,

since there is no corresponding peak in S for the same p. However, we see that when

p = 0.85, there is a rapid decrease in σ for OCC which corresponds to a peak in S for

the same p. At this point, OCC overtakes betweenness centrality for a rapid reduction

in σ.

A similar pattern emerges across the Social networks (Figure 6.16 and 6.17). Certainly

in Bitcoin Alpha [47], Bitcoin OTC [47], UCIrvine [63] and Wikivote [47], an earlier

and more obvious peak in S occurs in OCC than betweenness centrality, at the precise

moment when the decrease in σ for OCC overtakes betweenness centrality. For the
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Email EU Core [47] and Prison inmate [5] networks, the peak in S occurs around the

same p value for betweenness centrality and OCC, though the peak is more obvious for

OCC. This means that the damage to the network caused by removing edges based on

OCC is greater than that produced by betweenness centrality.

Neural networks also tend to favour OCC over betweenness centrality in terms of

network disintegration. Across the Neural networks (Figure 6.12 and 6.13), OCC

outperforms betweenness centrality in the C. Elegans [40], Drosophila Medilla 1 [58]

and Mouse Retina networks [58]; where no obvious peak in S exists for betweenness

centrality. However, in the Rattus Norvegicus [58] network, a more obvious peak occurs

in betweenness centrality than OCC for the same p, though the difference in peak size

is small.

There are of course, those networks that sit somewhere in the middle, such as Airport

(Figure 6.6), Electrical circuit (Figure 6.7) and Regulatory (Figure 6.18) networks.

Across the Food web networks (Figure 6.8 and 6.9) OCC appears to outperform

betweenness centrality in the Baywet [74], Grassland [14] and Ythan [1] networks, yet

perform worse in Little Rock Lake [42] and St.Marks Seagrass [74] networks. Regu-

latory networks (Figure 6.18) tend to produce better results when using betweenness

centrality. A sharper peak in S occurs in the Political Blogs network [2] (Figure 6.19)

for OCC than betweenness centrality, but for the same p value. This means though the

networks dissolve after a similar number of edges are removed, the damage caused to

network structure is greater in OCC than betweenness centrality (in terms of number

of connected components occurring by removing edges is greater). Organise networks

(Figure 6.14 and 6.15) are also mixed, tending to collapse quicker under betweenness

than OCC, with the exception of Freemans EIES n48 2 [63] (where a peak in S occurs

around the same p, but is stronger for OCC) and Eva [41] (where a peak in S occurs

for smaller p in OCC than betweenness, yet the peak is larger for betweenness and

therefore causes more damage to the network).

It appears OCC is most effective (as compared with betweenness centrality) at ranking
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edges in descending order such that their removal in this order dissolves the network

for smaller p in networks such as Internet networks, whose KDE plots of the joint

overt and covert centrality (Figure 6.3) form thin lines in the bottom left quadrant;

and in Figures 4.19 - 4.23 the overt and covert centrality profiles are long-tailed. In

Chapter Four Section 4.4.2 we discussed the possibility that networks which are hub-

and-spoke in structure contain few edges with high overt/covert centrality (those edges

between hub nodes) and many edges with lower overt/covert centrality (those edges

between hub nodes and spoke nodes). Thus, removing edges with high OCC may

remove edges between hub nodes, effectively deleting the bridges in the network and

collapsing the network into more connected components, resulting in an peak in S for

smaller p. Therefore, OCC could be a good candidate for finding bridges in particular

constructions of network.

Certainly the opposite argument seems to correspond: in networks with bell shaped

overt and covert centrality profiles and triangular OCC profiles, like the Organise

networks, betweenness centrality seems to outperform OCC in terms of dissolving

the network for smaller p when edges are ranked in descending order and removed.

This however doesn’t hold true for Freemans EIES n48 2 [63]. Further, we often

relate Eva [41] to Internet networks because they have similar statistics in Table 2.4

and similar overt/covert centrality profiles in Chapter Four Figures 4.19 - 4.23 and

4.33 . Yet whilst OCC dissolves the Eva network [41] for smaller p than betweenness

centrality, betweenness centrality appears to cause the network to break down into a

larger number of connected components than OCC (observe the larger peak in S for

betweenness centrality than OCC). Further counter examples can be found across

Regulatory networks, where the KDE plots of the joint overt and covert centrality

(Figure 6.3) forms a thin line in the bottom left quadrant; and the overt and covert

centrality distributions in Figures 4.40 and 4.41 are long-tailed; yet in Figures 6.18 we

see that betweenness centrality is more effective than OCC in dissolving a network for

smaller p. It seems there is more behind this than a network being hub-and-spoke.

Directionality could be a driving factor here. Since OCC prioritises overt over covert,
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it will first look for edges with the highest overt centrality. It could be that the edges

between the hub nodes in Internet networks are predominantly overt. In networks such

as Eva, edges between the hub nodes could be contained in many triads but act as covert,

effectively giving these edges a high covert centrality but low overt centrality. This

would mean OCC would not rank these edges as highly as edges which are contained in

fewer triads but have a higher overt centrality, such as edges connecting hub nodes with

spoke nodes. Therefore, OCC may ignore bridge edges if they act as covert in the triads

they are contained in. This could certainly explain differences between effectiveness of

OCC and betweenness centrality in dissolving a network when the networks are largely

similar such as food web networks. In Figures 6.8 and we see OCC is more effective

than betweenness centrality in dissolving the network for Baywet [74], Grassland [14]

and Mangwet [74] networks yet betweenness centrality is more effective in dissolving

the network than OCC for Little Rock Lake [42] and St.Marks Seagrass [74].
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(a) Open Flights [67] Susceptibility Index
Comparison

(b) Open Flights [67] Size of Largest Con-
nected Component

(c) US Airports [42] Susceptibility Index
Comparison

(d) US Airports [42] Size of Largest Con-
nected Component

Figure 6.6: Susceptibility Index S(G) (left) and Size of Largest Weakly Connected
Component σ(G) (right) against the proportion of edges removed, p, in all Airport
data sets.
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(a) s420 [5] Susceptibility Index Compar-
ison

(b) s420 [5] Size of Largest Connected
Component

(c) s838 [5] Susceptibility Index Compar-
ison

(d) s838 [5] Size of Largest Connected
Component

Figure 6.7: Susceptibility Index S(G) (left) and Size of Largest Weakly Connected
Component σ(G) (left) against the proportion of edges removed, p, in all Electrical
circuit data sets.
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(a) Baywet [74] Susceptibility Index Com-
parison

(b) Baywet [74] Size of Largest Connected
Component

(c) Grassland [14] Susceptibility Index
Comparison

(d) Grassland [14] Size of Largest Connec-
ted Component

(e) Little Rock Lake [42] Susceptibility In-
dex Comparison

(f) Little Rock Lake [42] Size of Largest
Connected Component

Figure 6.8: Susceptibility Index S(G) (left) and Size of Largest Weakly Connected
Component σ(G) (right) against the proportion of edges removed, p, in all Food
web data sets.
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(a) Mangwet [74] Susceptibility Index
Comparison

(b) Mangwet [74] Size of Largest Connec-
ted Component

(c) St. Marks Seagrass [14] Susceptibility
Index Comparison

(d) St. Marks Seagrass [14] Size of Largest
Connected Component

(e) Ythan [1] Susceptibility Index Compar-
ison

(f) Ythan [1] Size of Largest Connected
Component

Figure 6.9: Susceptibility Index S(G) (left) and Size of Largest Weakly Connected
Component σ(G) (left) against the proportion of edges removed, p, in all Food web
data sets.
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(a) p2p-gnutella04 [47]Susceptibility Index
Comparison

(b) p2p-gnutella04 [47] Size of Largest
Connected Component

(c) p2p-gnutella05 [47] Susceptibility In-
dex Comparison

(d) p2p-gnutella05 [47] Size of Largest
Connected Component

(e) p2p-gnutella06 [47] Susceptibility In-
dex Comparison

(f) p2p-gnutella06 [47] Size of Largest Con-
nected Component

Figure 6.10: Susceptibility Index S(G) (left) and Size of Largest Weakly Connec-
ted Component σ(G) (right) against the proportion of edges removed, p, in all
Internet data sets.
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(a) p2p-gnutella08 [47] Susceptibility In-
dex Comparison

(b) p2p-gnutella08 [47] Size of Largest
Connected Component

(c) p2p-gnutella09 [47] Susceptibility In-
dex Comparison

(d) p2p-gnutella09 [47] Size of Largest
Connected Component

Figure 6.11: Susceptibility Index S(G) (left) and Size of Largest Weakly Connec-
ted Component σ(G) (right) against the proportion of edges removed, p, in all
Internet data sets.
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(a) C. Elegans [40] Susceptibility Index
Comparison

(b) C. Elegans [40] Size of Largest Connec-
ted Component

(c) Drosophila Medilla 1 [58] Susceptibility
Index Comparison

(d) Drosophila Medilla 1 [58] Size of
Largest Connected Component

(e) Mouse Visual Cortex 2 [58] Susceptibil-
ity Index Comparison

(f) Mouse Visual Cortex 2 [58] Size of
Largest Connected Component

Figure 6.12: Susceptibility Index S(G) (left) and Size of Largest Weakly Connec-
ted Component σ(G) (right) against the proportion of edges removed, p, in all
Neural data sets.
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(a) Mouse Retina 1 [58] Susceptibility In-
dex Comparison

(b) Mouse Retina 1 [58] Size of Largest
Connected Component

(c) Rattus Norvegicus [58] Susceptibility
Index Comparison

(d) Rattus Norvegicus [58] Size of Largest
Connected Component

Figure 6.13: Susceptibility Index S(G) (left) and Size of Largest Weakly Connec-
ted Component σ(G) (right) against the proportion of edges removed, p, in all
Neural data sets.
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(a) Cross Parker Consulting [63] Susceptib-
ility Index Comparison

(b) Cross Parker Consulting [63] Size of
Largest Connected Component

(c) Freemans EIES n48 1 [63] Susceptibil-
ity Index Comparison

(d) Freemans EIES n48 1 [63] Size of
Largest Connected Component

(e) Freemans EIES n48 2 [63] Susceptibil-
ity Index Comparison

(f) Freemans EIES n48 2 [63] Size of
Largest Connected Component

Figure 6.14: Susceptibility Index S(G) (left) and Size of Largest Weakly Connec-
ted Component σ(G) (right) against the proportion of edges removed, p, in all
Organise data sets.
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(a) Cross Parker Manufacturing [63] Sus-
ceptibility Index Comparison

(b) Cross Parker Manufacturing [63] Size
of Largest Connected Component

(c) Eva [41] Susceptibility Index Compar-
ison

(d) Eva [41] Size of Largest Connected
Component

Figure 6.15: Susceptibility Index S(G) (left) and Size of Largest Weakly Connec-
ted Component σ(G) (right) against the proportion of edges removed, p, in all
Organise data sets.
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(a) Bitcoin Alpha [47] Susceptibility Index
Comparison

(b) Bitcoin Alpha [47] Size of Largest Con-
nected Component

(c) Bitcoin OTC [47] Susceptibility Index
Comparison

(d) Bitcoin OTC [47] Size of Largest Con-
nected Component

(e) Email EU Core [47] Susceptibility In-
dex Comparison

(f) Email EU Core [47] Size of Largest Con-
nected Component

Figure 6.16: Susceptibility Index S(G) (left) and Size of Largest Weakly Connec-
ted Component σ(G) (right) against the proportion of edges removed, p, in all
Social data sets.
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(a) Prison Inmate [5] Susceptibility Index
Comparison

(b) Prison Inmate [5] Size of Largest Con-
nected Component

(c) UCIrvine [63] Susceptibility Index
Comparison

(d) UCIrvine [63] Size of Largest Connec-
ted Component

(e) WikiVote [47] Susceptibility Index
Comparison

(f) WikiVote [47] Size of Largest Connec-
ted Component

Figure 6.17: Susceptibility Index S(G) (left) and Size of Largest Weakly Connec-
ted Component σ(G) (right) against the proportion of edges removed, p, in all
Social data sets.
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(a) E. coli transcription [5] Susceptibility
Index Comparison

(b) E. coli transcription [5] Size of Largest
Connected Component

(c) Yeast transcription [5] Susceptibility In-
dex Comparison

(d) Yeast transcription [5] Size of Largest
Connected Component

Figure 6.18: Susceptibility Index S(G) (left) and Size of Largest Weakly Connec-
ted Component σ(G) (right) against the proportion of edges removed, p, in all
Regulatory data sets.
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(a) Political Blogs[2] Susceptibility Index
Comparison

(b) Political Blogs[2] Size of Largest Con-
nected Component

Figure 6.19: Susceptibility Index S(G) (left) and Size of Largest Weakly Connec-
ted Component σ(G) (right) against the proportion of edges removed, p, in WWW
data set.

6.5 Summary

In this chapter we have assessed the 34 real world networks from an alternative perspect-

ive: through defining the combined overt and covert centrality as a criticality metric

(OCC) to highlight the importance of edges to the structure of the network. To do this,

we rank the edges in descending order (highest first) of their combined overt and covert

centrality and remove edges, repeatedly recording the susceptibility index and size of

largest connected component. We compare these results with an alternative measure

for edge criticality, namely the betweenness centrality for edges. We find that in some

cases OCC provides a stronger criticality metric than betweenness centrality for edges,

as removing edges with a higher OCC first causes a faster disintegration in the network

(as in the Food web network Ythan [1]), a greater level of damage to a system (as in

the Airport network Open Flights [67]) or both (as seen across the Internet networks).

Betweenness centrality for edges highlights which edges contain the intersection of

most shortest paths, often acting as bridge-like connectors. Edges which have a high

betweenness centrality may represent strong ties (as seen in networks that obey the
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global efficiency principle [30, 50]) or weak link (as seen in networks that obey the

weak ties theory [32, 61]. Thus, if our metric OCC outperforms betweenness centrality

for edges as a criticality metric in some cases then OCC is a potentially useful measure

for criticality. Further, betweenness centrality for edges is computationally complex,

since to compute betweenness centrality requires knowledge of all shortest paths across

a network. In contrast, OCC only requires knowledge of the edges at most two hops

away from the edge we are measuring, and therefore offers a more local alternative than

betweenness centrality which captures edge criticality reasonably well.

This chapter addresses the final research question:

RQ3: The role of edges of a triad in paths: combining RQ1 and RQ2, how can the

edges which enable connectivity within the triad affect paths, and thereby connectivity

within a graph?

We do this through applying overt and covert centrality of edges as a criticality metric

and considering both simultaneously: C5: A new locally derived criticality metric for

edges based on the centrality metric in C2 to observe the importance of an edge with

respect to maintaining overall network connectivity. This supports research question

RQ3.
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Chapter 7

Final Conclusions and Future Work

In this chapter we review the contributions made in each chapter and relate them back

to the research questions introduced in Chapter One. We also address questions that

have arisen as a result of the work in Chapters Three, Four, Five and Six, offering these

as future avenues for research with accompanying insights. Finally, we offer our overall

observations to conclude the thesis.

7.1 Research Questions and Contributions

In Chapter One we presented the overarching hypothesis motivating our work - namely

that classifying the role of edges in providing connectivity in networks with respect to

induced triads, can provide additional insights to conventional graphlet-based analysis,

that are beyond standard metrics of network connectivity.

This hypothesis motivated our investigation of triads and specifically the role of edges

within them, and their relationship to connectivity. It is useful to recall the four research

questions (RQ1-RQ3) originally introduced in Chapter One, presented as a basis for

exploration:

RQ1: The role of triads in paths: if connectivity in a graph is dependent on the existence

of paths, then what is the relationship between triads and paths?

RQ2: The role of edges in triad connectivity: if connectivity within the triad is depend-
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ent on the arrangement of its edges, then how do we identify which edges are most

fundamental to enabling connectivity within the triad?

RQ3: The role of edges of a triad in paths: combining RQ1 and RQ2, how can the

edges which enable connectivity within the triad affect paths, and thereby connectivity

within a graph?

In this section we discuss how we addressed RQ1 - RQ3, indicating to what extent they

have been achieved. We also highlight the significant findings in each chapter and state

the relevant contributions that result.

RQ1 is addressed first in Chapter Three, which explores the triads occurring most

frequently along shortest paths by adapting a Triadic Census [39] for shortest paths. We

proposed two new measures, Path Induced Triadic Census (Definition 22) and Triadic

Edge Betweenness Census (Definition 25) in Section 3.2. Triadic Edge Betweenness

Census is edge based, whilst Path Induced Triadic Census is node based, allowing us to

respectively compare with a node and edge based version of Triadic Census to asses

which triads may occur more frequently across shortest paths than occur in the graph

in general. We ran our census measures on a selection of networks from Section 2.5,

which introduced 34 data sets used throughout Chapters Three to Six.

We found two factors are influential: the maximum number of edges of a triad that

can be simultaneously contained in the same shortest path, and the maximum number

of shortest paths that overlap on one edge of a triad. The first factor allows us to

classify triads into three types: Type I, II and III. Type II triads are triads which are, in

general, more prevalent across shortest paths than in the general graph. These triads can

contain two edges simultaneously in a single shortest path. Type I triads, in contrast,

can contain at most one edge in a single shortest path, and therefore they are contained

less frequently in shortest paths than in the overall graph. Although they may occur less

frequently across shortest paths, they have a crucial role in facilitating paths between

pairs of vertices. Finally, Type III triads can contain two edges simultaneously in a

single shortest path and may occur more frequently in shortest paths; but this relies
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entirely on the graph structure, which determines the maximum number of shortest paths

that overlap on one edge of a triad. As a result of this classification and the introduction

of new path based triadic census measures, Chapter Three provides new triad census

measures to establish the proportion of triads that occur more frequently along shortest

paths, as compared with the entire network. This supports research question RQ1 and

represents contribution C1.

In Chapter Four, we introduced an edge classification (RQ2) based on the edge’s ability

to disseminate information within a triad (Section 4.2). The term overt was introduced

to capture an edge which enables local dissemination across the triad, otherwise the

edge is called covert (Definition 27). Overt and covert offer alternative definitions to

those which already exist based on the structure and direction of edges in triads, such as

transitivity [75], noting that overt and covert classify an individual edge with respect to

a triad, unlike transitivity which classifies triads in their entirety.

We further generalised the concepts of overt and covert edges to account for the multiple

roles an edge can simultaneously play in different induced triads. Specifically, in Section

4.4.1 we introduced the overt and covert centrality of an edge, which is computed by

summing the number of triads in which an edge acts as overt or covert (Definition

29). Both overt and covert centrality can be computed very simply from the degree

or neighbourhood of incident vertices (Propositions 3 and 4). We consider this as a

centrality metric with interesting characteristics: one that satisfies the gap in the literature

between centrality metrics for edges, and centrality metrics built upon substructures.

We also note that our metric can represent the flow of information in a graph, similar

to betweenness centrality for edges [29]; yet our measure is entirely local. In contrast,

betweenness centrality for edges requires knowledge of all paths in a network. Overt

and covert centrality are much more easily computable and scalable due to the local

simplicity of their formulation.

We ran our centrality metric on the 34 data sets (first discussed in Section 2.5) and

considered the frequency distributions of overt and covert edge weights (Section 4.4.2).



7.1 Research Questions and Contributions 216

Further, we explored the correlation between overt and covert centrality and other

existing metrics that describe the structure and connectivity of a graph (Section 4.5).

We concluded that in many cases, the resulting frequency distributions are effective in

associating networks originating from same context or domain. Some classes of network

also exhibit greater weighting for one particular type of centrality. Further, we found

that overt and covert centrality correlate significantly with many existing metrics, and

that all significant relationships between overt/covert centrality with existing metrics are

at least moderate, though many are strong or very strong. The easily computable nature

of overt/covert centrality make them useful proxies for more complex global centrality

measures.

Consequently Chapter Four results in two main contributions:

C2: A new classification for edges based on their role in supporting connectivity within

triads.

C3: A new local centrality metric for edges based on our new edge classification in C2.

These contributions address research question RQ2.

Chapter Five used the edge classification of overt and covert from Chapter Four to

observe the role of edges within triads in shortest paths. In Chapter Five, we weighted

paths based on their total overt or covert centrality (Definition 32 and 33 in Section 5.2.1).

A path that minimises overt edge centrality supports reduced overall dissemination

across a graph; whilst minimising covertness will maximise spread.

By looking at specific paths (those involving minimal edges, those involving minimal

overt weight and those involving minimal covert weight) we constructed four new

trade-off measures. In Section 5.2.3 we introduced the overt-length (Definition 37)

and covert-length (Definition 38) trade-off assessments. These capture the number of

additional edges that result when prioritising minimised overtness or covertness over

path length. In Section 5.2.4 we introduced length-overt (Definition 43) and length-

covert (Definition 44) trade-off assessments. These capture the decrease in path overt
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or covert weight when prioritising minimising overtness/covertness over path length.

By finding the average of the non-zero trade-offs and normalising, we constructed the

global improvement in edges as a measure for each each type of trade-off (Definitions

41, 42, 45 and 46). This global measure allowed us to observe the difference in the

potential for spread of a message across a network when repeatedly choosing paths of

minimum overtness/covertness as compared with shortest paths.

In Section 5.3 we applied our metrics to synthesised networks so that we could assess

the effect of changing edge density, specifically random ER networks (Section 5.3.2)

and scale free constructions (Section 5.3.3). This allowed us to observe what happens to

the global improvement in edges as we vary density in the network. ER-networks allow

us an unconstrained range of edge density, and so particular consideration was given

to these types of networks. From this we were able to determine some characteristics

of the paths being compared, as well as understanding how characteristics of a graph

influence the various trade-offs we have constructed.

We conclude that the biggest difference between paths of minimum overt weight and

paths with a minimum number of edges occur when a graph has low density. Here, the

minimum length paths are short and have moderate overt weight. The biggest difference

between paths of minimum covert weight and paths with a minimum number of edges

occur when a graph has high density, and the minimum length paths are single edges

and have moderate overt weight.

Consequently Chapter Five has resulted in the following contribution: C4:

A new method to understand the potential spread of a message through a local centrality

metric (from C2) for path problems in networks.

This also supports research question RQ3.

Finally, in Chapter Six we explore the simultaneous consideration of overt and covert

centrality as an alternative measure for edge criticality. Edge criticality measures are

used to highlight how important an edge is in terms of a graph’s structure: the removal
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of a critical edge will cause the graph to break down into a greater number of connected

components. Consequently overt and covert centrality can have a role to play in making

such assessments. Building on the definitions of overt and covert centrality from Chapter

Four, we considered overt and covert centrality simultaneously, using a single edge

criticality metric (OCC). This allowed us to profile networks using a multi-dimensional

KDE plot of this paired measure, revealing new insights into the underlying criticality

of alternative networks.

As OCC is based on overt and covert centrality, it is locally defined and easily comput-

able meaning it is scalable. We find evidence to suggest it can be used as a reasonable

proxy to some global (and computationally expensive) centrality metrics, such as

betweenness centrality for edges [29].

In Section 6.4 we ran our criticality metric on the 34 data sets from Section 2.5 and

compared them with betweenness centrality for edges. In order to do this, we ranked

edges in descending order according to theirOCC value and removed them sequentially,

recalculating the susceptibility index and size of largest connected component upon

each edge removal. We observed the affect on susceptibility index and size of largest

connected component, looking for the point at which a network disintegrates into a

greater number of connected components. We concluded that our criticality metric

performs well, often outperforming betweenness centrality for edges, by causing either

a more rapid network dis-connection, or a greater amount of damage (i.e separates the

network into more connected components) to a network. Chapter Six has resulted in the

following contribution:

C5: A new locally derived criticality metric for edges based on the centrality metric in

C2 to observe the importance of an edge with respect to maintaining overall network

connectivity. This supports research question RQ3.
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7.2 Future Research

In this section we discuss possible future research that has been motivated by observa-

tions made during the course of this thesis. The concepts of overt/covert edges, and

associated definitions of centrality and criticality lead us to consider ways in which

further research and development could take place. In particular, these relate to temporal

networks, the importance of particular nodes, and more general induced substructures.

We present each of these issues as a possible future research direction.

Future Direction 1 - The concepts of overt and covert edges be useful in examining the

behaviour of temporal networks and temporal motifs.

In order to introduce and develop overt and covert edges and related concepts, we

have necessarily considered them in the context of static networks. However, in many

complex network scenarios, edges are transient with a temporal pattern of behaviour.

In Chapter Four (Section 4.4.2) we compare overt and covert frequency profiles of

different networks, exploring how factors such as the effect of changing network density

effect the frequency of triads in which an edge acts as overt or covert. We noted that

adding edges to a network can cause the number of triads in which an edge is overt or

covert to increase through inducing new triads; or the nature of an edge can be changed

from covert to overt through changing existing triads. The reverse is true for removing

edges, that is: the number of triads in which an edge is overt or covert can reduce

through breaking triads into dyads, or an edge can change from overt to covert through

changing remaining triads. In Section 5.3.1 we also observed the effects of increasing

the overt or covert centrality of edges on the paths they are contained in.

Therefore incorporating such changes in the context of overt and covert edges is a useful

future directions. There are different options to consider. For example, modifying the

definition of edges through making them dynamic (i.e subject to change), is one option.

Alternatively a starting point could be building on the definition of temporal motifs

[65]. Here, Paranjape and Benson introduce these as induced subgraphs on sequences
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of temporal edges in a network. Therefore it is possible that overt and covert edges

could be used to track local changes. We have already observed that covert edges

can transform into overt edges and this is relatively easy to compute. This type of

transformation could be used to indicate changes to overall network connectivity and

paths.

Future Direction 2 - The concepts of overt and covert are edge based. It is possible

they can be used to identify vertices that are interesting due to distinctive positioning

within a network.

By definition, overt and covert edges relate pairs of nodes together and classify this

relationship within a triad. It may be possible to build intelligence concerning nodes

based on their incidence with different overt and covert edges. A simple example to

build on this is given in Figure 7.1 for the triad 030T.

i j

k

Figure 7.1: 030T

In Figure 7.1 the edge (i, k) is overt, yet (k, j) and (j, k) are covert. Then vertices i and

k sit between one overt and covert edge, yet j is adjacent incident with two covert edges.

Does j play a different role in the triad than i or k? Certainly, since it is incident with

zero overt edges it is unable to relay the message to the rest of the triad. Further, even

though i and k are both between an overt and covert edge, do they play different roles

to one another due to the relation between the overt and covert edge in question? For

example, i is adjacent to two edges which have the power to flood the triad, whereas k is

only able to relay a message to j. This motivates considering and assessing nodes taking

into account the different roles that they place. Certainly this could have a significant

number of practical applications where the nodes are important.
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Future Direction 3 - Generalising overt and covert edges for application in larger

induced substructures such as tetrads.

The work in this thesis is based on triads, the smallest non-trivial substructures beyond

an edge. However analysis using larger induced sub-structures such as tetrads (induced

substructures on four nodes) has become of more interest in the wider literature (e.g.,

[22]), noting that these substructures can convey latent information beyond considering

pairs or triads of nodes. The challenge however, is handling the increased number of

such substructures, and understanding the significance of differences between them.

Its therefore relevant to ask whether concepts of overt and covert can be generalised to

higher order induced substructures, so that additional insights can be determined for

more complex larger structures such as tetrads.

i j

kw

Figure 7.2: Tetrad T

For example, in Figure 7.2, continuing the definitions of overt and covert as they exist

for triads, then edges (i, j), (j, k) and (i, w) are overt, and (k, w) covert. However,

the definitions of overt and covert were built on the ability of an edge to flood a triad

by disseminating a message through adjacent edges: something only the edge (i, j) is

capable of supporting in T . This could mean an alternative definition of overt and covert

edges in tetrads is necessary, perhaps with more than a binary classification of edges.

7.3 Final Remarks

Traditionally, popular techniques to assess complex networks often concern assessing

the relative volume of particular induced triads within a network (such as a Triadic
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Census [39], motif profiling [54] or global clustering coefficient [49]). Further, when

triads have been used in other ways (such as in centrality measures [19, 66]) these

measures do not focus on the roles that edges play.

This thesis has taken the idea of using induced triads as a unit of analysis for complex

networks, and examined triads locally, from a graph theoretic perspective. The thesis

aims to show that despite the simple nature of triads, closer examination of them through

the role that their edges play in local connectivity, is useful. Not all edges are equal

and there are differences of importance that edges play within triads. In order to fulfil

this we have classified edges as overt or covert based on their role within a particular

triad. This reflects an edge’s ability to disseminate information within a triad, and by

extension, an entire graph. This approach can also capture the importance of an edge

accounting for its role in multiple triads. We believe this is a fundamental categorisation,

of value due to the widespread use of triads in complex network analysis.

We also offer this as an entirely local, computationally simple way of determining edge

importance within a graph. To exemplify this, we have applied our metric both for edge

centrality assessment, and edge criticality assessment. Our measures are comparable to

betweenness centrality for edges, in that they represent flow of information in a network,

yet our measures do not require knowledge of all the shortest paths in a network. Not

only do our measures assess which edges are important to the flow of information

in a network, but they can also highlight edges which are important to the structural

integrity of a network. In addition to this, we have explored the role of induced triads

across shortest paths. We have determined which triads may be of greater importance to

shortest paths, and applied our edge centrality metric to shortest paths as an assessment

for potential containment or spreading on content from a path. These contributions sit

between complex networks and graph theory, with the potential for applicability to real

world scenarios while simulating further directions for future fundamental research.
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