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Abstract 

Temporal aggregation is an intuitively appealing approach to deal with demand uncertainty. 

There are two types of temporal aggregation: non-overlapping and overlapping. Most of the 

supply chain forecasting literature has focused so far on the former and there is no research that 

analyses the latter for auto-correlated demands. In addition, most of the analytical research to-

date assumes infinite demand series’ lengths whereas, in practice, forecasting is based on finite 

demand histories. The length of the demand history is an important determinant of the 

comparative performance of the two approaches but has not been given sufficient attention in 

the literature. In this paper we examine the effectiveness of temporal aggregation for 

forecasting finite auto-correlated demand. We do so by means of an analytical study of the 

forecast accuracy of aggregation and non-aggregation approaches based on mean squared error. 

We complement this with a numerical analysis to explore the impact of demand parameters 

and the length of the series on (comparative) performance. We also conduct an empirical 

evaluation to validate the analytical results using monthly time series of the M4-competition 

dataset. We find the degree of auto-correlation, the forecast horizon and the length of the series 

to be important determinants of forecast accuracy. We discuss the merits of each approach and 

highlight their implications for real world practices.   

Keywords: Non-overlapping Temporal Aggregation; Overlapping Temporal Aggregation; Time 

Series Forecasting; Auto-Correlated Demand; Exponential Smoothing 
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1. Introduction 

Most organisations need a forecast of future demand over some planning horizon to support 

supply chain operation decisions (Pujawan & Bah, 2022; Schoenmeyr & Graves, 2009). 

Demand forecasting performance is subject to the uncertainty underlying the time series an 

organisation is dealing with. The existence of high variability in time series demand for both 

fast and slow-moving items poses considerable difficulties in terms of forecasting and stock 

control resulting in high organisational costs (Babai et al., 2020; Park et al., 2018; Siddiqui et 

al., 2022; Sanders & Graman, 2009). There are many approaches that may be used to reduce 

demand uncertainty (Kouvelis et al., 2006) and thus improve forecasting performance. An 

intuitively appealing approach is to aggregate time series in lower-frequency ‘time buckets’. 

The approach concerned is referred to as Temporal Aggregation (TA) (Amemiya & Wu, 1972). 

In temporal aggregation, a low frequency time series (e.g. quarterly) is derived from a high 

frequency one (e.g. monthly) (Nikolopoulos et al., 2011). This is achieved through the 

summation (bucketing) of every m periods of the high frequency time series, where m is the 

aggregation level. 

There are two different types of temporal aggregation: non-overlapping and overlapping. In the 

former case, the time series are divided into consecutive non-overlapping buckets of time where 

the length of the time bucket equals the aggregation level. The aggregate demand is created by 

summing up the values inside each bucket. The number of aggregate periods is [N/m], where 

N is the number of the original periods, m the aggregation level and the operator [x] returns the 

integer part of x. Consequently, the number of time periods in the aggregate demand time series 

is less than that corresponding to the original demand time series. The overlapping case is 

somewhat different in that it resembles the mechanism of a moving window technique where 

the window’s size equals the aggregation level. At each period, the window is moved one step 

ahead, so the oldest observation is dropped and the newest is included. It is observed that the 
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number of overlapping aggregated periods is higher than those of the non-overlapping case and 

is equal to N-m+1. Therefore, the information loss is negligible as compared to the non-

overlapping case. This is an important observation in terms of data availability which may have 

considerable implications on the forecast accuracy for the cases where little history of data is 

available. A disadvantage of the overlapping TA is that the first and last observations in the 

original series are under-represented in the aggregated series. 

 

Figure 1 : An example to illustrate how a non-aggregated series is transformed into overlapping and 

non-overlapping temporally aggregated series. 

The literature that deals with the impact of non-overlapping temporal aggregation on demand 

forecasting has been growing rather rapidly during the last decade (Syntetos et al., 2016). Non-

overlapping aggregated demand processes have been theoretically analysed and it has been 

shown that the aggregation approach can improve forecast accuracy as compared to the non-

aggregation approach, i.e. an approach that utilises the original series. Rostami-Tabar et al. 

(2013; 2014) analysed the impact of temporal aggregation on the forecast accuracy for auto-

correlated stationary autoregressive moving average demand processes of order one, 

ARMA(1,1), where the Single Exponential Smoothing (SES) method is used to forecast 

demand. They showed that the forecast accuracy benefit from using non-overlapping temporal 
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aggregation depends on the autocorrelation parameter, the aggregation level and the smoothing 

constant used. Furthermore, they demonstrated that for high levels of positive autocorrelation 

in the original series, the non-aggregation approach outperforms the aggregation one. 

Unlike the fast-growing area of non-overlapping TA, the effects of overlapping TA have been 

rather neglected in the supply chain forecasting literature. To the best of our knowledge, there 

is no research that has analytically investigated the performance of the overlapping aggregation 

approach for auto-correlated demands. In addition, most of the analytical research assumes 

infinite demand series’ lengths whereas, in practice, forecasting is based on finite demand 

information (Akcay et al., 2011). Despite the fact that the length of the series is one of the key 

determinants of the performance of aggregation, neither the overlapping nor the non-

overlapping aggregation approach have been analysed under finite demand history lengths. We 

address these issues in this paper.  

We do so by considering ARMA(1,1) demand processes in conjunction with the SES 

forecasting method. We analyse the performance of the three approaches: non-aggregation, 

non-overlapping aggregation, and overlapping aggregation - when the length of the demand 

series is finite. The use of the ARMA(1,1) demand process has both theoretical and practical 

motivation (Hsieh et al., 2020). Although many popular non-stationary times series processes 

are not captured by an ARMA structure (such as series with seasonality, for example), many 

studies have argued for its relevance in supply chain and inventory forecasting (Ali et al., 2012; 

Alwan et al., 2003; Chen et al., 2000; Lee et al., 2000; Rostami‐Tabar et al., 2014).  Hosoda et 

al. (2008) indicated that retailers’ demand in real supply chains follow autoregressive order 

one, AR(1) and ARMA(1,1) processes. Disney et al. (2006) also showed that demand for 

Procter & Gamble products can be modelled as an ARMA(1, 1) process. 

Note that our analysis is complemented by an empirical investigation, where real data from the 

M4 competition is considered.   
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Using SES as a forecasting method enables us to analyse the effect of temporal aggregation on 

forecast accuracy as a function of the length of series.  It is worth pointing out that SES is a 

very popular forecasting method in industry. It is being applied in many companies and most 

managers are familiar with that due to its simplicity and yet very robust performance. The 

popularity of SES might be due to its ability to adapt to changes in the level of time series by 

choosing appropriately the smoothing constants, which makes it useful for both stationary and 

non-stationary time series. Moreover, SES is unbiased for the ARMA (1,1) demand process 

(Acar & Gardner Jr, 2012; Gardner, 1990; Kim & Ryan, 2003) and from a practical perspective, 

the incompatibility of SES with a stationary demand framework is less of an issue as it is known 

to be used in such contexts (Babai et al., 2014).  

The objective of our study is to gain insights on the relative performance of the three 

approaches and to determine the conditions under which each approach leads to more accurate 

forecasts. Performance is measured by means of the Mean Squared Error (MSE). Our 

contribution is three-fold:  

1) We derive analytical MSE expressions under the three approaches when a finite history 

length is used.  

2) We numerically evaluate and compare the performance of the three approaches by 

analysing the impact of the length of the series, the aggregation level and the process 

autocorrelation on the forecast performance. 

3) Using monthly time series from the M4 competition, we empirically evaluate and 

compare the performance of the three approaches. 

The aggregation level is conveniently chosen to match the forecast horizon, and this makes a 

lot of sense from a practical perspective. Our analysis refers to the aggregated series; while 

generating and evaluating forecasts in the original frequency might be useful (Nikolopoulos et 

al., 2011), this is not covered in this paper but rather is introduced as a next step of research. 
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We find the degree of auto-correlation, the forecast horizon and the length of the series to be 

important determinants of (comparative) forecast accuracy performance. We discuss the merits 

of each approach and highlight their implications for real world practices. It is important to 

note that temporal aggregation is currently supported by few software packages (e.g., SAS and 

R) and most the commercial forecasting software packages do not support it. The lack of 

operationalised rules that may allow switching from one approach to another goes some way 

to explaining why this is the case, and our research sheds light on this area.  

The remainder of the paper is organised as follows. In Section 2, the relevant literature is 

reviewed. In Section 3, the presentation of the assumptions and the analytical expressions of 

the MSE, related to the three approaches, are derived. Section 4 presents the numerical results 

and discusses the findings of our work followed by an empirical investigation in Section 5. The 

conclusions, implications and suggestions for future work are presented in Section 6.  

2. Research background 

A considerable part of the supply chain forecasting literature is devoted to the non-overlapping 

temporal aggregation approach. The potential forecasting benefit of non-overlapping temporal 

aggregation in the context of supply chain was initially recognised by Willemain et al. (1994) 

for intermittent demands. Nikolopoulos et al. (2011) have also shown that an aggregation 

approach may offer considerable improvements in forecasting and stock control. They have 

empirically analysed the effects of non-overlapping temporal aggregation on forecasting 

intermittent demand requirements. Their main motivation was to reduce the number of zeros 

present in the original intermittent series and then forecast the series with conventional 

forecasting methods, once the intermittency has been reduced substantially. This work showed 

that the proposed methodology may indeed offer considerable improvements in terms of 

forecast accuracy. Since then, such findings have been further (empirically) confirmed by 

Babai et al. (2012) and Petropoulos and Kourentzes (2015). Spithourakis et al. (2012) extended 
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the application of Nikolopoulos et al. (2011) to fast-moving demand data. Their results 

supported the forecast accuracy improvement gains obtained by temporally aggregating 

demand. In a fast-moving demand context under an Auto-Regressive Moving Average 

(ARMA) framework of analysis, Rostami-Tabar et al. (2013, 2014) considered analytically the 

effect of non-overlapping temporal aggregation on demand forecasting. Assuming an ARMA 

(1,1) demand process and Single Exponential Smoothing (SES) forecasting method, they 

analytically showed that, for high values of positive autocorrelation in the non-aggregated 

demand series, the non-overlapping temporal aggregation approach is outperformed by the 

non-aggregation. Moreover, they showed that the benefits of using non-overlapping temporal 

aggregation on the forecast accuracy depend on three factors: i) autoregressive and moving 

average parameter, ii) the aggregation level and iii) the smoothing constant. Additionally, the 

performance of aggregation was generally found to improve as the aggregation level increases. 

Instead of focusing on the optimal level of aggregation, some studies investigate the use of 

multiple level of temporal aggregation. In these studies, forecasts generated at multiple levels 

of aggregation are combined. Findings show that combining forecasts leads to more accurate 

forecasts as it accounts for information available at all levels and it may also help to reduce 

uncertainty (Kourentzes et al., 2014; Athanasopoulos et al., 2017). Kourentzes et al. (2017) 

contrasted the effectiveness of using a multiple aggregation level or a single optimal 

aggregation level (Rostami-Tabar et al., 2014) in forecast accuracy improvement. They 

concluded that using non-overlapping TA is beneficial to forecast performance improvement 

compared to the non-aggregation approach and argued that further research is needed towards 

identifying the optimal aggregation level. This constitutes one of the objectives of this work. It 

should be noted that all the above studies have analysed the performance of the non-

overlapping approach under an infinite length of demand history and none of them has analysed 

the impact of the length on the performance which is addressed in this paper. 
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With regard to overlapping TA, the literature is scarcer. Mohammadipour and Boylan (2012) 

have analysed the theoretical properties of integer ARMA (INARMA) demand processes under 

the overlapping temporal aggregation approach and they showed that the aggregation of an 

INARMA process over a given horizon results in an INARMA process as well. Porras and 

Dekker (2008) have shown, based on an empirical investigation conducted with a Dutch 

petrochemical complex, the stock control outperformance of the overlapping temporal 

aggregation when compared to a bootstrapping forecasting approach proposed in Willemain et 

al. (1994) and to the Poisson-based stock control approach (Silver et al., 2017). Boylan and 

Babai (2016) have analytically compared the variance estimates of overlapping and non-

overlapping aggregation for i.i.d demand processes. By means of numerical and empirical 

analysis, they have shown that unless the demand history is short, there is a clear advantage of 

using the former. However, they emphasised i.i.d demand, i.e. the empirically plausible case 

of auto-correlated demands has not been addressed. In this paper, we analyse the performance 

of overlapping temporal aggregation in the case of auto-correlated demands whilst also 

considering the impact of the length of the demand history on forecast performance. Moreover, 

its performance is examined against the non-overlapping temporal aggregation and the non-

aggregation approaches. 

3.  Forecast accuracy under a finite demand history length 

In this section, we examine the effectiveness of the non-aggregation (NA), non-overlapping 

(NOA) and overlapping (OA) TA approaches on forecast accuracy when i) a finite number of 

observations is available ii) SES forecasting method is used and iii) a forecast over a horizon 

m, is required.  

We assume that the non-aggregated series dt, follows an autoregressive moving average process 

of order (1,1) - ARMA(1,1) - that can be mathematically written by (1). 
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𝑑! = C + 𝜖! + 𝜙𝑑!"# − 𝜃𝜖!"#		𝑤ℎ𝑒𝑟𝑒	|𝜃| ≤ 1, |𝜙| ≤ 1,
 

(1) 

where εt is the independent random variable for the non-aggregated series in period t, normally 

distributed with zero mean and variance σ2, θ is the moving average parameter and ϕ is the 

autoregressive parameter of the non-aggregated series and C is a constant value. When demand 

series follow an ARMA(1,1) process, the auto-covariance is (Box et al., 2015): 

 

(2) 

We analyse the effectiveness of three approaches to produce the cumulative forecast over 

horizon m for periods t, t+1, … , t+m-1. The forecast is evaluated against the cumulative 

(aggregated) demand written as follows: 

𝐷$ = 𝑑! + 𝑑!%# +⋯+ 𝑑!%&"#
 

  (3) 

The effectiveness of these approaches on forecast accuracy improvement is evaluated using the 

MSE measure. Therefore, MSE expressions of cumulative forecast over horizon m need to be 

derived for three approaches. The MSE of forecast horizon is related to the safety stock required 

in the inventory system, and thus has a direct cost implication. 

We first derive the MSE utilising the non-aggregated demand series dt. To do so, SES is applied 

to the non-aggregated series to produce m-steps-ahead forecast for periods t, t+1, …, t+m-1. 

Next, we sum forecasts to obtain the cumulative forecast over horizon m, . We assume 

 , which is a reasonable assumption due to the stationarity of demand series and then 

calculate the MSE of forecasts for the non-aggregation approach as follows: 
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To calculate the MSEs of non-overlapping and overlapping aggregation approaches, firstly 

buckets of aggregated series are created based on the aggregation level; then, the SES method 

is applied to the aggregated series to produce the cumulative forecasts over horizon m.   

The MSEs of forecast over horizon m for the non-overlapping, MSENOA and overlapping, 

MSEOA aggregated series are calculated as following: 

 
(5) 

 (6) 

where  and  are the forecasts of non-overlapping and overlapping aggregated 

demand series in period T, respectively; these are the forecasts produced in T-1 for the demand 

in T, which is represented by   (3). In sub-sections 3.1, 3.2 and 3.3 we derive the MSE forecast 

expressions of SES utilising non-aggregated, non-overlapping and overlapping temporally 

aggregated series. 

3.1.  Forecast accuracy using non-aggregated series 

Following the Equation (4), the theoretical MSE of the non-aggregated series, can be written 

as follows: 

 (7) 
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iii) the covariance between the aggregated series and the forecast utilising non-aggregated 

series. 
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 (8) 

Using SES, the forecast of series in period t produced at the end of period t-1 is: 

𝑓
𝑡
=!a(1 −

𝑁

𝑘=1

a)𝑘−1𝑑𝑡−𝑘 + (1 − a)𝑁𝑓
0 

     (9) 

where dt-k is the non-aggregated series, f0, is the initial forecast and  is the smoothing 

constant used in SES for the non-aggregated series. Initial forecasts play an important role in 

generating forecasts in all periods. They can have an important effect when the time series are 

short, and the smoothing constant value is small. A common approach is to set the initial value 

to the first observation , which is what we do in our experiment. 

By considering  and substituting (B1) and (B3) in Appendix B into (7), the MSE 

related to forecasts utilising the non-aggregated series is calculated as follows: 

 (10) 

3.2.  Forecast accuracy using non-overlapping aggregated series 

The MSE related to non-overlapping aggregated series presented in Equation (5) can be 

expressed as follows: 
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Using SES, the forecast of non-overlapping aggregated series in period T produced at the end 

of period T-1 is: 

𝐹𝑇,𝑁𝑂𝐴 =! b
𝑁
(1 −

[
𝑁
𝑚
]

𝑘=1

b
𝑁
)𝑘−1𝐷𝑇−𝑘,𝑁𝑂𝐴 + (1 − b

𝑁
)[
𝑁
𝑚
]𝐹0,𝑁𝑂𝐴 

    (12) 

where F0,NOA is the initial non-overlapping TA forecast and  is the smoothing constant 

used in SES for the non-overlapping aggregated series. The non-overlapping aggregated 

demand series over m periods, , can be expressed as a function of the non-aggregate 

demand series as follows: 

𝐷𝑇−𝑘,𝑁𝑂𝐴 =!𝑑𝑡−(𝑘−1)𝑚−𝑙
𝑚

𝑙=1

, 𝑘 = 1,2,⋯ , "𝑁 𝑚# $ (13) 

From Rostami-Tabar et al. (2014), we have the relations between the process parameters of the 

aggregated and the non-aggregated series for an ARMA(1,1) process as follows: 

  (14) 

  (15) 

  (16) 

By substituting  (14), (C3) and (C5) in the Appendix C into (11), the MSE of forecast utilising 

the non-overlapping temporally aggregated series is: 
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 (18) 

In addition to the variance of aggregated series calculated in Equation (8), we need to determine 

i) the variance of the aggregated forecast utilising the overlapping TA series, and ii) the 

covariance between the aggregated demand series and its forecast. 

Using SES, the forecast of overlapping aggregated demand in period T produced at the end of 

period T-1 is: 

𝐹𝑇,𝑂𝐴1 = ! b
0
(1 −

𝑁−𝑚+1

𝑘=1

b
0
)𝑘−1𝐷𝑇−𝑘,𝑂𝐴 + (1 − b

0
)𝑁−𝑚+1𝐹0,𝑂𝐴     (19) 

where is initial forecast and  is the smoothing constant used in SES 

method for the overlapping aggregated series.  

We need to determine the autocovariance of the overlapping aggregated process and its 

relationship with the non-aggregate process to calculate the variance of the overlapping 

aggregated forecast and its covariance with the overlapping aggregated demand series. Having 

N observations at the end of period t-1 in the non-aggregated series, the overlapping aggregated 

series over m periods, , can be expressed as follows: 

 (20) 

The MSE derivation of the overlapping aggregation approach requires the calculation of the 

auto-covariance function of the aggregated process, which, to the best of our knowledge, has 

never been performed before in the literature. The auto-covariance of lag k ≥ 0, for the 

overlapping aggregated series is calculated as follows: 

 
  

(21) 

By substituting (D4) in Appendix D, (E5) in Appendix E and (F3) in Appendix F into (18), the 

MSE of forecast utilising the overlapping aggregated series is: 
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(22) 

Due to the complexity of the MSE expressions given by (10), (17) and (22), deriving 

mathematical proofs to determine the conditions under which each approach provides more 

accurate forecast is not feasible. Therefore, a numerical analysis will be conducted in Section 

4 to examine the impact of the process parameters, the aggregation level, and the history length 

on the comparative performance of the three approaches. The MSEs derived in section 3 are 

available (upon request also from the corresponding author) in R software to enable the 

reproducibility of our results (Boylan, 2016). 

4. Numerical analysis and discussion 

In this section, the effectiveness of the non-aggregation, overlapping and non-overlapping 

temporal aggregation approaches are assessed by analysing the ratio of their MSEs. The ratio 

values of MSENOA / MSENA and MSEOA / MSENA show the pair-wise comparative performance 

of these approaches. If the ratio is greater than one, it means that the aggregation approach does 

not improve forecast accuracy. In addition to the MSE comparisons, the effect of 

autocorrelation through the autoregressive and moving average process parameters (i.e. ϕ and 

θ), aggregation level (m) and the length of series (N) on the MSE is analysed and the superiority 

conditions of each approach are determined. 

Given that the autocorrelation of the demand process is one of the key factors influencing the 

performance of the non-overlapping TA approach (Rostami-Tabar et al., 2013; 2014), in this 

section, we discuss the results of the numerical investigation in four cases, corresponding to 

conditions where the autocorrelation of the ARMA(1,1) demand process is: i) negative, ii) 
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positive iii) oscillating between positive and negative values depending on its lag and iv) zero 

which corresponds to a white noise process.  

 

Figure 2 illustrates the four categories discussed above for the ARMA(1,1) process. 

Given the considerable number of control and process parameter combinations, it is natural 

that only some results may be presented here. Our analysis has been performed for all variations 

of parameters, but only the cases discussed below are presented in the paper. The numerical 

analysis output was judged to be represented sufficiently through the consideration of m = 2, 

7, 12, f  = -0.95: +0.95 (with an increment step of 0.05), q = -0.95: +0.95 (with an increment 

step of 0.05) and N =24, 36, 48, 60, 72, 84, 108, 132, 154, 250, 500. Small and large N values 

can represent short and long-time series, respectively.  

We report results by considering the smoothing constant values in SES that provides the 

minimum MSE in equations (10), (17) and (22). To assess the deviation of the results when a 

non-optimal smoothing constant is used, we also provide findings for a smoothing constant 

equal to 0.1, 0.2 and 0.3 in the Appendix G. It should be noted that although results are only 

reported for these particular values of the smoothing constant, one may choose any other values 

between zero and one, as the MSE expressions are functions of the smoothing constant. 
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Figure 2 : Autocorrelation associated with an ARMA(1,1) process 

 

As shown in  

 

Figure 2, there are various auto-correlation cases corresponding to combinations of f  and q. We 

calculate the MSEs corresponding to each combination of f and q for each case and for the 

given values of N and m. We then determine the arithmetic average of MSEs across all process 

parameter combinations. Next, we calculate MSENOA / MSENA and MSEOA / MSENA ratios for 

each case. Finally, we repeat it for all N and m values and present results in Figure 3. In each 

graph, the y-axis represents MSE ratios, and the x-axis indicates the number of observations. 

The figure shows the association of the aggregation level, m, and number of observations, N, 
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with MSENOA/MSENA and MSEOA/MSENA ratios for each of the autocorrelation cases shown in 

Figure 2. 

Figure 3a shows the MSE ratio results corresponding to negative autocorrelation. Negative auto-

correlation implies that small (large) values tend to be followed by large (small) values, that 

result in time series variability. We are interested in determining the conditions under which 

the ratio is less than one, meaning that TA improves forecast accuracy. The results indicate that 

the ratios are always less than one, i.e. temporally aggregating series always leads to better 

results than using the original series. The rate of improvement may reach 34% for overlapping 

TA and 32% for the non-overlapping TA case. Moreover, the results indicate that the 

overlapping TA clearly outperforms the non-overlapping one. However, by increasing the 

length of series, the difference between their performance becomes negligible.  

The results also show that for a longer forecast horizon (i.e. for higher value of aggregation 

level m), the comparative forecast accuracy performance of both overlapping and non-

overlapping TA increases. The former outperforms the latter, except for a high number of 

observations in which case they perform similarly. The outperformance of the overlapping TA 

(to both the non-overlapping and non-aggregation approaches) becomes considerable when the 

length of the series is short. As shown in Figures G1-G3 in the Appendix, the outperformance 

of the overlapping approach for short series compared to the non-overlapping one is 

pronounced when a non-optimal smoothing constant is used. This is expected since for short 

histories, the loss of information under the non-overlapping TA should be associated with a 

loss in forecast accuracy too. The results presented in Figure 3b correspond to the conditions 

where the autocorrelation of different lags oscillates between positive and negative values for 

the non-aggregated series. Results are similar to the case of negative autocorrelation depicted 

in the Figure 3a. Figure 3b shows that TA improves forecast accuracy and it performs better for 

longer forecast horizons, and overlapping TA provides forecasts that are more accurate than 
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non-aggregation and non-overlapping TA. As the length of the series increases, the 

performance of NOA and OA approaches becomes similar, and for very lengthy series they 

eventually perform almost identically.   

 

 

 

a) 

 

 

 

b) 

 

 

c) 

 

d) 

Figure 3: Ratio of MSEs for non-overlapping and overlapping aggregation to the non-aggregation approach for 

an ARMA(1,1) process with (a) negative autocorrelation, (b) autocorrelation oscillating between positive and 

negative, (c) positive autocorrelation and (d) no autocorrelation/white noise. 

It should be noted that when the autocorrelation is negative or fluctuates between positive and 

negative vales (the non-aggregated series oscillate around a constant value), SES with a low 

smoothing constant value tends to behave like an average method. Obviously, by initializing 

SES with one observation, SES may react slowly to random fluctuations to reach the overall 
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average of the series. However, when TA is used, the initial value represents a sum of m non-

aggregated demands. This reduces the random fluctuations in the aggregated series and, 

therefore, enables SES to reach the overall average more quickly compared to the non-

aggregate case, which ultimately improves the forecast accuracy. On the other hand, when the 

autocorrelation is positive, the series often behave like a random walk and SES tends to work 

better with a high value of the smoothing constant (it tends to work like the naïve method), 

which makes temporal aggregation perform poorly. 

Note that with negative autocorrelation or oscillated autocorrelation, series show random 

fluctuations, in comparison to series with positive autocorrelation. Therefore, using TA may 

reduce these fluctuations and consequently improve MSE.  The good performance of TA for 

smaller sample size of N could be attributed to the reduction of random variations in the series. 

Moreover, for lengthier series (large sample size of N) the MSE converges to a constant value. 

Therefore, including more observations in the time series does not affect the value of MSE 

resulting in the same performance for all three approaches. 

Figure 3c portrays the performance of the three approaches when the autocorrelation of the 

demand process is always positive. Positive autocorrelation implies that small (large) demand 

values tend to be followed by small (large) values too, thus the relative smoothness of the 

resulting series. 

We know from Rostami-Tabar et al. (2013, 2014) that when the autocorrelation is highly 

positive, non-overlapping temporal aggregation does not improve the forecast accuracy. The 

results in Figure 3c show that overlapping TA does not improve forecast accuracy either since 

the ratio MSEOA/MSENA is always higher than one. Such results are intuitively appealing. With 

high positively auto-correlated series, adjacent observations are very close in size, and they 

follow each other, meaning that the series are smooth, and the latest observations are crucial 
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for forecasting purposes; consequently, there is no need to use long historical observations and 

apply TA approaches to produce forecasts. 

Finally, Figure 3d shows the MSE ratios in the absence of any autocorrelation in the series. This 

relates to an ARMA(1,1) process where f  =  q  which corresponds to a non-correlated (white 

noise) or i.i.d process. We find that the TA approach always outperforms the non-aggregation 

one. Ratios are close to one for lower forecast horizons (m = 2), but the gain in using temporally 

aggregated series becomes more noticeable for higher forecast horizons and the forecast 

accuracy improvement may reach 13%. 

4.1.  Theory-informed operationalised rules 

Before we close this section, we wish to turn the results of our study into operationalised rules 

that could be of benefit to forecasting practice.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Rules to choose between using the original or temporally aggregated series for forecasting purposes 
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As already discussed in this paper, forecasters have two alternatives to produce forecasts: i) 

use the original series ii) use temporally aggregated series. However, and to the best of our 

knowledge, temporal aggregation is not included in the functionality of most of the commercial 

forecasting software packages. This may be attributed to the fact that the benefits of TA are not 

yet very clear (neither in the academic nor in the practitioner community). Even more 

importantly, knowledge of when to switch from one approach to the other to enable forecast 

accuracy improvements is lacking.  

Having already analysed and discussed the potential benefits of TA, we now suggest some 

theory-informed operationalised rules to enable choosing between the original or temporally 

aggregated series for forecasting purposes.   

 

Figure 4 summarises the rules that can be used for operational forecasting decision making. If 

there is no autocorrelation, aggregated series should be used to forecast demand (the two 

aggregation approaches perform equally well) and in the case where the autocorrelation is not 

positive for all lags, overlapping temporal aggregation is the preferred approach. In all other 

cases, disaggregated series should be used to forecast demand. We have created a function in 

R to conduct our analysis. This may become available upon request from the corresponding 

author of the paper, and it should enable the reproducibility of our results (Boylan, 2016) and 

facilitate sensitivity analysis and extensions to the work described here. 

5. Empirical study 

To empirically validate the findings presented in the theoretical part, the monthly time series 

of the M4-Competition are used, which include 48,000 series from different domains (e.g., 

industry, finance, etc.). The description, and the number of time series in each category are 

given by Makridakis et al. (2020). Given the various lengths of the time series, the monthly M4 

dataset provides us with an opportunity to analyse the impact of the time series length on the 
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forecast accuracy. Moreover, the data is publicly available, which is an important enabler of 

reproducibility work (Boylan, 2016). 

For the purpose of the empirical investigation, the maximum series’ length is fixed to 500 

periods as in the numerical part. Moreover, the series with a length less than 320 periods are 

excluded. The minimum length of 320 periods is considered to enable the use of at least 25 

periods under non-overlapping aggregation when the aggregation level is equal to 12. This 

screening process results in 5,092 series, which are used for the empirical evaluation.   

 

Figure 5: Distribution of the autocorrelation of lag=1 to lag= 12 for the selected monthly M4 competition series  

 Figure 5 illustrates the distribution of the autocorrelation values for the selected series from 

lag = 1 to lag = 12. The distribution of the autocorrelation lags indicates that almost all series 

are highly positive autocorrelated. This means that the dataset used in our empirical 

investigation includes only such cases (of highly positive autocorrelated series). This is a 

limitation as it enables the validation of only a part of the theoretical results discussed in Section 

4. To overcome this limitation, further investigation is required on empirical datasets that cover 

series with negative autocorrelations and/or series where autocorrelations oscillate between 

positive and negative values. 
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We perform a rolling origin forecast evaluation using SES for each time series, each selected 

length, and each approach (i.e. non-overlapping aggregation, overlapping aggregation, no 

aggregation). To evaluate the effect of length, we consider a slide moving window, where the 

size of the window equals the length under consideration. To create many replications, we start 

from the most recent observation in the time series. We then move the window one period 

ahead in each step, which includes a new observation and excludes the oldest one. Next, we 

create forecasts using the three approaches and calculate forecast errors. As in our theoretical 

analysis, forecast accuracy is reported using MSE. For each approach, the average MSE is 

calculated through rolling origins and across all-time series.  

Finally, comparative performance is evaluated by means of reporting the ratio of the MSE of 

(non-overlapping and overlapping) aggregation to that of non-aggregation approach. Please 

also note that no assumption about the underlying demand process is required here, such as the 

ARMA (1,1) process assumption made in the analytical part of this work.  

 

Figure 6:  Ratio of empirical MSEs for non-overlapping and overlapping aggregation to the non-aggregation 

approach 

Figure 6 illustrates the result of the empirical evaluation. Note that we only show the ratio 

results for series’ lengths up to 350 periods to allow for a better readability of the graphs, 

knowing that for higher lengths the behaviour of the curves remain the same.  
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It is evident from the results that regardless of the length of series and the level of aggregation, 

the MSE ratio is always greater than one. This means that the no-aggregation approach 

outperforms non-overlapping and overlapping aggregation. Given the characteristics of the 

time series (associated with high positive autocorrelation), the empirical results confirm the 

analytical results shown in Figure 3-c. The empirical results demonstrate the robustness of our 

theoretical findings for positively autocorrelated series, beyond the case of ARMA(1,1) 

demand. Note that the ratio of NOA/NA is associated with high values for m=12 and N≤108. 

This might be because the aggregated series using NOA results in only a few observations 

available to produce forecasts. In terms of the impact of the length of series and the difference 

between the non-aggregation and aggregation approaches, it is hard to come up with some 

consistent differences. 

It is worth noting the importance of testing the validity of our results on time series with 

negative autocorrelation and/or cases where the autocorrelation oscillates between positive and 

negative values. While many series in the business context might be positively autocorrelated, 

this is not always so. 

6. Implications, conclusion, and future work 

Temporal aggregation has been previously researched in the demand forecasting literature as a 

viable option to improve forecast performance. Although this would typically cover the non-

overlapping case, the consideration of overlapping temporal aggregation (TA) has been 

neglected, for autocorrelated demand processes and a finite number of available observations, 

both of which are important features of real-world time series demand data. However, it should 

be noted that consideration of non-overlapping TA, especially for higher aggregation levels, is 

subject to data availability. Although this might be less of an issue in modern business settings, 

clearly non-overlapping TA may not constitute a viable option when short demand histories 

are available. Tremendous recent developments in terms of computing storage capacity 
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facilitate the accumulation of very lengthy series although we have come across 

situations/companies where only a few years’ data is stored. In the overlapping temporal 

aggregation case, loss of information is less severe compared to the non-overlapping TA, which 

makes it an appropriate alternative even for short time series.  

In this paper, we have analytically evaluated the effectiveness of the overlapping temporal 

aggregation approach against the non-aggregation and the non-overlapping temporal 

aggregation ones on forecasting performance. The objective is to generate a cumulative 

forecast over a horizon m. We assume that the non-aggregate series follow an AutoRegressive 

Moving Average process of order (1,1), ARMA(1,1). Moreover, we assume that the length of 

the demand histories is finite. Forecasting is assumed to be relying upon a Single Exponential 

Smoothing (SES) procedure. We have derived the MSE expressions under the three approaches 

to identify the conditions under which each approach outperforms the others. Given the 

assumptions discussed above, the main findings of this paper can be summarised as follows: 

• First, when forecasting negatively auto-correlated series the use of the TA approach is 

recommended. The rate of MSE improvement may reach 34% and 32% for the 

overlapping and non-overlapping case, respectively. 

• Second, it is recommended that for high positively autocorrelated series, the non-

aggregated series should be used for forecasting purposes. 

• Third, when the autocorrelation of different lags alternates between successive negative 

and positive autocorrelation values, TA performs well. The rate of improvement may 

reach 31% and 30% for the overlapping and non-overlapping case, respectively.  

• Fourth, when the demand series resembles to an i.i.d process, TA outperforms the non-

aggregation approach. 
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• Fifth, the performance of both non-overlapping and overlapping TA improves 

considerably when forecasting over longer horizons (e.g. m > 6). Therefore, as we look 

further in the future, it is recommended to use TA approaches. 

• Finally, it is clear from the analytical results that the length of series plays an important 

role on the comparative effectiveness of the three approaches. When using short time 

series, the overlapping TA approach performs better. As more historical data is used in 

the forecasting process, the performance of overlapping and non-overlapping approach 

becomes similar. It is also observed that for all three approaches, the MSEs reduce very 

slowly when the length of the time series is greater than 250; the rate of MSE reduction 

is less than 0.02%. This may imply that there is a cutoff point in terms of historical data 

needed, beyond which there are no further improvements in forecast accuracy. Further 

investigation is needed to find the optimal cut-off point.   

Given the current under-consideration of temporal aggregation in inventory forecasting 

software solutions and given its value as a promising uncertainty reduction time series 

transformation approach revealed in this study, research into any of the following areas would 

appear to be merited. 

• Expansion of the analytical work discussed in this paper on higher order stationary 

processes and more importantly on non-stationary processes, with patterns including 

trend and seasonality (Boylan et al. 2014) is a very important issue both from an 

academic and practitioner perspective. Similarly, the consideration of other popular 

forecasting methods is an important issue too. 

• The evaluation of the forecasting performance of overlapping and non-overlapping 

temporal aggregation at the original frequency of series should also be investigated. 

This may require a choice of an optimal disaggregation approach. 
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• Determining the optimal cut-off points of the length of series and forecast horizon for 

a given time series to decide when to switch from non-aggregation to temporal 

aggregation is an important avenue for future investigation. 

• Finally, another interesting avenue for further research is to analyse the combination of 

the overlapping and the non-overlapping temporal aggregation on forecast accuracy 

performance. 
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Appendix A: Autocovariance of the non-overlapping aggregated series 

The covariance of non-overlapping aggregated demand and non-aggregated demand of lag k is 

calculated as follows: 

𝑐𝑜𝑣@𝐷$,789, 𝑑!":) = 𝑐𝑜𝑣(𝑑! + 𝑑!%# +⋯+ 𝑑!%&"#, 𝑑!":) = 	 𝛾: + 𝛾:%# +⋯+

𝛾:%&"# = 𝜙:"#𝛾# + 𝜙:𝛾# +⋯+ 𝜙:%&";𝛾# = 𝜙:"#𝛾# B#"<
!

#"<
C ,				𝑘 ≥ 1  

(A1) 

The auto covariance of aggregated series at lag k is calculated as follows:              

𝑐𝑜𝑣(𝐷#,%&', 𝐷#(),%&'+ = 𝑐𝑜𝑣(𝐷#,%&'	, 𝑑*(()(+),(+ +⋯+ 𝑑*(),+ =
𝑐𝑜𝑣(𝐷#,%&',𝑑*((()(+),-+)+ + 𝑐𝑜𝑣(𝐷#,%&',𝑑*((()(+),-.)+ +	⋯+ 𝑐𝑜𝑣(𝐷#,%&',𝑑*(),+  

(A2) 

By substituting (A1) into (A2), we get: 

𝑐𝑜𝑣(𝐷#,%/', 𝐷#(),%&'+ = 𝜙,()(+)𝛾+ × 4+(0!+(0 5 + 𝜙,()(+)-+𝛾+ × 4+(0
!

+(0 5 +⋯+
𝜙,)(+𝛾+ × 4+(0!+(0 5 = 𝜙,()(+)𝛾+ × 4+(0!+(0 5

.
  

(A3) 

Therefore, the autocovariance of non-overlapping temporal aggregation series is: 
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 (A4) 

Appendix B: Variance of non-aggregated demand and the covariance of 

aggregated demand with non-aggregated forecast  

By considering Equation (9) the fact that and for all k ≥1, 

and then substituting (2) into it, the variance of non-aggregated forecast at period t, var (ft ) is 

calculated as follows: 

𝑣𝑎𝑟(𝑓*) = 𝑣𝑎𝑟(∑ 𝛼(1 − 𝛼))(+𝑑*() + (1 − 𝛼)%𝑓1%
)2+ + = 34"5+((+(3)#$6

.(3 + 2𝛼(1 −
𝛼).%(+𝛾1 + (1 − 𝛼).%𝛾1 +∑ .3

.(3 (1 − 𝛼)7𝛾7(1 − (1 − 𝛼).(%(7)+ + ∑ 2𝛼(1 −%(+
72+

%(+
72+

𝛼)%-7(+𝛾%(7 = 34"5+((+(3)#6
.(3 + 2𝛼(1 − 𝛼).%(+𝛾1 + (1 − 𝛼).%𝛾1 + .34%

.(3 ∑ (1 −%(+
72+

𝛼)7𝜙7(+(1 − (1 − 𝛼).(%(7)+ + 2𝛼𝛾+∑ 𝜙%(7(+(1 − 𝛼)%-7(+%(+
72+   

(B1) 

The covariance between the aggregated demand DT and non-aggregated forecast ft is calculated 

as follows: 

𝑐𝑜𝑣(𝐷# , 𝑓*) = 𝑐𝑜𝑣(𝐷# , ∑ 𝛼(1 − 𝛼))(+𝑑*() + (1 − 𝛼)%𝑓1%
)2+ + = 𝛼(𝑐𝑜𝑣(𝐷# , 𝑑*(+) +

𝑐𝑜𝑣(𝐷# , (1 − 𝛼)𝑑*(.) + ⋯+ 𝑐𝑜𝑣(𝐷# , (1 − 𝛼)%𝑑*(%)+  
(B2) 

We derive the autocovariance of the non-overlapping aggregated series in Appendix A. By 

substituting (A1) from the Appendix A into (B2), we get: 

 (B3) 

Appendix C: Variance of non-overlapping aggregation forecast and the 

covariance of the aggregated demand and its aggregated forecast 

By considering     (12) and the fact that and for all 

k ≥1, the variance of the forecast for non-overlapping aggregated series is calculated as follows: 
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𝑣𝑎𝑟(𝐹#,%&'+ + = 𝑣𝑎𝑟 A∑ 𝛽%(1 − 𝛽%))(+𝐷#(),%&' + (1 − 𝛽%)8% ,9 :𝐹1,%&'+;$
!
<

)2+ C =
𝛽%.𝑣𝑎𝑟(𝐷#(+,%&'+ + (𝛽%(1 − 𝛽)+.𝑣𝑎𝑟(𝐷#(.,%&'+ + ⋯+ 4𝛽%(1 −
𝛽%)8% ,9 :(+5. 𝑣𝑎𝑟 4𝐷#(8% ,9 :,%&'5 + (1 − 𝛽%).8% ,9 :𝑣𝑎𝑟 4𝐷#(8% ,9 :,%&'5 + 2 4𝛽%.(1 −
𝛽%)�́�+ + 𝛽%.(1 − 𝛽%).�́�. +⋯+ 𝛽%.(1 − 𝛽%)8% ,9 :�́�8% ,9 :(+5 + 2𝛽%(1 −
𝛽%)8% ,9 :�́�8% ,9 :(+ + 24𝛽%.(1 − 𝛽%)=�́�+ + 𝛽%.(1 − 𝛽%)>�́�. +⋯+ 𝛽%.(1 −
𝛽%)8% ,9 :-+�́�8% ,9 :(.5 + 2𝛽%(1 − 𝛽%)8% ,9 :-+�́�8% ,9 :(. +⋯+ 2𝛽%(1 −
𝛽%).8% ,9 :(=�́�+ + 2𝛽%(1 − 𝛽%).8% ,9 :(+�́�1  

(C1) 

By substituting (A4) in Appendix A into (C1) and simplifying it, we get: 

 
  

(C2) 

The forecast of non-overlapping aggregated series at period T is obtained by substituting  (14) 

into   (C2) as follows:
 

 
(C3) 

The second element of Equation (11) is the covariance of the non-overlapping aggregated series 

and its forecast. It is calculated as follows: 

 

𝑐𝑜𝑣(𝐷# , 𝐹#,%&'+ + = 𝑐𝑜𝑣 E𝐷# , ∑ 𝛽%(1 − 𝛽%))(+𝐷#(),%&' + (1 −8% ,9 :
)2+

𝛽%)8% ,9 :𝐹1,%&'F = 𝛽% E𝑐𝑜𝑣(𝐷# , 𝐷#(+,%&'+ + (1 − 𝛽%)𝑐𝑜𝑣(𝐷# , 𝐷#(.,%&'+ + ⋯+
(1 − 𝛽%)8% ,9 :(+𝑐𝑜𝑣 4𝐷# , 𝐷#(8% ,9 :,%&'5F + (1 − 𝛽%)8% ,9 :𝑐𝑜𝑣 4𝐷# , 𝐷#(8% ,9 :,%&'5  
 

(C4) 

By substituting (A4) from the Appendix A into (C4), we get: 
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𝑐𝑜𝑣(𝐷# , 𝐹#,%&'+ + = 𝛽% E𝛾+ × 4+(0!+(0 5
. + (1 − 𝛽%)𝜙,𝛾+ × 4+(0!+(0 5

. + (1 −
𝛽%).𝜙.,𝛾+ × 4+(0!+(0 5

. +⋯+ (1 − 𝛽%)8% ,9 :(+𝜙,58% ,9 :(+6𝛾+ × 4+(0!+(0 5
.F + (1 −

𝛽%)8% ,9 :𝑐𝑜𝑣 4𝐷# , 𝐷#(8% ,9 :,%&'5 = 𝛽%𝛾+ × 4+(0!+(0 5
. 41 + (1 − 𝛽%)𝜙, +⋯+ (1 −

𝛽%)8% ,9 :(+𝜙,58% ,9 :(+65 + (1 − 𝛽%)8% ,9 :𝜙,58% ,9 :(+6𝛾+ × 4+(0!+(0 5
. = 𝛽%𝛾+ ×

4+(0!+(0 5
. E+((0!(?$0!)&$ !' (

(+(0!(?$0!)
F + 𝜙,58% ,9 :(+6(1 − 𝛽%)8% ,9 : 4+(0!+(0 5

. 𝛾+  

(C5) 

Appendix D: Variance and autocovariance of overlapping aggregated series for ARMA(1,1) 

 

𝛾1@ = 𝑐𝑜𝑣(𝐷#,&', 𝐷#,&'+ = 𝑣𝑎𝑟(𝐷#,&'+ = 𝑣𝑎𝑟(𝑑* + 𝑑*-+ +⋯+ 𝑑*-,(+) = 𝑚𝛾1 +
2(𝛾+ 	+ 𝛾. 	+ ⋯+ 𝛾,(+) + 2(𝛾+ 	+ 𝛾. 	+ ⋯+ 𝛾,(.) + ⋯+ 2𝛾+ = 𝑚𝛾1 +
2𝛾+ ∑ (𝑚 − 𝑖)𝜙7(+,(+

72+   

(D1) 

 

For all k≥1, we have γ(−k) = γ(k). 

𝛾+@ = 𝑐𝑜𝑣(𝐷#(+,&', 𝐷#(.,&'+ = 𝑐𝑜𝑣(𝑑*(+ + 𝑑*(. +⋯+ 𝑑*(,, 𝑑*(. + 𝑑*(= +⋯+
𝑑*((,-+)+ = (𝛾+ 	+ 𝛾. 	+ ⋯+ 𝛾,) + (𝛾1 + 𝛾+ 	+ 𝛾. 	+ ⋯+ 𝛾,(+) + (𝛾(+ + 𝛾1 +
𝛾+ 	+ 𝛾. 	+ ⋯+ 𝛾,(.) + (𝛾(. + 𝛾(+ + 𝛾1 + 𝛾+ 	+ 𝛾. 	+ ⋯+ 𝛾,(=) + ⋯+
(𝛾((,(.) + 𝛾((,(=) + 𝛾1 + 𝛾++ = ∑ ∑ 𝛾|B(7-+|,

B27
,
727   

(D2) 

If we continue similar calculation for auto-covariance lag k, we get 

𝛾)@ = 𝑐𝑜𝑣(𝐷#(+,&', 𝐷#(()(+),&'+ = 𝛾) 	+ 𝛾)-+ 	+ ⋯+ 𝛾)-(,(+) + 𝛾)(+ 	+ 𝛾) 	+
⋯+ 𝛾)-(,(.) +⋯+ 𝛾)((,(+) 	+ 𝛾)((,(+)-+ 	+ ⋯+ 𝛾) = ∑ ∑ 𝛾|)(7-B|,(+

B21
,(+
B21   

(D3) 

Therefore, the autocovariance of the overlapping aggregated process can be represented as: 

 (D4) 

Equation (D4) shows the relations between the autocovariance of overlapping TA and the non-

aggregated demand process.  
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Appendix E: Covariance of the overlapping aggregated series and its 

forecast 

Similar to ARMA(1,1) process, the covariance between𝐷$,89 = 𝑑! + 𝑑!%# +⋯+ 𝑑!%&"# and 

can be calculated as following: 

 (E1) 

The covariance between overlapping aggregated demand at period T and period T-k is as 

follows: 

 (E2) 

By substituting (E1) into (E2), it reduces to: 

𝑐𝑜𝑣(𝐷#,&', 𝐷#(),&'+ = 𝜙)(+𝛾+ × 4+(0!+(0 5 + 𝜙)𝛾+ × 4+(0
!

+(0 5 +⋯+ 𝜙)-,(.𝛾+ ×
4+(0!+(0 5 = 𝜙)(+𝛾+ × 4+(0!+(0 5 (1 + 𝜙 +⋯+ 𝜙,(+) = 𝜙)(+𝛾+ × 4+(0!+(0 5

.
  

(E3) 

Equation (E3) gives the covariance of the overlapping aggregated series at period T and 

aggregated demand at period T-k, k>1. The covariance of overlapping aggregated demand and 

its forecast is calculated as follows: 

𝑐𝑜𝑣(𝐷# , 𝐹#,&'+ + = 𝑐𝑜𝑣(𝐷# , ∑ 𝛽1(1 − 𝛽1))(+𝐷#(),&'%(,-+
)2+ + (1 −

𝛽1)%(,-+𝐹1,&'+ + = 𝛽1𝑐𝑜𝑣(𝐷# , 𝐷#(+,&'+ + 𝛽1(1 − 𝛽1)𝑐𝑜𝑣(𝐷# , 𝐷#(.,&'+ + 𝛽1(1 −
𝛽1).𝑐𝑜𝑣(𝐷# , 𝐷#(=,&'+ + ⋯+ 𝛽1(1 − 𝛽1)%(,𝑐𝑜𝑣(𝐷# , 𝐷#((%(,-+),&'+ +
𝑐𝑜𝑣(𝐷# , (1 − 𝛽1)%(, + 1𝐷#((%(,-+)+  

(E4) 

By substituting (E3) into (E4) the covariance of overlapping aggregated demand and its 

forecast is: 

𝑐𝑜𝑣(𝐷# , 𝐹#,&'+ + = 𝛽1𝛾+ × 4+(0!+(0 5
. + 𝛽1(1 − 𝛽1)𝜙𝛾+ × 4+(0!+(0 5

. + 𝛽1(1 −
𝛽1).𝜙.𝛾+ × 4+(0!+(0 5

. +⋯+ 𝛽1(1 − 𝛽1)%(,𝜙%(,𝛾+ × 4+(0!+(0 5
. + (1 −

𝛽1)%(,-+𝛾(%(,-+) = 𝛽1𝛾+ × 4+(0!+(0 5
. 41 + 𝜙(1 − 𝛽1) + (𝜙(1 − 𝛽1)+. +⋯+
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(𝜙(1 − 𝛽1)+%(,5 + (1 − 𝛽1)%(,-+𝜙%(, 4+(0!+(0 5
. 𝛾+ = 𝛽1𝛾+ ×

4+(0!+(0 5
. A+(50(+(?")6$)!*%

+(0-0?"
C + (1 − 𝛽1)%(,-+𝜙%(, 4+(0!+(0 5

. 𝛾+,  

Appendix F: Variance of forecast of the overlapping aggregated demand  

The variance of the forecast for overlapping aggregated demand is as follows: 

𝑣𝑎𝑟(𝐹#,&'+ + = 𝑣𝑎𝑟(∑ 𝛽1(1 − 𝛽1))(+%(,-+
)2+ 𝐷#() + (1 − 𝛽1)%(,-+𝐹1,&'+ =

𝑣𝑎𝑟(𝛽1𝐷#(+ + 𝛽1(1 − 𝛽1)𝐷#(. + 𝛽1(1 − 𝛽1).𝐷#(= +⋯+ 𝛽1(1 −
𝛽1)%(,𝐷#((%(,-+) + (1 − 𝛽1)%(,-+𝐷#((%(,-+)+ = 𝛽1.(𝛾1@ + (1 − 𝛽1).𝛾1@ +⋯+
(1 − 𝛽1).(%(,)𝛾1@+ + (1 − 𝛽1).(%(,-+)𝛾1@ + (2𝛽1.(1 − 𝛽1)𝛾+@ + 2𝛽1.(1 − 𝛽1).𝛾.@ +
⋯+ 2𝛽1.(1 − 𝛽1)%(,𝛾%(,@ + + 2𝛽1(1 − 𝛽1)%(,-+𝛾%(,@ + (2𝛽1.(1 − 𝛽1)=𝛾+@ +
2𝛽1.(1 − 𝛽1)>𝛾.@ +⋯+ 2𝛽1.(1 − 𝛽1)%(,-+𝛾%(,(+@ + + 2𝛽1(1 − 𝛽1)%(,-.𝛾%(,(+@ +
⋯+ 2𝛽1.(1 − 𝛽1).%(.,(=𝛾+@ + 2𝛽1.(1 − 𝛽1).%(.,(.𝛾.@ + 2𝛽1(1 − 𝛽1).(%(,)𝛾.@ +
2𝛽1.(1 − 𝛽1).%(.,(+𝛾+@ + 2𝛽1(1 − 𝛽1).(%(,)-+𝛾1@  

(F1) 

By simplifying the equation (F1), we get: 

 
(F2) 

By substituting (D7) into (F2), the variance of overlapping aggregated series is reduce to: 

  (F3) 
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Appendix G: Ratio of MSEs for smoothing constant values of 0.1, 0.2 and 0.3 

 

 

 

a) 

 

 

 

b) 

 

 

c) 

 

d) 

Figure G1: Ratio of MSEs for non-overlapping and overlapping aggregation to the non-aggregation approach for 

an ARMA(1,1) process and smoothing constant = 0.1 for all approaches with (a) negative autocorrelation, (b) 

autocorrelation oscillating between positive and negative, (c) positive autocorrelation and (d) no 

autocorrelation/white noise.  
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d) 

Figure G2: Ratio of MSEs for non-overlapping and overlapping aggregation to the non-aggregation approach for 

an ARMA(1,1) process and smoothing constant = 0.2 for all approaches with (a) negative autocorrelation, (b) 

autocorrelation oscillating between positive and negative, (c) positive autocorrelation and (d) no 

autocorrelation/white noise.  
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d) 

Figure G3: Ratio of MSEs for non-overlapping and overlapping aggregation to the non-aggregation approach for 

an ARMA(1,1) process and smoothing constant = 0.3 for all approaches with (a) negative autocorrelation, (b) 

autocorrelation oscillating between positive and negative, (c) positive autocorrelation and (d) no 

autocorrelation/white noise. 

 

 


