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A B S T R A C T   

The automatic classification of power quality disturbances (PQD) is of great significance for solving power 
quality problems. In this study, we propose an ensemble deep learning framework to realize intelligent classi
fication of PQ disturbances. Specifically, based on the characteristics of the sequence of disturbance signals, the 
Long Short Term Memory (LSTM) network is used to classify the signals. In addition, the Bagging theory is used 
to integrate the training results of multiple LSTM networks to improve the generalization of the network. Our 
contribution lies in the combination of deep learning and ensemble learning to extract the classification repre
sentation of PQD signals. In view of the large number of unlabeled power quality disturbance samples in the 
power grid, the active learning strategy is adopted to select the most representative samples from the data set, 
which can enhance the model performance with less labeled data. Finally, experiments were conducted in 
different noise environments. Compared with the existing multi-label learning models, this method achieves 
better classification performance with good calculation speed. Furthermore, the proposed active learning 
strategy is able to train the classification model with fewer labeled samples, reducing the manual labeling costs.   

1. Introduction 

With the increasing application of solid-state switches, non-linear 
devices and various renewable power generation connected to the 
smart grid, there are increasing fluctuations in voltage, current and 
frequency in power systems. These interferences bring great challenges 
for the safe and economic operation of power systems [1]. On the other 
hand, with the increasing power consumption due to economic devel
opment and electrification of heat and transport, electricity consumers 
and electrical equipment also put forward higher requirements on the 
quality of power supply. Therefore, accurate and effective classification 
of power quality disturbance (PQD) signals is of increasing significance 
for power quality (PQ) evaluation and management [2]. 

In the past few decades, researchers have conducted detailed ex
plorations on the detection and classification of PQD signals. Conven
tional disturbance classification methods consist of three steps, i.e., 
signal processing, feature selection and classifier design [3]. For signal 
analysis, many methods and improved algorithms have been proposed 
based on signal processing technology, including short-time Fourier 
transform, (STFT), S transform (ST), Wavelet transform (WT), 

Variational Mode Decomposition (VMD), Empirical Mode Decomposi
tion (EMD), and Hilbert Huang Transform (HHT). The signal processing 
methods are dedicated to improving the time-frequency resolution of the 
signals, but the above methods have different degrees of limitations. 
STFT is difficult to weigh the time-frequency resolution, and the effect of 
capturing signal transient characteristics is not good [4]. The series of 
WT methods are more suitable for the signal processing of PQDs, but its 
classification performance depends heavily on feature selection and 
classifier design [5]. EMD lacks the support of mathematical theory and 
is prone to false components [6]. Besides, all these methods are prone to 
be affected by the noise and the computation burden is heavy. There
fore, a signal processing algorithm with wider applicability and better 
anti-noise ability should be adopted. 

Feature selection is a critical step to find representative features from 
PQD signals. The extraction of key features can significantly increase the 
classification speed of the classifier while ensuring accuracy. Currently, 
various manual features have been designed to represent PQD signals. 
The design of the features lacks reference, it is still not very clear why 
these features are chosen, what the correlation between the features is, 
and whether these features help distinguish different types of PQD 
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signals. To solve the above problems, some feature optimization algo
rithms have been proposed. The particle swarm optimization (PSO) al
gorithm is used to optimize the parameters to filter out the optimal 
feature subset in [7]. In [8], a Probabilistic Neural Network based 
Artificial Bee Colony (PNN-ABC) is proposed to optimize the feature 
selection. The non-optimality of manual feature selection and the 
time-consuming feature of the optimization process highlight the need 
of a more effective method to select meaningful and distinct morpho
logical features and realize automatic construction and optimization of 
the feature set. 

Besides the limitations in signal processing and feature selection as 
described above, the three steps of traditional PQD classification algo
rithms are carried out independently with a limited combination of 
signal processing methods and classifiers, limiting the classification 
accuracy. Therefore, the disturbance identification process should be 
optimized as a whole to simplify the analysis and improve the calcula
tion efficiency while ensuring the accuracy. 

Deep learning is an emerging and promising classification frame
work, which can learn features and capture patterns from multi-level 
abstract signals (such as PQD signals) [9]. The Long Short Term Mem
ory (LSTM) network is a special recurrent neural network (RNN) in the 
field of deep learning. It has achieved great performance in dealing with 
text classification, sentiment analysis, and time series prediction. 
Considering PQD signals are in nature time series data, the LSTM 
network is proposed to be used for PQD classification in this paper. The 
main work and contributions of this paper are as follows:  

(1) Based on the characteristics of PQD signals, a new method for 
PQD classification based on ensemble learning and deep learning 
is proposed, which combine the three steps of traditional methods 
without using additional feature selection module, thus simpli
fying the classification steps.  

(2) Based on the Bagging algorithm, we trained multiple LSTM base 
classifiers and improved the traditional majority voting strategy. 
The best-worst weighted voting strategy is proposed to better 
improve the network generalization performance. Performance 
of the proposed method is verified in comparative experiments.  

(3) To solve the problem of less measured data on labels, the active 
learning algorithm is adopted in sample selection to enhance the 
utilization efficiency of unlabeled samples. By actively selecting 
the samples with the most abundant information, the need of 
annotation for deep neural network can be reduced. 

The rest of this paper is organized as follows. The proposed Bagging- 
LSTM is presented in Section 2, in which the weighted voting strategy is 
embedded in the Bagging-LSTM. We then introduce the active learning 
strategy in Section 3. Comparative experiments are presented in Section 
4. Finally, the conclusion of this paper is given in Section 5. 

2. Bagging-LSTM network framework 

2.1. Regular LSTM 

LSTM is a special recurrent neural network applied in the field of 
deep learning, which is an improvement of the RNN model. The key of 
the LSTM model is to introduce a memory unit for cyclic information 
transmission, recording all historical information up to the current 
moment. Therefore, compared with the short-term memory of tradi
tional RNN, LSTM has long-term memory capabilities: a gating mecha
nism (involving forgetting gate, input gate and output gate) with a value 
between (0,1) is used to control the transmission path of the internal 
information in the model [10]. 

The structure of the cyclic unit is shown in Fig. 1, where xt, ft, it, ot, ct, 
at and ht represent the input, forget gate, input gate, output gate, 
memory storage unit, candidate state, and output of the hidden layer at 
time t, respectively. ct-1 and ht-1 are the output of memory storage unit 
and hidden layer at time t-1. δ is the logistic sigmoid function, and tanh 
is the activation function. 

We denote the connection weight of the forgetting gate, input gate, 
output gate, and memory unit as Wxf, Wxi, Wxo, and Wxc respectively. We 
also use Whf, Whi, Who and Whc to represent the weights between the 
hidden layer and the forget gate, input gate, output gate, and memory 
unit. bf, bi and bo represent the bias. ⊙ represents the product of vector 
elements. The LSTM loop structure unit controls the flow of information 
by controlling the degree of opening and closing of the forgetting gate, 
input gate and output gate. The specific process is shown in the 
following Step 1 to Step 6. 

Step 1: The forgetting gate ft takes the input xt of the current layer 
and the output ht-1 of the hidden layer at the previous moment as 
input, and the output result of the forgetting gate is multiplied by ct-1 
to control how much information needs to be forgotten in the in
ternal state ct-1 at the previous moment. The forget gate is expressed 
as 

ft = σ
(
Wxf xt +Whf ht− 1 + bf

)
(1)   

Step 2: The input gate selectively saves the current input informa
tion, and the output result it is used as the information to be updated. 
The input gate is obtained as 

it = σ(Wxixt +Whiht− 1 + bi) (2)   

Step 3: The output gate ot controls the internal state ct at the current 
moment, to control how much information needs to be output to the 
external state ht. The output gate is expressed as 

Fig. 1. Structure diagram of LSTM neural network.  
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ot = σ(Wxoxt +Whoht− 1 + bo) (3)   

Step 4: The output gate ot is multiplied by the state of the memory 
unit processed by the tanh layer. The output ht of the hidden layer is 
calculated as 

ht = ottanh ⊙ (ct) (4)   

Step 5: The memory unit ct records the historical information up to 
the current moment, which can be calculated by 

ct = ft ⊙ ct− 1 + it ⊙ at (5)   

Step 6: The candidate state is calculated by 

at = tanh(Wxcxt +Whcht− 1 + bc) (6)   

2.2. Ensemble learning 

L. K. Hansen first proposed the concept of ensemble learning, which 
improved the generalization performance of learners by constructing 
multiple neural networks [11]. The main learning modes of the 
ensemble include Bagging, Boosting and Stacking. Bagging focuses on 
reducing the overall variance, while Boosting and Stacking focus on 
reducing model bias. To use an artificial neural network or a deep 
learning method in the classification of PQD signals, it is usually more 
likely to obtain an overfitting model rather than an underfitting model. 
Therefore, reducing the variance is the main consideration to improve 
the performance of the artificial neural networks model, and thus a 
Bagging-like ensemble model is used in this study [12]. 

The Bagging algorithm is shown in Fig. 2. At first, T sample sets are 
obtained by random sampling T times, and T independent weak learners 
(also known as base classifiers) are developed respectively. Then, 
through the voting strategy of T weak learners, the final strong learners 
can be obtained. To ensure an ensemble model makes sense, the di
versity of the base classifiers is a key factor. Instead of structural vari
ations, different training datasets are fed into LSTM to meet the diversity 
requirement. Bootstrapping method is commonly used in the random 
sampling algorithm. For the original training set of M samples, by 
random sampling of M times with replacement method, a sample set 
containing M samples is obtained. In this way, the training datasets of 
each base classifier is different from the original training set and other 
sample sets, which guarantees the diversity of each base classifier in 

ensemble learning. 

2.3. An improved bagging algorithm 

In traditional Bagging algorithms, the majority voting method is 
usually used to make decisions, which makes all the base classifier have 
the same decision-making power and ignores the performance differ
ences of the base classifiers [13]. This is the main limitation of the 
majority voting methods. Generally, the selected classifiers have 
different competence. Therefore, the weighted voting method is used to 
aggregate the selected classifiers decision. In this method, the output of 
each classifier is weighted by coefficients that affect the combination 
process. Assuming wi is the weight of the i th classifier, the weighted 
majority voting is represented as follows: 

WMV(x) = maxj∈Ω

∑L

i=1
wiCijand

∑L

i=1
wi = 1 (7)  

where C=[C1,C2,…, CL] is a collection of L classifiers; x is the input; Cij is 
the output of the j-th category of the i th classifier; wi is the weight of the i 
th classifier. 

In this study, the best-worst weighted voting method is adopted as a 
measure to quantify the weights [14]. The basic idea of this method is to 
identify the worst and the best members on the ensemble using their 
estimated errors on the validation set. The relative accuracy of the i th 
individual learner, ai, is expressed as 

ai = 1 −
ei − eb

ew − eb
(8)  

where ew and eb are the maximum and minimum error rates of all in
dividual learners (error rate = 1 - accuracy rate); ei is the error rate of the 
i th individual learner. 

Then the weighted of every classifier is expressed as 

wi =
ai

∑L

i=1
ai

(9)  

2.4. Bagging-LSTM framework for classification of PQD signals 

The network structure of the LSTM and the improved Bagging al
gorithm are introduced in the previous sections, based on which we 
propose a PQD signal classification framework. The framework of the 
proposed Bagging-LSTM is presented in Fig. 3. 

The algorithm uses the LSTM network as the base classifier, and in
tegrates the results of multiple LSTM networks with differences through 
the Bagging algorithm to form a strong classifier. To a certain extent, the 

Fig. 2. Illustration of Bagging algorithm.  
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Bagging-LSTM model can be seen as a kind of extension of LSTM. In 
order to verify the superiority of the ensemble deep learning, the model 
is developed on the basis of the original LSTM network instead of other 
complex models. The accuracy of the Bagging-LSTM model can be 
significantly improved and the generalization of the network can be 
effectively improved. The specific implementation steps are as follows:  

1) According to the ‘ten-fold cross validation principle’, 10% of the 
training data of the PQ disturbance signal is split as a verification set.  

2) Bootstrapping: T training samples are obtained by random sampling 
with replacement from the training set.  

3) For the t-th training sample, the LSTM model is used to train the t-th 
classifier, which is the t-th base classifier.  

4) Train the base classifier and collect the accuracy data from using the 
validation set corresponding to the T-th training sample, so as to 
calculate the weight of the T-th weak classifier.  

5) Link all base classifiers with the corresponding weight distributions, 
and use the best-worst weighted voting strategy to predict the cate
gory of the test set and calculate the accuracy. 

3. Active learning 

Most of the sample data sets used to train the classifier are generated 
by MATLAB software in the existing PQD classification research, and a 
number of training samples are randomly generated, so that we can 
easily label the sampled signals obtained. However, the detectors 
deployed in the power grid in practice are collecting signals on the 
transmission lines all the time, and labeling the collected samples of 
power quality events requires manual operation by experts. This work is 
costly and time-consuming, and it is easy to misjudge under the condi
tion of visual fatigue. Therefore, how to train the classification model 
with as few labeled samples as possible, so that the training time and size 
of the model can be reduced, is a problem that we need to further 
explore. 

The active learning technology can interact with experts to select the 
most valuable uncalibrated data for experts to label, so that the model 
can obtain better performance with less labeled data. The active learning 
algorithm is a cyclic iterative process, and its model is mainly composed 
of four parts, as shown in Fig. 4, including target classification model, 
labeled sample set, unlabeled sample pool, and human experts [15] 

We use the uncertainty sampling strategy to select the unlabeled 
sample, which is widely used in active learning. In this strategy, the 
classifier gives each unlabeled sample a confidence score as the evalu
ation score to determine its uncertainty. The confidence score is 
expressed as: 

xLC = argmaxi=1,2,...,n1 − P(ŷ|xi) (10)  

where ŷ is the category with the highest predicted probability of the 
model for sample xi. Then sort the confidence scores of the unlabeled 
samples, and select the sample with the lowest trust level, which is most 
likely to be misclassified by the model for expert annotation. Then add 
these labeled samples to the labeled sample set and use the updated 
labeled sample set to train the model again. In this way, the labeled 
sample set is updated, and the model is continuously trained until the 
model performance reaches a certain standard, and then the iteration is 
stopped. The active deep learning model is fine-tuned incrementally to 
speed up the convergence of the model. 

4. Experimental result 

4.1. PQD data preparation 

Fifteen PQD signals including pure sine waves are used to evaluate 
the classification performance of the proposed algorithm. The PQD 
signal is composed of 10 single types, including pure sine waveform 
(C1), sag (C2), swell (C3), interruption (C4), harmonic (C5), pulse 
transient (C6), oscillation transient (C7), flicker (C8), notches (C9) and 
spikes (C10). Five complex types of PQD are harmonic and sag (C11), 
harmonic and swell (C12), harmonic with interruption (C13), sag with 
flicker (C14) and swell with flicker (C15). The parameter changes 
conform to the parameter equation of the IEEE-1159 standard [16]. The 
basic mathematical models of single disturbance are referred to [17]. 

The sampling frequency is set to 6.4 kHz, and the data length of a 
single sample is 1280 points. The label data is represented by a one-hot 
encoding, such as [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] (indicating that the 
sample belongs to the first type). 12,000 samples have been generated. 
However, there is always noise in the data collected in the power grid. In 
order to enhance the anti-noise performance of the proposed method, 
Gaussian white noise is randomly added to the synthetic PQDs data of 
different levels. The signal-to-noise ratio (SNR) varies from 20 dB to 50 
dB Then perform Ten-fold cross-validation, and split 10% of the training 

Fig. 3. The classification model based on Bagging-LSTM.  

Fig. 4. Illustration of active learning algorithm.  
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data into a validation set. 

4.2. Optimizing the bagging-LSTM neural network 

We build the Bagging-LSTM neural network and set the model pa
rameters as follows: the number of base classifiers is 3, the epoch is 100, 
the batch-size is 64, and the number of LSTM hidden neurons is 64. The 
cross-entropy loss and Adam optimizer are used to update the model 
parameters. The learning-rate is 0.001. The length of the PQD input is 
determined by the timestep. The network is trained by using the data 
without noise interference. The consuming time represents the time it 
takes for the network to update the parameter weight once. Table 1 
shows the performance comparison of the network under different 
timesteps. 

To explore the impact of the timesteps, the accuracy, loss and 
training time with different timesteps are verified. We can see that, the 
training time increases as the timestep value increases. However, the 
training accuracy and loss first increase and then decrease, which in
dicates that choosing appropriate timestep is very important to the 
performance of the network. A too short timestep may not contain 
enough disturbance information, resulting in low accuracy, while a too 
long timestep can cover complete information but with low efficiency. 
Balancing the accuracy of network classification and training time, we 
choose timesteps as 10. 

In order to verify the superiority of the proposed improved voting 
strategy, we compared the best-worst weighted voting strategy used in 
our study (Vote 1) and the traditional majority voting strategy (Vote 2). 
The base classifiers trained by different samples are named as LSTM 1, 2, 
3 respectively. The comparison results of the two voting strategies are 
shown in Fig 5. 

The results are the average of 10 training sessions. It can be seen from 
Fig. 5 that the accuracy of using the voting strategy proposed in this 
paper is higher than that of the traditional majority voting strategy. In 
other words, the Bagging algorithm participates in decision-making 
through multiple classifiers, and obtains better generalization perfor
mance than a single classifier. 

4.3. Comparing the bagging-LSTM with existing methods 

The proposed Bagging-LSTM method is compared with four other 
deep learning methods, which are briefly introduced as follows: 

(1) Deep Convolutional Neural Network (DCNN): The deep con
volutional neural network with six standard convolutional layers 
proposed in [5] is used as a reference method. The convolution 
kernel is set to 3, the stride is 1, and the number of convolutional 
layer filters is set to 32, 32, 64, 64, 128 and 128. so that the DCNN 
has a huge number of parameters.  

(2) Convolutional Auto-encoder (CAE) proposed in [9] is used as 
another reference method. The down-sampling factor is set to 2, 8 
and 2, and the parameter setting of the decoder is symmetrical to 
the encoder.  

(3) Gated recurrent unit (GRU): GRU is also an RNN. It cancels the 
separate memory cell, and shortens the training time compared to 
LSTM. The GRU used is almost the same as the Bagging-LSTM 
except that the LSTM layers are replaced with GRU layers.  

(4) CNN-LSTM: [18] designed and proposed a combination of a CNN 
with two standard convolutional layers and LSTM to classify PQD 
signals. The size of the convolution kernel is set to 3. The number 
of convolutional filters are 64 and 128, The number of memory 
nodes in the LSTM is 50. 

For fair comparison, the neural networks in the reference methods 
are trained and compared on the same computer and data set. The neural 
networks are trained through 100 iterations. As is clear from Table 2, 
DCNN can achieve higher classification accuracy, but the training time is 
longer. Compared with the Bagging-LSTM network, the GRU network 
has a slightly shorter training time, because the separate storage unit is 
eliminated, and the accuracy rate is slightly lower than that of the 
Bagging-LSTM network. Table 2 demonstrates that Bagging-LSTM pro
posed in this paper is an optimal choice for PQDs classification, which 
has higher classification precision and less training time cost.. 

In order to further compare the Bagging-LSTM network with other 
traditional methods, Table 3 lists the performance of these methods for 
complex PQDs. The traditional methods require design handcrafted 
features before classification. The number of features in these methods is 
relatively random. For example, [17] selected 19 features while [1] 
selected only 9 features. Compared with these traditional methods, the 
Bagging-LSTM can automatically extract valid features, which simplifies 
the classification process. This makes the PQD classification more inte
grated and automated. 

4.4. Active learning verification 

In order to verify the effectiveness of the active learning strategy, we 
compare the uncertainty-based active learning sampling method (US) 
with the random selection (RS) method. Both of the two sampling 
methods evaluate the performance indicators through ten-fold cross 
validation, and the classifier is Bagging-LSTM network. The algorithm 
queries 0.5k samples every time, and each curve in the Fig. 6 shows the 
average after ten random training. The vertical axis is the performance 
evaluation index commonly used in active learning: F1-score and loss. 
Fig. 6 shows that in the early stage of training, the performance of active 
learning sampling is close to random sampling. As the number of active 
queries increases, the training result of the active learning becomes 
better, showing its advantages. 

Table 1 
The performance with different timesteps.  

Timestep Accuracy/% Loss Consuming time(us) 

5 98.533 0.07742 108 
10 99.260 0.03046 168 
20 99.467 0.02326 270 
40 99.133 0.04238 509  

Fig. 5. Comparison of different voting strategies.  

Table 2 
The performance of different methods.  

Method Accuracy under different noise levels(%) Training time(min) 
20 dB 30 dB 40 dB 50 dB  

DCNN 97.67 98.40 99.06 99.43 176.7 
CAE 97.60 98.86 99.00 99.06 5.2 
GRU 98.06 98.86 99.00 99.17 1.8 
CNN-LSTM 97.73 97.53 98.35 98.93 156.6 
Bagging-LSTM 98.67 99.20 99.40 99.66 3.5  
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The F1-score after several queries is presented in Table 4. It is seen 
that the performance of the active learning algorithm based on uncer
tainty sampling becomes better than that of random sampling. When 
more than 3000 labeled samples are added, the F1-score of active 
learning reaches 0.9840, while random sampling needs to add nearly 
5000 labeled samples to achieve similar performance. In this sense, the 
active learning algorithm can save about 40% of the manual labeling 
workload. 

4.5. Testing using practical data 

A set of practical signals are used to test the performance of the 
Bagging-LSTM network. The measurement data set is taken from the 
IEEE PES database for PQD classification [19, 20]. The sampling rate of 
the signals is 256 points per cycle. The length of signals is 1536. Since 
the neural network model requires a large amount of data for training 
and optimization, the quality of data directly affects the performance of 
the model. The current data volume is not enough to train a good 
network, so we use data augmentation methods to increase the amount 
of training data. Data augmentation is an effective way to expand the 
size of data samples by flipping, random cropping, adding Gaussian 
noise, etc. Fig. 7 shows the result of data enhancement of the transient 
oscillation signal. 

With the enhanced data set to train the proposed Bagging-LSTM 
model, the Table 5 shows the classification result comparison. The 
average accuracy of Bagging-LSTM is 95.83%, which is lower than the 
simulation results presented in the previous sub-section. The main 
reason is that the data is still not enough, in spite of the data enhance
ment used. The interference of real data signals is more complicated, and 
the distribution between categories is uneven, further decreasing the 
accuracy. Although the classification result is not ideal, it can be seen 
that the Bagging-LSTM performs better than the other methods. 

5. Conclusion 

In this paper, a Bagging-LSTM network is proposed to automatically 
classify complex PQD signals by combining deep learning and ensemble 
learning. An improved Bagging strategy is used to integrate the training 
results of multiple LSTM networks, so as to improve the classification 
accuracy and generalization. Furthermore, an active learning algorithm 

is used for sample selection. By actively selecting the samples with the 
most abundant information, the requirement for annotation and the 
corresponding cost can be reduced. In addition, the data augmentation 
technology is further adopted to alleviate the problem of insufficient 
labeling by creating a modified copy of the original sample. Compared 
with other deep learning methods, the proposed method has the 
advantage of less training time and higher precision. Future work will 
focus on developing smarter query strategies and effective model update 
strategies to achieve a better trade-off between classification accuracy 
and labeling cost. 
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