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Abstract: Clopidogrel is a widely-used antiplatelet drug. It is important for the treatment and
prevention of coronary heart disease. Clopidogrel can effectively reduce platelet activity and therefore
reduce stent thrombosis. However, some patients still have ischemic events despite taking the
clopidogrel due to the alteration in clopidogrel metabolism attributable to various genetic and non-
genetic factors. This review aims to summarise the mechanisms and causes of clopidogrel resistance
(CR) and potential strategies to overcome it. This review summarised the possible effects of genetic
polymorphism on CR among the Asian population, especially CYP2C19 *2 / *3 / *17, where the
prevalence rate among Asians was 23.00%, 4.61%, 15.18%, respectively. The review also studied the
effects of other factors and appropriate strategies used to overcome CR. Generally, CR among the
Asian population was estimated at 17.2–81.6%. Therefore, our overview provides valuable insight
into the causes of RC. In conclusion, understanding the prevalence of drug metabolism-related
genetic polymorphism, especially CYP2C19 alleles, will enhance clinical understanding of racial
differences in drug reactions, contributing to the development of personalised medicine in Asia.

Keywords: clopidogrel 2; antiplatelet 3; clopidogrel resistance 4; CYP2C19 polymorphism 5;
personalized medicine

1. Introduction

Decreased response to clopidogrel among the Asian population is typical due to
genetic polymorphism and other factors associated with clopidogrel resistance, estimated
to be 70% in some Asian societies. Studying the Asian population is necessary, especially
since many Asians have moved to all parts of the world due to increased immigration,
making the current guidelines for genetic testing or platelet response testing not generally
applicable before prescribing clopidogrel. Therefore, it is essential for clinicians treating
Asian patients to consider inter-individual variability in response to clopidogrel when
prescribing the drug [1].

Current guidelines suggest the use of dual antiplatelet therapy (DAPT), involving
aspirin with a P2Y12 receptor inhibitor to prevent atherothrombotic events in patients
with acute coronary syndrome (ACS) and those undergoing percutaneous coronary inter-
vention (PCI) [2–4]. Clopidogrel is currently one of the most widely used P2Y12 receptor
inhibitors [4–6]. Many large clinical trials have confirmed the antiplatelet effect of clopido-
grel. One such trial found the use of aspirin in conjunction with clopidogrel antiplatelet
therapy in patients with ACS, can reduce adverse coronary events by 20% [7]. This finding
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agrees with the Clopidogrel and Metoprolol in Myocardial Infarction Trial/Second Chinese
Cardiac Study (COMMIT/CCS-2) research that showed that the use of clopidogrel (75 mg)
in conjunction with aspirin in a group of myocardial infarction patients was found to
reduce major vascular events and mortality [8].

Although clopidogrel has a significant effect on antiplatelet aggregation, studies have
shown that platelets’ response to clopidogrel varies significantly between people [9,10].
Some patients can also develop recurrent ischemic events such as stent thrombosis and
myocardial infarction during treatment with clopidogrel. This failure of platelet aggrega-
tion inhibition in clopidogrel users is referred to as clopidogrel resistance (CR) or platelet
hyperresponsiveness [11–13]. Studies have shown that 4 to 30% of patients have CR, and 5
to 6% of patients have DAPT resistance after implanting the stent [14,15]. Matetzky et al.
(2004) also found that up to 25% of patients with severely raised acute ST-segment ele-
vation myocardial infarction demonstrated CR, which is associated with a higher risk of
developing cardiovascular disease [16]. Muller et al. (2003) found that 4.7% of patients
who take clopidogrel after PCI have low platelet inhibition rates, which is associated with
an increased risk of clinical thrombosis [17]. Based on several studies, the prevalence of CR
in the Asian population was reported to be between 17.2 to 81.6%. (Table 1).

Table 1. Prevalence of clopidogrel resistance (CR) in various studies in the Asian population.

Investigators Country Number of Patients Clopidogrel Loading Dose (mg) CR

Ma et al. 2019 [18] China 441 300 17.2%

Pareed et al. 2020 [19] India 200 300 32%

Namazi et al. 2012 [20] Iran 112 600 25.90%

Sahib et al. 2016 [21] Iraq 127 300 24%

Park et al. 2011 [22] Korea 114 75/150 46%

Amin et al., 2017 [23] Malaysia 71 600 38%

Sakr et al., 2016 [24] Saudi Arabia
49

172
83

75
300
600

81.6%
66.3%
55.4%

Tekkeşin et al. 2016 [25] Turkish 1.238 600 30.2%

Range 17.2–81.6%

Various genetic and non-genetic factors affect clopidogrel resistance. This review aims
to summarise the mechanisms and causes of clopidogrel resistance (CR) and the potential
strategies to overcome it.

2. The Pharmacological Effects of Clopidogrel

Clopidogrel is a thiophene pyridine prodrug that needs to be absorbed by the intestines
and transformed into active components by the metabolism of various enzymes in the
liver to exert its platelet anti-aggregation effect [26]. The P-glycoprotein (P-gp), encoded
by the ABCB1 gene, regulates clopidogrel absorption in the small intestine [27]. P-gp is a
transmembrane protein with the primary function of pumping the drug out of the cell and
into the blood circulation. This pumping mechanism may affect the drug’s bioavailability.
After clopidogrel absorption in the intestine, 85% is hydrolysed by carboxylesterase 1
(CES1) to inactive metabolites and excreted in urine or faeces [28]. Only 15% is passed
through cytochrome P450 in the liver, where clopidogrel is first converted into intermediate
metabolite (2-oxo-clopidogrel) by CYP2C19, CYP1A2, and CYP2B6 and then catalysed by
CYP2C19, CYP2C9, CYP3A4, and CYP2B6 to produce an active metabolite. It selectively
and irreversibly binds to the adenosine diphosphate (ADP) P2Y12 receptor on the platelet
membrane to reduce ADP. The binding site blocks the ADP-mediated binding of fibrinogen
to its receptor glycoprotein IIb/IIIa, inhibits platelet activation and aggregation, and exerts
antiplatelet effects [29,30]. The metabolic pathway of clopidogrel is depicted in Figure 1.
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3. Definition of Clopidogrel Resistance

There is currently no uniform definition of CR, but the most accepted is that the
drug has lost its target of the action. It is generally believed that CR means that a patient
still has a thrombotic event after receiving clopidogrel treatment, and laboratory tests
show that platelet function is not inhibited [31]. Some researchers refer to it as clinical
resistance among patients who have experienced thromboembolism and other adverse
events following long-term oral clopidogrel therapy [1]. The incidence of CR varies among
different regions and races. According to literature reports, the incidence of CR in Western
countries is 5 to 44%, while in Asian populations, it may be as high as 20 to 65% [1,32].

There are several methods commonly used to evaluate platelet function. The oldest
and more accurate way is optical turbidimetry, which is often considered the gold standard.
This method assesses the responsiveness of platelets to ADP through the function of P2Y1
and P2Y12 receptors. However, because of the repetition rate and the lack of a specific
P2Y12 pathway, its use is limited. At present, vasodilator-stimulated phosphoprotein
(VASP) phosphorylation assay (VerifyNow) and bedside monitoring are widely used due
to the relatively easy operation [11,33]. Tantry and colleagues (2014), in their follow-up
studies on CR, confirmed that the available evidence does not support routine screening
for hypo/non-responsiveness in patients who started treatment with clopidogrel [34]. So
far, there is still a lack of standard experimental methods for diagnosing CR. Clinically,
platelet function can be tested to determine the patient’s platelet reaction after medication
intake to identify the potential risk of increased cardiovascular or bleeding events. The
incidence of CR in elderly patients may be higher than that in younger patients, and the
risk of bleeding with clopidogrel is also increased [35–37].

The use of platelet function tests (PFTs) to allocate a better selection of antiplatelet
drugs to patients with cardiovascular disease has been discussed over the past ten years [38].
These studies mitigated the escalation of antiplatelet therapy according to the results of
PFTs for potential clinical benefit. Furthermore, the 2011 American College of Cardiol-
ogy/American Heart Association guidelines issued a Class IIb recommendation for the
use of PFTs among patients taking P2Y12 inhibitors [39]. Still, this classification was down-
graded to a Category III recommendation in 2016 [40]. In ACS cases, the latest European
guidelines indicate that de-escalation, but not escalation, of P2Y12 inhibitors directed by
PFT, with a Class IIb rating, can be considered [41].
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4. Factors Associated with CR

The mechanism of CR is still unclear. Relevant studies have shown that CR may be
influenced by various factors such as race, age, weight, genetic polymorphism, drug inter-
action, diabetes, inflammation, immature platelets, atherosclerosis, medication compliance
and other factors. Despite these various contributing factors of clopidogrel resistance, the
exact mechanism is currently unknown [1,37,42–49].

4.1. Gene Polymorphism

Many studies have been done to determine the relationship between P2Y12 receptor
gene polymorphism and CR (Table 2). Zoheir et al. (2013) found that P2Y12 receptor
gene polymorphism is closely related to platelet activity [50]. The P-gp encoded by ABCB1
regulates the absorption of clopidogrel in the intestines. Earlier studies by Mega et al. (2009)
found that ABCB1 gene polymorphism affects the degree of platelet inhibition, which is
closely related to the risk of major adverse cardiac events (MACE) [5]. However, in recent
years, studies on the Chinese population have shown no association between ABCB1 gene
polymorphism and CR [51–53].

CYP3A4/5 are among the essential enzymes in clopidogrel activation. Previously, Lau
et al. (2004) have shown that lower CYP3A4 activity, determined using an erythromycin
breath test, is associated with a lower antiplatelet effect of the drug [54].

One study aimed to determine the effect of the CYP3A homologs of sub-enzymes
(allelic variants of CYP3A4 * 22 and CYP3A5 * 3) on the efficacy of clopidogrel in patients
with ACS undergoing percutaneous coronary intervention. The study results found that
CYP3A4 / 5 activity was not associated with platelet aggregation rates, as well as the
genotyping and phenotyping of CYP3A4 / CYP3A5 did not predict the antiplatelet effect
of clopidogrel. The researcher recommended more extensive research to prove its clinical
relevance [55].

The genetic variations in CYP450 isoenzymes genes (CYP1A2, CYP2B6, CYP2C9,
CYP2C19, and CYP3A4), which are involved in drug metabolism, can influence the varia-
tion of pharmacodynamic response to clopidogrel, especially the genetic variation in the
CYP2C19 isoenzyme. This enzyme contributes significantly to the two sequential oxida-
tive steps in the biotransformation of clopidogrel into active metabolites [56,57]. Hence,
genetic polymorphism of CYP2C19 could play a crucial role in wide inter-individual and
inter-ethnic variabilities in clinical response towards clopidogrel [58–61].

Table 2. Genetic polymorphism distribution and allele frequencies in clopidogrel-resistant and non-clopidogrel-
resistant groups.

Author Population Population
Sample Gene SNP Genotype

Allele Frequencies
Total
(n/%)

p-ValueCR Group
(n/%)

NCR Group
(n/%)

Li et al., 2020 [62] China 126

CYP2C19*2 rs4244285
GG (*1/*1)
GT (*1/*2)
TT (*2/*2)

9 (23.1%)
21 (53.8%)
9 (23.1%)

48 (55.2%)
30 (34.5%)
9 (10.3%)

57 (45.2%)
51 (40.5%)
18 (14.3%)

0.001
0.041
0.093

CYP2C19*3 rs4986893
GG (*1/*1)
GT (*1/*3)
TT (*3/*3)

27 (69.2%)
10 (25.6%)
2 (5.1%)

75 (86.2%)
11 (12.6%)
1 (1.2%)

102 (80.9%)
21 (16.7%)
3 (2.4%)

0.025
0.070
0.176

Al-Azzam et al., 2013 [63] Jordan 240 CYP2C19*2 rs4244285
GG (*1/*1)
GT (*1/*2)
TT (*2/*2)

22 (22.9%)
38 (31.7%)
16 (67.7%)

74 (77.1%)
82 (68.3%)
8 (33.3%)

96(40%)
120(50%)
24(10%)

<0.001

Lee et al., 2009 [64] Korean 387

CYP2C19*2 rs4244285
GG
GA
AA

55(49.1%)
40(35.7%)
13(11.6%)

155(56.4%)
93(33.8%)
26(9.5%)

210(54.3%)
133(34.4%)
39(10.1%)

0.287

CYP2C19*3 rs4986893
GG
GA
AA

80(71.4%)
31(27.7%)
1(0.9%)

236(85.8%)
37(13.5%)
1(0.4%)

316(81.7%)
68(17.6%)
2(0.5%)

0.001

Amin et al., 2017 [23] Malaysia 71 CYP2C19*2 rs4244285
GG (*1/*1)
GT (*1/*2)
TT (*2/*2)

11 (40.7%)
8 (29.6%)
8 (29.6%)

19 (43.2%)
22 (50.0%)
3 (6.8%)

30 (42.3%)
30 (42.3%)
11(15.5)

0.026
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Table 2. Cont.

Author Population Population
Sample Gene SNP Genotype

Allele Frequencies
Total
(n/%)

p-ValueCR Group
(n/%)

NCR Group
(n/%)

Alhazzani, et al., 2017 [65] Saudi Arabia 50

CYP2C19*2 rs4244285 GG
GA + AA

21(84%)
4(16%)

10(40%)
15(60%)

31(62%)
19((38%) 0.001

CYP2C19*3 rs4986893 GG
GA + AA

20(80%)
5(20%)

13(52%)
12((48%)

33(66%)
17(34%) 0.036

Shijun et al., 2014 [66] China 95 CYP3A4*G1 rs2242480 (GG)
(GA + AA)

24 (61.50%)
15 (38.50%)

33 (58.90%)
23 (41.10%)

57 (60.00%)
38 (40.00) 0.798

Namazi, et al. 2012 [20] Iran 112 CYP3A5 rs776746
(*1/*1)
(*1/*3)
(*3/*3)

- -
9 (8.00%) 42

(37.50%)
61(54.50%)

>0.05

Al-Husein et al., 2018 [67] Jordan 280

CYP3A4 rs2242480
(*1/*1)
(*1/*3+
*3/*3)

80(28.6%)
1 (0.4%)

196 (70%)
3 (1.1%)

276 (98.6%)
4 (1.4%) >0.9999

CYP3A5 rs776746
(*1/*1)
(*1/*3)
(*3/*3)

57 (20.4%)
23(8.2%)

119(42.5%)

24(8.6%)
10(3.6%)

47(16.8%)

81(28.9%)
33(11.8%)

166(59.3%)
0.961

Lee et al., 2009 [64] Korean 387

CYP3A4

rs2246709
TT
TC
CC

42(37.5%)
57(50.9%)
12(10.7%)

103(37.5%)
139(50.5%)
28(10.2%)

145(37.5%)
196(50.6%)
40(10.3%)

0.925

rs2242480
GG
GA
AA

74(66.1%)
32(28.6%)
6(5.4%)

172(62.5%)
90(32.7%)
13(4.7%)

246(63.6%)
122(31.5%)
19(4.9%)

0.568

CYP3A5 rs776746
GG
GA
AA

61(54.5%)
41(36.6%)
6(5.4%)

154(56.0%)
102(37.1%)
12(4.4%)

215(55.6%)
143(37.0%)
18(4.7%)

0.808

Shasha et al., 2020 [68] China 741 ABCB1 rs1045642 GG
GA + AA

94(38.5%)
222(70.3%)

161(44.4%)
264(62.1%)

255(34.4%)
486(65.6%) 0.021

Chen et al., 2021 [69] China 204 MDR1 rs 1128503
CC
CT
TT

12 (24%)
17 (34.7%)
20 (40.8%)

40 (25.8%)
65 (41.9%)
50 (32.3%)

52 (25.5%)
82 (40.2%)
70 (34.3%)

0.521

Li et al., 2020 [62] China 126

P2Y12

rs6809699
GG
GT
TT

15 (38.5%)
21 (53.8%)
3 (7.7%)

67 (79.3%)
18 (20.7%)
2 (2.3%)

82 (66.7%)
39 (30.9%)
5 (2.4%)

0.000
0.000
0.152

Namazi et al., 2012 [20] Iran 112 rs2046934 CC
CT + TT - - 104(92.9%)

8 (7.1%) >0.05

Lee et al., 2009 [64] Korean 387 rs2046934
TT
TC
CC

81(72.3%)
26(23.2%)
4(3.6%)

177(64.4%)
89(32.4%)
8(2.9%)

258(66.7%)
115(29.7%)
12(3.1%)

0.139

CR, clopidogrel resistance; NCR, non-clopidogrel resistance; GG, CC, AA, TT, *1/*1, *2/*2, *3/*3, homozygous; GC, GA, GT, CT, *1/*2,
*1/*3, heterozygous.

The choice of antiplatelet therapy (clopidogrel, ticagrelor, or prasugrel) based on
individual patient characteristics, such as treatment choice based on genetic data related to
clopidogrel metabolism as well as considerations regarding the clinical features of patients
may result in a significantly lower rate of ischemic and hemorrhagic events compared
to usual practice [70]. The choice of antiplatelet therapy based on both CYP2C19 gain
of function (GOF) and loss of function (LOF) alleles appears to be a preferred approach
over universal clopidogrel and universal variant P2Y12 inhibitor therapy for ACS patients
with PCI [71,72]. CYP2C19-guided escalation and de-escalation are common as clopidogrel
persistence in nonfunctional allele carriers is associated with adverse outcomes [73].

Genetic polymorphisms in CYP2C19 were classified into groups and referred to as
alleles. The preliminarily identified alleles include 36 alleles such as CYP2C19 *1,*2, *3, *4,
*5, *6, *7 or *8 etc. of which the most significant impact on clopidogrel is *2/*3 mutation
sites (weak metabolites) and *17 mutation sites (strong metabolites). The frequency of
other variations in most population groups is low [74]. According to clinical guidelines
issued by the Clinical Pharmacogenetics Implementation Consortium (CPIC), genotype-
related individual variability in metabolic enzyme function is divided into four predicted
CYP2C19 metabolic phenotypes: Poor metabolisers (PMs), intermediate metabolisers (IMs),
Extensive metabolisers (EMs), and Ultrarapid metabolisers (UMs) [75] (Table 3).
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Table 3. The categorisation of the predicted CYP2C19 metabolic phenotypes based on the CYP2C19
genotypes [75].

Likely Phenotype Genotypes Examples of Diplotypes

Ultrarapid metaboliser: Normal or
increased activity (−5–30% of patients)

An individual carrying two increased
activity alleles (*17) or one functional
allele (*1) plus one increased-activity

allele (*17)

*1/*17,
*17/ *17

Extensive metaboliser: Homozygous
wild-type or normal activity

(~35–50% of patients)

An individual carrying two
functional (*1) alleles. *1/*1

Intermediate metaboliser:
Heterozygote or intermediate activity

(~18–45% of patients)

An individual carrying one functional
allele (*1) plus one loss-of-function allele

(*2-*8) or one loss-of-function allele (*2-*8)
plus one increased-activity allele (*17)

*1/ *2,
*1/*3,
*2/*17

Poor metaboliser: Homozygous
variant, mutant, low, or deficient

activity (~2–15% of patients)

An individual carrying two
loss-of-function alleles (*2-*8)

*2/*2,
*2/*3,
*3/*3

Many studies have reported wide inter-ethnic variability in CYP2C19 polymorphism.
Asian populations (~ 55.0 to 70.0%) have a higher prevalence rate of CYP2C19 LOF variant
alleles (CYP2C19 *2 and *3) as compared with white populations (~ 25.0 to 35.0%) and
black populations (~35.0 to 45.0%) [76,77]. On the other hand, Asian populations (~4.0%)
have a low prevalence of the CYP2C19 GOF variant allele (CYP2C19 *17) as compared to
white populations (~18.0%) [78,79].

Recent studies have reported a variation in the prevalence of individuals carrying
CYP2C19 alleles among the Asian population (Table 4). The CYP2C19 * 2 allele was found
in individuals of the selected countries, with prevalence rates ranging between 4.0–59.6%,
with an average prevalence rate of 23.00%. The percentage prevalence of CYP2C19 * 2 allele
in Saudi Arabia, Qatar and Jordan was less than 10% (residents of the Arabian Peninsula),
which is low compared to others. Meanwhile, the CYP2C19 * 3 allele prevalence was found
at rates up to 0–13.03% with an average prevalence rate of 4.61%. It is noticed that the
spread of this allele is higher in the countries of Southeast and East Asia. Still, its prevalence
rates are lower in India, located in the south of Asia, Russia, which is in its north and most
countries in West Asia, excluding Turkey. From the CYP2C19 * 17 allele prevalence data, it
is noticed that the prevalence rates ranged between (1- 28.72) %, with an average rate of
15.18%, as it is seen here that there are high prevalence rates in the North, South and West
Asia. Medium to low rates are observed in some Central and Southeast Asia (Figure 2).

Table 4. CYP2C19 allele frequencies (* 2, * 3 and * 17) % among Asian ethnic groups.

Author Population Population
Sample Method

Allele Frequency (%)

CYP2C19*2 CYP2C19*3 CYP2C19*17

Zhong et al., (2017) [80] China 6686 PCR and DNA Sequencing 31.06 4.61 ND

T. Wang et al., (2020) [81] China 1129 TaqMan-Real-Time PCR ND ND 2.5

(Anichavezhi, Chakradhara Rao, Shewade,
Krishnamoorthy, & Adithan, (2012) [82] India 206 PCR-RFLP 40.2 0 19.2

Dehbozorgi et al., (2018) [83] Iran 1,229 PCR and DNA Sequencing 21.4 1.7 27.1

Sahib, Mohammed, &
Abdul-Majid, (2015) [84] Iraq 221 PCR and DNA Sequencing 15.2 0.2 19.5

Sugimoto, Uno, Yamazaki, &
Tateishi, (2008) [79] Japanese 265 PCR-RFLP 27.9 12.8 1.13

(Sviri, Shpizen, Leitersdorf, Levy,
& Caraco, (1999) [85] Jewish Israeli 136 PCR-RFLP 15 1 ND

Rjoub et al., 2018 [86] Jordanian 148 PCR-RFLP 9.8 ND 28.72

Kim, Song, Kim, & Park, (2010) [87] Korean 271 PCR and pyrosequencing 28.4 10.1 1.5

Amin et al., (2017) [88] Malaysia 89 PCR and DNA Sequencing 59.6 6.74 ND

Riaz et al., (2019) [89] Pakistan 1028 ASA-PCR 29.0 ND 23.70
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Table 4. Cont.

Author Population Population
Sample Method

Allele Frequency (%)

CYP2C19*2 CYP2C19*3 CYP2C19*17

(Ayesh, Al-Astal, & Yassin, (2019) [90] Palestinian 110 PCR-RFLP 15.5 2.3 ND

Elewa, Ali, & Bader, (2018) [91] Qatar 129 TaqMan-Real-Time PCR 4 0 10

Mirzaev et al., (2017) [92] Russia 512 TaqMan-Real-Time PCR 11.25 1.2 22

Al-Jenoobi et al., 2013 [93] Saudi Arabia 192 PCR and DNA Sequencing 8.2 0 26.9

Sukasem et al., (2013) [94] Thai 1051 AmpliChip CYP450 test 41.95 13.03 4.30

(Arici & Özhan, (2017) [95] Turkish 160 PCR-RFLP 12 13 25

Vu et al., (2019) [96] Vietnam 100 PCR-RFLP 20.5 2.5 1

Total 13662

Average 23.00 4.61 15.18

Population sample: The number of screened individuals. ND: No data.
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In general, the high allele frequency of CYP2C19 * 2 and * 17 in the Asian population
led to the recommendation of a pre-treatment test to monitor for clopidogrel response, dose
and to avoid adverse drug reactions after treatment.

4.2. Drug Interactions

It is known that clopidogrel is converted into an effective product through the
metabolic pathway mediated by CYP enzymes. This process involves a variety of isoen-
zymes. Such as CYP2C19, CYP3A4, CYP1A2, CYP2C9, etc., but the most important ones
are CYP3A4 (~40%) and CYP2C19 (~45%) that contribute to the formation of the active
metabolite of clopidogrel; so, the combined use of CYP3A4 and CYP2C19 inhibitors may
affect the metabolism of clopidogrel [57,97]. Besides clopidogrel, the CYP3A4 pathway also
metabolises statins and calcium channel blockers, and the CYP2C19 pathway metabolises
proton pump inhibitors (PPIs) [28,98]. Figure 3 illustrates the mechanism by which these
three compounds affect clopidogrel.
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4.2.1. Clopidogrel Interaction with Statins

Drug interactions between clopidogrel and statins have been examined and docu-
mented over several years. Although most data indicate drug interaction between these
drugs, the clinical significance is the determining factor when considering the therapeutic
benefit over risk. Statins serve as a lipid-lowering agent, while clopidogrel acts as an
inhibitor of platelets. Doctors usually prescribe both drugs to patients for primary preven-
tion of cardiovascular disease and secondary prevention of cardiovascular atherosclerosis
(ASCVD) disease among high-risk patients [99,100].

Statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)-reductase, which
is responsible for reducing the rate of cholesterol formation. Except for pravastatin, statins
undergo extensive hepatic metabolism by multiple cytochrome P450 (CYP) enzymes. The
main metabolising enzymes of both clopidogrel and a statin include CYP3A4 and CYP2C9.
CYP3A4 mainly metabolises atorvastatin, lovastatin, and simvastatin, whereas CYP2C9
metabolises fluvastatin and rosuvastatin. The level of metabolic activity of CYP3A4 is
inversely related to the antiplatelet effects of clopidogrel [28,101].

When statins and clopidogrel are used in combination they may interact via the
CYP3A4 metabolic pathway, due to binding site competition. This combination may reduce
the antiplatelet activity of clopidogrel, although the effects are still controversial. Lau et al.
(2004) had reported that atorvastatin affects clopidogrel level via the CYP3A4 metabolic
pathway, while the effect was not present in pravastatin which was not a substrate to
CYP3A4 [102]. The report has attracted widespread attention [100,103–105]. However,
other related studies have not confirmed the effect of CYP3A4 metabolism of statins
on the antiplatelet effect of clopidogrel [106,107]. A meta-analysis on the effects of the
concomitant administration of clopidogrel and statins reported that statin use decreases
patients’ mortality rate with clopidogrel therapy without influencing platelet activation
and aggregation [108]. A clinical trial of 190 elective PCI candidates demonstrated that
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they were already using statins and/or other lipid-lowering agents such as fibrates. The
results showed that the administration of a high reload dose of atorvastatin within 24 h
prior to the PCI significantly reduced the frequency of myocardial infarction [109]. A
study by Karaźniewicz-Łada et al. was the first study identifying the effect of atorvastatin
and rosuvastatin on the pharmacokinetics of clopidogrel and its metabolites, and the
report had confirmed that systemic exposure to clopidogrel in patients after coronary stent
implantation did not depend on statins [110].

4.2.2. Calcium Channel Blockers

Calcium channel blockers (CCBs) are frequently used in patients with high blood
pressure, CAD, and arrhythmias. CCBs are metabolized by CYP3A4 to inactive metabo-
lites [111,112]. This may affect the metabolism of clopidogrel via CYP3A4, which is a
secondary metabolic enzyme for clopidogrel [113]. Recently, researchers have been inter-
ested in the interaction of clopidogrel with CCBs and its effect on clopidogrel efficacy, both
in vitro and in vivo [114]. Lee et al., 2020 had indicated that CCBs metabolised by CYP3A4
could reduce the effectiveness of clopidogrel, which is reflected in platelet inhibition. How-
ever, the findings on drug interactions between CCBs and clopidogrel are controversial.
Amlodipine, which is metabolised by CYP3A4 but not a substrate to P-gp, has been shown
to cause alterations in clopidogrel response. Conversely, the co-administration of clopido-
grel and verapamil/diltiazem has not been shown to impair the antiplatelet effects induced
by clopidogrel. These different results may be explained by the presence or absence of
an inhibitory effect of P-gp. P-gp inhibited by CCBs could increase clopidogrel plasma
concentration and may attenuate the effect of the interaction between clopidogrel and CCBs
through CYP3A4. However, there is no firm evidence that this potential drug interaction
between amlodipine and clopidogrel affects clinical outcomes [115].

4.2.3. Proton Pump Inhibitors (PPIs)

PPIs are primary medications that do not require enzyme activity to convert them to
their active metabolites. In parietal stomach cells, the H+ / K+ -ATPase enzyme is inhibited,
reducing stomach acid production. This drug class includes omeprazole, lansoprazole,
esomeprazole, rabeprazole, dexlansoprazole, and pantoprazole. CYP2C19 and CYP3A4
are mainly involved in transforming the PPIs into inactive metabolites [116].

It has been inconclusive for patients who use PPI and clopidogrel simultaneously
whether the combination of these two would impact the clopidogrel response. Although
several studies have shown no interaction between clopidogrel and PPIs, several questions
have been raised about why the antiplatelet inhibition of clopidogrel is reduced with PPIs.
Studies published between 2012 to 2016 found that this combined use was associated with
significantly higher adverse cardiac events such as major adverse cardiovascular events
(MACEs) and ST-Elevation Myocardial Infarction (STEMI) after PCI; however, long-term
mortality is not related [117]. It led to a black box warning admonition by the US Food
and Drug Administration (FDA) and the European Medicines Agency (EMA) in 2009–2010.
Importantly, with each PPI, pharmacokinetics/pharmacodynamics tests have shown that
drug-drug interactions are different between clopidogrel and PPIs. Therefore, this is not a
class effect but a drug-specific effect involving agents that interfere mainly with the action of
CYP2C19. The FDA labels were changed according to individual PPIs in 2011–2012, which
warn against the concomitant use of omeprazole and esomeprazole with clopidogrel and to
highlight the lack of interaction between pantoprazole, lansoprazole and dexlansoprazole
with clopidogrel [115].

4.3. Dose Factors

The anti-platelet effect of clopidogrel is dose-dependent [17]. The 300 mg loading dose
of clopidogrel reaches a steady state after 4 to 24 h. If there is no load, it takes 4 to 7 days
to reach a steady-state [118]. Allier et al. found that the antiplatelet effect of clopidogrel
600 mg administered for the first time was equivalent to that of long-term 75 mg patients.



Molecules 2021, 26, 1987 10 of 18

Clopidogrel 600 mg administered during long-term treatment can further inhibit platelet
aggregation [119]. Due to the increase in thrombus load before treatment, the standard
loading dose is not enough to achieve effective platelet inhibition for patients with severe
symptoms. Therefore, CR will still occur with conventional-dose treatment [120].

4.4. Other Factors

Among other factors, patients’ compliance also directly affects the effectiveness of
clopidogrel. Other than that, the antiplatelet effect of clopidogrel is limited in type 2
diabetes patients because this disease is often associated with atherosclerotic disease
manifestations; clopidogrel is commonly used in these patients [121]. Diabetes is also a
risk factor for reduced antiplatelet effects by clopidogrel [121,122]. There is also a vital
relationship found between the level of inflammatory factors and CR caused by abnormal
platelet function [123–125].

5. Strategies to Overcome CR
5.1. Increase the Dose of Clopidogrel

Increasing the dose can increase the biological effect of clopidogrel and reduce the
incidence of CR. Simultaneously, large doses of clopidogrel can reduce patients’ platelet
aggregation rate with CR [126]. For PCI patients, the 600 mg loading dose has a faster
response than the 300 mg loading dose and has a more substantial platelet inhibitory
effect. In this way, the incidence of CR is significantly reduced [127,128]. At the same
time, studies have shown that CR or platelet hyperresponsiveness is still common after
the administration of clopidogrel 600 mg load, but increasing the dose can reduce the
risk of death from cardiovascular disease, myocardial infarction, and stent thrombosis [5].
In patients with stable coronary heart disease, CYP2C19*2 heterozygous carriers taking
225 mg of clopidogrel per day were shown to achieve the same antiplatelet effect with
CYP2C19 wild-type patients taking 75 mg of clopidogrel per day. In contrast, CYP2C19*2
homozygous patients cannot achieve the desired antiplatelet effect even if they take the
300 mg clopidogrel maintenance dose [129]. CR in patients treated with PCI between high
maintenance dose (150 mg · d −1) than conventional maintenance dose (75 mg · d −1) can
more effectively prevent major adverse cardiac events (MACE). In the 1-month follow-
up after PCI, the incidence of in-stent thrombosis was lower among the group receiving
150 mg · d −1 as compared to the group receiving 75 mg · d −1 (1.1% and 4.9%, p = 0.03).
Simultaneously, cardiovascular events incidence was also significantly lower in the group
with higher doses (2.7% and 7.6%, p = 0.03) [130]. However, some studies have shown that
high-dose clopidogrel after PCI did not reduce the mortality of cardiovascular events or
stent thrombosis incidence than standard doses [131]. Moreover, high-dose clopidogrel may
lead to an increased probability of bleeding complications; therefore, the use of high-dose
clopidogrel maintenance treatment to avoid treatment resistance requires further research.

5.2. Combined Use of Other Antiplatelet Drugs

Ainetdinova et al. [132] found that the probability of resistance to aspirin, clopido-
grel, and the combination of these two drugs were 25.7%, 17.1%, and 5.7%, respectively.
Therefore, DAPT with aspirin and clopidogrel was shown to reduce the occurrence of drug
resistance. Another potential combination therapy uses the GPIIb/IIIa receptor antagonists
(such as abciximab, tirofiban and eptifibatide), which can directly block the final pathway of
platelet activation, adhesion, and aggregation. Based on clopidogrel therapy, the combined
use of GPIIb/IIIa receptor antagonists can further inhibit platelet aggregation [133,134].

5.3. Replacement of New P2Y12 Receptor Antagonists

The new P2Y12 inhibitors, ticagrelor and prasugrel, will substantially reduce platelet
hyperresponsiveness and improve clinical outcomes relative to the regular clopidogrel
dose. Most patients who do not respond to clopidogrel can significantly inhibit the platelet
aggregation rate after switching to prasugrel [135] because prasugrel can better inhibit
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ADP-induced platelet aggregation, which is faster and stronger than clopidogrel. The
longer-lasting antiplatelet effect of prasugrel can significantly reduce the occurrence of
ischemic events [136]. On the other hand, ticagrelor does not require liver metabolism and
not affected by CYP2C19 gene polymorphism. It was also shown to significantly reduce
mortality related to cardiovascular events, myocardial infarction [137]. A study showed that
in STEMI patients undergoing PCI for the first time, a loading dose of 180 mg of ticagrelor
was more effective than a loading dose of 600 mg of clopidogrel in reducing microvascular
damage [138]. There is also literature mentioning that cangrelor has a powerful platelet
inhibitory effect. Its effect may be more significant than clopidogrel. Moreover, its half-life
is shorter, does not require liver activation, and is a direct antagonist of P2Y12 [26].

5.4. Other Management of CR

Active control of blood sugar in patients with coronary heart disease can reduce the
incidence of CR. Avoiding the simultaneous application of other drugs that require CYP
metabolisms, such as statins, calcium channel blockers, and PPI, would ensure a better
response to clopidogrel therapy.

In a randomised trial of TROPICAL-ACS [139,140], a targeted de-escalation regimen
with early switching from prasugrel to clopidogrel was established as an effective alterna-
tive treatment strategy in ACS patients. However, the study found that patient age was
the primary determinant of outcome after PCI, [141,142], especially when using P2Y12
receptor inhibitors during and after PCI [143,144]. Therefore, TROPICAL-ACS performed
a randomised assessment of the effect of age on reducing the escalation of antiplatelet
therapy. Significant variation was found among the younger patients who showed an
increased net clinical benefit resulting from reduced bleeding complications. These results
suggest that targeted de-escalation may be a safe and attractive alternative therapy concept
for all ACS patients after PCI, while a significant bleeding benefit could be achieved in
younger patients [145].

6. Conclusions

Clopidogrel plays an essential role in treating coronary heart disease. However, vari-
ous factors can affect the response to this drug, such as genetic polymorphism, especially
CYP2C19 *2 / *3 / *17 in the Asian population. Although there are many methods for
detecting platelet resistance, there is a lack of internationally unified standards and labora-
tory testing systems. There is also a lack of evidence-based medicine for managing CR. We
should continue to explore the influencing factors of clopidogrel resistance and the poten-
tial strategies to overcome it. Optimising clopidogrel resistance prevention and treatment
strategies is vital for identifying and treating high-risk patients as soon as possible.
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