Figures

Figure 1. Study Flow Chart

- **Wave 1:** 1046 adolescents
- **Completed Waves 1 & 2:** 979 adolescents
- **Completed Waves 1 - 3:** 933 adolescents

Adolescent attrition:
- 12 died
- 55 lost for other reasons

Adolescent attrition:
- 22 died
- 24 lost for other reasons
Figure 2. Adjusted average predicted probabilities of ART adherence at different levels of the explanatory variable: Within-person estimates

Notes: Average adjusted probabilities are reported as average marginal effects, adjusted for sex, vertical/horizontal infection, age, rural/urban location, household size, and orphanhood status. The x-axis displays decreases and increases in economic wellbeing from the individual’s own average.
Figure 3. Adjusted average predicted probabilities of ART adherence at different levels of the explanatory variable: Between-person estimates

Notes: Average adjusted probabilities are reported as average marginal effects, adjusted for sex, vertical/horizontal infection, age, rural/urban location, household size, and orphanhood status. The x-axis displays decreases and increases from the group’s average level in economic wellbeing, pooled across three waves.
Figure 4. Hybrid Model in a Structural Equation Model Framework: Structural and Internal Economic Pathways to Improved ART Adherence

Notes: *p<0.05, **p<0.01, ***p<0.001, significant associations in bold. N=2785 due to item missings and listwise deletion. \(w \) denotes within-person effects and \(b \) denotes between-person effects. Pathways with binary dependent variables were estimated in a probit regression model and pathways with continuous dependent variables were estimated in a linear regression model. Analyses control for participants’ sex (time-invariant), age, household size, and urban/rural location; standard errors are robust and clustered at the individual level. Model based on nonadaptive Gauss–Hermite quadrature to facilitate convergence.