
1

Automatic Grammar Induction from Free

Text Using Insights from Cognitive Grammar

A thesis submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy

Vigneshwaran Muralidaran

June 2022

Language & Communication / Computer Science & Informatics

School of English, Communication and Philosophy and School

of Computer Science and Informatics

Cardiff University

2

Acknowledgements

I started my PhD journey with fascinating ideas about languages and with the curiosity to explore those

ideas further in a rigorous research environment. The exposure that I gained in the last four years at

Cardiff University has given me a concrete understanding of academia and has led me to systematically

develop my ideas. The journey has been challenging for me on both personal and professional fronts

with lifelong takeaways in both.

I am deeply grateful to my advisors Prof. Irena Spasic and Dr. Dawn Knight for their constant trust in me

and for the support they have offered me throughout. I am especially thankful to Irena for motivating

me to work towards paper submissions, for giving regular feedback and comments and for encouraging

me towards various professional and academic pursuits. When I had to make major revisions to the

thesis and work towards resubmission, Irena spent a lot of time and effort helping me with editing the

thesis and was instrumental in steering this research work to completion. If not for her support and

motivation, I am sure this thesis would have never reached completion. I am very thankful to her. The

resubmission period was one of the hardest times of my life and I am indebted to my undergraduate

Professors Sri Adinarayanan and Smt Smrithirekha for providing me a home under the tranquil foothills

of Iyvar malai and accepting me unconditionally during this phase. This gave me the much-needed space

to freely work towards finishing the thesis.

I would fail in my duty if I do not remember with gratitude the generous support of my uncles, Mr.

Bhavani Sankar and Mr. Krishnamurthy who offered me the initial financial help needed to move to

Cardiff and start my PhD study without any hassle. I am grateful to them for their trust and confidence

in me. I am indebted to my parents, brother and in-laws for being pillars of support and encouragement

even when there were no visible signs of progress from my end. My wife, Vishnupriya (Priya), is the

most important person who stayed with me and remained extremely supportive during some of the

very difficult times during these years. Priya is the one who provided me with immense confidence even

during the times when I had given serious thought about giving up on my research. If I have managed to

finish this thesis today, I owe a great deal of it to her. Life in Cardiff has been memorable due to my

colleagues Steve, Laura and Jenny and my friends Roshan, Shifani and their lovely kids.

I thank the University for their PhD studentship and the Welsh government for funding the project on

developing a Welsh stemmer. I must also not forget to mention the School of English, Communication

and Philosophy and the School of Computer Science and Informatics for providing me many part-time

jobs during the four years I spent in Cardiff that helped me manage my survival there.

3

Abstract

Automatic identification of the grammatical structure of a sentence is useful in many Natural Language

Processing (NLP) applications such as Document Summarisation, Question Answering systems and

Machine Translation. With the availability of syntactic treebanks, supervised parsers have been

developed successfully for many major languages. However, for low-resourced minority languages with

fewer digital resources, this poses more of a challenge. Moreover, there are a number of syntactic

annotation schemes motivated by different linguistic theories and formalisms which are sometimes

language specific and they cannot always be adapted for developing syntactic parsers across different

language families.

This project aims to develop a linguistically motivated approach to the automatic induction of

grammatical structures from raw sentences. Such an approach can be readily adapted to different

languages including low-resourced minority languages. We draw the basic approach to linguistic analysis

from usage-based, functional theories of grammar such as Cognitive Grammar, Computational Paninian

Grammar and insights from psycholinguistic studies. Our approach identifies grammatical structure of a

sentence by recognising domain-independent, general, cognitive patterns of conceptual organisation

that occur in natural language. It also reflects some of the general psycholinguistic properties of parsing

by humans - such as incrementality, connectedness and expectation.

Our implementation has three components: Schema Definition, Schema Assembly and Schema

Prediction. Schema Definition and Schema Assembly components were implemented algorithmically as

a dictionary and rules. An Artificial Neural Network was trained for Schema Prediction. By using Parts of

Speech tags to bootstrap the simplest case of token level schema definitions, a sentence is passed

through all the three components incrementally until all the words are exhausted and the entire

sentence is analysed as an instance of one final construction schema. The order in which all intermediate

schemas are assembled to form the final schema can be viewed as the parse of the sentence. Parsers

for English and Welsh (a low-resource minority language) were developed using the same approach with

some changes to the Schema Definition component. We evaluated the parser performance by (a)

Quantitative evaluation by comparing the parsed chunks against the constituents in a phrase structure

tree (b) Manual evaluation by listing the range of linguistic constructions covered by the parser and by

performing error analysis on the parser outputs (c) Evaluation by identifying the number of edits

required for a correct assembly (d) Qualitative evaluation based on Likert scales in online surveys.

4

Contents Page No.

1. Introduction 13

1.1. Background 13

1.2. Motivation 18

1.3. Research aims and objectives 19

1.4. Research contributions 22

1.4.1. Systematic literature review 22

1.4.2. Proposal of construction schemas 22

1.4.3. Parsing model 24

1.5. Thesis organisation 26

2. A systematic review of unsupervised approaches to grammar induction 27

2.1. Methodology 31

2.2. Research questions 32

2.3. Search strategy 32

2.4. Selection Criteria 35

2.5. Quality Assessment 36

2.6. Data extraction 37

2.7. Data synthesis 37

2.7.1. Theory of grammar 41

2.7.2. Representing grammatical productivity 45

2.7.3. Processing grammatical productivity 46

2.7.4. Output representation 47

2.7.5. Evaluation strategies 51

2.7.6. Features used for learning 55

2.7.7. Methodologies 59

5

2.8. Findings from non-implementation studies 62

2.9. Summary and Discussion 64

3. Research methodology 71

3.1. Systematic literature review 71

3.2. Parser requirements 72

3.3. Knowledge engineering 73

3.4. Parser implementation 76

3.5. Evaluation 78

4. Specification of the parser 81

4.1. Cognitive Grammar 81

4.1.1. Construal and meaning 81

4.1.2. Dimensions of construal 82

4.1.3. Grammar as symbolisation 83

4.1.4. Construction schemas 85

4.1.5. Autonomy and dependence 88

4.1.6. Cognitive Grammar and parsing 89

4.1.7. Summary of concepts introduced 91

4.2. Computational Paninian Grammar 93

4.2.1. Karaka theory 93

4.2.2. Contribution of karaka theory for grammatical analysis 97

4.2.3. Beyond karaka relations 98

4.2.4. Basic types of interactions in discourse 100

4.3. Psycholinguistic studies and parsing 103

4.3.1. Psycholinguistic studies 103

4.3.1.1. Incremental versus non-incremental parsing 103

4.3.1.2. Serial versus parallel parsing 104

6

4.3.1.3. Syntactic and/or semantic parsing 105

4.3.1.4. Grammar and Sentence parsing 106

4.3.1.5. Memory and integration costs 107

4.3.2. Functional requirements of a parsing model 108

5. Implementation of full parser 111

5.1. Schema definition component 115

5.1.1. Schemas defining THINGS 117

5.1.2. Schemas defining PROCESSES 120

5.1.3. Schemas defining STATUSES 121

5.1.4. Schemas defining OPERATORS 123

5.1.5. Schemas defining EVENTS 123

5.1.6. Interactions between schemas 126

5.1.7. Dependent and head schemas 127

5.1.8. Miscellaneous definitions 128

5.2. Schema assembly component 129

5.2.1. Assign all possible analyses 130

5.2.2. Integration of expressions across the levels of grammatical 132

 organisation

5.3. Schema prediction component 134

5.3.1. Schema prediction and artificial neural networks 136

5.3.2. ANN architecture for schema prediction 138

5.4. Advantage of Word ontology in schema prediction 140

5.5. Adapting the schema definition component for Welsh language 142

6. Evaluation 148

6.1. Limitations of gold standard evaluation 148

6.2. Unsuitability of gold standard evaluation for the proposed parser 150

7

6.3. Corpus selection 153

6.4. Quantitative evaluation by comparing chunks against the constituents

in phrase structure tree 159

6.5. Manual evaluation by listing the range of constructions covered by

the parser 161

6.6. Evaluation by identifying the number of edits required for a correct assembly 164

6.7. Qualitative evaluation 165

6.7.1. Statistical analysis 171

6.7.2. Disagreement analysis 177

6.8. Limitations and future work 178

7. Conclusion 180

8. Appendix A 184

9. Appendix B 192

10. Appendix C 193

11. Bibliography 199

8

Relevant publications

Muralidaran, V. and Sharma, D.M., 2016, April. Construction grammar based annotation framework for

parsing Tamil. In International Conference on Intelligent Text Processing and Computational Linguistics

(pp. 378-396). Springer, Cham.

Muralidaran, V., Spasić, I. and Knight, D., 2020, October. A Cognitive Approach to Parsing with Neural

Networks. In International Conference on Statistical Language and Speech Processing (pp. 71-84).

Springer, Cham.

Muralidaran, V., Spasić, I. and Knight, D., 2020. A systematic review of unsupervised approaches to

grammar induction. Natural Language Engineering, pp.1-43.

9

List of figures Page no.

6.1 Sample sentences from the WSJ corpus 155

6.2 Participant instructions page for English 167

6.3 Participant instructions page for Welsh 169

1.1 Constituency parse 14

1.2 Dependency parse 15

1.3 Parsing an assembly of construction schemas 17

2.1 Systematic review protocol 32

2.2 Search and selection of papers for systematic review 36

2.3 Constituency representation 48

2.4 Dependency representation 48

2.5 An initial directed multigraph for a simple corpus of three sentences 49

2.6 Transient structure 50

2.7 Shortest common cover link set 50

2.8 Output representations 51

2.9 Evaluation strategies 55

2.10 Grammar induction methods 61

2.11 Overview of the findings from literature review 66

2.12 Findings from implementation studies 67

3.1 Research methodology 71

3.2 Assembly of component schemas to composite schemas 74

4.1 Difference in construing ‘above’ and ‘below’ 81

4.2 Integration of phonological and semantic structures 84

4.3 The composite assembly after integration 84

4.4 Three schemas for the same component relationship 87

4.5 Levels in the Paninian model 97

4.6 Basic types of interactions in the discourse 100

5.1 System overview 112

5.2 Composition and interaction axes of an expression 131

5.3 Autonomy axis of an expression 132

5.4 Schematic diagram of a feedforward neural network 137

5.5 Meaning triangle 141

5.6 Wordnet search 142

10

6.4 Evaluation page for participants in English 170

6.5 Evaluation page for participants in Welsh 170

6.6 Distribution of number of chunks evaluated for English 171

6.7 Distribution of number of chunks evaluated for Welsh 171

6.8 Number of chunks commonly annotated by pairs of participants - English 173

6.9 Number of chunks commonly annotated by pairs of participants - Welsh 173

6.10 Kappa scores with quadratic weighting for 13 pairs of English participants 174

6.11 Kappa scores with quadratic weighting for 12 pairs of Welsh participants 174

6.12 Frequencies of agreement compared against chance expected - English 175

6.13 Proportions of agreement compared against chance expected - English 175

6.14 Frequencies of agreement compared against chance expected – Welsh 176

6.15 Proportions of agreement compared against chance expected - Welsh 176

11

List of tables Page no.

2.1 Search query construction 34
2.2 Criteria and their values synthesised from 43 studies 39
2.3 Factors relevant for evaluation 54
2.4 Features used in various studies 58
4.1 Karaka relations 95
4.2 Examples of some non-karaka relations 96
4.3 Basic construction schemas along the composition axis 101
4.4 Basic construction schemas along the interaction axis 101
5.1 Assembly 1 114
5.2 Assembly 2 114
5.3 Composition, Interaction and Autonomy axes 116
5.4 Construction schemas – THINGs 118
5.5 Construction schemas – PROCESSes 120
5.6 Construction schemas - STATUSes / ATEMPORAL RELATIONSHIPs 121
5.7 Construction schemas – OPERATORs 123
5.8 Construction schemas - EVENTS 123
5.9 Interactions between schemas 126
5.10 Dependent schemas and their head schemas 128
5.11 Miscellaneous schemas - Composition 128
5.12 Miscellaneous schemas - Interaction 128
5.13 Miscellaneous schemas – Autonomy 128
5.14 Changes to schema definition component - Welsh 145
6.1 Tokens in an input sentence 150
6.2 POS tags in an input sentence 150
6.3 One of the possible valid parses of the input sentence 150
6.4 Two valid paths of assembly to arrive at the same construction schema 152
6.5 POS tagset used in Penn Treebank 154
6.6 Sample sentence from the corpus 156
6.7 Mapping the Welsh POS tags to less granular tags 157
6.8 Sample sentences with POS mappings 158
6.9 Summary of the datasets used 159
6.10 Evaluation results 160
6.11 Construction patterns covered by the English parser 161
6.12 Examples of parse errors in English 163

Algorithm

5.1 Procedure for incremental cognitive parsing 129

12

List of abbreviations and acronyms

Abbreviation / Acronym Expansion

CorCenCC Corpws Cenedlaethol Cymraeg Cyfoes (National Corpus of
Contemporary Welsh)

POS Parts of Speech

NLP Natural Language Processing

CG Cognitive Grammar

CxG Construction Grammar

CPG Computational Paninian Grammar

ANN Artificial Neural Networks

CML Computational Linguistics

RQ Research Question

ACM Association of Computing Memory

DBLP Database Systems and Logic Programming

IEEE Institute of Electrical and Electronic Engineers

CFG Context Free Grammar

ADIOS Automatic Distillation of Structure

PCFG Probabilistic Context Free Grammar

DOP Data Oriented Parsing

DMV Dependency Model with Valence

CL Cognitive Linguistics

STM Short Term Memory

WSJ Wall Street Journal

CEG Cronfa Electroneg o Cymraeg (Welsh Electronic Fund)

NLTK Natural Language Toolkit

13

Chapter 1 Introduction

1.1 Background

A natural language is a complex system that humans use to encode meaning in both spoken and written

form. Language is a structured system that allows the speakers to construct sensible sentences from

words. In this sense, it provides a framework for meaningful communication with one another. It is also

a creative system that allows expression of an infinite number of concepts from a finite number of

words. Languages convey highly structured information, but the raw digital representation of natural

language data is unstructured. Therefore, its innate structure needs to be reconstructed and added to

such representation explicitly. The explicit structure can be inferred by employing algorithms for

sentence boundary detection, word tokenisation, parts-of-speech (POS) tagging, named entity

recognition, syntactic parsing, semantic role labelling, etc.

Natural language processing (NLP) is a field of computer science and artificial intelligence that is

concerned with developing methods that facilitate the analysis of natural language expressions in both

written and spoken form. The ways in which the speech and text processing is approached are very

different and this project focuses specifically on text processing. In a text document, the words are

organised into larger units such as phrases or chunks. These chunks are further organised into clauses,

which in turn form more complex syntactic units such as sentences. The sentences are rooted into the

context of the surrounding sentences. A text is made of related, coherent and structured groups of

sentences that form a unified whole by being both lexically and topically coherent instead of being a

random collection of sentences. Therefore, text can be processed at various levels starting from lexical

and morphological level over syntactic and semantic level, and ultimately at the high level of discourse

and pragmatics.

This project deals specifically with grammatical analysis of a text at sentence level. There are two

different schools of linguistics that differ in their way of describing and analysing a formal grammar of a

sentence. These are generative school and functional-cognitive school of linguistics. According to the

generative school of thought, a grammar is understood as a set of formal rules that defines how the

words and phrases are arranged to generate well-formed sentences. A sentence is well-formed if it

conforms to the grammatical rules of a given language. A sentence can be well-formed at various levels,

e.g., phonological level (sound patterns of the language), morphological level (word formation patterns),

syntactic level (rules of arrangement of words) and semantic level (meaning conveyed by the sentence).

Within the generative school of thought, it is assumed that well-formedness at each level is independent

14

of other levels. For example, the famous sentence ‘Colourless green ideas sleep furiously’, originally

coined by Noam Chomsky in his book 'Syntactic Structures' (Chomsky, 1957) is syntactically well-formed

but semantically ill-formed.

In contrast to this, the functional-cognitive school assumes that the grammatical structure of a sentence

cannot be understood independently of its meaning. In other words, all linguistic artefacts, starting from

lexicon all the way to the grammar, are analysed with respect to the meaning they convey. Therefore,

the meaning of a composite expression not only includes the semantic structure that represents its

composite sense but also the composite path, i.e., the way in which individual components of the

expression are arranged to form the composite expression. Under this view, two expressions such as pig

meat and pork that express the same composite meaning have different composite paths and therefore

are semantically different (Langacker, 2008 p. 39). In the same way, green ideas and black intuitions,

even though their composite meaning does not emerge, are analysed as meaningful and

nonsynonymous. Both schools of thought and their relevance for the field of computational linguistics

as well for this particular project are described in more detail in Chapter 2.

Regardless of a particular school of thought, the linguistic task of assigning an appropriate syntactic

structure to a sentence is called syntactic parsing. One of the goals of NLP is to automate this task. There

are two dominant approaches to syntactic parsing in NLP, namely constituency and dependency parsing,

which support two different types of grammatical analysis. Constituency parsing is based on the

application of context-free rules to arrive at the best possible parse tree of a given sentence. An example

of a constituency parsing for the sentence ‘The children ate the cake with a spoon’ is shown in Figure

1.1. The parse tree was generated by the syntax tree generator online1.

Figure 1.1 Constituency parse

1 https://github.com/mshang/syntree

https://github.com/mshang/syntree

15

On the other hand, dependency parsing works by identifying the set of grammatical relations that hold

between the individual words in a sentence. The dependency relations between words in a sentence are

labelled and marked from head to its dependants. The labels are obtained from a fixed inventory of

grammatical relations specified by the dependency grammar. An example of a dependency parse of the

same sentence ‘The children ate the cake with a spoon’ is shown in Figure 1.2. The parse tree has been

created automatically using spaCy's built-in dependency visualiser2.

Figure 1.2 Dependency parse

The choice of a particular type of parsing depends on both a given natural language and the type of

downstream NLP tasks. For example, constituency parsing is more suitable for fixed-word order

languages such as English. However, it does not cope well with free word order languages where the

position of words can be freely altered without altering the meaning of the sentence while preserving

grammar (Covington, 1990 p.7). Conversely, dependency parsers are better equipped for dealing with

free-word order languages (Debusmann, 2000). In order to annotate and learn these constituency and

dependency trees, different annotation schemes have been proposed and treebanks created for

different languages. Examples include Penn Treebank for constituency structures in English (Taylor et

al., 2003), Stanford Dependencies for English dependency analysis (Silveira et al., 2014), NEGRA (Skut et

al., 1997) and TüBa-D/Z treebanks for German (Telljohann et al., 2004), PDT scheme for Prague

Dependent Treebanks (Hajic et al., 2012), Computational Paninian Grammar for dependency parsing

Indian languages (Bharati and Sangal, 1993), etc. It has been shown that the accuracy of a parser

depends on the different decisions taken while developing the annotation scheme used in the treebank

(Maier, 2006). These decisions often depend on the type of a given natural language. One way of

facilitating the development of syntactic parsers that are capable of providing consistent performance

across a wide range of languages, would be to develop a parsing approach that is unsupervised and

language-independent, thus requiring very little annotation. The functional-cognitive school of

linguistics provides the foundational principles based on which such a parsing strategy can be developed.

2 https://explosion.ai/demos/displacy

https://explosion.ai/demos/displacy

16

In contrast to the key paradigms of formal linguistics, which views syntactic structures as independent

of semantics, functional approaches formulate grammar from a meaning-oriented perspective.

Functional theories analyse the grammatical structure of a language as do formal theories, but it also

analyses the entire communicative situation including the purpose of speech event, participants,

discourse, context, etc (Bates and McWhinney, 1982; Dik, 1987, 1991). There are various schools of

functional approaches to grammar based on the type of functional analysis they engage in. Amongst the

functional approaches, cognitive linguistics maintains a school of thought where a language is treated

as an integral part of human cognition, which operates on the same principles as other cognitive faculties

such as perception, attention, memory, spatial and visual processing (Evans, 2006). There are various

branches of this paradigm that give rise to different theories such as gestalt-psychology based

orientation (Talmy, 1975), a cognitive discourse-based orientation (Langacker, 2001), cognitive

sociolinguistic orientation and psycholinguistic orientation (Król-Markefka, 2014). We draw inspiration

from construction grammar and cognitive grammar approaches, which subscribe to the idea that the

knowledge of a language is based on a ‘collection of form and function pairings.

There are different types of functional approaches to grammar such as Cognitive Grammar (Langacker,

1987), Construction Grammar (Goldberg, 2003), Prague functionalism (Danes, 1987), Systemic

Functional Grammar (Matthiessen and Halliday, 2009), Functional Discourse Grammar (Hengeveld and

Mackenzie, 2006) and so on depending on the type of functional analysis conducted in these

frameworks. In cognitive grammar, a language is understood as a symbolic system all the way from

lexicon to grammar. Here, lexicon, morphology and syntax differ only in the schematic complexity of the

corresponding symbolic expressions. The basic units of analysis are symbolic expressions or common

constructions. More theoretical details of how language can be treated fully as a symbolic system can

be understood from (Langacker, 2008).

Based on our understanding from Cognitive Grammar and Construction Grammar, we propose the use

of construction schemas to symbolise different types of syntagms and paradigms. A construction is

defined as either a linguistic expression or a schema abstracted from linguistic expressions that captures

their commonality at any level of specificity. Practically, a construction schema acts as a meaningful

template that maps to some semantic conceptualisation. Any linguistic expression that satisfies the

given conceptualisation is said to instantiate the construction schema. To aid interpretability of the

17

Figure 1.3 Parsing as an assembly of construction schemas

18

construction schemas, we labelled them based on the commonalities observed from various

constructions along three dimensions that correspond to the following questions: (1) What is

the content of a construction? This axis of analysis is called the composition of a construction

(2) How does it interact with other constructions? This axis of analysis is called the interaction

of a construction (3) Is the construction autonomous or dependent? This axis of analysis is

called the autonomy of a construction.

Every part of a sentence can be analysed along the three axes. A sentence and its parts can

be analysed as instances of various schemas at the same time and in each analysis the parts

may be assembled differently. All possible assemblies can be potentially valid and therefore

the same sentence can be assembled in more than one valid way. One of the feasible full

parses of the sentence ‘The children ate the cake with a spoon’ using the proposed approach

is shown in Figure 1.3.

1.2 Motivation

As we indicated in the previous section, one way of facilitating the development of syntactic

parsers that are capable of providing consistent performance across a wide range of

languages, would be to develop a parsing approach that is unsupervised and language

independent, thus requiring very little annotation. One of the key advantages of such an

approach is that it facilitates the development of NLP tools in minoritised languages, in which

the resources and native speakers who may take on the role of manual annotators may not

be readily available. Wales, where Cardiff University is situated, has a dual language policy

that gives equal status to both English and Welsh. All public services in Wales are provided

bilingually and people are able to use the language of their choice. This encourages the use

of Welsh in all aspects of public life. Digital technology plays an important role in this by giving

the freedom for Welsh speakers to use their first language. This effort can be supported by

the availability of NLP tools such as search engines, chat bots, machine translation systems

etc.

Welsh can be understood as a low-resourced language because of few publicly available NLP

tools as well as large annotated corpora that can be used to fast track their development

(Cunliffe et al., 2022). Some of the most recent developments include the Universal

Dependencies Treebank for Welsh (Heinecke and Tyers 2019), which was developed as the

third Celtic language treebank within the Universal Dependencies project (Nivre et al., 2016).

19

The treebank contains 10,756 tokens with a universally defined set of POS tags and

dependency relations. In comparison to Penn treebank which has accrued 7 million words of

POS tagged text in its eight years of operation (Taylor et al., 2003 pp. 5-22), the Welsh

treebank is comparatively small.

Language Technologies Unit research group at Bangor University has driven the development

of open-source NLP resources. Some of the basic NLP tools developed there include a Welsh

POS tagger, lemmatiser are corpora-related research tools that have been developed and

released by this group (Prys et al., 2021). In Cardiff, the University of South Wales developed

Welsh Natural Language Toolkit that contained a suite of open-source NLP tools for Welsh

including a sentence splitter, tokenizer, POS tagger and morphology analyser3. Cardiff

University developed an alternative rule-based context-sensitive POS tagger, which features

POS tags that are specific to Welsh (Neale et al., 2018). Lancaster University developed a

semantic tagger, which was successfully adapted for Welsh (Piao et al., 2018). We

complemented these open-source projects by developing a Welsh stemmer (Muralidaran et

al, 2021) based on Porter's stemming algorithm (Porter, 2001). However, none of these

projects developed a parser for the Welsh language. A syntactic parser is one of the basic

steps in a standard NLP pipeline that processes a natural language text to determine the

grammatical structures at the sentence level. The research on developing syntactic parsers

for English has matured. There is now an opportunity to develop NLP tools in Welsh that not

only mimic their equivalents in English but go beyond to explore novel approaches to the

corresponding problems. Given the dual language policy in Wales as well as the goal of

developing a language-independent approach to parsing, the two languages present an ideal

opportunity to test our approach on these two structurally different languages.

1.3 Research aims and objectives

In this research we focus on automatically inducing a grammatical structure from raw

sentences in an attempt to facilitate higher-level analysis of linguistic data by unifying

syntactic and semantic aspects of word organisation. The advantage of this unification is that

any grammatical analysis can then invoke the same syntactic frame at different levels of

semantic abstraction. The idea of continuity between lexicon, grammar and semantics is not

in itself novel. It has been extensively discussed in theoretical linguistics literature (Bates and

3 https://sourceforge.net/projects/wnlt/

20

McWhinney, 1982; Dik, 1987, 1991; Langacker, 1987, 2008, 2009; Harrison et al., 2014 pp. 1-

16). Lexicon-grammar continuum implies that there is no sharp boundary between lexical

items and grammatical constructions. Therefore, words, phrases, clauses and entire

sentences can have the same construction format only differing in their internal complexity

(Langacker, 2008, 2009). Syntax-semantics continuum implies that the syntactic structures in

a language are meaningful and therefore we can discover patterns of how syntactic structures

symbolise semantic concepts. This thesis takes a fresh look at these concepts by using

theoretical knowledge from cognitive linguistics to inform the development of a practical

implementation of a parser that operates on the syntax-semantics continuum. Specifically,

such a parser integrates both syntax and semantics to learn meaningful grammatical

structures directly from the text data.

This work draws its basic outlook of linguistic analysis from usage-based, functional theories

of grammar such as Cognitive Grammar (CG) (Langacker, 2008, 2009), Computational

Paninian Grammar (CPG) (Bharati and Sangal 1993; Sangal et al. 1995; Kesidi et al. 2013; Das

et al. 2017) and psycholinguistic studies (MacDonald et al 1994; McRae et al. 1998; Staub,

2015). The proposed approach identifies grammatical structures in a text by recognising

general cognitive patterns of conceptual organisation that we use intuitively to interpret the

structure of naturally occuring sentences. In other words, the parser reflects some of the

general psycholinguistic properties of parsing by humans such as incrementality,

connectedness and expectation. The motivation behind such an approach is that by

integrating syntax and semantics, the corresponding parser minimises its commitment to a

language-specific grammar and by basing its development on an unsupervised approach it

becomes readily applicable to different languages including the low-resourced minority ones.

A parser can be developed either using explicit hand-written rules or the rules that are

inferred from data using machine learning. The former method requires knowledge elicitation

from linguistic experts, which presents a major bottleneck in efficiently bootstrapping a

parser. In addition, such parsers may encode the bias from these experts and therefore may

not generalise well. Machine learning has long been seen as a solution bottleneck. However,

supervised approaches to machine learning suffer from data annotation bottleneck. Instead

of eliciting knowledge from experts, they are now required to manually annotate the data.

The annotation task itself may seem easier than that of knowledge elicitation as experts need

to answer the question What instead of How. However, supervised machine learning requires

21

large amounts of annotated data in order to infer the underlying rules, which again poses an

annotation bottleneck in efficiently bootstrapping a parser. On the other hand, unsupervised

machine learning approaches can learn from unlabelled data with minimal to no human

supervision. This is advantageous in the context of minority languages especially because

unlabelled digital texts are relatively easier to acquire than labelled corpora which are

expensive to construct. Unsupervised approaches to parsing are based on an assumption that

the probabilistic patterns of a word organisation can be generated by hidden language

models. Despite sophisticated inferencing approaches, the performance of unsupervised

parsers is still considerably lower than that of supervised counterparts. This leads us to the

main research question in this project: Can an unsupervised learning approach be used to

develop a syntactico-semantic parser? Here we hypothesise that the parsing rules can be

learnt from raw data without human supervision. To test this hypothesis, we have set the

following objectives:

RO1: To utilise existing body of knowledge and identify research gaps in this area. Specifically,

a systematic literature review is to be conducted in order to survey the existing approaches

to unsupervised learning of parsing rules in terms of their theoretical underpinnings, practical

implementations and evaluation.

RO2: To derive a list of requirements for an unsupervised syntactico-semantic parser that

combines insights from the functional-cognitive schools of grammar and experiments on

online sentence processing by humans.

RO3: To use the findings from RO1 and RO2 to design and implement a practical approach to

unsupervised parsing that takes the advantages of prevalent parsing approaches in

computational linguistics and NLP while introducing novelty based on the lessons learnt from

the psycholinguistic properties of online sentence parsing by humans and the functional-

cognitive theories.

RO4: To evaluate the effectiveness of the approach proposed in RO3 and see how it

generalises across structurally different languages. The two languages spoken in Wales, Welsh

and English, fit this requirement. Given the unsupervised nature of the proposed approach, a

novel evaluation framework will be designed to address the lack of ground truth.

22

1.4 Research contributions

1.4.1. Systematic literature review

This research is founded on the results of a systematic literature review, which focused on

understanding the prevalent approaches to unsupervised grammar induction. Its results have

been published in the following journal article:

Vigneshwaran Muralidaran, Irena Spasić, Dawn Knight (2020) A systematic review of

unsupervised approaches to usage-based grammar induction. Natural Language

Engineering, Vol. 27, No. 6, pp. 647-689

The theoretical and psycholinguistic studies identified in the review revealed the limitations

of the prevailing grammar induction methods, questioned the suitability of parser evaluation

by comparing its output against a gold standard and supported the idea that sequential,

incremental, bottom-up approaches to grammar induction are closer to how humans acquire

and process grammar. These insights helped position our research within a wider context of

usage-based, incremental, and sequential systems of grammar induction in contrast to the

formal, non-incremental and hierarchical view of grammar adopted by most unsupervised

methods. The details of this systematic review are presented in Chapter 2.

1.4.2. Proposal of construction schemas

A novel research contribution of this project is a proposal of construction schemas for Welsh

and English based on the knowledge engineering involving language experts and based on the

synthesis of ideas from the systematic literature review and three other fields:

a) Cognitive Grammar and Construction Grammar

b) Computational Paninian Grammar

c) Psycholinguistic studies conducted on online sentence processing by humans

Cognitive and Construction Grammar: Cognitive Grammar (CG) and Construction Grammar

(CxG) are grammatical theories that belong to the functional-cognitive paradigm in theoretical

linguistics in which the shape of a linguistic structure is defined by usage and governed by the

human cognition in general. These theories helped us recognise that no fundamental

difference can be made between lexicon, morphology and syntax as they form a continuum

along the spectrum of symbolic complexity. In this view, the entire grammar is treated as a

23

symbolic system where the overall structure of a sentence is motivated by a relatively small

set of domain independent cognitive abilities such as categorisation, focus, comparison,

schematisation, grouping, reification and so on. These abilities, typically used for non-

linguistic purposes, are repurposed to support linguistic processing. More insights obtained

from these theories are discussed in section 4.1 and its subsections in Chapter 4.

Based on these insights, we carefully defined a finite number of construction schemas by

observing the syntagmatic and paradigmatic patterns of the constructions available in a

language. First, through our linguistic observations we identified THING, PRONOMINAL,

RELATIONSHIP, PROCESS, STATUS, EVENT, OPERATOR, CONTINUATIVE, COMBINATIVE,

CLOSED, QUALIFIER, PARTICIPANT, DESCRIPTIVE, AUTONOMOUS, DEPENDENT, JOIN as the

basic and generic construction schemas from which more specific schemas could be defined.

Next, using these basic schemas, we represented the syntagms (relationship of positioning

linguistic items) and paradigms (relationships of substituting the linguistic items in each

other’s place) of a language’s grammar as more specific construction schemas. The list of

these construction schemas, their definitions, meaning and examples are given in Chapter 4.

Insights from Computational Paninian Grammar: CPG is a computational linguistic

framework where the grammatical relations are analysed neither syntactically nor

semantically but as syntactico-semantic relations between nouns and verbs. The syntactico-

semantic relations are functionally motivated from the speaker’s viewpoint as well as the

usage conventions of a language. More details regarding these syntactico-semantic relations

are given in section 4.2 and its subsections in chapter 4. CPG provides the insight that a verb

is a central part of a sentence, an activity complex, around which other parts of the sentence

participate in syntactico-semantic relations. More complex grammatical structures are

analysed as relations between many such action-noun complexes.

We incorporated this idea into our schema definitions by dividing the list of schemas into

token level, process level and event level definitions. Each and every level of these schema

definitions progressively becomes more complex such that token level schemas participate as

components in process level schema definitions. Again, process level schemas participate as

components in event level definitions and finally the sentence is analysed as relations

between many such event level schemas.

Insights from psycholinguistic studies on online sentence processing: Based on the

psycholinguistic studies, we identified the functional requirements of a parsing model so that

24

our parser makes use of the strategies used by the humans in processing sentences. We

identified that the parsing model should be incremental, multiple parses should be allowed

to compete and one that finishes first should be chosen, grammar should closely reflect the

way a sentence is parsed, syntax should be treated as meaningful, the parse should be treated

as an action - not as a product. More details of how we arrived at these decisions about the

parsing model is discussed in section 4.3 and its subsections in chapter 4.

Based on these ideas, we allowed multiple definitions for a single construction schema so that

all valid variations are allowed to compete during schema assembly. The same schema can be

reanalysed as another construction schema based on its level of analysis such as token level,

process level or event level. Here, parts of sentences are transparently mapped to one or

more of schema definitions so that the grammar closely reflects the way the sentence is

parsed.

The original contribution of this research is the integration of these ideas into our own

construction schema definitions to be used in our parsing model. The core idea behind our

definitions of construction schemas is that just like linguistic units organise themselves into

different formal structures at syntactic levels, they organise themselves into self-similar

construction patterns at different functional levels. By identifying such self-similarities at

various levels such as token level, process level and event level, we were able to define

potentially innumerable grammatical structures based on a finite number of construction

schemas.

1.4.3. Parsing model

We extended our novel research contribution to the parsing model that we developed on top

of construction schema definitions. Its early design was presented at an international

conference:

Vigneshwaran Muralidaran, Irena Spasić, Dawn Knight (2020) A deep

learning approach to parsing with insights from cognitive grammar, in

Proceedings of the 8th International Conference on Statistical Language and

Speech Processing, Cardiff, UK, pp. 71-84

By treating a sentence as a miniature version of a text, we were able to recognise that local

cohesion plays a significant role in how the grammatical structure of a sentence is organised.

A sentence functions as a cohesive whole because its parts are meaningfully connected. In

25

line with the construction schemas, we analyse every part of a sentence along three axes:

composition, interaction and autonomy, which are explained in chapter 4. When two

expressions are semantically compatible along all the three axes, they assemble with each

other so that they are conceived as components of a composite expression. We proposed an

algorithm that reads parts of sentences incrementally and recognises their construction

schemas along the three axes. It then assembles any two component schemas into one

composite schema if they are compatible and parses a span of text as incremental assembly

of components into composites. Within a span of text, multiple running parses are retained

and the best parse is ultimately chosen. The construction schema definitions and their

patterns of assembly are implemented as dictionary-cum-rules because they are fewer in

number, largely language-independent and can be extended to handle language-specific

variations. The dictionary specifies definitions of each construction schema in terms of parts

of speech and other construction schema. It also defines how the basic schemas can assemble

with each other and what will be the resultant schema. Rules are written to identify all

possible construction patterns from a span of text based on the dictionary definitions. The

rules also allow all possible valid assemblies between these constructions.

The number of possible assemblies increases with the sentence length. In order to constrain

the number of possible analyses and choose an optimal pattern of construction assembly, we

decided to use Artificial Neural Networks (ANNs). ANNs are computational systems that are

inspired by the biological neural networks in the human brain and they are designed to mirror

how humans analyse and work. ANNs can be used to model problems involving complex

patterns because they learn from examples and apply their learning on other similar events.

Unlike traditional programming, information learnt by the ANNs are distributed throughout

the network and not on a database. They are also fault-tolerant i.e., even if some information

is missing, the functioning of the network will not be affected. This self-adaptive, data-driven,

flexible and fault-tolerant nature of neural networks motivated us to use them to recognise

the optimal construction assembly that should be chosen in a context. A basic feedforward

neural network component was trained to learn all valid patterns of assemblies possible in a

span of text and to choose the best parse. A successful parse exhausts all the words in the

sentence and ensures local cohesion and assembly at every stage of analysis. We present our

approach for parser implementation in chapter 5. Given the lack of suitable evaluation metrics

for unsupervised parsing identified in the systematic review, we developed a new evaluation

framework, which allowed native speakers to critique the parsing results.

26

1.5 Thesis organisation

The thesis is organised as follows:

Chapter 2 provides a detailed systematic literature review on unsupervised approaches to

parsing, evidence-based insights and findings. This chapter also discusses how the findings

motivate the direction of our approach.

Chapter 3 presents the research methodology adopted in the development of the research.

In this chapter we present the various stages of the research such as identification of research

gaps and parser requirements, development of construction schemas through knowledge

engineering, methodology adopted for parser implementation. The chapter also explains how

native speakers of Welsh and English were involved in the evaluation of the parser outputs

and the methodology used for reporting the results.

Chapter 4 identifies the functional specifications of a syntactico-semantic parser by

synthesising the insights obtained from CG, CxG, CPG and psycholinguistic studies. A detailed

discussion of the concepts that are useful for identifying the parser specifications is made in

this chapter and detailed justifications for this are provided.

Chapter 5 describes the full parser implementation based on the parser specifications

identified in chapter 4. Specifically, it contains the details of each component of the parser

namely: schema definition component, schema assembly component and schema prediction

component. A novel algorithm that makes use of these components to perform incremental

cognitive parsing is presented in this chapter. This chapter presents the schema definitions

for the English language and includes a discussion on how this component was adapted for

use in the Welsh language.

Chapter 6 starts with a discussion on difficulties inherent in measuring the performance of

unsupervised parser, then proceeds to present the evaluation methodologies that were

adopted to measure the parser’s performance. A discussion of the strengths and weaknesses

of our evaluation strategies is also provided here. The coverage of the parser, meaningfulness

of the intermediate schemas recognised by the parser, and the actual parser outputs on a

sample complex sentence are shown in this chapter.

Finally, Chapter 7 summarises the work done in this research briefly and concludes with

remarks about the scope for future work in this area.

27

Chapter 2 A systematic review of unsupervised

approaches to grammar induction

The main deliverable of the thesis is to develop an unsupervised parser for Welsh language.

In order to thoroughly understand the available work in the domain of unsupervised parsing,

we began our work with a detailed literature review. We published our systematic review and

the results obtained from the review in the Natural Language Engineering journal

(Muralidaran et al. 2020). The same article is reproduced here.

In the context of natural languages, grammar refers to a system that underlies the ability or

capacity of human beings to use natural languages. Different theoretical frameworks have

been proposed to formalise the principles of grammar. In the mid-1950s, Noam Chomsky

developed the theoretical foundations of generative grammar (Chomsky 1957, 1965), an

autonomous, formal system of rules that defines and constrains how lexical items are

arranged to create well-formed sentences. This system of rules of well-formedness called

syntax was central to generative theory of grammar. The generative view provided an

alternative to the behaviourist theories of grammar (Skinner 2014; Bloom et al. 1974;

Bloomfield 1962), which were prevalent at the time. There are different schools of the

generative grammar tradition such as transformational grammar (Chomsky 1965, 1968;

Jackendoff 1977; Radford 1981), generalised phrase structure grammar (Gazdar et al. 1985),

lexical functional grammar (Dalrymple 2001; Falk 2011), head-driven phrase structure

grammar (Pollard and Sag 1994; Levine and Meurers 2006). These approaches differ in the

types of rules and representations that they use to predict grammaticality, but the study of

syntactic well-formedness based on certain formal rules of arrangement is central to all of

them. They share the view that only syntactic well-formedness is directly accessible for

analysis and that meaning or semantics can only be studied insofar as it constitutes a

compositional homomorph of syntax. Thus, syntax is treated as an autonomous system

independent of meaning. Another idea related to the generative view of language is that the

differences found in natural languages are just parametric variations of the universal

grammatical principles that are genetically encoded in the human brain. This means that there

is an innate, universal grammar hardwired in the brain with abstract properties such as

distinguishing a noun from a verb, a content word from a function word and so on (Chomsky

2014, pp. 28- 32). Vocabulary, word order and many other language-specific properties are

28

parameters that will be set during language acquisition. In this paper we refer to these diverse

approaches to grammar as generative-formal school of thought.

In contrast, more recently introduced theories of grammars are based on an idea that

structure or syntax cannot be analysed independently of meaning or semantics. Functional

and cognitive linguistics are proponents of this view. In functional theories of grammar,

sentence structures are understood in terms of their functions, which can be semantic (agent,

patient etc.), pragmatic (theme and rheme, topic and focus etc.), syntactic (subject, object

etc.) or discursive (references, cohesion etc.) (Dik 1987, 1991). These theories explain

grammatical structures by grounding their analysis in the communicative situation (Nichols

1984; Bates and McWhinney 1982; Dik 1987,1991; Givón 1983; Matthiessen and Halliday

2009). Cognitive linguistics argues that all knowledge of linguistic phenomena is conceptual

in nature and that grammar is not an independent mental faculty but connected to all other

general cognitive processes and structures (Evans 2006).

While generative theories imply the existence of a universal grammar, cognitive approaches

to grammar treat linguistic structures as cognitive schemas or mappings between form and

function that are inductively learnt through real-life language use. Cognitive grammar

(Langacker 1987, 2008, 2009) and construction grammar (Östman and Fried 2005; Król-

Markefka 2014; Goldberg 2003) are examples of usage-based approaches to describing

human linguistic ability. Cognitive grammar argues that all linguistic units from morphemes,

grammatical categories to syntactic relations are meaningful symbolic units which evoke

different aspects of conceptualisation in the user’s mind during language processing

(Langacker, 1987, 2008). Cognitive grammar is different from generative grammars in three

ways: in its centrality of meaning, meaningfulness of grammar and usage-based nature of

grammar (Król-Markefka 2014). Construction grammar is a theory of grammar where the

primary units of linguistic analysis are constructions that integrate form and content. Form

refers to any combination of phonological, morphological or syntactic patterns or templates

and content broadly refers to the meaning derived from semantics, pragmatics and discourse

structure which are analysed in terms of conceptual structures such as image schemas,

frames, conceptual metaphors, mental spaces etc (Lakoff 1988; Fauconnier 1994; Hampe and

Grady eds. 2005; Lakoff and Johnson 1980). We refer to these different approaches to

grammar as functional-cognitive school of thought.

Out of the two schools of thought, generative-formal school has been highly influential and

dominant in theoretical linguistics. The formal grammars based on generative tradition have

29

found many practical applications as well. Perhaps most prevalently, they are used to describe

the syntax of programming languages and compile and interpret code written in such

languages (Harrison 1978; Moshier 1988). They have also been successfully applied in NLP to

describe and process the syntax of natural languages. Traditionally, grammars used in this

context were defined manually, for example using context-free grammar rules, which are

then extended for computational implementation. Given the complexity of natural languages,

such rules are not exhaustive, and this obviously creates a knowledge engineering bottleneck.

In order to address this problem, data-driven methods have been used since the 1990s to

extrapolate grammar from large corpora by exploiting their statistical properties (Leech 1993;

Briscoe and Waegner 1992; Schabes et al. 1993). The most prominent subclass of such

methods, supervised machine learning, requires syntactic categories and relations to be

annotated manually beforehand. Although the task of manual annotation is much simpler

than that of defining the grammar rules, this involves the development of large annotated

treebanks containing millions of words and thousands of sentences (for instance Penn

treebank has 3 million words of skeletally parsed text (Taylor et al. 2003)). The sheer volume

of training data that should be annotated for supervised learning to perform well still presents

a considerable bottleneck for knowledge engineering. Other supervised learning applications

where annotations do not require specialised expertise have successfully resolved this

problem through crowdsourcing (Cocos et al. 2015). Unfortunately, linguistic expertise is not

readily available to attempt a crowdsourcing approach for creating large treebanks, so

alternative approaches need to be considered. Unsupervised machine learning methods,

which draw inferences from raw or unlabelled data, have started to find applications in

grammar induction from text corpora (Klein and Manning 2004).

While the evolution of natural language processing and computational linguistics thus

proceeded hand-in-hand with the evolution of generative-formal linguistic theories,

computational linguists have often emphasised the divergence of aims between theoretical

linguistics (TL) and computational linguistics (CML), sometimes even questioning the

relevance of linguistic theories to computational linguistics (Paillet 1973; Jones 2007). This is

due to two reasons. Firstly, the generative linguistic theories identify linguistic classes and

describe the structural units purely based on their formal properties without functional

motivations. Typically, these theories provide a non-process, descriptive account of the overall

structural properties of language. However, computational linguistics is interested in

modelling a process account of how linguistic data can be manipulated in specified ways to

yield particular results. For instance, in computational linguistics, mechanisms for accessing

30

and deriving phrase structure rules require additional computational modules which are quite

distinct and divorced from the core competence grammar modules described by the

generative grammar frameworks. A more straightforward view of grammar, where processing

is directly related to linguistic structures and meaning, is preferable. Secondly, with the rise

of statistical methods and their usefulness in various computational linguistic tasks, a theory

of grammar which is empirically grounded and compatible with statistical learning from

linguistic usage is preferred.

Formal linguistic theories and statistical approaches in Computational Linguistics also differ in

their views of ambiguity resolution. Linguistic theories focus on the human ability to recognize

and form grammatical sentences. They state the formal principles that characterise the

human linguistic capacity as a system and thus do not concern themselves with resolving any

grammatical ambiguities. However, statistical approaches aim to assign the most probable

structure out of all possible grammatical structures for a given utterance. Thus, ambiguity

resolution is at the heart of Computational Linguistics. In this context, the functional-cognitive

school has the advantage of mapping the linguistic structures to meaning directly. It

emphasises usage-based learning, maintains the centrality of meaning in linguistic analysis,

treats linguistic structures as form-function mappings called constructions and approaches

syntactic well-formedness as successful symbolic assembly of form-function pairs. It holds

that it is the meaning that can be accessed directly, and the syntax is learnt inductively

through real-life language use. This has implications for grammar induction, which is defined

as the process of learning the formal rules from a set of grammatical sentences with or

without structural annotations (D’Ulizia et al. 2011). In a cognitive view of grammar,

grammatical categories and relations are not available beforehand but are themselves

grounded in patterns of usage and conceptualisations associated with them. According to

Cognitive grammar, the essence of a grammar lies in conceptualisation whereby a symbolic

link is construed between a linguistic form and its meaning. Induction of a sentence structure

becomes the task of learning a composite structure as a form-meaning assembly of the

components of the sentence. Inducing such form-meaning pairs from raw text can be

challenging due to having access to words as symbols. The functional-cognitive school has not

successfully explained how exactly this usage-based induction of grammar can be

computationally modelled. A possible approach can be to identify primitive form-meaning

pairs that can be encoded from basic cognitive profiles or if they can be induced from local

statistical dependencies. Unsupervised grammar induction then becomes the task of inducing

31

grammatical categories and relations by identifying the basic word-meaning pairs and

learning the patterns of their assembly.

The influence of generative-formal school of thought on language processing is evident from

the earlier rule-based parsers to the later supervised models of parsing. A systematic study of

functional-cognitive influences on unsupervised approaches to grammar induction has the

potential to highlight any gap between the grammatical theories and the computational

processing models of grammar. While surveying the parser implementations, we look for the

theoretical underpinnings of these studies, their evaluation methodologies, identified

baselines of evaluation and their relative strengths and weaknesses. Apart from informing us

of the state-of-the-art methods and baselines, a thorough literature review can also help us

identify domain-independent computational methods that might be usefully adapted to

usage-based grammar induction.

This literature review takes the linguistic perspective to grammar induction. There is a

statistical perspective of grammar induction that is taken in Machine Learning. It focuses on

defining the model as the set of parameters and the ways they are linked together to

determine the probability of a grammatical sentence. Here, an objective function is defined

to allow selection of a single estimate of the parameters using a search approach that

performs such estimation efficiently. These aspects are outside of the scope of the review.

Instead, we concentrate on the structural aspects of defining the model through the use of

grammar.

2.1 Methodology

Systematic reviews aim to identify, critically appraise, interpret and summarise all currently

available evidence in relation to a given research question. Systematic reviews are common

in medical and healthcare literature, but they are also becoming increasingly useful for other

fields (Petticrew 2001). They follow strict scientific protocols based on explicit and

reproducible methods designed to limit bias and random errors. Such protocols include

multiple steps, typically: (1) identifying a set of well- defined research questions, (2) defining

strict inclusion and exclusion criteria, (3) searching relevant literature databases using a

carefully developed set of search terms, (4) assessing the quality of studies, (5) systematic

extraction, abstraction and synthesis of evidence by multiple investigators independently.

Consequently, they provide reliable conclusions and often identify research gaps to guide

future research. We followed the systematic literature review methodology proposed by

32

Kitchenham and Charters (2007). It involves all the 5 steps of protocols mentioned above.

Figure 2.1 shows the steps involved in the systematic review.

Figure 2.1 Systematic review protocol

2.2. Research questions

This review aims to determine the influences of functional-cognitive school on unsupervised

approaches to grammar induction in NLP). It tries to achieve that by conducting a systematic

literature review on the state of the art in Computational Linguistics and NLP that lie at the

intersection of the following domains: usage-based theories of grammar, unsupervised

approaches to computational grammar induction, and grammar representation. The

intersection ensures that the study could be about any of the following - unsupervised parser

implementation, a computational study or experimental study related to functional-cognitive

school of thought, studies related to representation of grammar. The following research

questions (RQs) are addressed while synthesising information obtained from unsupervised

parser implementations.

RQ1. Which types of grammar theories have been the subjects of grammar induction?

RQ2. Which methods have been employed to support grammar induction?

RQ3. Which features have been used by these methods for learning?

RQ4. How were these methods evaluated?

RQ5. In terms of performance, how do these methods compare to one another?

33

RQ1 is concerned with the types of grammars that are amenable to automated induction.

Particularly we are interested in the ways in which these grammars are represented.

RQ2 aims to identify a range of methods and techniques used to implement grammar

induction approaches. Furthermore, we want to examine how these approaches address the

notion of grammatical productivity, which is defined as the human capacity to keep creating

new grammatical expressions by manipulating a finite set of linguistic resources.

RQ3 focuses on the types of features used by these methods and their utility for grammar

induction. We also want to explore the ways in which such features can be extracted together

with the associated costs, e.g., in terms of manual effort involved (e.g., for annotation) and

the volume of data needed to train the methods.

RQ4 is concerned with the performance of existing grammar induction methods. In particular,

unsupervised methods are known to be notoriously difficult to evaluate. To that end, we want

to identify which evaluation measures have been used in practice and whether they are

transferable across different methods thereby allowing them to be compared and ultimately

establish the baseline performance as part of RQ5.

RQ5 aims to consolidate the findings from various studies and interpret the results obtained

by comparing their relative strengths and weaknesses. It can help us understand the

implications of these results for future research.

2.3. Search strategy

In order to efficiently identify a set of articles relevant to the given research questions, we

compiled a list of appropriate search terms. First, we identified a set of relevant domains and

then compiled a list of keywords related to each domain. Search queries based on these

keywords were tested against relevant literature databases, which include ACM Digital

Library, Cardiff University Library Search, DBLP, Google Scholar and IEEExplore. The abstracts

and keywords from the retrieved results were screened to check their relevance and identify

other pertinent search terms including synonyms and spelling variations. The list of search

terms was refined iteratively in this manner until no significant changes could be made. Table

34

2.1 provides the finalised list of search terms, where a wildcard character was used to address

inflection and derivation. Finally, a Boolean OR operator was used to combine the search

terms for each domain. These subqueries were then combined using a Boolean AND operator.

Table 2.1 Search query construction

Domain Search terms

Usage-based theories of

grammar

gramma*

gramma* cat*

syntax

cognitive

construction

usage-based

form-meaning

construal

schema*

linguistic

functionalist

pattern

Computational grammar

induction

induction

inference

acquisition

parsing

learning

processing

analysis

synta* struct*

parse

chunking

unsupervised

Representation of

grammatical structure

representation

formalism

model

35

framework

finite-state

automata

incremental

trees

networks

assembl*

neural net*

graphs

shallow pars*

Review papers on grammar

induction

survey

review

bibliographical study

meta-analysis

2.4. Selection criteria

The retrieved articles were manually curated with respect to their relevance to the given set

of research questions. To formalise the curation process, we defined a set of inclusion and

exclusion criteria.

Inclusion criteria

1. The article has to contribute to the field of natural language processing or cognitive

linguistics.

2. The article has to focus on grammar induction.

Exclusion criteria

1. Psycholinguistic studies which look at neurobiological factors of linguistic

phenomena.

2. Studies which are language-specific or construction-specific.

3. Articles that were not peer reviewed.

4. Certain types of publications such as editorials, informal articles, tutorials and

posters.

36

5. Articles written in a language other than English.

Apart from this, we also followed up the citations from the studies included in our list and if

any of those cited studies passed our inclusion criteria, we updated our selection list with

these studies as well.

2.5. Quality assessment

All selected articles underwent quality assessment based on the following criteria:

◦ The research goals, methodology and contribution to the field are clearly defined.

◦ Data used in experiments are described with sufficient detail.

◦ The results are reported using theoretically sound evaluation metrics and

compared, where appropriate, against a relevant baseline.

◦ Limitations of the study are carefully analysed.

Figure 2.2 Search and selection of papers for systematic review

The results returned by the top ten pages only were chosen and exclusion criteria were

applied on them which resulted in 198 articles. A total of 190 articles that remained after

removing the duplicates (i.e., the same study retrieved from multiple data sources) were

assessed according to inclusion criteria in section 2.4, which reduced the number of articles

to 42. All the 42 studies described their goals, methodology, experiments, results and analysis

according to the quality assessment criteria listed above. This process of searching and

selecting the appropriate papers for systematic review is shown in Figure 2.2. One study,

which was known to be relevant, was not retrieved, but was added manually, thus providing

a total of 43 studies reviewed here.

37

2.6. Data extraction

To answer our research questions, evidence was extracted from the final set of 43 articles to

review and formatted according to predefined data extraction cards. The cards populated

with information from articles describing practical implementations had the following fields:

title, grammar theory, grammar representation, computational model, methodology,

features, dataset, evaluation metrics, results and summary. The cards populated with

information from articles describing theoretical and experimental studies had the following

fields: title, aim, method, experiment, conditions, result, insights and summary. This

systematic data extraction allowed us to compare the evidence obtained from various studies

and support generalisation from the observed evidence. The studies considered in our review

and their references can be accessed from Appendix A.

2.7. Data synthesis

Table 2.2 provides a brief summary of the extracted data. Towards generalising the findings,

we stratified the articles across different aspects considered in Table 2.2. They help us

quantitatively determine the influence of functional-cognitive school on the studies retrieved

from the data extraction step. Each study can be from one of these three categories: (a) a

computational study or an experimental study on grammar induction or processing (b) an

implementation of unsupervised grammar induction (c) a survey or evaluation paper on

grammar induction. Each category of study offers different kinds of information. Data

obtained from experimental studies on human subjects are goal, methodology, experiment,

result, insights and summary. Data obtained from survey or evaluation papers is a list of

findings from the survey. Data obtained from implementation studies are theory of grammar,

representation of grammatical productivity, processing grammatical productivity, output

representation, evaluation strategy, scale of training, features used for grammar induction,

approach or methodology behind the implementation. The studies used for data extraction

and a brief list of findings synthesised from them are included in the Appendix A.

The synthesis of data analysed along these aspects can answer the research questions

mentioned in section 2.2. While most of these aspects are self-explanatory, the rationale

behind identifying these aspects needs a discussion before we present them in detail later.

Theory of grammar aspect tries to understand the linguistic school of thought an

implementation is influenced by. Representation of grammatical productivity and Processing

38

grammatical productivity are two aspects which reveal how a study approaches syntactic

productivity computationally. To treat productive structures in natural languages with

recursive, hierarchical application of productive formal computational operations can

indicate the influence of generative-formal thought on the model of parsing. Through the two

aspects said above, we see if the approach to grammatical productivity in a given study is

purely in a generative-formal sense or if it explicitly or implicitly is amenable to a functional-

cognitive standpoint. Representation of grammatical productivity is understood from how the

study treats the productive elements of the language in its output: a hierarchical arrangement

of productive linguistic units in the form of constituency or dependency trees shows a

generative-formal influence. Any computational representation that does not implicitly

assume recursion and hierarchy but reveals productivity of language through meaningful

assembly of usage patterns indicates functional-cognitive influence. Processing grammatical

productivity is understood from how the decoding is done in the parsing model. An

incremental decoding indicates that grammatical productivity is processed incrementally,

even partial non-sentences can have their parse, and not all words of the sentence need be

available before parsing begins. Such computational models are compatible with cognitive

grammar ideas.

The aspect Output representation reveals the various types of grammar outputs found in the

data. These output representations can sometimes be formally similar or in some cases

intrinsically tied to the grammar itself. For example, the construction slots as discussed in

(Dunn 2017a, 2017b) are filled with syntactic phrases and are formally equivalent to a phrase

structure in a constituency tree. However, given the overall scheme of the paper, which tries

to learn an optimal construction grammar by allowing various levels of representation from

lexical to semantic; we see that the slot could potentially be filled with any entity, even

entirely functional ones. Thus, we treat the construction slots as a distinct kind of output

representation. Similarly, the directed multigraph learnt by the ADIOS implementation (Solan

et al. 2004) is directly equivalent to the Context Free Grammar learnt by the system. However,

we see that the method itself is amenable to extending learning form-function pairs that it is

useful to recognise as different from a regular constituency or dependency tree. Evaluation

strategy identifies how the performance of the system is judged. Scale of training indicates if

the learning is fully unsupervised or semi-supervised. Finally, the approach or methodology is

an aspect that identifies what is the computational method used for grammar induction in a

given study.

39

Another point to note is that many studies can fit in more than one of the categories of the

relevant aspect. For example, the same study can show evidence for multiple types of

evaluation strategies in different types of experiments; or the same study can be analysed as

adopting multiple approaches to grammar induction. In all such cases, we include the study

in all the relevant categories and the total counts shown in Table 2.2 reflect that. The details

of the actual data extracted can be found in Appendix A.

Table 2.2 Criteria and their values synthesised from 43 studies

Criteria Classification Total

Type of study Implementation of grammar induction 33

Theoretical or Experimental studies 7

Survey or Evaluation paper 3

Theory of grammar Generative-formal 22

Functional-cognitive 3

Theory- neutral 8

Representation of

grammatical

productivity

Hierarchical 31

Non-hierarchical 2

Processing grammatical

productivity

Incremental 1

Non-incremental 32

Output representation Constituency trees 14

Dependency trees 11

A directed multi-graph of patterns learnt 4

Construction slots or Templates 2

Transient structure 1

Common cover link set 1

40

Evaluation strategy* Comparing against gold standard treebank

annotation

25

Performance of the learner in grammaticality

judgement tasks

2

Agreement between two highly-constrained

models on disjoint corpora

1

Qualitative evaluation 1

Maximum-coverage, minimum-size, stability

measures

3

Agreement with CFG grammar that generated

the learning data

2

Features used** POS tags 18

Valence, Direction of attachment 10

Distributed representation of words 5

Word alignments 1

Chunks or Bracketed sequences 1

Orthographic cues 2

Heuristic rules 4

Construction association measures 2

Grammar induction

approaches***

Top-down dependency grammar models and

their variations

10

Exemplar based models and their variations 2

Distribution based 3

Clustering approaches 2

41

Heuristic approaches 2

Automatic Distillation of Structure (ADIOS) 4

Probabilistic Context Free Grammar (PCFG) 3

Chunkers and their extensions 1

Data Oriented Parsing and variations (DOP) 4

Construction grammar induction 2

* Discrepancy in total count. Study number 26 in the Appendix A uses 2 different evaluation methods.

** Discrepancy in total count. Different studies use multiple features.

*** Study numbers 10 and 32 in the Appendix A use more than one approach for grammar induction

These different aspects of synthesis are discussed in the following sub-subsections.

2.7.1 Theory of grammar

In the introduction of this chapter, we reviewed different theories used to formalise the

notion of a grammar. We classified all studies describing practical implementation of

grammar induction with respect to the underlying grammatical theory. We could identify 3

classes of theoretical views underlying the implementation. They are:

A. Formal-generative grammar implementations which explicitly learn a system of rules

or constraints that describe how lexical items are arranged in order to form a

grammatical sentence.

B. Functional-cognitive grammar implementations in which the linguistic capacity is

explicitly modelled as an inductive process based on language use in practice.

C. Theory-neutral implementations are amenable to be adapted to incorporate

functional-cognitive insights.

We distinguished between Functional-cognitive and theory-neutral implementations when

the latter did not necessarily learn a usage-based representation of grammar as the output.

We found that although domain-independent bottom-up methods can be used to extract

usage-based schemas, most of these studies learnt a formal grammar with their output

42

represented by the likes of constituency or dependency trees. Recognising such theory-

neutral implementations thus becomes important because they can be adapted to learn fully

usage-based grammar in an unsupervised fashion.

We found that the vast majority (22 out of 33) of the studies showed the influence of formal-

generative school of thought in their parsing models. A top-down dependency grammar

model for unsupervised parsing exemplifies this view. Given a sequence of words, the model

starts with a head, attaches a sequence of arguments to the left or right and generates a

dependency tree in a top-down manner. Here, the dependencies are formal syntactic

relations which are defined a priori by linguistic theories and are learned statistically. Klein

and Manning’s (2004) corpus-based induction of syntactic structure laid the foundation for a

statistical generative model to unsupervised dependency parsing. Overall, we found that

there were eleven studies (out of 22) that implemented the top-down dependency model of

grammar or its variations (Klein and Manning 2004; Spitkovsky et al. 2010, 2011, 2012; Sangati

2010; Mareček and Žabokrtský 2012a, 2012b; Gillenwater et al. 2011; Boonkwan and

Steedman 2011; Headden et al. 2009; Dominguez and Infante-Lopez 2011). The remaining 11

implementations (out of 22) adopted different methods to learn formal grammar. They are

described below.

Snyder et al. learn constituency trees using an unordered tree alignment model where word

alignments from bilingual corpora with their parts of speech are used as features to loosely

bind the parallel trees from different languages (Snyder et al. 2009). An exemplar-based

approach to unsupervised parsing was proposed by Dennis (2005) where the parse tree of the

target sentence is obtained by aligning it with nearest neighbour exemplar sentences and

choosing a constituency tree with minimum cost for alignment. There were three studies that

used distributed representations of words in deriving the parsed trees. One was by Brooks

(2006) where distributional representation of words was used to segment text into

constituents and heuristics were then applied to reduce the number of possible candidates

(Brooks 2006). Seginer’s algorithm (2007) captures the skewness of syntactic trees in its

syntactic representation, restricts the search space by processing utterances incrementally

(like humans do) and relies on the Zipfian distribution of words to guide its parsing decisions.

The other study was Søgaard’s (2011) implementation which presents a very different

approach to unsupervised dependency parsing. They explore the view that dependency

structure can be treated as a partial order on the nodes in terms of saliency or centrality. Their

implementation assigns a dependency structure to a sequence of n words in two stages. In

43

the first stage they decorate n-nodes with word forms and distributional clusters, construct a

directed acyclic graph in O(n^2) and rank the nodes using iterative-graph based ranking (Brin

and Page 1998). In the second stage, a parse tree is constructed from the ranked list of words

(Søgaard 2011). Another implementation of Ponvert et al. (2011) starts with learning chunks

using standard probabilistic finite state models and then cascades this chunker to achieve

constituent parsing. Two studies used heuristic models (Santamaria and Araujo 2010; Araujo

and Santamaría 2010). One study used a clustering approach and explicit formal syntactic

features to learn constituency trees (Reichart and Rappoport 2008). Reichart and Rappoport

(2008) propose a labelled grammar induction by starting from Parts of Speech tags (POS tags),

followed by the induction of initial brackets, subsequently labelling them and finally clustering

the label outputs using syntactic features. There were two studies (Jin et al. 2018; Adriaans et

al. 2000) that treat parsing as a task of learning the probabilistic context-free grammars. In

summary, these 22 studies exhibit the formal-generative view either implicitly or explicitly.

Only three studies explicitly considered grammar as a usage-based system and modelled the

grammar induction process from this theoretical perspective. The use of a construction

grammar induction algorithm is an example of this type of implementation (Dunn 2017a,

2017b). Given a corpus of sentences, this method statistically allows all potential linguistic

generalisations from the observed sentences and chooses the optimal inventory of

construction slots that can generalise them. In one study, Jonathan Dunn (2017a)

demonstrates the learnability and falsifiability of construction grammar. Learnability is the

degree to which the optimum set of constructions can be consistently selected from the large

set of potential constructions; falsifiability is the ability to make testable predictions about

the constructions present in a dataset. The study evaluates these two by performing an

induction task. In another study, the same author describes in detail how a construction

grammar learner can be implemented and evaluated (Dunn 2017b). An algorithm that

achieves this by using frequency and association measures of co-occurrence at multiple levels

of analysis (lexical, syntactic and semantic levels) is proposed. Marques and Beuls (2016)

propose proof-of-concept evaluation strategies for computational construction grammars.

They take inspiration from existing measures in semantic parsing and machine translation and

propose two new metrics for this evaluation task. These 3 studies complete discussion of

grammar induction or evaluation from an explicit usage-based view thus showing their

compatibility with functional-cognitive school.

Finally, the remaining eight studies proposed methods that can learn significant usage

44

patterns bottom up, but they were explicitly not framed to learn usage-based grammars.

These methods were used to learn constituency trees and CFG rules and evaluated against

formal syntactic annotated trees. The ideas themselves need not be tied to learning formal

syntactic trees and can be easily adapted to incorporate ideas from functional-cognitive

theories. We call such studies theory-neutral. In our review, we found two major

implementation methods that were theory-neutral. First method was the Automatic

Distillation of Structures (ADIOS) algorithm, which incrementally learns a model of

morphosyntax from raw input by distilling structural regularities and contextual cues. At the

end of learning, a directed multigraph containing an abstraction of patterns, which can in turn

be represented as context-free writing rules, is produced. The second method was Data

Oriented Parsing (DOP) where an unsupervised DOP model allows all possible binary trees to

be built bottom up and computes the most probable tree from the shortest derivations of

sentences. This model can be used to explain both rule-based and exemplar-based properties

of a natural language.

There were four studies which used the approach of ADIOS to learn significant syntactic rules

from data without any annotation whatsoever (not even POS tags) (Solan et al. 2004; Brodsky

and Waterfall 2007; Berant et al. 2007; Edelman et al. 2005). One of these implementations

by Brodsky and Waterfall (2007) proposed a method for evaluating the grammar learned by

the ADIOS system even in the absence of any gold treebank for quantitative evaluation, or

human judgement for qualitative evaluation. Their observation is that when two highly-

constrained models, which are trained on disjoint corpora, agree very closely on the

acceptability of a given test sentence, it cannot be coincidental. An agreement between two

such models indicates that the scoring of acceptability based on this agreement is correct.

This was the basis of their evaluation method.

For Data Oriented Parsing and its variations, we identified four implementations in our review

(Bod 2006, 2009; Zuidema 2006; Post and Gildea 2013). The authors point out that their

implementation methodology is compatible with the usage-based theoretical views such as

construction grammar, but they have used the method to learn constituency trees and

evaluate them against a gold treebank. By allowing all possible binary tree substructures that

combine to form the final parse tree through a formal operation called labelled substitution,

DOP obtains the optimal parse by computing the most probable tree from among the shortest

derivations of sentences. We consider these eight studies as theory-neutral implementations.

45

2.7.2 Representing grammatical productivity

We have previously introduced the notion of grammatical productivity as the speaker’s

capacity to produce novel utterances of virtually limitless length using a finite number of

linguistic resources at hand. In our review, we noticed that there were two ways to represent

grammatical productivity in all studies considered. They are:

A. Hierarchical arrangement of productive linguistic units, e.g., constituency and

dependency trees.

B. Non-hierarchical representation of productive units, e.g., sequence of construction

slots.

We found that 31 out of 33 studies represent grammatical productivity hierarchically whereas

the remaining two studies do it non-hierarchically (Table 2.2). Here we noticed that the 22

studies that take the generative-formal view of grammar represent this productive capacity

of natural language as a constituency tree or a directed dependency tree with either phrasal

hierarchy or the head-dependent relations. The three studies on construction grammar

implementation and evaluation represent their output as a sequence of construction slots,

which is non-hierarchical. The study itself fills the construction slots with phrase structure

heads which are indeed hierarchical. This might raise the question as to why this output is

considered non-hierarchical. The rationale is that the study indeed allows all types of

information, from lexical to semantic, to fill its construction slots and demonstrates the

feasibility of learning construction grammar. In the larger scheme of the paper, we recognize

that the authors learn the construction grammar with various co-occurrence metrics and

therefore the fact that phrase structures are filled as entries in the construction slots does

not make it central to the idea of the construction slot itself. The construction slot

representation is perfectly compatible with any type of assembly of symbols which are non-

hierarchical. It is not inherently motivated to be filled with formal phrasal heads and hence

we identify the three studies as showing a non-hierarchical approach to representing

grammatical productivity. Finally, the eight studies that are theory neutral in the sense

defined in the previous section 2.7.1 represent their output hierarchically. The four DOP

implementations learned how phrases should be attached in a constituency hierarchy. In the

four ADIOS implementations, the structural patterns distilled from the data are equivalent to

the recursive phrase structure rules.

46

2.7.3 Processing grammatical productivity

The next aspect that we assessed was how the processing of grammatical structure was

treated in each study. We identified two approaches:

A. Incremental processing

B. Non-incremental processing

In this study, by incremental processing of grammatical productivity, we mean that the

analysis of grammatical structure of a sentence is incrementally updated when new

sequences of words are observed; not a model which starts with all the n words w1, w2... wn

and which treats parsing as establishing or filling the grammatical relations between those n

words. As discussed in Section 2.7, in incremental decoding even partial non-sentences can

have their parse, not all words of the sentence need be available before parsing begins. When

the decoding itself is incremental in an implementation, we call the processing of grammatical

productivity incremental. Otherwise, it is non-incremental. Incremental parsing is

psycholinguistically motivated. Data synthesis revealed that several experimental and

theoretical studies deemed incremental parsing suitable for grammar induction (Cramer

2007; Frank et al. 2012). According to functional-cognitive school, grammatical structure of a

sentence is almost entirely overt and it does not conceal a deeper level of grammatical

organisation (Langacker 1987 pp.46-47). A sharp distinction between competence (speaker’s

mental grammar) and performance (sentence production and processing) is also not

maintained (Jensen 2014). Cognitive grammar literature also proposes incremental

contribution of components to the holistic conceptual structure of a text (Harrison et al. 2014

pp. 22,100). These properties make functional-cognitive school compatible with the

psycholinguistic literature. Although generative grammars can also be used to parse a

sentence incrementally, the grammar formalism and derivation/parsing strategy are

divorced. As mentioned in the beginning of the chapter, ‘mechanisms for accessing and

deriving phrase structure rules require additional computational modules which are quite

distinct and divorced from the core competence grammar modules described by the

generative grammar frameworks.’

In our review, we found that 32 out of 33 studies were non-incremental in processing the

grammatical productivity whereas one study learned grammar incrementally. The reason to

distinguish these two types is to see if an implementation can be extended to incorporate

47

functional-cognitive insights. The incremental parsing algorithm by Seginer (2007) uses a new

link representation for syntactic structure which allows a prefix of an utterance to be parsed

before the full utterance has been read.

It should be noted that there could be studies where the unsupervised model that learns

significant grammatical patterns could be incrementally trained. Corpus-level incremental

training is an important consideration for any scheme of grammar learner. However, we

explicitly did not consider it a factor of analysis in this section because its importance is equally

relevant for grammar learners of any theoretical persuasion. We wanted to understand what

aspects can reveal the influence of one grammatical school or the other. For example, the

ADIOS method extracts statistical patterns incrementally from a corpus of sentences. When

new sentences are observed in the corpus, the algorithm learns new patterns and updates

the directed multigraph. However, to decode the parse of a target sentence, the entire

sequence of words of the target sentence is considered non- incrementally. We do not count

such studies as processing the grammatical productivity in an incremental fashion.

2.7.4 Output representation

The next aspect of analysis is the output representation of the grammatical structure of a

sentence. We identified six types of output representations from the 33 studies. They are:

A. Constituency trees

B. Dependency trees

C. A directed multi-graph

D. Construction slots or templates

E. Transient structure

F. Common cover link set

Let us consider an example sentence and illustrate these output representations. For a

sentence ‘The man cut an apple with a knife’, the various output representations after

grammar induction are illustrated in Figures 2.3 to 2.7.

A Constituency tree shows the phrase structures that make up the sentence. In this analysis

every sentence is broken down into smaller phrases which combine with other such phrases

to form a larger phrase until the entire sentence is analysed as well-formed according to the

phrase structure rules. This is shown in Figure 2.3.

48

Figure 2.3 Constituency representation

Figure 2.4 Dependency representation

In dependency analysis, a sentence is analysed in terms of the words (constituents) and their

relationships. A dependency tree is a directed graph where each node is a word (constituent),

child nodes are marked as dependents of parent nodes and the edges between the

dependents and heads indicate their syntactic relationship. This is shown in Figure 2.4.

ADIOS implementations learn a directed multigraph where incremental update of usage

patterns is done based on structural similarities and statistical information present in the text.

In this technique frequent strings of similar structure are treated as significant patterns and

these patterns are treated as ‘Equivalent Classes’ which means members of the same

equivalent class are valid alternatives in a usage pattern. ADIOS algorithm repeatedly applies

its pattern recognition algorithm on all sentences in a text and outputs one directed

multigraph showing both patterns and equivalent classes. A sample directed multigraph with

just 3 sentences is shown below in figure 2.5. More details can be obtained from (Solan et al.

2004; Brodsky and Waterfall 2007; Berant et al. 2007; Edelman et al. 2005).

49

Figure 2.5 An initial directed multigraph for a simple corpus of three sentences

Constructions are productive and schematic form-meaning mappings that differ in their size,

level of schematicity and their internal complexity. When it comes to construction grammar,

the difficulty is not so much about the representation of constructions as much it is about

learning and evaluation of these constructions. One representation that we identified in our

review is a simple sequence of construction slots. For the given example, a construction slot

sequence could be [NN PHRASE - VB PHRASE - NN PHRASE - PREP PHRASE] or [NP <ANIMATE>

– VB <TRANSFER> – NP <ANIMATE> – NP] or [NN – “give” – NP <ANIMATE> – “a piece of” –

NP <ANIMATE> – “mind”]. It should be noted that the construction slot can be filled with

phrasal heads, semantic information and idioms, lexical information and so on. It is not tied

to any particular type of formal linguistic category. These slots can be filled with any type of

symbolic assembly with a meaningful form-function mapping. In our review, we found that

the implementations adopting this output structure are compatible with functional-cognitive

school of thought even though the authors themselves have used syntactic and semantic

parse information to demonstrate that construction grammars are indeed learnable. More

about the learning method and its relevance for future research is discussed in section 2.8.

In computational linguistics it is common to view both linguistic production and parsing in

terms of a chain of consecutive operations over the linguistic structure. This chain of

operations is called a transient structure in Fluid Construction Grammar. There was one study

in our review which used transient structure as its output representation after parsing.

(Marques and Beuls 2016). An example of a transient structure is shown in figure 2.6.

50

Figure 2.6 Transient structure

Seginer (2007) introduced a representation of syntactic structure that is similar to

dependency structure but suitable for incremental parsing. It is based on links between a pair

of words and it defines the shortest common cover link sets for a given utterance and its

bracketing. An example of the shortest common cover link set for a sentence is given in figure

2.7. Although it looks like a dependency structure, there are two differences. The first

difference is in the linking of the noun phrase ‘the boy’ where the link goes back and forth

between the two words, which is not the case in a dependency tree. The second difference is

based on the property called adjacency, which makes a connection between ‘know’ and ‘the’.

Such a connection does not occur in a standard dependency tree.

Figure 2.7 Shortest common cover link set

The distribution of the output representations for the 33 studies is shown in figure 2.8 and

table 2.2. It can be seen from this distribution that overwhelmingly 25 studies out of 33

represent their outputs in the form of constituency or dependency trees.

51

 Figure 2.8 Output representations

2.7.5 Evaluation strategies

The following evaluation strategies have been extrapolated from the 33 studies considered:

A. Comparison against the gold standard.

B. Performance of the learner in grammaticality judgement tasks.

C. Comparison of models trained on disjoint corpora with respect to sentence

acceptability.

D. Qualitative evaluation.

E. Maximum-coverage, minimum-size, stability measures for a usage-based grammar.

F. Output is compared against an artificial grammar that generated the test corpus.

Comparing the system output against the gold standard is a widely used method for

evaluating performance of NLP systems. In the context of formal grammars, this strategy

requires a treebank, a parsed corpus in which each sentence is manually annotated with

syntactic relations to be used as the gold standard. Here, the treebank annotations need to

be compatible with the system output, e.g., if the system learns a directed dependency tree

as its output representation, then the gold standard also needs to be annotated with the

directed dependencies. Manual annotation involves a variety of activities such defining an

annotation schema, writing annotation guidelines, training experts for the annotation task

and achieving consensus (Neves and Ševa 2019). Consequently, this time-consuming and

labour-intensive process may create a bottleneck in this evaluation strategy when

application-specific annotations or data are required. In addition, given the inductive nature

of usage-based grammars, the use of a gold standard, which inevitably reflects the theoretical

52

commitments of human annotators, seems counter-intuitive (Clark and Lappin 2010).

Nonetheless, we observed that the majority of practical implementations (25 out of 33) were

evaluated against the gold standard treebank. This was facilitated by the fact that most

methods considered represented their outputs as either constituency or dependency trees

for which the existing treebanks such as Penn Treebank or Prague English Dependency

Treebank can be re-used.

Alternatively, a grammar induction system can be evaluated by testing how well it performs

in grammaticality judgement tasks. For example, the Goteborg multiple-choice test consists

of 100 sentences, each containing an open slot. There would be three choices for each

question and one of them should be filled in the open slot for the sentence to make the

sentence grammatical. If a system has learned the grammar of a language, the open slot

would be filled with the correct option. Solan et al. (2004) and Edelman et al. (2005) subjected

their systems to such tasks in the form of multiple-choice questions used in English as Second

Language (ESL) classes. The authors demonstrated that as the number of sentences processed

by the system increased so did the proportion of multiple-choice questions answer correctly.

The performance of the system proposed by Solan et al (2004) was also compared against

that of a bigram language model i.e., a language model where probability distribution of every

two-word sequence in a text is calculated. The ADIOS model outperformed the bigram model

by answering 60% of questions correctly which is equivalent to the average score of 9th grade

ESL students. The bigram precision benchmark is 45%. This is an extrinsic evaluation of the

grammar induction system by looking at its performance in the context of its application.

Unlike the gold standard evaluation, this pragmatic approach does not constrain the system

by conformance to the existing theoretical frameworks and in that respect seems to be better

aligned with the usage-based nature of grammars considered.

Similarly, in an attempt to remove the constraint of a priori imposed grammatical structures,

Brodsky and Waterfall (2007) base their evaluation on an assumption that it is highly unlikely

for two highly-constrained models trained on disjoint corpora to coincidentally agree on

whether a sentence is grammatically acceptable or not. This idea is similar to that of inter-

annotator agreement, where, in the absence of ground truth, high reliability implies validity.

In other words, if two independently produced outputs agree, then it is considered to be valid.

The authors have proposed a precision-testing scheme based on the above observation. We,

however, suggest making use of existing inter-annotator agreement measures, which take

into account chance agreement.

53

Whereas all of the above evaluation strategies use quantitative measures of performance,

Dunn (2017b) proposes a qualitative assessment of representative examples of constructions

from various subsets of corpus in addition to the quantitative evaluation metrics.

Representative examples of constructions learnt by the system could be as follows: [Wh-

Determiner] + [Modal] + “be” + [Past-Participle] is a productive schematic representation

generalised from multiple usages in the corpus such as ‘that will be provided’, ‘that can be

played’, ‘which will be represented’, ‘that should be made’. Qualitatively, one can verify that

this schema covers relative clauses with passive verbs that generalises to many

complementizers and modal verbs. However, as we can see, the above schema does not cover

relative clauses with various tense forms. In this manner many other schematic

representations such as “to” + [Verb] + [Determiner] + [Noun], [Noun] + [Preposition] +

[Determiner] + <religion>, [Preposition] + “the” + <location> can be analysed from various

subsets of the corpus to see how good are they close to speaker intuitions, what type of

generalisations these schemas represent. The problem with qualitative evaluation is

obviously the human effort involved in manually checking the representative construction

patterns from various subsets of corpus. Also, ascertaining what constitutes a reasonably

good number of representative examples for evaluation poses a problem. The question of the

psychological validity of the schemas arises when an individual evaluates the constructions.

Subsequently the same author presented their quantitative evaluation metrics to evaluate

the construction learner (Dunn 2017a; 2017b). They proposed 14 multi-unit association

measures whose frequency and association strength can be used to quantify a model of

constructions. From many potential construction grammars that could be learnt, they used

the degree of coverage and the size of grammar to choose an optimal grammar.

Finally, a Context Free Grammar (CFG) learnt by the system can be compared against the

original CFG used to generate the test sentences. Edelman et al. (2005) evaluated their system

using this method. A hand-crafted CFG was used to generate a corpus of sentences, a large

portion of which is used for training and the other smaller portion is used for testing. The

system learns a set of patterns which can be equivalently represented as context-free rules.

The rules learnt by the system are compared against the manually defined rules. This

approach suffers from a similar drawback as the gold standard approach. The idea of

developing a grammar to generate a large gold standard automatically avoids the drawbacks

of generating gold standard annotations and can measure the degree to which unsupervised

approaches can recreate complex models. However, any such grammar will always be an

54

approximation and as such may not be representative of a language studied. Even more so,

knowing that natural languages are mildly context-sensitive (Joshi 1985), the use of CFGs for

this purpose may not be sufficient.

Table 2.3 Factors relevant for evaluation

Property

Evaluation strategies

E1 E2 E3 E4 E5 E6

Intrinsic evaluation ✓ ✓ ✓ ✓

Extrinsic evaluation ✓ ✓ ✓

Manual labour ✓ x ✓

Multiple correct solutions ✓ ✓ ✓ ✓

Comparison of systems based on their performance should consider the differences in

datasets used for evaluation. There are distinctions between evaluations done on artificial

datasets produced with hand-crafted CFG rules, on sentences used in ESL multiple choice

questions, CHILDES datasets and broad-coverage datasets. For grammar induction this

determines how hard the task may be. Table 2.3 shows the factors that are relevant to apply

an evaluation strategy and marks which factors are applicable to which methods.

 E1 - Comparing against gold standard treebank annotation

 E2- Performance of the learner in grammaticality judgement tasks

55

 E3 - Train two highly-constrained models on disjoint corpora and evaluate how they agree or

disagree on sentence acceptability

 E4 - Qualitative evaluation

 E5 - Maximum-coverage, minimum-size, stability measures for a usage-based grammar

 E6 - Agreement with CFG grammar that generated the learning data

Figure 2.9 Evaluation strategies

The distribution of the number of papers adopting these different methods of evaluation in

their work is shown in figure 2.9.

2.7.6 Features used for learning

A feature in machine learning is defined as some characteristic of the problem studied. In

linguistic applications of machine learning, features can be words themselves or their

properties, which can be provided a priori (e.g., gold standard annotations or lexica),

engineered by applying domain knowledge (e.g., named entity formation patterns) or inferred

automatically (e.g., stem, embedding, etc.). Different studies used various features to learn

the grammatical structure. As the focus of this review is on unsupervised approaches, we are

interested primarily in those features that can be extracted from the raw data automatically,

possibly by external tools, and subsequently utilised by a learning algorithm. For example,

POS tags were frequently provided as features for the grammar inducers before learning

(Klein and Manning 2004; Snyder et al. 2009; Bod 2006; Spitkovsky et al. 2010; Zuidema 2006;

Reichart and Rappoport 2008; Sangati 2010; Santamaria and Araujo 2010; Gillenwater et al.

2011; Mareček and Žabokrtsk 2012b; Dunn 2017a; Dennis 2005; Dunn 2017b; Bod 2009;

Boonkwan and Steedman 2011; Headden et al. 2009; Araujo and Santamaría 2010;

Dominguez and Infante-Lopez 2011). Rarely are such features extracted by the induction

model itself. For instance, Jin et al. (2018) described a Bayesian Dirichlet model of depth-

bounded PCFG induction where the model induces the categories for constituents and tree

structures from the raw text provided as input.

Of course, richer linguistic features are likely to result in better grammar induction models.

Spitkovsky et al. (2011) use punctuation as a feature to improve the standard Dependency

Model with Valence (DMV) and in 2012 the same authors (Spitkovsky et al. 2012) propose

that capitalisation cues can improve dependency grammar induction. The general idea behind

these implementations is that orthographic cues and their boundaries can help improve the

56

grammar induction performance. In this way, we have identified 8 types of commonly used

features:

A. Parts of speech (POS)

B. Distributional representation of words

C. Head, valence and direction of attachment

D. Word alignments in parallel corpora

E. Chunks

F. Orthographic cues

G. Heuristic rules

H. Construction association measures

Most features are straightforward and are used in various studies irrespective of other

aspects of implementation. POS tags indicate the grammatical category of the words in a text.

For example, the sentence ‘The man cut an apple with a knife’ can be tagged as follows:

'The/DT man/NN cut/VBD an/DT apple/NN with/IN a/DT knife/NN./.', where the POS tags DT,

NN, VBD and IN indicate the grammatical categories determiner, noun, verb and preposition

respectively. These tags are taken into account when dividing a sentence into non-

overlapping regions of text called chunks, which are typically non-recursive. For example, the

same sentence can be chunked as [The man] [cut] [an apple] [with a knife].

POS tags were used as features in 18 studies (shown in table 2.4). Ponvert et al. (2011) used

chunking based on a probabilistic finite state model such as Hidden Markov Model (HMM).

The chunker is cascaded to achieve constituent parsing. Head, valence and direction of

attachment are the parameters that are used in generative models of dependency parsing

introduced by Klein and Manning (2004) and used in nine other studies. Word alignment

refers to the task of extracting translation equivalents of words from sentence-aligned

bilingual corpora, i.e., corpora where the same set of sentences in the source language are

aligned with the same sentence in a target language. Word alignments are typically used as

features in machine translation. In our review, we observed that this feature is used for

grammar induction by Snyder et al. (2009).

Distributional representation of words gives a probability distribution of a word occurring in

a context when a centre word is given. The distributed representation of words is used in five

studies (Klein and Manning 2004; Brooks 2006; Søgaard 2011; Adriaans et al. 2000; Seginer

57

2007). Orthographic cues such as capitalisation, punctuation is used as features in 2 studies

(Spitkovsky et al. 2011, 2012).

Features that we have listed as heuristic rules and construction association measures need

explanation. There were four studies (Araujo and Santamaría 2010; Santamaria and Araujo

2010; Boonkwan and Steedman 2011; Marques and Beuls 2016) which used different

features: (a) identifying a set of POS tags as separator tags and using these separator tags as

features to identify phrase structure boundaries, (b) encoding prior linguistic knowledge as a

small number of syntactic prototypes and using them as features (c) use hand-crafted rules

to learn artificial construction grammar. We see that these different features can be

generalised as heuristics exploited by the authors based on their observations of linguistic

patterns. We classified these different implementations as using heuristic rules as features of

grammar induction. There were two studies (Dunn 2017a, 2017b) which used 14 different

association measures to identify what sequence of construction patterns qualify as actual

constructions rather than being potential constructions. These two studies use construction

association measures as features for their learning in addition to other features.

It was noticed that POS tags, morphological and orthographic cues are very generic features

that are not tied to any particular implementation methodology. Although a fully

unsupervised grammar induction uses no syntactic information, POS tags are typically used in

most implementations (18 out of 33 studies). Orthographic cues such as capitalisation,

punctuations are easier to obtain from a large corpus which can then be used in conjunction

with other features to improve the overall accuracy. However orthographic cues obtained

from English are not readily transferred to languages such as Thai which do not mark

punctuations or word boundaries consistently and even sentence boundaries are not

indicated by any discernible cue like full stops. Another observation is that a purely

distribution-based approach to grammar induction does not generalise to effectively learn

syntax from raw text. Brooks (2006) showed that using a method of attachment to form

constituents is more effective than distribution analysis alone. Other features such as valence

(number and types of arguments taken by a word linguistically), direction of attachment,

word alignments, and chunks are again used to learn constituency and dependency trees. The

heuristics such as separator tags and sub-separator tags proposed by Araujo and Santamaría

(2010) can be automatically extracted from the corpus and can improve constituent parsing.

Table 2.4 shows the list of features and the studies which use those features.

58

Table 2.4 Features used in various studies

Feature Studies which use the feature in their implementation

POS tags
Araujo and Santamaría (2010); Bod (2006); Boonkwan and Steedman

(2011); Dennis (2005); Dominguez and Infante-Lopez (2011); Dunn

(2017a, 2017b); Gillenwater et al. (2011); Headden et al. (2009); Klein

and Manning (2004); Mareček and Žabokrtský (2012); Marques and

Beuls (2016); Reichart and Rappoport (2008); Sangati (2010);

Santamaria and Araujo (2010); Snyder et al. (2009); Spitkovsky et al.

(2010); Zuidema (2006)

Distributed

representation of

words

Adriaans et al. (2000); Brooks (2006); Seginer (2007); Klein and

Manning (2004); Søgaard (2011)

Head, Valence,

direction of

attachment

Boonkwan and Steedman (2011); Dominguez and Infante-Lopez

(2011); Gillenwater et al. (2011); Headden et al. (2009); Klein and

Manning (2004); Mareček and Žabokrtský (2012a, 2012b); Reichart

and Rappoport (2008); Sangati (2010); Spitkovsky et al. (2010)

Word alignments

from parallel corpus

Snyder et al. (2009)

Chunks or Bracketed

structures

Ponvert et al. (2011)

Morphological

clusters

Candito and Crabbé (2009)

Orthographic cues Spitkovsky et al. (2011, 2012)

Heuristic rules
Araujo and Santamaría (2010); Brooks (2006); Marques and Beuls

(2016); Santamaria and Araujo (2010)

59

Construction

association measures

Dunn (2017a, 2017b)

2.7.7 Methodologies

Finally, we generalise the methodologies used to support grammar induction into the

following categories:

A. Top-down dependency grammar models

B. Similarity or exemplar-based models

C. Distribution-based models

D. Clustering

E. Heuristic approaches

F. Automatic Distillation of Structure (ADIOS)

G. Probabilistic CFG (PCFG)

H. Chunkers and their extensions

I. Data-Oriented Parsing (DOP)

J. Construction grammar induction

Let us first define these categories. Top-down dependency grammar models start with a head,

generate a sequence of arguments left and right conditioned on the head, valence and

direction of attachment. As already discussed in section 2.7.1, ten studies incorporated

generative dependency model or its variation in their implementations (Klein and Manning

2004; Spitkovsky et al. 2010, 2011, 2012; Sangati 2010; Søgaard 2011; Mareček and

Žabokrtský 2012a, 2012b; Boonkwan and Steedman 2011; Dominguez and Infante-Lopez

2011). One of the successful baselines for unsupervised parsing is the Dependency Model

with Valence (DMV) model of Klein and Manning (2004). In exemplar-based approaches the

parse of a sentence is viewed as a set of alignments with exemplars from memory.

Approximately nearest neighbour exemplars and their parse are exploited in identifying the

parse of the target sentence. Two studies followed this similarity or exemplar-based

implementation methodology (Snyder et al. 2009; Dennis 2005).

Distribution-based models use word vectors to derive the parse. There were three studies

which employed these in their implementations (Brooks 2006; Seginer 2007; Søgaard 2011).

Clustering approaches in general involve dividing the data points into groups where members

in each group are more similar to one another than to those in the other group. Natural

60

Language Processing clustering typically involves grouping of grammatical elements of a

sentence into groups such as POS clusters, morph clusters and so on. There are two studies

in our review which involved clustering as a part of grammar induction (Reichart and

Rappoport 2008; Adriaans et al. 2000).

Heuristic approaches employ practical methods which yield near-optimal solutions to a

problem where a perfectly acceptable optimal solution is not available or too difficult to

obtain. Examples of heuristic methods are educated guesses, intuitive judgements, rule of

thumb etc. In our review, we identified two studies which involve heuristic methods to

recognise phrase boundaries to form bracketed structures (Santamaria and Araujo 2010;

Araujo and Santamaría 2010). ADIOS is a method which distils structural regularities and

contextual cues from raw text, identifies equivalence classes of usage patterns from these

structural regularities and represents this learning as a directed multigraph. This multigraph

can be equivalently represented as context free rules which represent the grammar learnt by

the system. This methodology was used in four studies in our review (Solan et al. 2004;

Brodsky and Waterfall 2007; Berant et al. 2007; Edelman et al. 2005).

Probabilistic context free grammars are context-free production rules that generate valid

strings in a language. It is a type of formal grammar which is learnt by three studies in our

review (Adriaans et al. 2000; Headden et al. 2009; Jin et al. 2018). Chunkers and their

extensions begin with learning bracketed structures or shallow parsing and subsequently

proceed to use them to induce the full grammar. There was one study in our review that

cascades chunkers with HMM to achieve constituent parsing (Ponvert et al. 2011). Next

method is Data Oriented Parsing (DOP) which is an interesting way to approach grammar.

Usually, statistical methods of grammar induction start with a predefined grammar and use

the corpus to estimate rule probabilities. In DOP, no prior grammar is assumed but uses

corpus fragments to induce grammar. DOP models sentence structures based on the

observed frequencies of sentence fragments without imposing any constraint on the size of

such fragments. There were four studies which implemented grammar induction bottom-up

using the DOP method (Bod 2006,2009; Zuidema 2006; Post and Gildea 2013).

Finally, construction grammar induction is a fully usage-based approach to grammar which

learns form-meaning pairings called constructions. Constructions are mappings between

linguistic form and linguistic function which can be from any level of generalisation such as at

the lexical level, phrase level, semantic level and so on. Learning a construction grammar from

raw corpus is difficult because constructions can be of any size and they can be internally

61

complex. Jonathan Dunn (2017a) demonstrates that construction grammars are learnable and

falsifiable by providing a model of learning an optimal construction grammar from a raw

corpus. The same author (Dunn 2017b) presents a detailed implementation and evaluation

method of the CG implementation. The distribution of these ten methods from our list of 33

implementations is shown in figure 2.10 and table 2.2.

Figure 2.10 Grammar induction methods

Among these methods, we identified that the top-down dependency grammar models and

the probabilistic context free grammars are used in multiple studies (13 out of 33) to learn

formal dependency and constituency trees respectively. As far as usage-based automatic

grammar induction was concerned, we recognised four methodologies as relevant and useful:

ADIOS, DOP and Construction Grammar induction. ADIOS is shown to be successful for

inducing patterns from short sentences but exhibits limitations in parsing complex sentences.

The ADIOS method can be successfully applied once the complex sentences are split into

multiple simple ones. DOP works like an analogy-based pattern-matching technique which

analyses a sentence by looking up the nearest neighbour constituent structure already stored

in memory. The nearest neighbour for a given analysis is defined as the constituency tree

derivation which shares the largest number of common nodes. DOP takes a corpus of

sentences and allows all possible subtrees to be built from a sentence and chooses an optimal

parse by computing the tree which leads to the shortest derivation. DOP is good but it is

computationally expensive because it allows all possible subtrees theoretically. Although the

subsequent DOP models reduced this computational space significantly in comparison to the

general-case DOP, the complexity increases with sentence length. The core idea from DOP

that abstract linguistic rules such as movement, agreement, discontiguous phrases etc. can

be learnt from recursive tree structures and an analogical match algorithm is powerful.

62

However, the analogical matching that DOP employs starts with the assumption of

constituent tree structures whose internal nodes can be substituted with analogous

candidates. How to adapt DOP ideas without assuming constituent tree structures a priori is

open for future exploration.

Among the studies considered, we noticed that Construction Grammar induction is the only

method which demonstrated a fully usage-based, bottom-up approach to grammar induction

successfully. The evaluation strategies are also discussed in detail. Because the outputs are

not the usual tree structures, but construction slots, evaluation against a gold standard is not

possible. The qualitative and quantitative evaluation measures (construction association

measures) discussed in these implementations can be adopted for usage-based

implementations. Apart from these 33 implementation papers there were seven theoretical

and experimental studies, and there were three studies that provided surveys on grammar

induction or parser evaluation. We will present our findings from these studies in the next

section.

2.8. Findings from non-implementation studies

We will now present the information and insights obtained from three non-implementation

papers. D’Ulizia et al. (2011) present a survey of the various techniques of parsing from the

literature (Lawrence et al. 2000). Included in the survey are fourteen parser implementations

with six computational techniques (Statistical methods, Evolutionary computing techniques,

Minimum description length, Heuristic methods, Greedy search, Clustering techniques), two

presentation sets (text and informant), three types of information for learning (supervised,

semi-supervised, unsupervised), three types of grammar evaluation techniques (looks-good-

to-me, compare against treebank, Rebuilding known grammars).

Cramer (2007) experimentally demonstrates the limitations of existing grammar induction

algorithms and suggests that an incremental grammar induction is preferable to the

conventional methods. A short illustration of such a system is also presented by the authors.

Rimell et al. (2009) bring into question the suitability of PARSEVAL measures (the standard

metrics for parser performance) as reflecting the parser performance. As an alternative to the

exclusive focus on incremental improvements in measures of overall accuracy such as

PARSEVAL, the authors suggest a more focused parser evaluation methodology (e.g.,

construction-focused evaluation) as a way of improving parsing technology. These insights are

strikingly significant in the light of the data that we synthesised from the 36 implementations.

63

Most of these studies evaluated their parser output in terms of the PARSEVAL measures by

comparing against gold standard output. In the future, there is more scope to explore better

methods and metrics for evaluation of grammar induction systems.

From the other seven theoretical studies included in our literature review, the following

insights are obtained.

◦ Saffran (2001) conducted an experiment to verify if abstract grammatical

hierarchies can be learnt using the statistical clues of local predictive

dependencies. In an artificial language learning task, the adult participants were

exposed to artificial language with no semantic, visual or any other clue except

distribution of words and their category. The results support the hypothesis that

learners can detect predictive dependencies and use it to acquire simple phrase

structures. This suggests that phrase structure boundaries can be induced in an

unsupervised way based on predictive dependencies bottom-up with simple

categories and statistics.

◦ Usually discourse information (units of language beyond the level of a sentence

e.g., topic, old information, new information, focus etc.) is not taken into

consideration while modelling computational grammar induction. Kaiser and

Trueswel (2004) show that the processing of non-canonical structures is

facilitated by the presence of an appropriate discourse context.

◦ Productivity in grammar is usually treated in terms of recursion and hierarchy.

Frank et al. (2012) suggest that grammar is better modelled sequentially and

incrementally. The authors discuss evidence from multiple research fields such as

cognitive neuroscience, psycholinguistics, computational models of language

acquisition and argue that combining productive grammatical units need not

happen hierarchically but a sequential process would suffice.

◦ Two studies suggested that abstract linguistic properties (subjacency constraints,

movement, agreement) can be explained using analogy-based statistical models

and constraints on sequential processing (Bod 2007; Ellefson and Christiansen

2000). Rens Bod (2007) showed that learning discontiguous construction

patterns, agreement, movement were possible for computational bootstrapping

64

without a need for special, top-down universal grammar. Ellefson and

Christiansen (2000) conducted two types of experiments (artificial language

learning experiment and connectionist simulation) to enquire into the nature of

subjacency constraints which are usually explained as part of universal grammar.

Their results suggest that constraints arising from general cognitive processes,

such as sequential learning and processing, are likely to play a larger role in

sentence processing than has traditionally been assumed.

◦ Yang (2011) proposes a statistical test to check if grammar is abstract and

productive or lexically-specific and usage-based. Results of the statistical test

show that a lexically-specific, usage-based, memory-and-retrieval approach is

unsupported. This result is consistent with a productive abstract grammatical

system in child speech.

Six studies out of seven from our list support the view that a sequential, statistics-based,

bottom-up induction of grammar explains the grammar acquisition and processing by

humans. The statistical test by Yang (2011), in contrast, supported a productive, abstract

grammatical system governing the child speech rather than a usage-based system. The study

shows that a mere usage- based, lexically specific schema could not statistically explain the

child speech data. This statistical test however does not resolve the innateness debate in

language acquisition. It merely points out that an abstract, productive system should be in

place at a very early age in the child’s speech. The summary and discussion of all these studies

considered in the systematic review are presented in the next section.

2.9. Summary and discussion

Specific findings discussed in the previous section are summarised in figures 2.11 and 2.12.

The findings from this review suggest that many aspects of unsupervised induction of usage-

based grammars are yet to be fully explored. Only two studies (Dunn 2017a, 2017b) focussed

on computational learning of a construction grammar. They used POS tags, dependency

relations and semantic labels to learn construction grammar from a large corpus. Though

these components can also be learnt in an unsupervised fashion, further research is needed

to establish the impact of their accuracy on the overall grammar induced. The properties of

construction slots cannot be evaluated properly by comparison against a gold standard as we

explained earlier. A practical implementation of usage-based grammar induction should

65

embed means of evaluating the grammar itself. The two studies mentioned demonstrated

the feasibility of unsupervised construction grammar learning as well as its falsifiability and

proposed a set of practical evaluation methods. They provide a baseline for further research

into fully unsupervised parsing approaches. We will outline the approach of these studies,

illustrate what challenges still remain to be addressed and underline the future directions of

research.

In Dunn’s (2017a, 2017b) implementations, upper-case ‘Grammar’ refers to the domain-

independent model that learns grammatical generalisations from linguistic input. Lower-case

‘grammar’ refers to a particular inventory of grammatical generalisations learnt for a specific

language (i.e., a large corpus of sentences). For example, given a sentence such as ‘Bill gave

his neighbour a piece of his mind’, there are multiple potential linguistic generalisations

possible. A few possibilities are shown below but there could be many other possible

generalisations.

● Sentence: Bill gave his neighbour a piece of his mind

● Unit-based syntactic generalisation: [NN – VB – PRN – NN – DT – NN – PREP – PRN –

NN]

● Constituent-level syntactic generalisation: [NP – VB – NP – NP]

● Semantically-constrained generalisation: [NP <ANIMATE> – VB <TRANSFER> – NP

<ANIMATE> – NP]

● Lexically fixed idiomatic usage: [NN – “give” – NP <ANIMATE> – “a piece of” – NP

<ANIMATE> – “mind”]

Similarly, for all the sentences in the corpus, there are multiple potential linguistic

generalisations. Of all the possible potential construction units that can generalise the

sentence, one is chosen as the actual construction. An inventory of such constructions

induced from each sentence in a corpus is the lower case ‘grammar’ learnt from the corpus.

The model which learns these constructions is the upper case ‘Grammar’. In the two studies,

the authors provide a reproducible model that distinguishes the potential constructions from

actual constructions. Their algorithm provides two insights: (a) Constructions are meaningful

symbolic units; (b) Co-occurrence and distribution are indicators of meaning. An actual

construction differs from all other potential constructions in terms of its being productive

(high frequency) and meaningful (presence of significant co-occurrence patterns and

association measures).

66

Figure 2.11 Overview of the findings from literature review

67

Figure 2.12 Findings from the implementation studies

68

Two types of thresholds are used to distinguish potential constructions from actual

constructions: Frequency threshold and thresholds on vectors of 14 independent association

measures. Using the two types of thresholds, the algorithm learns many possible ‘grammars’

from a given corpus of sentences. From these multiple ‘grammars’, the algorithm chooses an

optimal ‘grammar’. An optimal grammar is one which has larger coverage (explains maximum

number of linguistic observations) but smaller size (posits as few constructions as possible).

The algorithm minimises the objective function of -log (C^2 /S) to achieve this effect. In

summary, these implementations are focussed on building a computational model that learns

an optimal set of mappings between individual sentences and their meaningful linguistic

generalisations, with maximum coverage and minimum size.

These two studies relate to our research goal in the following manner: There are two

components to ‘Grammar’ in the sense described earlier: (a) Inventory of construction

schemas that generalise the patterns of usage from a corpus of sentences (b) An assembly of

these construction schemas to form incrementally larger units. Dunn’s studies were

interested in the first part with focus on learnability of construction grammars. The second

part is a potential research area that is yet to be explored. This involves identifying a method

which learns construction patterns inductively and assembles those patterns in an

incremental fashion. We would like to explore how an assembly of construction schemas can

be achieved in an incremental fashion and use this for unsupervised grammar induction.

The analysis and discussion made so far connect to the research questions in the following

manner. The research questions 1 to 4 are answered by various subsections in the data

synthesis part discussed earlier. We will now discuss how the different implementations

compare with one another in terms of their performance. The implementations discussed in

our review differ in their methodology, theoretical influence and various other factors.

However, studies with similar evaluation strategies can be compared against one another to

identify the range of performance in unsupervised parsing. We also would like to see which

evaluation strategies can be adapted for parsing inspired by the functional-cognitive school

of thought. The most common evaluation method found in our review was to compare the

system output against a gold standard annotation and report the precision, recall and F-

measure of the system. There were 25 studies which used this method to evaluate their

systems. Not all of them are comparable. One way we tried to compare the systems is if they

used similar output representations and then compared their evaluation metrics. There were

14 studies which represented their output as constituency trees and evaluated against the

69

treebank annotation. 3 studies out of 14 reported their F-measure results by testing their

output against treebanks from multiple languages. The best performing system out of these

three reports the F-score of 82.9, 67.0 and 47.2 for English, German and Chinese respectively

(Bod 2006). It was consistently observed that the systems performed better for English and

the lowest scores were for Chinese in the other two systems. There was one system which

learnt a subclass of shallow context-free languages. Here the evaluation metrics used was the

number of syntactic types and clusters learnt by the system. They reported that 8000 syntactic

types and clusters were learned from a dataset of 2000 sentences. It could not be compared

with any other system. The remaining 11 studies (out of 14) reported their Unlabelled

Precision (UP), Unlabelled Recall (UR) and F-measure for English. They could be directly

compared. The lowest accuracy was reported by Brooks (2006) with UP 33.6%, UR 14.1% and

F-measure 19.8%. This system used a distributional approach to grammar induction and

simple heuristics to reduce the number of candidate constituents using alignment patterns.

The results suggest that distributional methods do not generalise enough to learn syntax

effectively from raw text, but that attachment methods are more successful.

There were 11 studies which evaluated their dependency output against a treebank. Three of

them evaluated their result in multiple languages. Most studies reported their results as

Labelled Attachment Scores (LAS) and Unlabelled Attachment Scores (UAS). LAS were

generally lower than the UAS in all the studies. The UAS reported in these systems were

typically low ranging from 38.3% to 64.5%. The accuracy of these unsupervised parsers in

comparison with the state-of-the-art results in supervised parsing is unsurprisingly lower. For

instance, Stanford supervised and semi-supervised dependency parsers report accuracy in the

range of 95% to 97% (Chen and Manning 2014, Kiperwasser and Goldberg 2016). The other

studies in our review have different evaluation methods distinct from each other and their

performances cannot be compared directly. The frequency and association measures of co-

occurrence used in Dunn (2017a, 2017b) to distinguish potential constructions from actual

constructions have the potential to be adapted for future research as well.

From the literature survey, it became clear that most of the existing approaches to

unsupervised grammar induction modelled a grammar as a formal, top-down system.

Consequently, when such grammars were used to support parsing, their outputs were

represented as a constituency tree or dependency tree. In this case, the parsing results can

be compared against a treebank. Here, the correct (or acceptable) parsing is determined a

priori based on existing grammars. However, theoretical studies suggested that an

70

incremental, sequential, usage-based approach to grammar induction that takes discourse

information and local dependencies into consideration can model the same task more

effectively. It is as if the theoretical or experimental studies are the antithesis of the

computational implementations included in our review. This gap between the two should be

addressed to enable further progress in grammar induction and evaluation. The most

challenging aspect about a truly bottom-up, usage-based approach to grammar induction is

that there are usually multiple ways to generalise usage patterns bottom-up. Learnability and

falsifiability of usage-based patterns, evaluation strategies for the output in the absence of a

gold standard are the major challenges. There were just two studies that demonstrated that

unsupervised construction grammars are learnable from a raw corpus and they can be

evaluated for optimality by maximising the degree of coverage and minimising the size of the

grammar learnt by the system. It was, however, observed that these implementations do not

learn usage-patterns incrementally, but rather choose sequences of construction slots as

generalisations for the sequence of words in a sentence. There is scope for research to explore

how to assemble usage patterns in an incremental way and how such a system can be

evaluated. In the next chapter we will explore ideas from psycholinguistic literature and how

ideas from Cognitive Grammar can be useful to develop a viable model of parsing that bridges

this gap between the linguistic literature and computational linguistic models.

In this chapter, we described the systematic literature review on the prevalent approaches in

unsupervised parsing and presented the results obtained from the review. In the upcoming

chapters, we will elaborate our research methodology, introduce theoretical ideas from

Cognitive Grammar, Computational Paninian Grammar and psycholinguistic studies. By

synthesising the ideas from these three fields, we will identify the functional properties that

an unsupervised cognitive parser should have.

71

Chapter 3 Research Methodology

The main aim of this research project is to investigate whether an unsupervised learning

approach can be used to develop a syntactico-semantic parser. The research methodology

adopted to realise this aim is described in this chapter. Figure 3.1 shows the key stages of

research and how they are linked to the chapters in the thesis.

Figure 3.1 Research Methodology

3.1 Systematic literature review

To build this approach upon the existing body of knowledge, we conducted a systematic

literature review of unsupervised parsing approaches, which was presented in chapter 2. The

literature review revealed research gaps related to the following points:

● Most of the prevalent parsing models learn grammar as a formal system of rules

whose outputs are often represented as constituency trees and dependency trees.

72

● The most common method for parser evaluation was by comparing the output parse

against a gold standard.

● The theoretical and experimental studies conducted with human speakers suggest

that parser is better modelled as an incremental, sequential system that learns syntax

based on linguistic usage.

● Other than the conventions of usage, local dependencies and discourse information

were also found to be useful features to parse grammatical structures.

● Learnability and falsifiability of usage-based grammatical structures and identification

of suitable evaluation strategies in the absence of a gold standard output are some

of the major challenges.

The review concluded that there are gaps between theoretical / experimental studies on

parsing and the computational models of parsing in terms of theory of grammar,

representation and processing of grammatical productivity, approach to grammar induction,

features used, output representation and evaluation strategy. To bridge these gaps, we

propose a new parsing methodology that is based on the functional-cognitive school of

linguistics and whose characteristics are compatible with the findings from the literature

review. The next section describes the process of identifying the requirements for the new

parsing model so that it can effectively address the given research gaps.

3.2 Parser requirements

To identify the parser requirements, we studied the theoretical aspects of Cognitive Grammar

(Langacker, 2008), Computational Paninian Grammar (Bharati and Sangal 1993; Sangal et al.

1995) and psycholinguistic studies on online sentence processing (MacDonald et al 1994;

McRae et al. 1998; Staub, 2015). We chose these three topics to synthesise the specifications

of the parser for the following reasons:

● Cognitive Grammar treats meaning as central to grammar and emphasises the role of

non-linguistic cognitive abilities in grammatical processing. Construal, construction

schemas, profile, autonomy, dependence and grammar as symbolisation are some

concepts from CG that are useful to create a knowledge base that connects both

syntax and semantics.

● Computational Paninian Grammar is a computational linguistic framework proposed

for analysing the syntax of major Indian languages belonging to both Indo-Aryan and

73

Dravidian language families. The insight from this framework is that sentences can be

analysed at a level that lies between syntax and semantics. This framework proposes

functional relations between verbs and its arguments (called karaka relations). We

generalised this concept to identify the nature of interaction possible between any

two parts of a sentence and included this dimension of analysis in our construction

schemas.

● The psycholinguistic studies on online sentence processing by humans gave evidence

for how humans process parts of sentences and integrate them to get the full parse.

We considered these studies to develop parser specifications that closely imitate the

strategies used by humans in sentence processing experiments.

The requirements of the parser identified from these three fields of study are:

● A sentence should be parsed incrementally.

● Multiple competing parses should be maintained until one of them succeeds.

● The parse should unify syntax and semantics.

● The parse should be treated as an action not as a product.

Chapter 4 draws ideas from these three studies at length and specifies the parser

requirements in more detail.

3.3 Knowledge Engineering

We used the principles of knowledge engineering to inform the development of an

unsupervised syntactico-semantic parser. Knowledge engineering is the process of modelling

the domain knowledge with the aim of realising the abilities that are comparable to those of

a domain expert (Studer et al., 1998). The domain in this project is linguistics and in particular

its subdomains of syntax and semantics. In traditional knowledge-based systems, the

explicitly encoded knowledge is used to support inference in a top-down approach. In this

project, however, knowledge engineering is limited to the specification of a knowledge base

of an otherwise unsupervised approach.

In this work, knowledge engineering involved identification of patterns of grammatical

constructions in a language and extraction of commonalities across them. By identifying the

commonalities across constructions, we were able to create higher levels of organisation

called construction schemas. These construction schemas are specified in terms of each other

74

from specific low-level schemas to abstract high-level schemas. Apart from schema

definitions, we also identified how low-level schemas assemble with each other to form

higher-level schemas. The knowledge base thus serves both as a repository of grammatical

categories (construction schemas) and their rules of arrangement (patterns of assembly of

construction schemas). At the heart of our approach is the creation of a knowledge base

whose definitions of grammatical categories are interpretable by humans and can facilitate

meaningful processing of sentences. The schemas identified and specified in the knowledge

base integrate both syntax and semantics so that they can be interpreted by humans, even

the non-expert ones.

The specification of knowledge base involved analysing the syntagms and paradigms of

constructions that are conventional in a language by consulting the language experts. The

language experts listed out various constructions that lie at the intersection of syntax and

semantics specific to a given language. Fluent speakers of Welsh and English were involved in

this stage to identify the constructions involved in expressing grammatical relationships

between parts of sentences. Some of the typical grammatical phenomena considered for

knowledge engineering are constructions involving pronouns, noun phrases, noun

compounds, arguments and adjuncts of a verb involving noun phrases, prepositional phrases,

adverbials, finite and non-finite verb phrases, adjectives as modifiers and predicates,

quantifiers and qualifiers, subordinating and coordinating conjunctions, sentence adverbials,

clausal connectives, punctuations and relative clauses. Different languages realise these

constructions using different syntactic devices and by employing different word orders but

commonalities can be observed and extracted as construction schemas. We identified that

the constructions mentioned above can be schematised into constructions involving things,

processes, statuses, operators and events.

Figure 3.2 Assembly of component schemas to composite schema

75

For illustration, consider the example sentence from the introduction in chapter 1 ‘The

children ate the cake with a spoon’. The phrases ‘The children’ and ‘a spoon’ are schematised

as THING_PARTICIPANT_ AUTONOMOUS according to our construction schema definitions.

The phrase ‘The children’ is obtained as a result of assembling ‘The’ and ‘children’ which are

schematised as STATUS_QUALIFIER_DEPENDENT and THING_ PARTICIPANT_AUTONOMOUS.

The same analysis holds good for the phrase ‘a spoon’. The assembly of the words into phrases

is shown in figure 3.2.

Chapter 4 explains fully what a construction schema is and proposes a list of basic

construction schemas that we identified to be relevant for parsing. These basic construction

schemas are listed in tables 4.3 and 4.4 in chapter 4. A more comprehensive list of

construction schemas that were specifically identified for English and Welsh as a result of

knowledge engineering are listed in tables 5.4, 5.5, 5.6, 5.7 and 5.8 in Chapter 5. Some

constraints on how the construction schemas can assemble with each other are also specified

as a part of the knowledge base. These patterns of assembly of construction schemas are

listed in tables 5.9, 5.10, 5.11, 5.12 and 5.13 of chapter 5.

Since the knowledge base is an approximation of a portion of the domain expertise, we should

be able to improve it iteratively as we observe new constructions and new commonalities

that can lead to newer ways of schematising the constructions. The knowledge base in its

current form can now be repurposed for other languages with few changes such as order of

assembly, addition or deletion of one or more schemas, adding or removing more granular

schemas and so on. In this way, knowledge engineering results in a knowledge base that is

language independent and can be easily adapted to other languages. This was demonstrated

by adapting the knowledge base, which was originally developed for English, for Welsh. By

observing the grammatical properties of Welsh and how it differs from English, suitable

changes were made to the knowledge base. The details of the differences in grammatical

structures between Welsh and English are explained in section 5.5 of chapter 5. The list of

changes in construction schemas identified for Welsh are listed in table 5.14 of chapter 5.

The construction schemas and their patterns of interaction were specified such that

additional grammatical knowledge, that is not explicitly given, is implicitly inferred by

matching one or more parts of the specified knowledge base. This inference stage involves a

chain of matchings where the inferred knowledge is again matched against the knowledge

76

base and additional inferences are obtained. How long this inference chain continues depends

on the knowledge base and the inference methodology adopted. In our implementation, we

match the parts of input sentences with the construction schemas in our knowledge base and

obtain all possible assignments of construction schemas to a given word. Sequences of words

are thus matched to many possible sequences of construction schemas. Out of these many

possibilities, some sequences are rejected as invalid based on the valid patterns of

interactions between construction schemas specified in the knowledge base. The remaining

valid sequences of construction schemas are assembled to form higher construction schemas

based on the interaction patterns in the knowledge base. This process continues as we

encounter more and more words in the sentence.

The knowledge base represents a lexical component of the parser. It can match parts of

sentences to construction schemas and identify all possible valid assemblies. However, it

cannot determine which path of assembly will result in the optimal parse. This will be dealt

by the parser itself as part of its computational component.

3.4 Parser implementation

Recall that we derived the following requirements for the parser based on the synthesis of

ideas from CG, CPG and psycholinguistic studies on online sentence processing in humans:

● A sentence should be parsed incrementally.

● Multiple competing parses should be maintained until one of them succeeds.

● The parse should unify syntax and semantics.

● The parse should be treated as an action not as a product.

In order to implement human-like reasoning in knowledge-based systems, several

approaches have been discussed in the knowledge engineering literature such as rule-based

methods, fuzzy methods, connectionist methods and hybrid methods. Out of these various

methods, connectionist models represent and process information closer to human-like

reasoning because of its ability to exhibit self-organisation in the course of its learning

(Kasabov, 1996). Artificial Neural Network (ANN) is a connectionist model that is inspired by

biological neurons and their connections in the human brain. The processing element in ANN,

called an artificial neuron, is defined by its inputs having input weights. An activation function

calculates the activation value of a neuron as a function of its weighted aggregate inputs and

possibly the previous state of the network. Given a set of repeated examples of inputs and

outputs, an ANN can start with no knowledge and can be trained on the input-output pairs

77

such that the network learns how to produce desired outputs for the given inputs (Kasabov,

1996, Shanmuganathan, 2016).

ANNs have several important characteristics that make them suitable for representing and

processing information similar to that of domain experts especially in the context of a natural

language. Firstly, the learning of the ANN is not based on an explicit representation of

knowledge. The learning lies in the way the connection weights change while mapping inputs

to outputs. The connection weights that are bound to the ANN model is a result of the training

step and the state of these connection weights represents the long-term memory of the

model. Secondly, ANNs have the capability to generalise the learning so that when a new

input vector is given, it produces the best output based on the examples observed during

training. Thirdly, ANNs are robust models in the sense that even if some neurons in the

network go wrong, the overall system may still perform well. Finally, ANNs are capable of

making partial matches in the course of their learning. This means that if the example data

used during the training phase do not exactly coincide with the new data in the testing phase,

the ANNs are still capable of matching partial similarity between the training and testing data.

These characteristics of ANNs related to their learning, generalisation, robustness and partial

matching abilities make them excellent candidates for coping with missing or noisy data while

still providing an appropriate solution.

We concluded that the ANNs provide a suitable mechanism for selecting the best assembly

out of all possible assemblies between any two sequences of words in a sentence. In the

context of our project, we use ANNs to train the pairs of construction schemas and their

assemblies. For any two sequences of words, the ANN model learns the mapping between all

possible sequences of construction schemas and their valid assemblies obtained via

knowledge base. The ANN model chooses the sequence of construction schemas that

produces the best assembly. The words, their POS tags, their construction schemas are used

as features for learning the best possible assembly. As the number of sentences fed to the

model increases, the model learns to map the words, POS tags and construction schemas to

the best possible schema assembly. By combining the static knowledge base and the ANN

model, we propose that the grammatical structure of unseen sentences can be inferred

without additional annotation. The details of how the knowledge base is used in conjunction

with the ANN model to create a full parser is described in Chapter 5.

78

The parser is implemented with three components, namely schema definition, schema

assembly and schema prediction components. The construction schemas and their patterns

of assemblies, which are specified in the knowledge base, form the schema definition

component. The ANN model, which is used for selecting the optimal assembly out of many

possible assemblies, forms the schema prediction component. Another component, called

the schema assembly component, makes use of the other two components and makes several

decisions related to parsing including:

● Incremental processing of sentences

● Mapping words to basic construction schemas

● Recognition of different levels of construction schemas from token level to event

levels

● Retention of multiple parses in parallel

● Using the knowledge base to discard some of these parses as invalid

● Identifying that there are multiple valid parses as the size of the sentence increases

● Pruning the number of parses so that one of them can be chosen as optimal parse by

the ANN

● Specifying the criteria for pruning the number of parses

All these decisions related to parsing are done in the schema assembly component. The

implementation details of the three components and how they interact with one another to

take the input sentence and produce the parsed output is explained fully in chapter 5.

3.5 Evaluation

The outputs obtained from the parser are not in the form of a constituency or dependency

tree. The newly proposed parser splits a sentence into various chunks, assigns construction

schemas to those chunks and finally assembles these construction schemas into higher level

schemas. There are multiple valid paths of assembling the low-level construction schemas

into higher-level assemblies. This very property makes it inherently impossible to use a single

analysis as the gold standard to compare against. Therefore, we proposed a few alternative

evaluation strategies to rate the performance of the parser and the meaningfulness of the

categories labelled by the parser:

1. Quantitative evaluation by comparing the parsed chunks against the constituents in

a phrase structure tree

2. Manual evaluation by listing the range of linguistic constructions covered by the

parser

79

3. Evaluation by identifying the number of edits required for a correct assembly

4. Qualitative evaluation based on Likert scales in online surveys

The first approach is to compare the parsed chunks against the constituents found at any level

of hierarchy in the phrase structure tree of a given sentence. If the intermediate chunks

identified by the parser are structurally valid, they should occur at some level in a constituency

tree. The number of matches between the parser chunks and the constituents is quantified

and the results are discussed.

The second approach is a manual evaluation where the outputs are analysed subjectively by

identifying the range of constructions actually recognised by the parser. Since the knowledge

base itself was created by identifying a list of common constructions and their syntagms and

paradigms, this evaluation methodology is circular. However, it is still useful as a means to

know the coverage of constructions actually parsed by the parser.

The third evaluation strategy involved manually identifying the errors in the parsed outputs

and counting the number of edits required in a parse to arrive at a correct assembly. The ratio

between the number of edits and the number of assemblies in a parse is measured and

reported. If the ratio is small, we may say that the performance of the parser is better.

The final evaluation strategy is to adopt a qualitative approach to evaluation by involving the

fluent speakers of English and Welsh language. Since the construction schema labels are

defined by unifying syntax and semantics, they must be qualitatively meaningful for a fluent

speaker of the language. In order to study how meaningful the parses are to fluent speakers

of the language, we conducted a survey to rate the parser output. Specifically, the participants

were asked to rate the correctness of the chunk boundaries and their labels on a Likert scale

of 5 ranging from Strongly agree to Strongly disagree. The details of the survey, the

instructions and examples provided to the participants, the experimental setup, the study

protocol, and ethical review procedure are described in Chapter 6. In the same chapter, we

present the results and statistics of the survey, perform error analysis and describe the

strengths and limitations of the evaluation methodologies adopted and scope for future

improvements.

80

In this chapter, we presented the research methodology adopted to conduct the various

stages of research. The next chapter describes in detail how the parser specifications are

identified by studying CG, CPG and psycholinguistic studies on online sentence processing by

humans.

81

Chapter 4 Specification of the parser

In this chapter, we present the ideas from Cognitive Grammar (CG), Computational Paninian

Grammar (CPG) and results of psycholinguistic studies to highlight theoretical aspects of

grammar and parsing from a functional perspective. Based on the discussion of the ideas from

these topics, we synthesise some of the essential properties that a cognitive parser should

have. Finally, we conclude this chapter with a short illustration of how a sentence would be

analysed by such a cognitive parser in an unsupervised way. The actual algorithm and

implementation details will be presented in the next chapter.

4.1 Cognitive Grammar

4.1.1 Construal and meaning

Cognitive Linguistics (CL) assumes that language is not an autonomous faculty but is rather

intertwined with other areas of cognition (Croft and Cruse 2004). Cognitive Grammar (CG) is

a theory of grammar proposed by Ronald Langacker (2008) whose hypothesis is that grammar

is meaningful and emphasis is on cognitive and symbolic explanation to grammatical

structures. According to CG, mental operations such as metaphors, schematisation, focus,

profiling and scanning, which rely on non-linguistic cognitive abilities, are adapted to perform

linguistic processing by humans. These mental abilities, when adapted for linguistic

processing, allow humans to conceive the same objective situation in cognitively different

ways. As an illustration, consider the sentences.

Sentence 1: ‘X is above y’

Sentence 2: ‘Y is below X’

Figure 4.1 Difference in construing ‘above’ and ‘below’

Although both of them describe the same situation, the semantic difference lies in how they

are mentally perceived. In the first sentence, X is seen as the entity in primary focus and its

positional relation with Y is conceived. Technically, X is called the trajector ‘tr’ (the entity in

primary focus in a relationship) and Y is called the landmark ‘lm’ (secondary focus) in sentence

82

1. In the second sentence, Y is in primary focus and its positional relation with X is perceived.

Here Y is the trajector ‘tr’ and X is the landmark ‘lm’. Figure 4.1 (a & b) shows the differences

in the form of image schemas.

This mental ability to perceive the same situation in different ways is called a construal in CG.

Within the cognitive linguistic framework, linguistic structures are understood in terms of the

construals invoked by them. In the examples given above, trajector and landmark are

construals of prominence i.e., how prominently an entity is viewed in a relation. Prominence

is just one of the dimensions of construal. There are other dimensions such as specificity,

focusing, scoping and perspective. We will provide a short description of each dimension of

construal in order to give a background of how each one is necessary to understand and

analyse linguistic expressions. More detailed understanding of each of these dimensions can

be obtained from (Langacker 1987, 2008, 2012).

4.1.2 Dimensions of construal

Prominence: Prominence refers to the asymmetry perceived in terms of relative importance

given to some entities than others. For example, the difference between the trajector and

landmark in a sentence is a matter of prominence. Another example is the difference between

the main clause and subordinate clause in a sentence where the former is conceived as more

prominent than the latter.

Specificity: The level of detail or resolution at which we perceive a scene is the specificity of

construing it. If a scene is viewed with more resolution or detail, we regard it as more specific.

However, if the same scene is viewed at a higher level of resolution with less attention to

specific details, it is said to be more schematic. For instance, we can use different expressions

such as he, that guy, the good guy, the guy who came, the guy who came to the hospital

yesterday to refer to a man. Although all of them are referring expressions, the difference lies

in the level of detail in characterising the referent. The phrase the guy who came to the

hospital yesterday is more specific while the pronoun he is more schematic / less specific.

Focusing: In a given scene, one or more objects could be selected as the conceptual content

for our construal. This dimension of construal is called its focus. For example, when a story is

narrated, we perceive that the characters and incidents of the story are the background

against which the storyline moves forward. In other words, the focusing is on the progression

of the story. Again, the foreground vs background distinction is just one aspect of focusing.

83

There are two other aspects related to focusing namely: composition and scoping.

● Composition: Composition refers to how a linguistic expression is analysable in terms

of its components and whether the components are perceived as salient in the overall

meaning of the expression. For example, an expression ‘costumes and makeup’ is

clearly analysable in terms of its components costumes<->and<->makeup. Here each

one component is construed as salient for building the total meaning. But even

though makeup is further analysed as make<->up, this compositional meaning is less

salient and therefore not construed to be in focus. In this thesis, we use the symbol

‘<->’ to show that the components are assembled to form a composite expression.

● Scoping: Scope refers to how we are able to zoom in and out of a scene while

construing it. When looking at a laptop screen, the scope is immediate but while

looking out of a window the scope is maximal.

Perspective: A perspective is one of the viewpoints that a speaker takes in relation to the

scene. For instance, a speaker can assume a subjective viewpoint of the situation described

or he / she can take fictional viewpoints where the views of multiple conceptualisers coexist

in a single discourse.

In this way, the meaning of a linguistic expression depends not only on its conceptual content

but on its construal. According to CG, meaning, and therefore construal, plays a major role in

understanding grammatical structures.

4.1.3 Grammar as symbolisation

CG makes the claim that every linguistic structure is symbolic in nature. This means that for

every linguistic expression, there is mapping between its phonological/ orthographic form and

its meaning. The most obvious symbol is the lexicon where there is an arbitrary mapping

between a word and its meaning, e.g., [[book]/[BOOK]]Σ. Here the subscript sigma represents

that it is a symbol. The lower case indicates the orthographic side of the symbol (book) and

the upper case represents the semantic side of the same symbol (BOOK). According to CG,

such symbolic mapping does not stop with the lexical level but rather extends to morphology

and grammar as well. Smaller symbols are integrated and assembled into larger symbolic

structures progressively to form grammatically complex expressions. Let us illustrate a simple

example for how smaller symbols can assemble with each other to form larger symbols.

Consider the expression ‘Jar lid’ which is made up of two words ‘Jar’ and ‘lid’. These two words

84

are symbols for the concepts JAR and LID. The symbolic mapping between the form and

meaning for the two words can be written as [[Jar]/[JAR]] and [[lid]/[LID]] respectively. A JAR

is construed as a thing. It is also understood as a physical container which is open at the top

as shown in figures 4.2 and 4.3 (Langacker 2008 pp. 163-164).

Figure 4.2 Integration of phonological and semantic structures

Figure 4.3 The composite assembly after integration

A LID is also construed as a THING with further characterisation as a cover for an opening in

the upper side of a container. LID does not specify what is the container but its construal

necessarily invokes an unspecified container as shown in figure 4.3. The construal of JAR

corresponds with the unspecified container. Because of this correspondence, semantic

integration between the two concepts is possible which results in the expression ‘Jar lid’.

Figures 4.2 and 4.3 show how this integration happens. The heavy lines indicate which part of

the construals are relevant for semantic integration, the dotted indicates how they are

integrated through semantic correspondences and the resultant construal (‘jar lid’ shown in

figure 20) is an assembly of both ‘jar’ and ‘lid’. The lid portion is highlighted in the final

85

construal because a ‘jar lid’ is a type of lid, not a type of jar. In this manner, smaller symbols

integrate with each other by establishing semantic correspondences and composite symbols

are assembled. This process of symbolic assembly repeats indefinitely to result in larger

expressions, clauses and sentences. In the next subsection, we introduce the notions of

profile, profile determinance, constructions and how commonalities from various

constructions can be abstracted and analysed as construction schemas.

4.1.4 Construction schemas

All linguistic expressions are symbolic in nature. This means that everything from the lexicon

to grammar lie along the same continuum of assemblies of symbolic structures. The goal of

CG is to describe these symbolic assemblies with as much detail as possible. In the previous

subsection, two component symbols were integrated into one composite symbol and their

assembly was shown as an example. When more and more component symbols are

integrated and assembled into larger grammatical structures such as phrases, clauses,

sentences and so on, the symbolic assembly will be more complex. The patterns to create

such symbolically complex expressions are called constructions. Noun compounds created by

placing one noun after another (like ‘Jar lid’), dative verb constructions to indicate transfer

(like ‘give someone something’), comparative constructions (like ‘the more X the more Y) are

some of the examples for constructions. Such construction patterns can be specific or

schematic. The commonality that is extracted from various constructions is represented at a

higher level of abstraction called a construction schema. The process of recognising

commonalities between different entities to create higher levels of organisation is called

schematisation. The opposite of schematisation is specification. In our example, the ‘jar’ is

specific in its construal but the ‘unspecified container’ construed as a part of the concept LID

is schematic. The degree of schematicity (and specificity) varies between different

expressions. Referring expressions such as ‘he, the man, the doctor, the cardiologist, the

cardiologist in Apollo hospitals’, when referring to the same person, vary in their degree of

schematicity. The pronoun ‘he’ is highly schematic but the noun phrase ‘the cardiologist in

Apollo hospitals’ is more specific.

A construction schema invoked for understanding an expression plays a role in categorising

that expression. If a specific linguistic expression is created in conformance to the schema

specifications, we call it an instance of the construction schema. An instance can be an

elaboration or an extension of the original schema. If the instance fully conforms to the

86

schema it is said to be an elaboration while if the expression partially conforms to the schema

it is said to be an extension. In the ‘jar lid’ example, the construal of LID has an unspecified

container as a schematic entity which is elaborated by JAR. In the expression ‘boxing ring’ the

concept RING is an instance of the original schema of an ‘enclosed region in the form of a

circle’. Even though the actual boxing ring itself could be rectangular in form, it is conceived

as a type of ring. This is an example for extension.

Using these ideas of construals, their symbolic assemblies and construction schemas, CG has

attempted to outline how a meaningful description of grammatical categories might look like.

The most basic grammatical categories available in any language are noun and verb.

According to CG, a noun can be characterised by a construal called THING and a verb by a

construal called PROCESS.

THING: A THING is any entity which is a product of grouping and reification. As an example,

when we look at the constellations in the sky, even though there could be many individual

stars that are small and large in size, we group them together mentally and reify them as one

unit and call it, for instance, ‘The Great Bear’ constellation. Thus, it invokes the THING schema

which makes it a noun. The THING schema is so abstract that many types of linguistic units

can be conceived as a result of grouping and reification. ‘The bus’, ‘the man who came from

London’, ‘it’, ‘earthquake’ can all be schematised as THINGS by this understanding.

RELATIONSHIP: A RELATIONSHIP is the construal of viewing different entities not in isolation

but in terms of their overall arrangement or configuration. There are two types of realisations

for RELATIONSHIP schema. One is the PROCESS schema and the other is the ATEMPORAL

RELATIONSHIP schema. A PROCESS is a RELATIONSHIP whose configuration is mentally

scanned through time sequentially. An ATEMPORAL RELATIONSHIP, as the name indicates,

invokes the same configuration holistically instead of sequentially scanning every component

relationship. Experientially we can conceive the PROCESS like watching a movie, like a

sequence of images scanned mentally through time. But an ATEMPORAL RELATIONSHIP is like

a holistic snapshot of different sequences superimposed over one other.

Let us illustrate these three schemas with the following example: the verb ‘enter’, the

preposition ‘into’ and the noun ‘entry’ invoke PROCESS, ATEMPORAL RELATIONSHIP and

THING schemas respectively which are shown in figure 4.4. They express the same

configuration of two objects involving the following states or component relationships.

87

a. Two objects are initially separate from each other

b. Later one object comes close to another object

c. Finally, one object merges within the space of another object.

Figure 4.4 Three schemas for the same component relationship

Although the component relationships are the same, the difference between the three parts

of speech lie in their construal and the schemas invoked by the construals. In the preposition

interpretation, the component relationships are viewed in summary without focussing on

individual states distinct from one another (Figure 4.4a), which makes it an instance of

ATEMPORAL RELATIONSHIP. In the verb interpretation, the component relationships are

viewed sequentially through sequential scanning which involves a conceived time or scanning

time (Figure 4.4b). This makes it an instance of PROCESS schema. In the noun interpretation,

the focus is not on the component relationships at all. The components are summarily

scanned just like ATEMPORAL RELATIONSHIP but the focus is on the reified entity made up of

these components (Figure 4.4c). This makes it an instance of THING schema.

Profile and profile determinant: The entity designated by a linguistic expression is called its

profile. Within an expression’s construal, there could be multiple parts out of which one part

stands out to designate the meaning of the expression itself. In the case of the adjective ‘long’,

a schematic thing which the adjective modifies is also a part of its construal. But, the

ATEMPORAL RELATIONSHIP is the portion designated by the adjective and hence it profiles

the meaning of the expression. As another example, if we want to understand the concept of

‘arc’, a circle is imagined and a portion of the circle is construed as an arc. The profile of the

word ‘arc’ is the portion of the circle selected for construing the arc.

The portion of an expression’s profile with which we engage in categorisation relationships is

called its profile determinant. In the case of an expression ‘long road’, the profiles of ‘long’

and ‘road’ are integrated and the profile of the composite expression is ‘road’, not ‘long’

because ‘long road’ is a type of road. Profile determinant provides a meaningful

88

characterisation for the concept of ‘head’ and in the traditional dependency grammar

analysis. In the following subsection let us introduce the notions of autonomy and

dependence in grammatical analysis.

4.1.5 Autonomy and dependence

Grammatical relations are defined on the basis of semantic factors and correspondences

between the component expressions. Any inconsistencies in one or more of these

correspondences lead to semantic anomalies. Considering the same example ‘jar lid’, the

construal of ‘lid’ includes an unspecified container that is open at the top. Establishing

correspondence between ‘jar’ and the schematic ‘unspecified container’ allows semantic

integration of the components ‘jar’ and ‘lid’, which makes the composite expression ‘jar lid’

grammatical. Because such a correspondence cannot be established between the

components, the expression ‘wall lid’ cannot be semantically integrated which makes it

ungrammatical.

There are some linguistic structures which by their very nature do not stand alone but take

the support of others for their conception (Langacker 2008, pp 199-200). Such component

structures which make salient schematic reference to other structures are said to be

dependent. If the construal of a linguistic structure does not require another structure for its

own manifestation, it is said to be autonomous. The difference between the two can be

illustrated by the relation between the preposition and the noun in a prepositional phrase.

The very conception of a preposition schematically invokes a reference to a schematic THING

as a part of its construal. In contrast, conceiving a noun does not require can be done in its

own terms without conceiving the noun to be a part of any relationship. Thus, prepositions

are by their very nature dependent structures while nouns are autonomous structures. Other

examples would be the relation between vowel and consonants in a syllable, the relation

between affixes and stem within a word. Here the vowels and stems are autonomously

conceived while the consonants and affixes are dependents by their very nature. What is

crucial for the distinction is whether conceiving one structure invokes another implicitly or

not. This distinction is not based on whether the structures themselves can occur

independently. Thus, even though stems might not occur as independent words in a sentence,

they are autonomous because conceiving a stem does not require conceiving affixes (even

schematically). But conception of affixes necessarily invokes the conception of a stem (at least

schematically). In the construal of a dependent structure, the more autonomous substructure

89

is only schematically specified, which will be elaborated (i.e., specified with more fine-grained

details) by another component in the sentence. Such a substructure is called an elaboration

site or e-site (Langacker 2008, pp. 198-199). E.g., ‘into the hall’. Here the schematic

substructure in the construal of ‘into’ that corresponds to the specific noun phrase ‘the hall’

is the e-site.

Just because a grammatical element is autonomous in an expression, it does not imply that

the autonomous entity will be the one which determines the profile of the expression. The

profile determinant within an expression may be the autonomous entity or the dependent

entity. Continuing with the same example of prepositional phrase (e.g., ‘from London’), even

though the preposition (‘from’) is the dependent entity and the noun (‘London’) is the

autonomous entity we find that the profile of ‘from London’ is determined by the preposition

and not by the noun. Thus, prepositions become the heads of prepositional phrases even

though the nouns are more autonomous than prepositions in the construal. This kind of

organisation of relationships in terms of their autonomy and dependence is a basic feature of

language structure. For example, the difference between complements and adjuncts can be

understood based on whether the component structure is dependent with respect to the

constructional head or otherwise.

4.1.6 Cognitive grammar and parsing

Based on the ideas introduced by CG so far, we understand that grammar is entirely symbolic

in nature where smaller expressions integrate and assemble into larger expressions by

establishing correspondences between orthography and semantic poles of a symbol

(discussed in subsection 4.1.3). This process repeats itself indefinitely to produce symbolically

more complex expressions. The patterns for generating composite symbols from component

symbols are the construction schemas in a language. Construction schemas are again

symbolic in the sense that the mapping between orthography and meaning behind every

construction is arbitrary and so it varies from language to language. Let us explain this with

two examples:

1. Idiomatic construction: ‘The more X the more Y’ is a construction in English which

symbolises the meaning ‘as the degree of X increases or decreases, then the degree

of Y increases or decreases relatively’. Other languages might construe some other

strategy to symbolise this concept. For example, in Tamil, it is symbolised like ‘How

much how much X, that much that much Y’.

90

2. Tense and aspect marking: Some languages (like English) encode tense explicitly

while some other languages (like Chinese) encode only grammatical aspects allowing

the tense to be inferred from the discourse context (Lin 2006; Zhang and Xue 2014).

3. Construal behind prepositions: The relation between prepositions (or postpositions)

and the nouns in the prepositional (or postpostional) phrases is different in different

languages because the conventions of how the preposition-noun relations are

construed are different in different languages (Taylor 1988; Feist 2008; Zwarts 2017).

This arbitrary mapping between form and function is not just limited to lexicon or some

idiosyncratic portions of grammar such as idiomatic phrases. It is true for every level of

grammatical analysis such as morphology, phrase level, clause level, sentence level and

discourse structures as well because of the lexicon-grammar continuum (Croft 2001; Evans

2012). In CG, grammar is considered to be overt with no hidden or deeper levels of

grammatical organisation than what is symbolised by the surface forms. The surface forms

themselves embody the ways in which the mapping between form and meaning are

symbolised and integrated. Therefore, at every level of analysis, there is arbitrary

symbolisation governed by the conventional usage patterns sanctioned by the language. One

of the implications of this position is that the grammatical variations observed in different

languages are not merely apparent but are actual variations in how the languages

conventionally symbolise their semantic content. Every language has a different set of

conventions and so no two languages can be described by the same grammar. Despite such

variations, grammatical universals can still be sought by empirically studying the construals

behind constructions in different languages. Such universals should be formulated in

cognitively meaningful ways with sufficient room for allowing variations encountered in

reality.

CG offers an image schema based, informal understanding of these concepts. One of the

central tenets of CG is that grammatical organisation is grounded on general cognitive abilities

and therefore they could be analysed in terms of construals and image schemas. The

descriptions provided by CG are illustrative and by no means exhaustive. They have to be

verified independently by studying various languages and finding how these ideas are

applicable for different language families. Understanding the universals of construction

schemas by studying a variety of languages and inducing the common properties behind their

construals is one of the larger goals of cognitive linguists. It is also relevant for computational

linguistics because if there are universal patterns of symbolic assembly that is common to

91

multiple languages from different language families, they can be used in natural language

processing for learning cognitive parts of speech identification, create annotation treebanks

based on universal construction schemas, devise new approaches to cognitively parse a text

and so on. Let us summarise some of the concepts introduced so far in the next subsection.

4.1.7 Summary of concepts introduced

Let us define the terminology for the concepts discussed so far.

1. Construal: The mental ability to perceive the same objective situation in cognitively

different ways.

2. Symbol: A mapping between form and meaning. Every linguistic expression is seen as

symbolic in CG. e.g., [[lid/LID]]

3. Profile: The entity that is designated by an expression is called its profile. In the

expression ‘lid’, the covering on the top and the unspecified container are part of the

expression’s profile. In the expression ‘finger’, the hand to which the finger is

attached is a part of its profile.

4. Profile determinant: A part of an expression’s construal that determines its profile is

called its profile determinant. In the examples above, it is indicated by heavy lines. In

the expression ‘jar lid’, the lid is the part of the construal that determines the profile

i.e., ‘jar lid’ is a type of lid.

5. Correspondence: When the construals of two symbols have portions that designate

the same entity, they are said to have correspondence with each other. In our

discussion, JAR and the unspecified container in the profile of LID have

correspondence.

6. Component structure: When correspondences between portions of two expressions

are established and they are integrated to form a larger expression, the two

expressions that were integrated are called component structures. ‘Jar’ and ‘lid’ are

component structures in our example.

7. Composite structure: When component structures integrate to form a larger

expression, the resulting structure is called a composite structure. In our example, ‘jar

lid’ is the composite structure.

8. Symbolic assembly: When component structures integrate with each other to form a

composite structure, various operations happen:

a. Semantic correspondences between components are established

b. Components are integrated into composite expression,

92

c. Profile determinant of the composite expression is identified

d. A holistic image of how the components are related to the composite
structure is formed.

The composite expression is said to be a symbolic assembly of its components.

9. Schematisation: The commonality that is extracted from different construals is

represented as a higher level of abstraction which is called a schema. This process of

recognising the commonality to create higher levels of organisation is called

schematisation. The opposite of schematisation is specification. In our example, the

‘jar’ is a specific thing and the ‘unspecified container’ is schematic. The degree of

schematicity (and specificity) varies between different expressions. Referring

expressions such as ‘he, the man, the doctor, the cardiologist, the cardiologist in

Apollo hospitals’ when referring to the same person vary in their degree of

schematicity. The pronoun ‘he’ is highly schematic but the noun phrase ‘the

cardiologist in Apollo hospitals’ is more specific.

10. Autonomy / Dependence: Any grammatical entity whose construal can be

characterised in its own terms without requiring another entity for its own

manifestation is said to be autonomous. An entity which necessarily invokes another

entity as a part of its construal is said to be a dependent structure. E.g., Prepositions

are dependent while nouns are autonomous.

Using the ideas introduced so far, CG has attempted to provide a meaningful, functional

description of grammatical concepts such as nouns, verbs, adjectives, noun phrases,

preposition phrases, perfect, imperfect aspects of a verb and a few other grammatical

constructions typically found in English. A detailed discussion on conceptual characterisations

of grammatical concepts is provided in (Langacker 1987, 2001). CG has attempted to

characterise grammar in terms of meaning, the attempts so far have been restricted to

defining basic grammatical classes such as nouns, verbs, adjectives, adverbs, aspects of verb,

prepositions, count nouns, mass nouns, grounding systems (such as articles in grammar),

quantifiers, qualifiers and so on. However, meaningful concepts necessary for generation /

parsing at sentence level in different languages are not directly available from the literature

in Cognitive Grammar. The primary concern of literature on CG is at the sentence level: issues

such as subject-verb agreement, verb phrases, a great deal of information about the states,

actions, processes, whether the action is completed or not, if the verb is construed as active

or passive, complements of a verb phrase, adjuncts are laid out in detail to give a cognitive

linguistic analysis for familiar grammatical structures. However, what comes beyond the verb

93

phrases is not entirely clear in a Cognitive Grammar account of sentential analysis. There

seems to be a missing link between grammar, meaning and discourse. In the next subsections,

we will discuss ideas from Karaka theory, a theory of grammar adopted for Computational

Linguistics in Indian languages based on the functional relationships between verbs and

nouns. Ideas from Karaka theory complement the ideas from CG and provide room for

synthesis of ideas using which we develop our approach to parsing.

4.2 Computational Paninian Grammar

Computational Paninian Grammar (CPG) is a computational linguistic framework proposed

for analysing the syntax of major Indian languages belonging to both Indo-Aryan and

Dravidian language families (Bharati and Sangal 1993; Sangal et al. 1995; Kesidi et al. 2013;

Das et al. 2017). CPG is inspired from Karaka theory that was originally proposed for analysing

Sanskrit grammar (Kak 1987; Bhatta 1988). One of the major contributions of Karaka theory

is the recognition of the speaker’s cognitive viewpoint in conceiving how nouns participate in

an action. CPG takes its insight from Karaka theory and proposes a computational framework

that analyses sentences at a level that lies between syntax and semantics. The CPG framework

labels the functional relations between verbs and its arguments (called karaka relations) and

uses these labels in a dependency grammar analysis.

In our work, we analyse the grammatical structure of sentences by unifying syntax and

semantics and propose construction schemas based on this unified analysis. Every

construction schema label consists of three axes of analysis namely composition, interaction

and autonomy. The interaction axis analyses any two parts of a sentence in terms of the

functional relations that exist between them and labels them appropriately. This analysis and

the labels used therein are extended from the functional relations between nouns and verbs

found in the Karaka theory and CPG. For example, a prepositional phrase with the preposition

as the head is schematised as a PARTICIPANT along the interaction axis. Therefore, we

introduce the notions of karaka theory and its contribution to grammatical analysis in sections

4.2.1 and 4.2.2 and motivate the analysis beyond karaka relations in section 4.2.3.

4.2.1 Karaka theory

Karaka theory is a grammatical framework that was originally proposed by Panini for

describing the morphosyntactic forms in Sanskrit language two millennia ago (Kak 1987;

94

Bhatta 1988). Karaka theory is a theory of natural language communication where the

connection between nouns and verbs in a sentence are explained through Karaka relations.

Karaka relations are syntactico-semantic relations that describe the functional roles played

by nouns while participating in the activities denoted by verbs. Karaka relations are neither

syntactic relations (formal grammatical relations such as subject, object) nor semantic

relations (thematic roles such as agent, patient (Van Valin Jr 1990; Primus 2009) but are

functional relations that are motivated by the speaker's viewpoint. According to this theory,

the speaker has a cognitive attitude or viewpoint (called vivaksha) towards the activity

described by the verbs and nouns in a sentence. A sentence is not merely a statement

expressing the objective activities but also a representation of the speaker’s viewpoint. The

constituent of the sentence that is viewed by the speaker as the locus of an activity is called

karta. Out of all the participants in an action, karta is the most independent. We will illustrate

what the meaning of karta is through the following examples.

1. The boy opened the lock.

2. The key opened the lock.

3. The lock opened.

In formal syntactic analysis, the noun phrases highlighted in all the three sentences are

treated as syntactic subjects. In formal semantic analysis, ‘the boy’ is the agent, ‘the key’ is

the instrument, ‘the lock’ is the theme. In karaka analysis, all the three noun phrases ‘the boy’,

‘the key’ and ‘the lock’ are analysed as karta. The karaka role karta might superficially look

like another name for the semantic role agent but it is not the case. As the above examples

show, the notion of karta is quite different from semantic agent because both key and lock,

which are analysed as karta in sentences 2 and 3, do not have any agency in opening the lock.

Karta can be understood in the light of the speaker's viewpoint.

Every verb in a sentence is conceived as an activity complex and every other constituent of

the sentence is seen as participating in the activity complex denoted by the verb. Oftentimes

the same verb is used to refer to not the main activity itself but to the subparts of the activity

complex (Sangal et al. 1995 pp. 61-62). In sentence 1, ‘open’ refers to a complex of activities

such as ‘inserting the key, turning the levers, removing the shackle etc’. The locus of this

activity is viewed by the speaker as ‘the boy’, hence the noun phrase is analysed as karta. In

sentence 2, the same verb ‘open’ refers to the subprocess of ‘causing the levers to move

enabling the shackle to open’. Here ‘the key’ is the karta because the speaker wishes to

emphasise the central role of the key in this subprocess (‘It is this key that opened the lock!!’).

95

In sentence 3, the verb ‘open’ refers to the sub-activity of ‘the motion of the latch followed

by the loosening of the shackle’. Here the speaker focuses on a sub-action where the

unfastening of the shackle is in the speaker’s viewpoint. Which key was employed, who

inserted the key are zoomed out and they become simply irrelevant at this level of

characterisation. That the subprocesses viewed by the speaker are different is evidenced by

the choice of different verbs used for sentences 2 and 3 in Indian languages such as Hindi.

There are six karaka relations namely karta (locus of the action), karma (locus of the result of

the action), karana (the instrument or the means to achieve the result of the action),

sampradana (the beneficiary in the action involving transfer), apadana (the reference point

which remains stationary in activities involving separation), adhikarana (the locus of karta or

karma i.e., the space or time which supports the activity). The following table shows each

karaka relation with examples.

Table 4.1 Karaka relations

Karaka relation Functional role Example

Karta Locus of action ‘The boy opened the lock’

Karma Locus of result of the action ‘The boy opened the lock’

Karana Instrument or means to
achieve the result of the
action

‘The boy opened the lock with
the key’

Sampradana The beneficiary in an action
involving transfer

‘The teacher gave a book to
the student’

Apadana The stationary reference point
in an action involving
separation

‘The leaves fell off the branch’

Adhikarana The locus of karta or karma
i.e., the space or time which
supports the action

‘The leaves fell on the ground’

These six karaka relations look very similar to the semantic roles of agent, patient, instrument,

beneficiary, source, location but the crucial difference is that the karaka roles are based on

the speaker’s viewpoint and not purely semantic. Other than the karaka roles, there could be

other participants in the sentence which have non-karaka relations to the main verb. Table

4.2 lists some of the examples of non-karaka relations with the verb.

96

Table 4.2 Examples of some non-karaka relations

Non-karaka relation Function Example

Taadarthya A constituent which expresses the
purpose of an action

‘The boy took the knife to
cut the fruit’

Saha sambandhi A constituent which functions as
an associative participant in an
action

‘The boy went to school
with his friends’

Sambandha A constituent which expresses the
function of possession, affinity,
ownership. It is a noun-noun
relation.

‘The teacher’s presentation
was very good’

Vina A constituent which expresses
non-association in an an action

‘The boy went to school
without his friends’.

The list of non-karaka relations given above are non-exhaustive. There are many differences

between karaka and non-karaka relations. One fundamental difference is that the karaka

relations are participant relations where the speaker views a constituent as participating in

an activity. The participant is seen as a necessary ingredient playing a particular functional

role. Depending on the role played by the participant in an action, it is assigned a karaka role.

However, in all non-karaka relations, the constituents are not conceived as participants in the

unfolding of the activity. They are not viewed as necessary for conceiving the activity denoted

by the verb. For example, conception of the action ‘open’ (i.e., the action complex of inserting

a key, moving the lever etc.) is not possible without supposing the locus of the action ‘karta’

(the entity who is viewed as enabling the activity i.e., ‘the boy’) or the locus of the result

‘karma’ (where the result of the action lies i.e., ‘the lock’). The non-karaka relations like

purpose, association are not necessary for conceiving the activity itself.

The notions of karaka and non-karaka relations were originally proposed in Panini’s grammar

for analysing Sanskrit morphosyntax. In Paninian grammar, systematic functional mappings

between the noun case declinations (the vibhakti) and their participant roles (called karaka)

were identified and rules were written to generalise their analysis at the karaka level.

Wherever systematic mapping between the morphosyntax and its function was not possible,

Paninian grammar handled them formally based on their structural or semantic properties.

Linguistic structures which could not be analysed functionally were treated formally as

exceptions to the general rules, indeclinables and non-karaka semantic categories.

97

4.2.2 Contribution of Karaka theory for grammatical analysis

Although karaka analysis was proposed for Sanskrit, which is an inflectional language with

case declinations, it has since then been adopted for analysis of several other Indian

languages. A computational linguistic framework inspired by Paninian grammar called

Computational Paninian Grammar (CPG), which was proposed for natural language

processing in Indian languages, has been adopted for analysis of English grammar as well

(Bharati et al. 1996).

One of the major contributions of Paninian grammar to linguistic analysis is the recognition

of the speaker's viewpoint in conceiving how nouns participate in an action (karaka). The

karaka level is introduced as an intermediate layer between vibhakti level (an abstraction on

noun declensions) and the semantic level (formal meaning). Figure 4.5 shows where the

karaka level fits in relation to syntax and semantics (Sangal et al. 1995).

Figure 4.5 Levels in the Paninian model

The surface level is the orthographic level at which a sentence is written. The vibhakti level is

where a set of words are locally grouped based on their case endings, prepositions or

postposition markers (called vibhakti) e.g., ‘from London’, ‘towards east’, ‘in the hospital’ are

local word groups that are identified based on their vibhaktis. The vibhakti level abstracts

away many minor differences between how local word groups are realised in different

languages such as prepositional phrases or case declensions or suffix agglutinations. The

semantic level is the uppermost level which is the meaning that lies in the speaker’s mind.

Karaka level is between the syntax and semantics where there is a mapping between the

surface form and the meaning based on the speaker's viewpoint. One can imagine several

semantic levels between the karaka level and the topmost semantic level with more and more

semantic information added at each level.

98

4.2.3 Beyond karaka relations

The idea of the speaker's viewpoint which is analysed at a level in between syntax and

semantics is similar to the idea of construal in CG from section 4.1.1. In fact, karta and karma

karakas are the special cases of trajector and landmark in CG. Trajector of the activity

designated by the verb is analysed as karta and the landmark of the activity designated by

the verb is analysed as karma. In my earlier research work on syntactic parsing of Tamil, the

connection between karaka theory and CG was noticed. It was observed that the functional

roles proposed by karaka theory could be generalised further by drawing insights from

Cognitive and Construction grammar (Muralidaran and Sharma 2016). Without this

generalisation, many constructions in Dravidian languages - such as relative participles,

relative pronominal constructions, non-finite verbal inflections on function words, issues of

tense and finiteness and other syntactic peculiarities - posed problems in parsing while using

the CPG framework. We showed that our generalised framework could explain the syntactic

peculiarities observed in Dravidian languages in a cognitively meaningful way by recognising

functional viewpoints of the speaker above and beyond the karaka level (Vigneshwaran 2016).

Using the insights from construction grammar and CG, we proposed a syntactic annotation

scheme to develop a parser for Tamil language. The level of analysis proposed in the work

was above the Karaka level but lower than the semantic level. The syntactic annotation

scheme proposed for parsing Tamil was induced by observing the morphosyntax of Dravidian

languages. However, we hypothesise that the schemas proposed in our earlier work are

relatively language-independent and so they can be extended for other languages as well. Let

us discuss what the proposed construction schemas were and how they can describe linguistic

structures at a level of functional abstraction that is applicable to a wide range of languages.

The basic idea is as follows: a linguistic construction is not viewed in isolation but in a world

of discourse mentally conceived by the speaker. When an expression is uttered, it can be

analysed as made up of certain construction schemas and as if it expects certain other

construction schemas to model how the speaker’s mental discourse builds up. The former axis

of analysis is called composition and the latter axis is called interaction. Composition axis

analyses what makes up the content of an expression while interaction axis analyses how the

expression is viewed as interacting with other surrounding expressions to build a larger

discourse. Recognising the profile and profile determinant (refer to section 4.1.4) of an

expression is a way to conceive its composition axis while recognising the elaboration sites

(refer to section 4.1.5) is a way to conceive its interaction axis.

99

Composition axis: When two or more linguistic expressions occur in formally different

syntactic environments, yet express similar functional behaviour, there must be a common

profile shared by these different expressions. For example, the verb in the expression ‘The

army crossed the border’ and the prepositional phrase in the expression ‘The army base was

beyond the border’ are formally different but they express the same function, the former is

the PROCESS interpretation of the relationship while the latter is the STATUS interpretation

of the same relationship. This dimension of analysis via an expression’s profile leads us

through more and more abstract construction schemas from which seemingly different

syntactic categories inherit their functional properties. Ultimately all such schemas inherit

their properties from THING or RELATIONSHIP schema. This axis of analysis that determines

what schemas make up the profile of an expression is its composition.

Interaction axis: Every linguistic expression is understood not only in terms of what it is made

up of but also in terms of its role in building up the discourse. At any given time, there are two

possible construals available at the speaker’s disposal for shaping the discourse.

1. The speaker construes that the current expression does not complete the discourse

and expects more entities to come up that will lead towards the central / nuclear idea

that he / she intends to build. This is called INCOMPLETE schema.

2. The speaker construes the current expression as the central / nuclear idea that he

intended to convey with no further expectation. This is called COMPLETE schema.

For example, the reader reads the phrase ‘The boy’ at the beginning of a sentence. Naturally

the expectation is that there are more words coming up to build the discourse further such

as: what kind of boy? What did he do? What is going to be said about the boy? and so on. This

is an instance of INCOMPLETE schema. However, imagine that the same phrase occurs as the

title of a book. Now the expectation is not that there are more words coming up to build

towards some other nuclear idea. ‘The boy’ itself conveys the nuclear ideas in this context

such as: this is the book's title, maybe its content is about a boy. The reader understands this

and expects no further linguistic expression to elaborate the phrase. Similarly, if somebody

asks the question ‘Who wrote the examination?’ and someone else replies ‘The boy’, that

itself conveys the nuclear idea in the discourse with no further expectation. These are the

instances of COMPLETE schema. The COMPLETE and INCOMPLETE are highly schematic and

they are trivial. More specific schemas such as CONTINUATIVE, COMBINATIVE are inherited

from the INCOMPLETE schema. When an expression expects a THING, it is said to be an

instance of COMBINATIVE schema and when it expects a RELATIONSHIP it is said to be in

100

CONTINUATIVE schema. We will discuss the four types of interactions in discourse based on

how they continue and combine with the expected relation or thing.

4.2.4 Basic types of interactions in discourse

At the most abstract level, every expression can be categorised as either a THING or a

RELATIONSHIP along the composition axis. It can either expect a THING or RELATIONSHIP

along the interaction axis. This gives rise to four possible types of interactions:

1. An expression is a THING along its composition axis and it expects a THING along its

interaction axis - COMBINATIVE schema. E.g., Noun compounds, Genitive case, Nouns

which are made adjectives, apposition phrases that describe another noun phrase are

instances of this schema.

2. An expression is a THING along its composition axis and it expects a RELATIONSHIP

along its interaction axis - PARTICIPANT schema. E.g., Karaka relations and non-karaka

relations

3. An expression is a RELATIONSHIP along its composition axis and it expects a THING

along its interaction axis - QUALIFIER schema. E.g., Attribute adjectives, Determiners,

Relative clauses modifying a noun phrase, genitive case relationships.

4. An expression is a RELATIONSHIP along its composition axis and it expects a

RELATIONSHIP along its interaction axis - ASSOCIATIVE schema.

The four types of interactions are shown in figure 4.6. The direction of the arrow indicates the

dependent unit in the interaction.

Figure 4.6. Basic types of interactions in the discourse

The basic construction schemas identified along the composition axis are shown in table 4.3.

101

Table 4.3 Basic construction schemas along the composition axis

Schema Definition Examples Formal syntactic
categories

THING Any entity that is conceived as a
product of grouping and reification.

1. The boy
2. The great bear

constellation
3. Earthquake

Nouns, Pronouns,
Referring expressions,
Noun phrases

RELATIONSHIP Any entity which is not seen in
isolation but in the overall
arrangement or configuration with
respect to other entities

1. Came
2. Long
3. Slowly
4. Running

Verb, Adverb, Adjective,
Gerund, Prepositions,
Function words

PROCESS Inherits RELATIONSHIP schema. A
type RELATIONSHIP where the states
of the relationship are outlined
sequentially through time

1. Comes
2. Do
3. has done
4. to try

Verbs and their various
inflections

STATUS or
ATEMPORAL
RELATIONSHIP

Inherits RELATIONSHIP schema. A
type RELATIONSHIP where the states
of the relationship are outlined
instantaneously as a holistic
configuration

1. Into
2. Fast
3. Silently
4. Fast
5. Apart

Prepositions, Adjective,
Adverb, Quantifiers and
other function words

PRONOMINAL Inherits THING schema. Least specific
thing in discourse invokes
PRONOMINAL schema.

1. He
2. That guy
3. She who spoke
4. The long one

Pronouns in non-
genitive case, Referring
expressions, Relative
clauses headed by a
non-specific thing

More details about the basic schemas along the composition axis can be found in section 5.1

and its subsections from chapter 5. Interaction axis depends on what entity is expected as a

part of an expression’s profile to build a world of discourse. The basic schemas along the

interaction axis are given in Table 4.4.

Table 4.4 Basic construction schemas along the interaction axis

Schema Definition Examples Formal syntactic
categories

CONTINUATIVE Any entity which expects a
RELATIONSHIP to build the
discourse.

1. The show starts at 2
PM

2. Slowly he dragged
himself

3. Although it was
Sunday, he was
working

Cased nouns and
pronouns, adverbs,
adverbial clauses

COMBINATIVE Any entity which expects
THING to build the discourse.

1. The boy
2. Long journey
3. Three idiots
4. Many times

Determiners, Attribute
adjectives, Numeric
adjectives, Relative
clauses, Nouns that are a

102

5. The boy who lived
6. University rank
7. John, my best

friend, spoke

part of a compound,
Apposition phrases
modifying noun

PARTICIPANT Inherits CONTINUATIVE
schema. A THING which
expects a RELATIONSHIP to
build the discourse.

1. The boy went to
school

2. 2 metres away
3. They are coming

Cased nouns and
pronouns

ASSOCIATIVE Inherits CONTINUATIVE
schema. A RELATIONSHIP
which expects a
RELATIONSHIP to build the
discourse.

1. Walked slowly
2. If it is true, it will

come out.

Adverbs, Dependent
clauses, adverbial
participial form of verbs

QUALIFIER Inherits COMBINATIVE
schema. When a
RELATIONSHIP expects a
THING it is said to instantiate
the QUALIFIER schema

1. The boy
2. Long journey
3. Three idiots
4. Many times
5. The boy who lived

Determiners, Attribute
adjectives, Numeric
adjectives, Relative
clauses

COMPOUND Inherits COMBINATIVE
schema. When a THING
expects a THING, it is said to
instantiate the COMPOUND
schema

1. Book shelf
2. Birthday gift shop
3. Pierre Vinken, aged

35

Nouns that are a part of a
compound, Appositions
modifying the nouns

PRONOMINAL Inherits THING schema. Any
least specific THING in the
discourse that functions as a
referring expression

1. He, she, it
2. The other one
3. He who must not be

named

Pronouns and referring
expressions

The basic schemas can be inherited by more specific constructions in a given language to

realise more language specific constructions schemas. A detailed list of all construction

schemas proposed for parsing Tamil morphosyntax is proposed in (Vigneshwaran 2016). If our

hypothesis is true i.e., the construction schemas represent a level of abstraction that is

relatively language-independent and so they can be extended for other languages as well, it

should be possible to extend the basic schemas to handle the construction patterns in English

and Welsh languages. So far, we have discussed ideas from CG, CPG and outlined the basic

schemas along the composition and interaction axes. We also suggested that they could be

extended for other languages as well. In order to develop an unsupervised cognitive parser,

there are two aspects that should be understood: the nature of grammar and the nature of

parsing. The nature of grammar is covered by the discussion made so far. In order to

understand the nature of parsing we would like to outline the insights obtained from

psycholinguistic studies. Combining them both we have been able to develop a parsing

strategy which will be discussed in chapter 5.

103

4.3 Psycholinguistic studies and parsing

In the systematic literature review we found that an incremental, sequential and usage-based

approach to grammar induction, that takes discourse information and local dependencies into

consideration, can model parsing effectively. There are different questions to consider in the

development of such an approach. When we say that a computational model should parse a

sentence incrementally, does this analysis happen word by word, at the clause level, or at

some other level of analysis? If there are multiple analyses after each increment, should the

ambiguities in analyses be retained and if so, how long do we retain them? How long does it

take before we integrate the upcoming words in a sentence into the running parse? Studies

which discuss how humans process a sentence in real time can provide crucial information

about what aspects of natural language parsing a computational model could take into

account. There are five aspects of an online parsing model arising from psycholinguistic

literature that need to be discussed before we present our approach to parsing. These five

aspects are: (a) whether the parsing model is incremental or non-incremental, (b) whether

the parsing model handles ambiguities serially or in parallel, (c) whether syntactic processing

is separate from semantic processing, (d) the relation between the grammar (as a system)

and parser (as a processing tool), and whether there are any set of declarative rules and

grammatical representations that form the core of language or whether there are other

mechanisms at play, and (e) questions about the costs associated with memory and

integration of new elements into the running parse. If we are going to model a parser

computationally that is in line with insights from functional theories of grammar and

consistent with psycholinguistic elements of parsing, then these aspects of the parsing model

should be considered. These will be discussed in turn in the following sections of this chapter.

4.3.1 Psycholinguistic studies

4.3.1.1 Incremental versus non-incremental parsing

The first aspect of a parsing model is whether it is incremental or non-incremental. The

systematic literature review on unsupervised approaches to grammar induction revealed that

productivity in grammar can be modelled by a sequential process and so a sequential and

incremental approach to parsing is desirable. Psycholinguistic experiments reveal that there

is not much lag between identifying a word in a sentence and making an attempt to integrate

it into the running syntactic or semantic representations (Staub 2015). As we read each word,

we try to combine it with the parse representations that we have been building thus far. One

104

of the clearest pieces of evidence comes from tracking the participant’s eye movements while

processing the garden path sentences such as the ones shown below (taken from Frazier and

Rayner 1982):

1. Since Jay always jogs a mile, this seems like a short distance to him.

2. Since Jay always jogs a mile seems like a short distance to him.

In the second sentence, on seeing the word ‘seems’, the readers’ eye movement stops for a

few milliseconds and moves towards the left side of the sentence before they continue to

read the sentence and interpret it (Frazier and Rayner 1982). The structural principle of

attaching ‘a mile’ in the object slot of the neighbouring word ‘jogs’, which works very well for

sentence 1, fails in sentence 2. The halt in the eye movement and backtracking the sentence

suggests that the readers had already committed to analysing ‘a mile’ as the object of the

verb. On encountering the next word ‘seems’, this commitment had to be revisited in order

to update the parse. This garden path commitment is confirmed by other studies as well

(Christianson et al. 2001, Clifton et al. 2007). There are many studies which have investigated

how eye movements are influenced by how likely a word can serve to continue the sentence

(Rayner et al. 2004; Staub et al. 2007; Warren and McConnell, 2007; Filik, 2008; Cohen and

Staub, 2014). These experiments show that unless the reader has already created a model of

parse incrementally, the occurrence of implausible words at some position in the sentence

could not trigger the halt of eye movement. Within the short span of time, when a word is

encountered, the reader not only identifies its lexical category but also has begun to construct

a parse representation of the sentence. Another important property of real-time parsing is

that not only do the humans fit the incoming words into the running parse incrementally but

they also anticipate upcoming portions of the sentence. This aspect makes the parsing

mechanism hyper-incremental where the reader actively expects how the sentence will

continue based on the prior experience surrounding the running parse. Therefore, the

structures which are more likely based on prior experience are more anticipated and the ones

that are less likely. Thus, when we develop our approach to parsing, incrementality and the

expectation of upcoming structure is an essential property that can improve the performance

of the model.

4.3.1.2 Serial versus parallel parsing

The second aspect of a parsing model is whether a human builds a syntactic representation

serially or in parallel. In a serial model, the parser maintains only one analysis at any given

time and it revises the analysis only if the corresponding parse is shown to be incorrect.

105

However, in a parallel processing model, a parser maintains multiple possible analyses while

incrementally processing the sentence. In a serial parsing model, the first analysis made from

the previously observed words is updated only if the upcoming words bear some properties

that invalidate the initial analysis. In a parallel parsing model, ambiguous analyses are allowed

at every stage and the system will continue to be indecisive until it comes across a

disambiguating unit (MacDonald et al 1994; McRae et al. 1998). A hybrid model maintains

multiple analyses and the one which finishes first is retained as the viable parse (Traxler et al.

1998; van Gompel et al. 2000, 2001; van Gompel et al. 2005). In parallel constraint-based

models many non-structural features influence the parsing decisions (Straub 2015). The

parsing constraints can be:

● The number of words seen.

● The number of words integrated into one or more of the running parses

● The number of upcoming structures anticipated

● The construction patterns available in a given language

● The frequency of occurrence of each construction pattern

● The probability of expecting an upcoming structure given the current running parses

● Recent phrases and other local factors.

Multiple ambiguous parses are maintained in parallel and an optimal parse has to be chosen

from the running parses within these constraints. In contrast to this, the serial models

proposed by van Gompel et al. (2001) maintain that only one of the analyses is retained where

there is ambiguity and that the parse is generated based on a lot of non-structural features

such as the ones mentioned above. The model decisions are not deterministic but based on

probabilities.

4.3.1.3 Syntactic and/or semantic parsing

The third aspect of a parsing model that is debated in psycholinguistic literature is whether

syntactic processing is separate from semantic processing. When it comes to online

processing by humans, both types of analysis are taking place simultaneously, but there are

different views about how they relate to each other. There is some experimental evidence in

French, Dutch and German languages using Event-Related Potential method (ERP), which is a

peak in electrical brain activity measured by Functional Magnetic Resonance Imaging (fMRI)

and Magnetoencephalography (MEG) to understand the mechanisms underlying online

106

sentence processing. Kim and Osterhout (2005) conducted a study which measures the ERP

waveform response on the participants’ brains. P600 is a positive-going ERP waveform that is

elicited by syntactic phenomena in both reading and listening experiments (Hagoort et al.

1999; Hagoort 2007). N400 is a negative-going deflection that is a part of the brain response

to potentially meaningful stimuli such as words, sign language signs, pictures, faces etc (Van

Petten et al. 1999; Laszlo et al. 2008; Federmeier and Kutas 2001; Daltrozzo and Schön 2009).

When there are violations of syntactic principles in reading experiments, it brings about an

increase in the amplitude of the P600 waveform in the readers’ brains. However, if the

sentences are semantically implausible, it triggered an increase in N400 waveform amplitude

on the participants’ brains. What happens when there are both syntactic and semantic

violations in the same sentence? E.g., ‘*The door lock was in the eaten’. It was found that

when both the semantic and syntactic violations occurred in the sentence, P600 effect

occurred (syntactic violation) but no N400 response (semantic violation) in the participants’

brain. Other studies conducted on European languages also suggest that the analysis of

semantic composition was blocked by syntactic violation (Van Herten et al. 2005; Kuperberg

et al. 2007; Stroud and Phillips 2012). However, this interpretation was not supported by

experiments conducted on Chinese language (Zhang et al. 2010; Wang et al. 2013) where the

presence of both the syntactic and semantic violations caused the N400 effect (indicating

semantic violation). The implication is that semantic composition is not blocked by syntactic

violation in Chinese language. One of the reasons might be that because Chinese language

lacks explicit morphological cues for gender, number and case, the syntactic processing

system of Chinese speakers might be different from that of European languages. In summary,

this aspect of the parsing model - whether syntactic processing is separate from semantic

processing - does not have a definitive answer from the psycholinguistics literature.

4.3.1.4 Grammar and Sentence parsing

The fourth aspect of a parsing model is concerned with the grammar as a system of arranging

the words into higher levels of organisation, and its relation to sentence parsing. There are

two perspectives regarding their relationship. Language can be perceived either as a product

or an action (Clark 1992,1996). Generative grammar theories view language as a product,

which implies that the linguistic capacity of human beings is made of a set of rules and

representations (Hauser et al. 2002). Within the language-as-a-product outlook, the

representations of the grammar are treated as context independent (Gregoromichelaki et al.

2013). Related assumptions are that the linguistic information has hierarchical organisation

107

with distinct levels of representation such as phonological, morphological, syntactic,

discourse, pragmatic and so on. These levels are ordered and the representation from one

level invokes another level. Moreover, it is also considered that the speaker has got a definite

propositional content that they want to convey and the role of the listener is to grasp this

proposition (Hauser et al. 2002).

The alternative view is that language is not a product but rather an action that speakers and

listeners engage in. What is shared between them is not their joint intentionality or an

abstract system of procedural knowledge but a set of processing mechanisms and practices.

In an emergent approach to syntax (O’Grady 2010), arguments are given for the idea that

syntactic properties of a language emerge from and are shaped by non-linguistic factors, such

as memory costs, ordering constraints etc., which are much simpler and more basic than the

emergent grammar. The study also presents a case for unifying the theory of sentence

processing with the theory of syntax. Apart from this study there is evidence from Japanese

and Korean languages, which reflect a huge gap between the theory of syntax and how the

processing of sentences actually happens online. These languages are rigidly verb final where

incremental processing of sentences is demonstrated unambiguously, underspecified tree

structures are created in order to build the parse, case markers and particles are treated as

cues to mark the phrases and other structural boundaries (Inoue and Fodor 1995; Kamide and

Mitchell 1999; Miyamoto 2002; Ferreira and Yoshita 2003; Aoshima et al. 2004). The evidence

from these studies shows that syntax closely reflects the sentence processing. Finally, in an

emergent approach to syntax, efficiency seems to be the driving force of the computational

system supporting the human linguistic faculty. Therefore, it is proposed that there are only

two components to a parsing model: a lexicon (declarative memory) plus a computational

system supported by a working memory (O’Grady 2010). The core idea is that there is no

Universal Grammar. A linear processor that is driven by efficiency and a declarative memory

that has the properties of a lexical category are sufficient to model the language processing.

4.3.1.5 Memory and integration costs

The final aspect related to the parsing model pertains to the memory limitations and the cost

of integrating the upcoming words into the running parse. The relevant questions are:

● Is the syntactic working memory specific to the language faculty or shared by other

cognitive faculties as well?

108

● What are the cognitive mechanisms involved in maintaining the unintegrated

syntactic information within the working memory in an ongoing processing of a

sentence?

It has been shown that the short-term memory (STM) that is involved in language processing

is shared by musical syntax (Patel 2012), arithmetic sequences (Kennedy 2001; Fedorenko et

al. 2007) and in motor movements used with a particular expressive purpose (Fiebach &

Schubotz 2006). The language processing system takes sequences of structurally dependent

elements and integrates them, retains syntactic information for a sustained period, processes

new information and anticipates upcoming structures. STM is constantly being used in these

activities with two associated costs - the memory cost and the integration cost. The memory

cost is concerned with the extent of computational resources needed to store the partial

parses in an ongoing parse. The integration cost is concerned with the extent of resources

required to integrate the upcoming words into the partial parses currently stored in memory.

The number of structural predictions made so far and the number of new referrents entering

the discourse are the factors that govern these costs. When the integration of words happens

over long distances, too many syntactic predictions may need to be stored in the working

memory, which increases these costs. The question is whether this increase in memory costs

proceeds linearly or hierarchically. In other words, if the syntactic integration has to happen

over a long distance, does the memory cost increase due to the number of intervening words

or due to the syntactic complexity of the elements in between? Evidence from wh-

movements in German (Fiebach et al. 2002) showed that the longer the filler-gap distance

between the trace and its antecedents, the more computational load in processing the

sentence. A study by Felser et al. (2003) determined that the integration cost was influenced

by the type of linguistic dependency. For example, wh-movement and topicalisation have

different costs for integration. However, the memory cost was found to depend on the

complexity of the elements in the intervening gap. Adding more words from the same

syntactic level did not increase the memory load.

4.3.2 Functional requirements of a parser model

In the introduction chapter 1, we mentioned that our goal is to develop a parsing strategy by

exploiting the cognitive nature of grammar and by closely replicating the strategies used by

humans in online sentence processing tasks. Based on the results of the systematic literature

review of unsupervised approaches to parsing and the ideas presented from CG, CPG and

psycholinguistic studies, we have identified the following functional requirements in a parser

109

model. The actual details of parser implementation are elaborated in chapter 5. The

functional properties that a parser model should have are:

● The model should parse the sentence incrementally. This is in line with the results of

the systematic literature review (section 2.8) where it was found that an incremental,

online model has a broad linguistic coverage and is able to fit child data from a

statistical study (Frank et al. 2012). As each new word is encountered, the integration

of the words with the ongoing parse should begin. All possible structural predictions

should be updated with every upcoming word and the updated prediction should be

stored in the working memory. If the upcoming word cannot be integrated into any

of the predictions of the running parse, then it should be added to the sequence of

unintegrated words in the working memory, until more context becomes available to

enable integration. When new words are added to the sequence, if the parser is able

to integrate the sequence into an ongoing parse, the content of the working memory

is updated.

● The parser model should follow a hybrid approach where multiple ongoing parses are

allowed to compete with one another and the one that finishes first is selected. The

reason for this choice is that we want to take the advantage of both serial and parallel

processing models described in subsubsection 4.3.1.2. In order to limit the huge

number of possible structural predictions, it was decided that the competition

amongst different ongoing parses shall continue for a span of text (e.g., a span of two

verb phrases). We call this the retain span. After the retain span, the best parse is

selected and the working memory is updated to contain only the optimal parse. For

a sentence composed of several retain spans, one optimal parse is chosen out of each

and all the foregoing structural predictions are based on the choice made in the

previous retain spans. If there are long distance dependencies beyond the retain

span, the choices from the previous retain spans should be rolled back starting from

the latest span. In any case, if the retain span and the criteria to select the optimal

parse are chosen well, the need for revisiting the parse might not arise in most of the

sentences except for some tricky garden path sentences.

● Syntax will be treated as a mapping between the surface form (the words) and

function (meaningfully motivated). The basic idea is that every word can be mapped

to some meaningful cognitive construal and the words can assemble into larger

structures based on the semantic constraints imposed by the construal of each

110

component word. The resultant composite structures are again meaningful and so

they invoke new cognitive construals and their semantic constraints in turn

determine how other units can assemble with them to form further larger structures

and so on. In this view, the grammar is entirely symbolic because every expression

from lexicon to final parse are meaningful mappings between forms and functions.

This is inspired from the traditions of Cognitive Grammar, Construction Grammar and

Computational Paninian Grammar. The implementation details are discussed in

sections 5.1, 5.2 and 5.3.

● The grammar will closely reflect the way in which a sentence is parsed. This is in line

with the language-as-action perspective discussed in section 4.3.1.4. The parser

model will have two components: a lexical component and a computation component

with a memory model. The lexical component defines a finite number of composition

and interaction patterns as construction schemas. In the computational component,

as and when a new word is read, it is identified as an instance of one or more

construction schemas based on the definitions in the lexical component, and added

to the ongoing parse. Ambiguous mappings between the ongoing parts of sentences

and their construction schemas are allowed for up to a span of text e.g., until two

verb phrases are encountered. After this span, the number of possible construction

schemas assigned to a word are reduced based on its interaction with the

neighbouring words. Finally, one schema is chosen by a neural network.

● The parse will not be represented using a constituency or dependency tree because

we chose to model a language as an action not as a product. As long as the words

could be assembled incrementally and valid schemas can be identified at every step,

we treat that as a valid parse. This approach is predicated on the idea that since the

definitions of construction schemas in the lexical component are motivated by

meaningful cognitive construals, any sequence of assembly that is validated by this

component should inherently be meaningful and, therefore, could be a valid parse.

Whether it is a structure that should finally be retained or not is determined by the

neural network, which learns the transition probabilities of construction patterns.

In this chapter, we have introduced ideas from Cognitive Grammar, Karaka theory and

Computational Paninian Grammar and psycholinguistic studies and identified the functional

properties a cognitive parser should have. In the next chapter, we will describe the actual

parser implementation, evaluation and results.

111

Chapter 5 Implementation of full parser

In chapter 2, the systematic literature review and its results were presented. After the

discussion of research methodology in chapter 3, the synthesis of ideas from functional

theories of grammar and psycholinguistic aspects of parsing were examined in detail in

chapter 4. On the basis of these discussions, we identified the functional requirements of an

unsupervised cognitive parser at the end of chapter 4. In this chapter, we describe how a full

parser that demonstrates these functional properties was implemented. The prototype

algorithm and its implementation were published in Statistical Language and Speech

Processing (Muralidaran et al. 2020).

The functional requirements of the proposed parser, which were elaborated in chapter 4, can

be summarised as follows.

1. Parsing model is incremental.

2. Sentence processing model is a hybrid of both serial and parallel processing of the

sentence parts.

3. Syntax is analysed in terms of meaningful assembly of constructions.

4. There are only two components to the parser: lexical component and the

computational component.

5. Grammar is an action, not a product. Therefore, the output is not a syntactic

representation such as constituency or dependency tree. Grammar is inherent in the

process of assembling the construction schemas of larger syntactic units out of the

schemas of the smaller expressions.

Our parser implementation has three components: Schema definition component, Schema

assembly component and Schema prediction component. Out of the three, the schema

assembly component is central to the parser that interacts with both schema definition and

schema assembly components to process the input sentence into running parses across the

various stages of parsing. The parsing process is divided into three stages namely: the pre-

processing stage, the processing stage and the predict and feedback stage. In each of the

three stages one or more of the three components of the parser are used to perform the

actions pertaining to that stage. Figure 5.1 shows the system overview that represents how

the three components are connected to the three stages. The three components of the parser

are shown in the figure with dotted lines around them and the three stages are shown to be

112

connected with each component to perform various actions. In this chapter, we present the

implementation details of each of the three components and how they are used in various

stages of parsing. An explanation of the three components and their connection to the three

stages of the parser implementation is given below.

Figure 5.1 System overview

Given a corpus of raw sentences, the preprocessing stage involves POS tagging followed by

mapping of tokens and POS tags to token level construction schemas. The preprocessing stage

may optionally use additional semantic information from an external resource like WordNet

to enrich the raw text before further processing.

The processing stage reads the tokens, POS tags, wordnet synsets and token level

construction schemas and assigns all possible analysis for assemblies of token level schemas

into higher level schemas. The assemblies are validated to discard the invalid ones and

multiple valid paths of assembly are retained. These multiple assembly paths are treated as

113

multiple running parses. They will be retained in the processing stage as long as the number

of words processed do not exceed a retain span. A retain span is a span of text until which

multiple parses are allowed to compete after which one of the parses is chosen as the optimal

parse.

The third stage is the predict and feedback stage where the tokens, POS tags, semantic

information from synsets and multiple running parses are taken as inputs and one of the

running parses is chosen as the optimal parse. The optimal parse is returned to the processing

stage again to update the list of running parses. As the name indicates, this stage predicts the

most likely parse and when errors are made, the correct assembly head is fed back to the

same prediction component in order to improve the prediction subsequently.

The three components namely schema definition, schema assembly and schema prediction

components are used in the three stages to perform the various steps in parsing. The schema

definition component is a repository of definitions of construction schemas stored in the form

of recursive rules. Each schema is defined in terms of other schemas until the token level

schemas are reached. Their definitions are very similar to the definitions of context-free

grammar rules except that the definitions are based on the unification of syntax and

semantics and therefore interpretable by humans. This component serves as the grammar

knowledge base that will be used for bootstrapping higher level grammatical analysis in terms

of the valid patterns of assembly.

The schema assembly component is a procedural component that contains the algorithm for

incremental cognitive parsing. It is this algorithm that actually implements the decisions to be

taken by the processing stage that we discussed earlier. The algorithm in the schema assembly

component interacts with the schema definition component to get all possible assemblies

from the sequence of input tokens. It also connects with the schema prediction component

to get the optimal parse after every retain span. This component finishes its processing after

all the words in the sentence are assembled and a complete parse is obtained.

The third component i.e., the schema prediction component is a statistical learning

component that learns patterns of assembly of construction schemas obtained from the

schema assembly component. As more and more sentences are processed and many patterns

of assemblies are fed into this component, it learns to predict the most likely assembly that

should be chosen given multiple sequences. We used Artificial Neural Networks to implement

the schema prediction component. The reasons for choosing ANNs to implement this

114

component and the details of implementation are given in section 5.3 and its subsections.

The outputs obtained from the parser are not in the form of a constituency or dependency

tree. The parser that we developed divides the sentence into various chunks and assigns

construction schemas to those chunks and finally assembles these construction schemas into

higher level schemas. There are multiple valid paths of assembling the low-level construction

schemas into higher level assemblies. Because of this reason, it becomes inherently

impossible to assign one of the analyses as the gold standard to compare against. Let us

reconsider the example sentence ‘The children ate the cake with a spoon’ to understand the

difficulty in having a gold standard. The sentence may be chunked and assembled in two valid

ways shown below in tables 5.1 and 5.2. All the intermediate running parses that were

considered and then discarded are not shown here.

Table 5.1 Assembly 1

Chunk Schema

The children THING_PARTICIPANT_AUTONOMOUS

ate PROCESS_CLOSED_AUTONOMOUS

the cake THING_PARTICIPANT_AUTONOMOUS

with a spoon STATUS_PARTICIPANT_AUTONOMOUS

The children ate the cake EVENT_CLOSED_AUTONOMOUS

The children ate the cake with a spoon EVENT_CLOSED_AUTONOMOUS

Table 5.2 Assembly 2

Chunk Schema

The children THING_PARTICIPANT_AUTONOMOUS

ate PROCESS_CLOSED_AUTONOMOUS

The children ate PROCESS_CLOSED_AUTONOMOUS

the cake THING_PARTICIPANT_AUTONOMOUS

with a spoon STATUS_PARTICIPANT_AUTONOMOUS

The children ate the cake with a spoon EVENT_CLOSED_AUTONOMOUS

115

The noun phrases and prepositional phrases in the example sentence are analysed as

THING_PARTICIPANT_ AUTONOMOUS and STATUS_PARTICIPANT_AUTONOMOUS schemas

respectively. The finite verb is analysed as PROCESS_CLOSED_AUTONOMOUS schema. The

output construction schema labels are meant to reflect both the syntactic and semantic

properties of the corresponding chunk. Each label has three dimensions of analysis each

separated by an underscore. Each of these labels are defined in the schema definition

component.

In the upcoming section 5.1 and all its subsections schema definition component is explained

in detail. This includes the definitions of different types of schemas and how they are

motivated by syntactic and semantic factors. Apart from the schema definitions, valid

patterns of interactions between the proposed schemas are also defined here. In section 5.2

and all its subsections, the cognitive parsing algorithm and the various steps related to the

processing stage of the parser are elaborated. In section 5.3 and all its subsections, the

schema prediction component and how it is implemented with ANNs is presented. The

justification for choosing neural networks and the detailed architecture of the network is also

given in the subsections. Finally, the reason for using wordnet synsets in the parsing model is

explained and the chapter concludes with section 5.5 that outlines how the proposed

approach can be adapted for Welsh language.

5.1. Schema definition component

A dictionary of construction schemas is defined in this component. Each construction schema

is an abstraction of the morphosyntactic patterns observed in a given language (English and

Welsh). Formally, different syntactic environments which have similar functional motivations

are analysed as instances of the same schema. These schemas are meaningful templates that

define some semantic conceptualisation. Since the construction schemas are functionally

defined, more specific definitions or more schematic definitions can be composed from one

or more already existing schema definitions and an expression can be analysed as an instance

of one or more schemas.

In chapter 4, we introduced the notions of composition, interaction and autonomy. In order

to use these notions for the task of parsing, we propose that every linguistic expression can

be analysed along its composition, interaction and autonomy axes. This is because every word,

phrase or any other part of the sentence profiles something, expects something else to

continue the discourse and can be seen as autonomous or dependent. Accordingly:

116

● Words, phrases or any other part of a sentence is analogous to one of the

construction schemas given in column 1 of table 5.3 (their composition),

● The way these expressions create discourse expectations and assemble with other

words, phrases or parts of the sentence is analogous to one of the construction

schemas in column 2 of table 5.3 (their interaction)

● The composition of the expression can be construed independently or its construal

inherently depends on other expressions (their autonomy).

Table 5.3 Composition, Interaction and Autonomy axes

Composition axis Interaction axis Autonomy axis

THING
PRONOMINAL
RELATIONSHIP
PROCESS
STATUS
OPERATOR
EVENT

CONTINUATIVE
COMBINATIVE
CLOSED
QUALIFIER
PARTICIPANT
DESCRIPTIVE

AUTONOMOUS
DEPENDENT
JOIN

The construction schemas mentioned in table 5.3 are the most fundamental schemas along

the three axes. More specific schemas in the language will be defined based on these

fundamental schemas. Out of these fundamental schemas, the following schemas were

already introduced in Chapter 4: THING, PRONOMINAL, RELATIONSHIP, PROCESS, STATUS,

CONTINUATIVE, COMBINATIVE, CLOSED, QUALIFIER, PARTICIPANT, AUTONOMOUS and

DEPENDENT (sections 4.2.3 and 4.2.4). Other fundamental schemas namely OPERATOR,

EVENT, DESCRIPTIVE, JOIN will be introduced now.

OPERATOR is a schema that breaks the current parse so that the portion to the left of the

operator is treated as one unit and the upcoming words will be treated as another unit.

OPERATOR schema is invoked in various environments such as conjunctions, disjunctions,

listing of items in a sequence, pauses and breaks in a sentence introduced by punctuations.

EVENT schema is invoked when a PROCESS schema is integrated with all its arguments and

modifiers and then assembled into the next level of organisation. EVENT schema comes into

play at the clausal level of linguistic analysis. DESCRIPTIVE schema is a type of ASSOCIATIVE

schema (when a RELATIONSHIP expects a RELATIONSHIP, it is said to be in ASSOCIATIVE

schema) where the first entity is a STATUS (i.e., ATEMPORAL RELATIONSHIP) and the expected

entity can be either PROCESS or STATUS. So far, we have introduced the list of fundamental

schemas along the three axes.

117

More specific construction schemas, which are extensions of the fundamental schemas along

the three axes, were identified by us as a part of the schema definition component of the

parser. These schemas were identified based on two factors:

● The level of grammatical organisation at which a construction occurs

● How self-similar many different constructions are to one another across different

levels

Levels of grammatical organisation: There are three levels of grammatical organisation

within which all the schemas defined in the schema definition component can be fitted in:

token level schemas, process level schemas and event level schemas. Token level schema

definitions are relevant at the level of each word in a sentence. In our implementation, this

refers to the schemas which map to the formal POS tags. Process level schemas are relevant

before verbs and their arguments are integrated into one large assembly. Event level schemas

become relevant after the verbs and their arguments are integrated into an assembly and

more larger units are ready to be parsed.

Self-similar constructions across different levels: Different constructions which are formally

different and which may occur at different levels of grammatical organisation can be

analogous to each other based on some functional property. For example, ‘your friends’,

‘good friends’ and ‘friends whom we met in the party’ are formally different syntactic units

but they are all in COMBINATIVE schema because they are entities that modify a THING (i.e.,

friends). More specifically they are in QUALIFIER schema because they are RELATIONSHIPS

that modify a THING. Further specifically, ‘your’ and ‘good’ are in STATUS_QUALIFIER schema

and ‘whom we met in the party’ is in PROCESS_QUALIFIER schema because the former

expressions profile atemporal relationships while the latter profiles a process.

By observing syntactic usage patterns in the three levels of grammatical organisation and by

noticing which ones are similar to each other, we have arrived at a list of construction schemas

arranged into five categories: THINGS, PROCESSES, STATUSES, OPERATORS and EVENTS. The

list of schemas belonging to each of these categories are shown in tables 5.4 to 5.8. We will

explain how to understand these schema definitions meaningfully.

5.1.1 Schemas defining THINGs

Table 5.4 contains all the schemas that are categorised as THINGS. The construal of THING is

so generic that any grammatical unit that can be seen as a product of grouping and reification

118

can be construed as a THING.

Table 5.4 Construction schemas - THINGs

CONSTRUCTION
SCHEMA

IS ANALOGOUS TO EXAMPLES

THING_PARTICIPANT 1. NOUN_CONTINUATIVE

2. STATUS_CLOSED-

AUTONOMOUS

3. NUM_CONTINUATIVE

4. DET_CONTINUATIVE

5. THING_PARTICIPANT<-

>STATUS_CLOSED-DEPENDENT

1. John went
2. Blessed are the meek, It is

a given that…
3. One went out and two

came in
4. That is good
5. The guards around were

vigilant

PRON_PARTICIPANT 1. PRON_CONTINUATIVE 1. They walked

EVENT_PARTICIPANT

1. (THING_PARTICIPANT)<-

>EVENT_QUALIFIER

1. The company which has its
headquarter in London

THING_COMBINATIV

E

1. NOUN_COMBINATIVE

2. PRON_COMBINATIVE

1. Language Processing
workshop happened

2. Your book is with me

THING_CLOSED-

AUTONOMOUS

1. PROCESS_CONTINUATIVE-

AUTONOMOUS

2. STATUS_CLOSED-

AUTONOMOUS

3. EVENT_CLOSED-DEPENDENT

1. He asked me to come
2. ..refrained from doing
3. ...saw someone coming
4. Speaking to the reporters

he said ..
5. It is a given that..
6. Blessed are the meek ..
7. Much has gone into the

research
8. That the man came from

Paris is a news to me

But, more specific construction schemas, which are useful for making parse decisions, can be

defined as extensions of the basic THING schema. We recognised such schemas and listed

them in table 5.4. THINGs can be schematised from constructions at all the three levels -

token, process and event levels. The notation used in these tables are: The symbol ‘_’ splits

the schema into composition and interaction axis. The symbol ‘-’ splits the schema into the

composition_interaction axis group and the autonomy axis if the autonomy axis is relevant for

conceiving the schema. The symbol ‘<->’ indicates that two schemas are integrated into one

unit. Any schema which is enclosed by left and right brackets (e.g., (THING_PARTICIPANT)<-

>STATUS_CLOSED-DEPENDENT in the table) indicates that the definition includes all other

schemas which are even partially analogous to it. In this specific example, the definition

includes not only THING_PARTICPIANT but also just THINGs or PARTICIPANTs. These same

notations are used in all other tables in the schema definition component.

119

The construction schemas mentioned in column 1 of the table are said to be analogous to the

schemas in column 2. Any expression which can be analysed as one of the schemas is column

2, can be analysed as the schema in column 1. We say column 1 is composed of schemas from

column 2. Schemas in column 1 are composed schemas and the ones in column 2 are

composing schemas. We will illustrate how composing schemas and composed schemas are

related with the following examples.

Illustration 1: Let us consider the expression ‘Friends came’. The first word is a noun

and it is perceived as a part of the activity ‘came’ which is a RELATIONSHIP. At the token level,

the word ‘friends’ is in NOUN_CONTINUATIVE schema because it is conceived to expect a

RELATIONSHIP to build the discourse. NOUN_CONTINUATIVE can in turn be analysed as

THING_PARTICIPANT because of the definition in row 1 and column 1 in table 5.4. Now the

composing schema NOUN_CONTINUATIVE is a token level schema and therefore it cannot be

composed from anything else. There are cases where the level of the composing schemas are

above the token level. In that case, they will be further composed of other schemas analogous

to them. Illustration 2 shows that.

Illustration 2: Consider the expression ‘That the man came from Paris is news to me’.

The underlined portion is in EVENT_CLOSED_DEPENDENT schema that composes a

THING_PARTICIPANT according to the definition in table 5.4. EVENT_CLOSED_DEPENDENT

itself is defined in table 5.8 in subsection 5.1.5 because it is an EVENT level schema. It is

composed of other schemas EVENT_CONTINUATIVE-DEPENDANT<->EVENT_CLOSED-

AUTONOMOUS. These two schemas EVENT_CONTINUATIVE-DEPENDANT and EVENT_CLOSED-

AUTONOMOUS are in turn composed of other schemas and the composition of schemas continues

until the token level schemas are reached.

The idea behind the definitions is that one schema is composed of other analogous schemas,

these other schemas are in turn composed of what is analogous to them and so on until the

token level schemas are reached. This idea is very similar to the recursive definition of phrase

structure rules made of non-terminals and terminals. In our case, the event level and process

level schemas are similar to non-terminals and the token level schemas are similar to

terminals. The difference lies in the fact that these definitions are inherently meaningful and

not merely formal.

Token level THINGS: At the token level, demonstrative pronouns, nouns, pronouns, numbers,

adjectives can function as THINGS. The examples of such instances are given in column 3 of

120

table 5.4. The schemas representing token level constructions that function as THINGS are:

NOUN_CONTINUATIVE, NUM_CONTINUATIVE, DET_CONTINUATIVE, PRON_CONTINUATIVE,

NOUN_COMBINATIVE, PRON_COMBINATIVE.

Process level THINGS: At the process level, noun phrases, adjective phrases, noun headed

relative clauses with preposition, gerunds, infinitive form of verbs can function as THINGS.

The schemas corresponding to these syntactic units are: STATUS_CLOSED-AUTONOMOUS,

THING_PARTICIPANT, PRON_PARTICIPANT, THING_PARTICIPANT<->STATUS_CLOSED-DEPENDENT,

THING_COMBINATIVE, THING_CLOSED-AUTONOMOUS and PROCESS_CONTINUATIVE-

AUTONOMOUS.

Event level THINGS: At the event level, noun phrases which are modified by relative clauses,

reported clauses can function as THINGS. The schema corresponding to these syntactic units

is EVENT_PARTICIPANT.

5.1.2 Schemas defining PROCESSes

Table 5.5 Construction schemas - PROCESSes

CONSTRUCTION
SCHEMA

IS ANALOGOUS TO EXAMPLES

PROCESS_CONTINUATI

VE-DEPENDENT

1. VB

2. VBD

3. VBZ

1. do visit, be interested
2. did happen, was moving
3. Has happened, is watching

PROCESS_CONTINUATI

VE--AUTONOMOUS

1. TO<->VB

2. VBG

1. Wanted to speak, to be
2. Tried escaping, was watching

PROCESS_CLOSED--

DEPENDENT

1. MD 1. Will come, might open

PROCESS_CLOSED--

AUTONOMOUS

1. VB, VBZ, VBD

2. PROCESS_CONTINUATIVE-

DEPENDENT<-

>PROCESS_CONTINUATIVE

--AUTONOMOUS

3. PROCESS_CLOSED-

AUTONOMOUS<->PRT

4. PROCESSED_CLOSED-

AUTONOMOUS<-

>PROCESS_CONTINUATIVE

-AUTONOMOUS

5. PROCESSED_CLOSED-

AUTONOMOUS<-

>STATUS_CLOSED-

1. Go home, He comes, it
happened

2. Has happened, is watching, did
happen, was moving

3. Give up, go away, work out,
give in, ended up

4. Come running, wanted to
speak, Tried escaping,
continues to rain

5. Remains unopened, left
unscathed, seems interesting,
have been,

6. Will come, might open, would
have been done

121

DEPENDENT

6. PROCESS_CLOSED-

DEPENDENT<-

>PROCESS_CLOSED-

AUTONOMOUS

Table 5.5 contains schemas that are defined as PROCESSES. They are composed in terms of

analogous schemas as explained in the previous subsection.

Token level PROCESSES: At the token level dummy auxiliary verbs, auxiliary verbs showing

aspects, modal verbs, base form of verbs function as PROCESSES. The schemas recognised

from these syntactic units are: PROCESS_CONTINUATIVE-DEPENDENT, PROCESS_CLOSED-

DEPENDENT.

Process level PROCESSES: At the process level, finite verbs with tense, aspects and modality

integrated with the verb phrase, prepositional verb phrases, finite verbs modifying gerund or

infinitive forms of verbs, verbs describing a resulting state are examples of constructions that

can function as PROCESSES. The schemas identified from these syntactic units are:

PROCESS_CONTINUATIVE-AUTONOMOUS, PROCESS_CLOSED-AUTONOMOUS and other

schemas that they are composed of.

Event level PROCESSES: There are no event level schemas used in the definitions of PROCESS

in table 5.5.

5.1.3 Schemas defining STATUSes

Table 5.6 Construction schemas - STATUS / ATEMPORAL RELATIONSHIPs

CONSTRUCTION
SCHEMA

IS ANALOGOUS TO EXAMPLES

STATUS_PARTICIPANT

1. STATUS_CONTINUATIVE-

DEPENDENT<-

>THING_PARTICIPANT

2. STATUS_CONTINUATIVE-

DEPENDENT<-

>PRON_PARTICIPANT

3. STATUS_CONTINUATIVE-

DEPENDENT<->THING_CLOSED-

AUTONOMOUS

1. In the school, from London,

around the area

2. By them, to her

3. dedicated to helping others

4. among the poor and elderly

5. for the initiated

6. Both the programming

languages are similar in that

they do not allow state

changes and side-effects

STATUS_DESCRIPTIVE

1. ADV 1. Slowly, the door opened

2. Yet it was not true

122

STATUS_CONTINUATI

VE-DEPENDENT

1. ADP 1. Into the room

2. From the lecture

STATUS_QUALIFIER 1. ADJ

2. VBN

3. NUM

4. ADP

1. Good boy, thin layer

2. Broken legs, unspoken

agreement

3. Three musketeers, Five years

4. The coach to London, Men in

black

STATUS_COMBINATIV

E

1. PRP$

2. DET

1. Your book

2. The town

STATUS_CLOSED-

AUTONOMOUS

1. VBN

2. ADV

3. ADJ

1. The known and the unknown

2. Much has been discussed

3. The good, bad and ugly

STATUS_CLOSED-

DEPENDENT

1. ADJ

2. VBN

1. Turned pale, is open, seems

clear

2. Remains broken, left no

stone unturned

List of schemas categorised as STATUS / ATEMPORAL RELATIONSHIPs are provided in table

5.6.

Token level STATUSES: At the token level parts of speech related to adverbs, prepositions,

adjectives, determiners, genitive case of pronouns, stative verbs, past participial form of

verbs, numerical qualifiers, quantifiers can function as ATEMPORAL RELATIONSHIPS. The

schemas identified from these syntactic units are: STATUS_DESCRIPTIVE,

STATUS_CONTINUATIVE-DEPENDENT, STATUS_QUALIFIER, STATUS_COMBINATIVE,

STATUS_CLOSED-AUTONOMOUS and STATUS_CLOSED-DEPENDENT.

Process level STATUSES: At the process level, preposition phrases and to+gerund

constructions, phrases indicating purpose and cause can function as STATUS/ ATEMPORAL

RELATIONSHIPS. The schemas identified from these syntactic units are: STATUS_PARTICIPANT

composed from STATUS_CONTINUATIVE-DEPENDENT<->THING_PARTICIPANT and

STATUS_CONTINUATIVE- DEPENDENT<->PRON_PARTICIPANT.

Event level STATUSES: At the event level, complementiser that-clauses that form a part of a

prepositional phrase can function as STATUS / ATEMPORAL RELATIONSHIPS. This is because

the complementiser that-clause is a construction in English that can be analysed as

THING_CLOSED-AUTONOMOUS which can in turn integrate with prepositions to profile

ATEMPORAL RELATIONSHIPS. An example is given in table 5.8. The schema identified from

this syntactic unit is: STATUS_PARTICIPANT.

123

5.1.4 Schemas defining OPERATORs

Table 5.7 Construction schemas - OPERATORs

OPERATOR_DESCRIPTIVE CONJ 1. But, Yet as clause adverbs

2. Chapter number, bullet point numbers

OPERATOR_JOIN CONJ, . 1. And, but and many coordinating conjunctions

2. Listing of items in a sequence marked by comma,

hyphen which pauses the parse and continues the

parse from another hyphen

OPERATOR_CLOSED . 1. Sentence full stop, question mark, a colon before

at the end of a statement

Operator schemas shown in table 5.7 occur at all the three levels.

5.1.5 Schemas defining EVENTs

Table 5.8 Construction schemas - EVENTs

CONSTRUCTION
SCHEMA

IS ANALOGOUS TO EXAMPLES

EVENT_CONTINUATIV

E-AUTONOMOUS

1. EVENT_CONTINUATIVE-

DEPENDENT<-

>EVENT_CLOSED-

AUTONOMOUS

2. EVENT_CONTINUATIVE-

DEPENDENT<-

>STATUS_CLOSED-

DEPENDENT

3. EVENT_CONTINUATIVE-

DEPENDENT<-

>THING_CLOSED-

AUTONOMOUS

1. While I was studying in

college..

2. Speaking to the reporters,

he said…..

3. He asked me to come with

my friends

4. If possible, could you

please…

5. When cornered, they had

no other option except …

EVENT_CONTINUATIV

E-DEPENDENT

1. ADP

2. ADV

3. DET

1. While I was studying in

college..

2. Wanted to know if it was

possible

3. I heard that it happened

EVENT_COMBINATIVE

-DEPENDENT

1. DET

2. PRON

3. ADV

1. The man who came from ..

2. The incident that happened

…

3. The idea, which was

proposed by..

124

EVENT_QUALIFIER

1. EVENT_COMBINATIVE-

DEPENDENT<-

>PROCESS_CLOSED-

AUTONOMOUS

2. EVENT_COMBINATIVE-

DEPENDENT<-

>EVENT_CLOSED--

AUTONOMOUS

1. The man who came from

Paris

2. The incident that

happened..

3. The incident that happened

last night...

EVENT_CLOSED-

AUTONOMOUS

1. (PARTICIPANT)<-

>PROCESS_CLOSED-

AUTONOMOUS

2. (DESCRIPTIVE)<-

>PROCESS_CLOSED-

AUTONOMOUS

1. The tourists visited the

museum

2. Inside the room were two

tables on which…

3. Lightly the cat moved into ...

EVENT_CLOSED-

DEPENDENT

1. EVENT_CONTINUATIVE--

DEPENDENT<-

>EVENT_CLOSED-

AUTONOMOUS

1. Whether it happened..

2. Heard that the man came

from Paris

The list of schemas that are categorised as EVENTS are defined in table 5.8.

Token level EVENTS: At the token level, subordinating conjunctions, complementisers,

gerunds, relative pronouns, quotative particles require an event level analysis. The schemas

identified from these units are: EVENT_CONTINUATIVE-DEPENDENT, EVENT_COMBINATIVE-

DEPENDENT.

Process level EVENTS: There are no process level definitions for EVENTS in table 5.8.

Event level EVENTS: At the event level, subordinate clauses, complement clauses, gerunds

with their arguments, quotative clauses, relative clauses require an event level analysis. The

schemas identified from these units are: EVENT_CONTINUATIVE-AUTONOMOUS,

EVENT_QUALIFIER, EVENT_CLOSED-AUTONOMOUS, EVENT_CLOSED-DEPENDENT.

From tables 5.4 to 5.8, we have listed all the five types of schemas along the three levels of

grammatical organisation. As mentioned before, the composition of these schemas happens

across levels and therefore the same schema can instantiate very different grammatical

structures when composed differently. The illustrations are given below:

Illustration 1: Past participial form a verb (VBN), an adjective (ADJ) and an adverb

(ADV) are the formal syntactic categories that can be analysed as STATUS_CLOSED-

AUTONOMOUS schema because they are temporal relationships, they can be construed

125

autonomously and they can complete the flow of discourse when treated as a THING e.g.,

‘Blessed are the meek for they shall inherit the earth’. Here the expression ‘the meek’ refers

to ‘the meek people’ and so it is construed as a THING. Such an interpretation is possible

because the expression instantiates STATUS_CLOSED-AUTONOMOUS schema which in turn

can be reanalysed as a THING_PARTICIPANT (from definitions in table 5.4). The same

THING_PARTICIPANT can however be composed not out of STATUS_CLOSED-AUTONOMOUS

but out of a noun functioning as a karta or karma discussed in the previous chapter.

Illustration 2: One of the construals of the formal part of speech adjective (ADJ) is its

function as a STATUS_QUALIFIER because it is an atemporal relationship (STATUS) which

expects a THING. It is further understood as an instance of QUALIFIER schema as well as

STATUS schema (Refer tables 10 and 12). However, the same adjective can be analysed as

STATUS_CLOSED-DEPENDENT when the token is construed as a part of a predicate adjective.

In the predicate adjective construction (e.g., ‘is good’), the adjective that is analysed as

STATUS_CLOSED-DEPENDENT can in turn be analysed as a part of PROCESS_CLOSED-

AUTONOMOUS (i.e., ‘is’). These two schemas interact with each other and assemble into

PROCESS_CLOSED-AUTONOMOUS schema (based on the interaction patterns to be

introduced in the next section 5.1.6).

Illustration 3: Finite Verbs (VBZ, VBD) are analysed as PROCESS_CLOSED-

AUTONOMOUS schema. PROCESS - because its internal states can be mentally scanned

temporally as a PROCESS; CLOSED - because finite verbs can potentially complete the

discourse, AUTONOMOUS - because the internal states of a verb’s construal can occur

independently of other parts of the sentence; The verb in PROCESS schema is analysed as

EVENT at the next level of analysis. Arguments of the verb, adverbs and other modifiers in the

finite verb phrase can be conceived internal to the EVENT schema. Thus, when all these

arguments are integrated with the verb, it becomes the EVENT_CLOSED-AUTONOMOUS

schema.

From these illustrations, we see that different types of expressions can be analysed as

instances of the same schema based on how the intermediate schemas are composed.

Moreover, the same expression can be conceived as instantiating different schemas based on

the usage pattern within which it is construed. So far, we have discussed how schemas are

composed meaningfully. Apart from composition, the Interaction between any two schemas

also forms a part of the schema definition component. These schemas are about the

interaction axis of constructions. A list of all such interactions is given in table 5.9. The

126

question mark ‘?’ in this table indicates that it can be any schema involved in the interaction.

5.1.6 Interactions between schemas

Table 5.9 Interactions between schemas

Schema interaction Assembly head

QUALIFIER<->THING THING

CONTINUATIVE<->PROCESS PROCESS

THING<->PROCESS PROCESS

THING<->STATUS_PARTICIPANT THING

?<->OPERATOR_JOIN<->? ?

PROCESS_CLOSED<->. PROCESS

?<->OPERATOR ?

PROCESS<->THING PROCESS

Illustrations for the interaction patterns are given below:

● In English, when we observe an adjective followed by a noun, the relationship profiled

by the adjective is qualified on the noun. The adjective is in STATUS_QUALIFIER

schema and the noun is a type of THING schema (e.g., THING_PARTICIPANT,

THING_CLOSED-AUTONOMOUS etc.). The profile determinant of the resulting noun

phrase is a THING and not a QUALIFIER. Thus, the interaction pattern is QUALIFIER<-

>THING: THING. In the Welsh language this definition is modified as THING<-

>QUALIFIER: THING because the adjective typically occurs after the noun in Welsh.

● When a prepositional phrase / a noun phrase is a part of a verb phrase, the

preposition / noun phrases are in STATUS_PARTICIPANT/ NOUN_PARTICIPANT

schema and the verb is a type of PROCESS schema. The interaction results in the

integration of the PARTICIPANTs and the PROCESS. The integration of PARTICIPANTs

and the PROCESS is a type of PROCESS. Finally, this fully integrated PROCESS plus its

PARTICIPANTs profiles an EVENT schema. These functional properties are the basis of

the definition of EVENT_CLOSED-AUTONOMOUS schema resulting from the following

interactions:

127

○ 'EVENT_CLOSED-AUTONOMOUS' : ['(PARTICIPANT)<->PROCESS_CLOSED-

AUTONOMOUS', '(DESCRIPTIVE)<->PROCESS_CLOSED-AUTONOMOUS']

Just like the illustrations given above, each and every schema definition given in tables 5.4 to 5.9

can be understood based on the composition and interaction properties of each part of the

definition. Among the composition definitions in tables 5.4 to 5.8, some schemas are dependent

and some are autonomous. The dependent schemas by their very nature depend upon some head

schemas as a part of their definition. This dependent-head relation is also a part of the schema

definition component which is shown in table 5.10.

5.1.7 Dependent and head schemas

Some linguistic structures are inherently dependent on more autonomous structures to

characterise their profile. We introduced the notions of autonomy and dependence in section

4.1.5. In the schema definition component, there are some schemas that are dependent on

more autonomous schemas to fulfil the expectations along the interaction axis. Such

definitions are given in table 5.10. For example, the word ‘election’ in the expression ‘election

results’ is said to be in THING_COMBINATIVE schema because it is construed as a part of a

compound noun. By definition, this implies that its construal depends on some other

schematic THING (in this example the schematic THING is elaborated by ‘results’). Thus

THING_COMBINATIVE is a dependent schema whose head is a THING. Similar explanations

can be given for other schemas in table 5.10.

Table 5.10 Dependent schemas and their head schemas

Dependent schema Head schema

THING_COMBINATIVE THING

PROCESS_CLOSED-DEPENDENT PROCESS

STATUS_CONTINUATIVE-
DEPENDANT

THING

STATUS_COMBINATIVE THING_PARTICIPANT

STATUS_CLOSED-DEPENDENT PROCESS_CLOSED-AUTONOMOUS,
THING_PARTICIPANT

EVENT_CONTINUATIVE-DEPENDENT EVENT_CLOSED-AUTONOMOUS,
STATUS_CLOSED-DEPENDENT,
THING_CLOSED-AUTONOMOUS

EVENT_COMBINATIVE-DEPENDENT PROCESS_CLOSED-AUTONOMOUS,

128

EVENT_CLOSED-AUTONOMOUS

EVENT_CLOSED-DEPENDENT EVENT_CLOSED-AUTONOMOUS

5.1.8 Miscellaneous definitions

Most schema names in our tables are autological i.e., their names themselves indicate the

functional properties represented by the schema. For example, EVENT_CLOSED-AUTONOMOUS

itself means that the schema is at the event level, it can potentially close the discourse with no

further expectation and can be construed independently of other parts of the sentence. But there

are some schemas which are not so e.g., EVENT_PARTICIPANT can function as a THING, which is

why it occurs in table 5.4. However, since the name itself is not autological we list their profiles

explicitly as miscellaneous schemas in tables 5.11, 5.12 and 5.13 so that they can be used later in

the schema assembly component.

Table 5.11 Miscellaneous schemas - Composition

Schema name Analogous to

1. PRON
2. EVENT_PARTICIPANT

THING

1. PROCESS, STATUS
2. EVENT
3. OPERATOR_CLOSED

RELATION

Table 5.12 Miscellaneous schemas - Interaction

Schema name Its expectation

1. PARTICIPANT
2. DESCRIPTIVE

CONTINUATIVE

1. QUALIFIER COMBINATIVE

Table 5.13 Miscellaneous schemas - Autonomy

Schema name Its expectation

1. PARTICIPANT
2. CLOSED
3. DESCRIPTIVE

AUTONOMOUS

1. COMBINATIVE
2. QUALIFIER

DEPENDENT

129

With this, the schema definitions are concluded. The next component ‘Schema assembly

component’ takes these definitions (five categories of composition schemas, the interaction

schemas, dependent-head schemas and the miscellaneous schemas) and uses them to integrate

parts of a sentence into whole.

5.2. Schema assembly component

Algorithm 5.1 Procedure for incremental cognitive parsing

The definitions from the previous component are used by the schema assembly component.

This component interfaces with both schema definition component and schema prediction

component and assembles the tokens into chunks, chunks into clauses and so on until the

entire sentence is parsed. The procedure for incremental cognitive parsing performed by this

component is shown in Algorithm 5.1. The algorithm treats every part of a sentence as made

up of one or more construction schemas. When a new word in a sentence is read, all possible

construction schemas for the word are assigned based on the definitions mentioned in section

5.1. If there are multiple schema assignments possible for the previous word in a sentence

and if valid interactions are possible between the schemas of previous words and the current

ones, then we have two possibilities: (a) we can either integrate them into one assembly to

get a new schema right away (serial decision) (b) or add them to a list of unintegrated

sequence of schemas until further context is available (parallel decision). In the serial decision,

one parse is retained at any given time but in parallel decision multiple possible parses are

130

retained. In our implementation, both the possibilities are treated as valid parse decisions.

This decision is in accordance with the functional requirement that the parsing model should

be a hybrid of both serial and parallel processing.

As we read a sentence word by word, the parser creates a running parse, which is a list

containing all possible serial and parallel decisions for the words encountered so far. With

every new word read, the number of serial and parallel decisions increases and the number

of possible parses becomes complex. The multiple possible parses are retained until a span of

two verb phrases i.e., until two PROCESS_CLOSED schemas are encountered and their

dependents are integrated to form two EVENT_CLOSED schemas. Let us call this span of the

sentence the ‘retain span’ of multiple parses. After the retain span, the parse decisions will

be pruned so that only the most likely path of assembly of schemas (i.e., the most likely parse)

is chosen. All the other possibilities are discarded. Pruning decisions are based on the most

likely predictions given by the schema prediction component (to be described in the upcoming

section 5.3).

The schema assembly component carries out two major tasks. Firstly, it assigns schema

analysis to the raw words, allows all possible assemblies between them and prunes them to

update the running parse after every retain span. Secondly, it recognises the three different

levels of grammatical organisation from the schema definition component and uses them in

making parse decisions: token level, process level and event level. The token level, process

level and event level schema definitions from tables 5.4 to 5.8 were discussed in section 5.1.

Let us give a small illustration of how these definitions will be used by the schema assembly

component.

5.2.1 Assign all possible analyses

On reading a word and its POS tag, the parser assigns all possible analyses for the word

depending on its definition. For example, on seeing the word ’slow’ we construe an

ATEMPORAL RELATIONSHIP/ STATUS of ’being slow’ that is attributed to an unknown THING.

The focus is on the ATEMPORAL RELATIONSHIP/ STATUS and the THING slot is out of focus.

We say that ’slow’ instantiates ATEMPORAL RELATIONSHIP/ STATUS schema along its

composition axis. This is shown in figure 5.24 . The unknown THING functions as an elaboration

4 Conventions of image schema used in CG are more detailed and specific than what is used here. The

figures used here do not share those conventions. This is just our own rough sketch for the sake of
illustration.

131

site, which means that when a noun, e.g., ’transition’, is encountered, it semantically

corresponds to this site. The STATUS (’being slow’) qualifies its attribute on the THING

(’transition’). We say that ’slow’ instantiates QUALIFIER schema along its interaction axis. This

again is shown in figure 5.2.

Figure 5.2 Composition and interaction axes of an expression

How do we determine whether the expression ’slow’ is construed as AUTONOMOUS or

DEPENDENT along the autonomy axis? In certain expressions like ’the’ it is clear that its

construal necessarily depends on a THING and so it always instantiates a DEPENDENT schema

along the autonomy axis. However, ’slow’ can be conceived either autonomously or

dependently. When used in attribute adjective constructions (e.g., ’slow transition’), the focus

is on the STATUS slot and the unknown THING slot serves as a site of elaboration. So, in an

attribute adjective construction, the adjective is construed as DEPENDENT. However, in

predicate adjective constructions (e.g., ’the transition is slow’), the focus is both on the

STATUS as well as unknown THING. Thus, as a predicate adjective, it is construed as

AUTONOMOUS.

Figure 5.3 Autonomy axis of an expression

The construals of attribute and predicate adjectives and the difference in their autonomy is

shown in figure 5.3. Based on the discussion above we can say that the adjective in the

phrase ’slow transition’ instantiates STATUS_QUALIFIER-DEPENDENT schema but in the

expression ‘the transition is slow’ the same adjective has STATUS_QUALIFIER-AUTONOMOUS

schema. In this way, every word has multiple possible analyses depending on how it can be

132

composed from token level schemas and how it can integrate with its neighbouring words.

The parser retains these multiple possible schemas for every token and allows many serial

and parallel decisions for integrating them until two EVENT_CLOSED schemas are

encountered.

What do we mean by multiple serial and parallel decisions until two EVENT_CLOSED schemas

are encountered? The token ‘book' with the POS tag noun has two possible analyses:

THING_CONTINUATIVE or THING_COMBINATIVE. It is analysed as THING_CONTINUATIVE if it

is construed as a part of an action (e.g., ‘The book fell …’). Alternatively, it can be mapped to

THING_COMBINATIVE when it is construed as a part of a larger THING (e.g., ‘book shops’).

Depending on the next token and its schema, one of the analyses can be discarded or

retained. If the next token is ‘fell’ with the POS tag VBD, there are two possible schemas for

this token: PROCESS_CONTINUATIVE-DEPENDENT or PROCESS_CLOSED-AUTONOMOUS. The

two words can be integrated into a larger expression ‘book fell’ because the interaction

between THING_CONTINUATIVE and PROCESS is valid. The profile of the resulting expression

will be a PROCESS. Once this integration is made, the possibility of analysing the first word as

THING_COMBINATIVE should be discarded. This is the serial decision. The parallel decision

will be to retain both the analyses for the first word and the second word and wait for more

context.

Alternatively, if the first word ‘book’ has the POS tag verb, it can be mapped to ‘PROCESS’

schema because it is construed as a relation unfolding through time (e.g., book a ticket ….)

along its composition axis. Along the interaction axis, the token ‘book’ can be interpreted in

‘CONTINUATIVE’ or ‘CLOSED’ schema based on its neighbouring words (e.g., ‘Please book the

ticket’ - ‘CLOSED’, ‘to book the ticket’ - ‘CONTINUATIVE’). In both uses, the expression is

construed as AUTONOMOUS. In this manner, the parser retains multiple possible analyses for

each word and integrates them immediately if possible (serial decision) or allows all

possibilities until more context (parallel decision).

5.2.2 Integration of expressions across the levels of grammatical

organisation

From the concepts introduced in section 4.2.3, every expression at any syntactic level - such

as words, phrases and clauses - can be analysed along three axes: composition, interaction

and autonomy and their construction schema can be identified. From section 5.1, there are

seven basic construals along composition axis: THING, RELATIONSHIP, PRONOMINAL,

133

PROCESS, STATUS, OPERATOR, EVENT, six basic construals along interaction axis:

CONTINUATIVE, COMBINATIVE, PARTICIPANT, DESCRIPTIVE, QUALIFIER, CLOSED and three

basic schemas along autonomy axis: AUTONOMOUS, DEPENDENT and JOIN. In section 5.1, we

also explained how the schemas were defined for composition at three levels of grammatical

organisation: token, process and event levels. We have a finite number of construction

schema definitions, finite number of interaction schemas and finite number of levels of

grammatical organisation in our schema definition component but a wide variety of syntactic

phenomena should be analysed in terms of these finite number of schemas. In order to do

that, the parser allows composition and integration of expressions across different levels of

grammatical organisation.

Consider auxiliary verb constructions such as ‘has come’ (POS tags: VBZ VBN), ‘would have

given’ (MD VB VBN), ‘are doing’ (VB VBG), ‘must have been going on’ (MD VB VBN VBG PRT).

All these different expressions are recognised to be instances of PROCESS CLOSED-

AUTONOMOUS schema. One path of integration for the expression ’has come’ is: ‘has come’

< VBZ VBN < PROCESS CLOSED-AUTONOMOUS<->STATUS CLOSED-DEPENDENT < PROCESS

CLOSED-AUTONOMOUS. In this notation, ‘<’ means that the expression on the left side of this

symbol is reanalysed as an instance of the right side expression. ‘<->’ indicates that two

schemas are integrated into one new schema. The path of integration is a parse of the

expression. Let us see how this path of integration is recognised from the words. The

sequence of tokens ‘has come’ is analogous to the VBZ VBN sequence because of the POS tags

of the words. VBZ is analogous to PROCESS_CONTINUATIVE-DEPENDENT and

PROCESS_CLOSED-AUTONOMOUS from table 5.5. VBN is analogous to STATUS_QUALIFIER,

STATUS_CLOSED-AUTONOMOUS and STATUS_CLOSED-DEPENDENT from table 5.6.

Therefore, there are four ways of interaction possible between these two words. Out of these,

the interactions that will lead to successful integration of neighbouring words are treated as

valid parses and added to the list of running parses. Those that do not lead to integration of

neighbouring words are treated as invalid. For example, one of the possible ways to integrate

the sequence VBZ VBN into one larger assembly is PROCESS_CLOSED-AUTONOMOUS<-

>STATUS_QUALIFIER. This path of assembly is subsequently treated as invalid, because there

is no definition for this type of integration in any of the tables in the schema definition

component. The two available options for valid integration are PROCESS_CONTINUATIVE-

DEPENDENT<->PROCESS_CLOSED-AUTONOMOUS and PROCESS_CLOSED- AUTONOMOUS<-

>STATUS_CLOSED-DEPENDENT. If the former choice is made, the subsequent path of

integration will be PROCESS_CONTINUATIVE-DEPENDENT<->PROCESS_CLOSED-

134

AUTONOMOUS < PROCESS_CLOSED-AUTONOMOUS according to table 5.5. In this way, the

parse 1 is obtained from the words and POS tags. If the other valid option is chosen by the

parser, the subsequent path of integration will be PROCESS_CLOSED-AUTONOMOUS<-

>STATUS_CLOSED-DEPENDENT < PROCESS_CLOSED-AUTONOMOUS. This is parse 2 obtained

from the same sequence of words. In this particular example both the valid paths of

integration can be considered as meaningful parses. The parse 1 interpretation is that the first

word ‘has’ is an auxiliary verb (dependent) on the main verb (autonomous). The parse 2

interpretation is that the first word ‘has’ is the main verb which completes the discourse

(autonomous and closed) and the word 2 ‘come’ is a status verb that depends on it

(dependent). Both of them are meaningful in the following sense: in the parse 1

interpretation, the word ‘has’ is grammaticalised as an auxiliary verb but in parse 2

interpretation, the word ‘has’ still retains its lexical meaning before this grammaticalisation

which then interacts with the past participial form of verb in status interpretation.

In this way, the parser allows the integration of schemas across different levels i.e., between

token level and event, between two event levels, between two process levels, between token

level and process level and so on as long as they are valid according to the definitions in the

tables 5.4 to 5.13. Because the schema definitions themselves are carefully proposed in terms

of their meaning, many invalid assemblies are rejected in subsequent steps of integration of

schemas. Rejection of some types of invalid assemblies and approval of all valid assemblies is

an inherent feature of the schema definition. So, the other components have only to focus on

the other types of invalid assemblies that are not inherent to the schema definitions. If there

are multiple valid assemblies permitted by the schema definition component, one of them

will be more likely in the given context of neighbouring words and their schemas. In order to

choose the most likely parse we use the schema prediction component.

5.3 Schema prediction component

The schema prediction is the third component of the parser that chooses one optimal path of

schema integration out of all valid assemblies allowed by the definition and assembly

components. In the previous subsection 5.2.2, we showed that the same expression ‘has

come’ can be parsed in two different ways because of the schema definitions and because

the assembly component allows integration across different levels as long as it is valid. In

many cases, the number of possible paths of integration may be many and all of them can be

valid purely in terms of their composition and interaction but in real-time parsing, only some

135

of the paths are favoured by the humans than the other ones. The garden path sentences

discussed in section 4.3.1 is an example for this. In order to resemble this psycholinguistic

reality and also to prune the number of serial and parallel decisions in parsing, we used the

schema prediction component which chooses one parse as the most likely parse after every

landing point. We define the landing point as any part of the sentence at which the addition

of more possible parses are halted and one optimal path of integration of the words seen so

far is chosen. An instance of the landing point (introduced earlier in sections 4.3.2 and 5.2)

was a span of two verb phrases (which we called the retain span) after which multiple paths

of integration are pruned and one parse out of all possible parses is chosen as the most likely.

Other than the verb phrases, there are other components of the sentence that can indicate

the point of pruning the multiple parses. We noted down such parts of the sentence as landing

points. A list of landing points noted down were: ['PROCESS', 'CLOSED', 'EVENT', 'THING',

'QUALIFIER', ‘JOIN’, 'COMBINATIVE']. We varied the number of landing points and

qualitatively checked the parse decisions made in each case and fixed the number of landing

points to be 2.

After every landing point, we prune the number of possible parses and then the schema

prediction component is used to find out the most likely parse. By pruning, we mean that

wherever serial decisions were immediately available but parallel decisions for parse were

retained, we discard the parallel paths and retain only the serial decisions. This prunes the

number of possible parses significantly. After this step, we send the remaining number of

possible parses to the schema prediction component. For example, if a landing point is

reached after seeing three words and there are ten possible paths for parsing let us say that

three of those paths are invalid because there is no schema definition supporting such an

integration. Out of the remaining seven possibilities, let us say two of them are parallel

decisions which are discarded at the pruning step. Now we have five possible valid parses out

of which one has to be chosen.

How do we choose which of the five possible paths should be considered a valid parse? In

every possible path, two words are integrated first into a larger expression. Then the

integrated words become the neighbour to the third word and so on. At each step of

integration there are two neighbours whose schemas try to integrate with schemas of the

second neighbour. The schema prediction component is used by the schema assembly

component to decide which of these possible interactions is more likely.

Given one current schema and a list of possible upcoming schemas, the schema prediction

136

component returns one amongst the latter to be the best candidate for interaction with the

first schema. As a concrete simple example, for the expression ‘College friends meetup’, we

have following schemas for each token: [‘THING_COMBINATIVE’, ‘THING_CONTINUATIVE’],

[‘THING_COMBINATIVE’, ‘THING_CONTINUATIVE’] and [‘THING_COMBINATIVE’,

‘THING_CONTINUATIVE’]. Final valid possible paths of assemblies are

1. ‘College friends’: THING_COMBINATIVE < ‘College friends meetup’:

THING_CONTINUATIVE

2. ‘College friends’: THING_CONTINUATIVE < ‘College friends meetup’ :

THING_CONTINUATIVE

3. ‘College friends’: THING_COMBINATIVE < ‘College friends meetup’ :

THING_COMBINATIVE

Out of these three, the first one is the most likely parse if the next word after this expression

is a verb e.g., ‘College friends meetup happened’. The second parse is valid schematically but

less likely for the given words. The third parse is more likely if the next word is another noun

so that the whole expression becomes a noun phrase such as ‘college friends meetup

invitation’. The schema prediction component gives probability of assembly in each case and

the most likely path of integration is chosen as the optimal parse after every landing point.

5.3.1 Schema prediction and Artificial Neural Networks

We used Artificial Neural Networks (ANNs) to implement the schema prediction component

(Yegnanarayana 2009). In this section, we will give a short introduction to ANN and our

motivation for using them in schema prediction. ANNs are inspired by neural networks in the

human brain and their ability to learn through examples (Jain et al. 1996). ANNs are composed

of multiple nodes or neurons that take input data to perform simple operations on the data

and pass these results to other nodes. The output from each node is called the node

activation. The nodes are connected to one another with each connection associated with a

weight which determines the node activation given an input. The nodes are arranged into

interconnected layers with each node capable of making simple decisions and propagating it

to other nodes. Each node learns to associate the input data to output activation by altering

its weight value. An activation function determines whether a node should be activated or

not by calculating weighted sum of the connected nodes and also adds bias to it. This function

performs non-linear transformation of the inputs by which the network learns to define

complex relationships between input and outputs. By defining complex relationships between

137

the input data and output activations of multiple nodes and by altering their link weights,

ANNs are able to learn to recognise complex patterns in the data. Some of the common

activation functions are sigmoid function, tanh function, Rectified Linear Unit (RELU) and

softmax function (Sharma et al. 2017).

The neurons in the feedforward neural network are organised into input, hidden and output

layers. There must always be one input layer and one output layer in the network. In the input

layer, the data is fed to the neural network with the aim of making predictions. Typically, the

input data is a set of real values with each value fed into a neuron in the input layer. This layer

takes the inputs, performs calculations on the input through its neurons and transmits the

results to the next layer. The output layer, which is responsible for producing the final result,

takes the values transformed by the previous layers and computes the output. Between the

input and output layers there can be zero or more layers that are private to the neural

network and not accessible to the outer world. These are the hidden layers of the network.

Figure 5.4 shows a feedforward neural network with an input layer, two hidden layers and an

output layer. The hidden layers and the output layer are shown to use tanh and softmax

activation functions respectively.

Figure 5.4 Schematic diagram of a feedforward neural network

ANNs are useful for a variety of pattern recognition tasks. As human beings we learn the right

and wrong ways to do a task based on the feedback we receive on our performance. Neural-

networks learn what is right and wrong by a feedback process called back-propagation. Given

a training set of inputs for which the correct output is known, the network learns to compare

its output with the correct output it was meant to produce and adjusts the network weights

by propagating the difference between the two outputs through hidden layers into the input

138

neurons backwards. After repeating this process for several input-output pairs, the

backpropagation reduces the difference between the network output and the intended

output. The network finally learns the correct output for the given input.

In our proposed parser, the schema prediction component takes the sequence of words that

are reduced to a sequence of schemas by the previous two components. The number of valid

ways in which these sequences of schemas assemble with each other is constrained by the

schema definitions and the landing points. After pruning, we have a list of possible paths of

assembling them, each one of them a valid parse according to the schema definition

component. Each parse available after pruning is a unique path to assemble the sequence of

schemas identified by the previous two components. The goal of the schema prediction

component is to choose the best among these unique paths by selecting the most likely path

of integration. Each unique path involves repeated integration of neighbouring schemas into

one larger schema.

Two tasks are performed by the schema prediction component to choose the best parse:

A. Given the current schema and a list of possible assemblies with its neighbour, it

chooses the assembly that reduces the network error i.e., the most likely assembly in

the neighbourhood is predicted

B. To learn all valid assemblies from every possible parse got from the previous two

components.

The pruned parses showing many possible assemblies are used as the training data for the

neural network. The basic idea is to train the network to learn the likelihood of assembly

between two neighbouring schemas. Locally, the most likely assembly is chosen out of all

possible assemblies in a neighbourhood. Globally, the parse that reduces the total loss in

schema predictions along its path is chosen as the best parse. By choosing the most likely

assemblies locally and by minimising the total prediction loss of the network, we get a globally

valid parse. We have so far presented the components of the parser, algorithm and system

overview. Now we will discuss the implementation details such as the library used, how the

input is formatted and the parameters of the system.

5.3.2 ANN architecture for schema prediction

We used Dynet to implement the schema prediction component. Dynet is a neural network

library developed by Carnegie Mellon University and many others (Neubig et al. 2017). Dynet

139

implements the neural network models based on the dynamic declaration of network

structure. The basic template for implementing neural network models with Dynet involves

the following steps:

1. Creating a Dynet Model.

2. Adding the necessary Parameters and LookupParameters to the model. A trainer

object is created and associated with the Model.

3. For each input example:

a. A new ComputationGraph is created. An Expression that represents the

desired computation is added to this ComputationGraph.

b. The result of the computation is fed forward using value() or npvalue()

functions.

c. During training, an expression that represents the loss function is calculated

and used for back-propagation.

d. The Trainer object is used to update the Model parameters after

backpropagation.

A feedforward neural network with two hidden layers was implemented with the DyNet

toolkit. The toolkit provides many optimisers to tune the Model parameters such as

SimpleSGDTrainder, CyclicalSGDTrainer, AdagradTrainer and so on. We initialised a simple

stochastic gradient trainer (SGD) with a learning rate 0.1. Each training sample is of the form

(Inputs, Output) where the Inputs are the embeddings of two construction schemas that make

up a chunk and the actual chunk tokens. Output refers to the embedding of the construction

schema predicted for the chunk tokens. For example, the chunk ‘61 years’ is formed by

assembling the tokens ‘61’ and ‘years’. The schemas corresponding to the two tokens are

STATUS_QUALIFIER and THING_PARTICIPANT. In this example, the phrase ‘61 years’ and the

assembly ‘STATUS_QUALIFIER <==>THING_PARTICIPANT’ are treated as inputs and the resulting

schema ‘THING_PARTICIPANT’ is the output. The code snippets showing the initialisation of the

neural network parameters and the calculation of the score of a chunk assembly are given in

Appendix B.

The Dynet embedding matrix is of the dimension nchunks x EMB_SIZE. nchunks is the number of

chunks that are available for training, EMB_SIZE is the size of the embedding layer and HID_SIZE

is the size of the hidden layer. The EMB_SIZE and HID_SIZE are initialised as 128. The number of

hidden layers N=2. We then create a graph that will calculate the score vector for the training

instance. The word embedding W_emb and the construction schema embedding Cons_sch_emb

140

are concatenated to form the Inputs part of the training and the resulting construction schema

becomes the Output. The calculation of the score of the chunk assembly is performed is shown in

Appendix B. We used tanh activation function for the hidden layer and softmax function in the

output layer. The chunk and construction schema embeddings are concatenated and affine

transformation is performed before applying the tanh activation function in the hidden layer. The

score for the assembly of chunks is then used to calculate the loss i.e., the negative log

likelihood of the output after taking the softmax over the scores. After performing backward

pass and accumulating the gradients we update the training parameters.

The basic idea is that the assembling words, POS tags and the construction schemas are

initialised as model parameters and are updated during training. The assembly head of the

construction schemas is predicted as the output. Given two expressions next to each other

and their possible construction schemas, the network predicts the assembly head. In each

case, the rules of assembly in the schema definition component would predict a list of many

possible assemblies. Every such possible assembly given by the schema definition is used as

the feedback for the network prediction and the loss function is back-propagated. The

network prediction for which the loss function is minimum is chosen as the most likely

assembly for the given two schemas. Because the schema definitions are functional and the

same assemblies occur in different contexts with different neighbourhoods, we run this

schema prediction component for thousands of constructions from thousands of sentences.

The more the number of times the network sees two schemas and their assembly to be valid

in different environments, the stronger the association between the two becomes.

5.4 Advantage of Wordnet Ontology in schema prediction

The words, POS tags, all possible schemas and assemblies allowed by the schema definitions

and the neighbourhood are the constraints within which the network learns to choose the

most likely assembly. On the one hand, the POS tags provide low-level syntactic information.

On the other hand, schemas have been defined to reflect the high-level semantics. Both types

of information are combined into assemblies, which reflect the dichotomy between syntax

and semantics. However, better balance can be struck between the two extremes by grouping

synonymous words together. For example, consider the noun 'dad'. It has many synonyms,

including 'dada', 'daddy', 'pa', 'papa', 'pappa' and 'pop'. When each of them is considered

independently, any machine learning algorithm would need much more data to infer that

they indeed follow the same pattern of use and, therefore, play the same role in schemas and

141

assemblies. However, if they are grouped together explicitly and treated as synonyms, i.e.,

referring to the same semantic concept, then their occurrences in a corpus can be aggregated,

thus allowing the machine learning algorithm to learn the higher-level patterns faster and

reduce overfitting to a particular surface form and instead focus on its referent.

Figure 5.5 Meaning triangle

Let us explain this point using a simple model of semantics called the meaning triangle

(Wright, 2003; Amaglobeli, 2012). In this triangle, a sign is broken into three parts: symbol,

concept and referent. Figure 5.5 provides an example in which the sign is the word 'rose', the

concept is a generic notion of a rose and the referent is a particular instance of that concept.

This is perhaps best illustrated by a quote from Romeo and Juliet:

What’s in a name? That which we call a rose

 By any other name would smell as sweet;

A natural language offers a plethora of synonyms to signify the exact same concept as our

example of the word 'dad' mentioned above illustrates. By treating these words as synonyms,

the parser effectively processes them as a single concept, therefore, operating at a concept

level, which bridges the gap between the POS tags as the low-level syntax and the schema

level as the high-level semantics. We pointed out how synonyms can help embed lower-level

semantics into the parser and facilitate the learning of the way in which POS tags can be

combined into schemas and how schemas can then be combined into assemblies. A practical

question that remains is how to identify synonyms. As a practical method of synonym

identification to embed lower-level semantic information into the parser, we used Wordnet.

142

Figure 5.6 Wordnet search

Wordnet is a large lexical database that groups words into sets of cognitive synonyms called

synsets. Each synset represents a distinct concept that is linked with other synonymous words

sharing the same synset. For example, the synonymy between ‘shut’ and ‘close’ is established

by two synsets shared by the two words ‘close.v.01’ and ‘close.v.02’. Since WordNet is freely

available and readily usable, we added the synset information along with words and POS tags

to facilitate learning of POS tags into schemas and schemas into assemblies. In Welsh, such a

project started only recently as a satellite of the CorCenCC project and became publicly

available for researchers5.

Even though the POS tags and the schema definitions themselves can model the grammar, by

using the additional semantic / ontological information provided by resources like Wordnet

(Miller 1995; Loper and Bird 2002), we will be able to improve the performance of the parser.

We used NLTK’s wordnet interface for getting the synsets that matched with the POS tag of

the word in the corpus. Some words have one synset while others may have several synsets.

When there were multiple synsents for words, we chose the first synset and added it as the

parameter to the network along with word and POS tags.

5.5 Adapting the schema definition component for Welsh

language

The schema definition component introduced in section 5.1, is implemented as a dictionary

and a list. The definitions given in tables 5.4 to 5.13 were based on our observations of English

5 https://github.com/CorCenCC/wncy

https://github.com/CorCenCC/wncy

143

syntax. The parser is primarily developed for English and we have attempted to adapt the

scheme definitions to handle the peculiarities of Welsh syntax. The following are some of the

grammatical properties of the Welsh language which makes it different from English. There

could be more differences but our attempt here is just to demonstrate how the

implementation can be adapted for the Welsh language as well.

1. The word order of the Welsh language is Verb-subject-object. The usual order of

occurrence of syntactic units in a Welsh sentence is: preverbal particle, verb, subject,

direct object, indirect object, preposition phrases, adverbs. For example, ‘The cat

killed the mouse’ (Subject-Verb-Object) in Welsh is ‘Lladdodd y gath y llygoden’ (Verb-

Subject-Object).

2. Typically adjectives and determiners come after the nouns that they modify.

E.g., ’good boy’ (adjective-noun) becomes ‘bachgen da’ (noun-adjective).

3. Focussed constituents are moved to the beginning of the sentence for emphasis. E.g.,

‘i Lundain yr wyt ti yn mynd’ (Literally: To London I am going) to focus on ‘to London’.

Unlike English, most constituents in a Welsh sentence can be moved to the front.

4. Genitive relations are expressed in Welsh by apposition. E.g., ‘llyfr ffrind’ (Literally:

‘book friend’. Meaning: ‘friend’s book’).

5. Use of possessive adjectives along with verbal nouns to express passive voice, static

passive, prepositional phrases that modify a noun. In English, these are expressed

with past participle forms of verbs. E.g., Passive voice: ‘The mouse was killed’ is

expressed as ‘Cafodd y llygoden ei lladd’ (Literally: ‘The mouse got its killing’), Stative

passive:‘The chair is broken’ is expressed as ‘Y mae’r gadair wedi torri’ (Literally: ‘The

chair is after its breaking’), Prepositional phrase attributed on noun: ‘an opened letter’

is expressed as ‘llythyr wedi’i agor’ (Literally: ‘The letter after its opening’).

6. The use of the word ‘dim’ / ‘ddim’ in various constructions such that it can be treated

as an argument of a verb, an adverb / pseudo-argument, a quantifier, a pseudo-

quantifier, a sentence final adverbial, focus-negating / constituent negation ‘dim’

(Willis 2006).

7. Welsh distinguishes direct and indirect relative clauses and therefore it uses different

relative pronouns in these two types of clauses. When the relativised element is the

subject of its clause or the direct object of an inflected verb, then relative pronouns

are used but in all other cases a complementiser is used (Roberts 2005).

Even though there could be many other formal differences, we are only focusing on what

144

changes should be made to the parser’s schema definition component so that the same

implementation can be reused for Welsh language. In order to identify the required changes,

we noted down the syntactic differences between the two languages and mapped which of

them are purely formal and which of them can be handled functionally. By separating the

purely formal aspects of a language from its functional aspects, we were able to adapt the

schema definitions for Welsh language without huge changes. For instance, the fact that

Welsh recognises two different types of relative clauses and uses different syntactic elements

(relative pronoun and complementisers) to encode them cannot be predicted in any

functional manner. Therefore, relative pronouns and complementisers are mapped to the

token level schemas as they cannot be composed functionally from other schemas. However,

the way these syntactic elements are used to construct relative clauses in Welsh can be

mapped to process level and event level QUALIFIER schemas. In table 5.14, the list of such

changes is mentioned.

Table 5.14 Changes to schema definition component - Welsh

English schema Welsh schema Example

Interaction pattern

QUALIFIER<->THING : THING

Interaction pattern

THING<->QUALIFIER : THING

‘Wythnos yma’ (This week),
‘dilema sylfaenol’ (fundamental
dilemma)

PROCESS_CLOSED-
AUTONOMOUS
VB, VBZ, VBD

PROCESS_CONTINUATIVE-
DEPENDANT<->VB

PROCESS_CONTINUATIVE-
DEPENDANT<->VBZ

PROCESS_CONTINUATIVE-
DEPENDANT<->VBD

PROCESS_CLOSED-
AUTONOMOUS<->PRT

PROCESS_CLOSED-
AUTONOMOUS<-
>PROCESS_CONTINUATIVE-
AUTONOMOUS

PROCESS_CLOSED-
AUTONOMOUS<-
>STATUS_CLOSED-
DEPENDANT

PROCESS_CLOSED-
AUTONOMOUS

VBF

PRT<->PROCESS_CLOSED-
AUTONOMOUS

PROCESS_CLOSED-
AUTONOMOUS<-
>STATUS_CLOSED-
AUTONOMOUS

PROCESS_CLOSED-DEPENDANT<-
>PROCESS_CLOSED-
AUTONOMOUS

‘Roedd ef’ (Was)
‘Gawn ni’ (We get)
‘Yr wyf i’ (I am)
‘Yr wyf i yn meddwl’ (I think, I
am thinking)
‘Nid ydynt’ (They are not)

145

PROCESS_CLOSED-
DEPENDANT<-
>PROCESS_CLOSED-
AUTONOMOUS

PROCESS_CONTINUATIVE-
AUTONOMOUS

TO<->VB, VBG

PROCESS_CONTINUATIVE-
AUTONOMOUS

VB

Mwynhau (enjoying, to enjoy,
enjoy)

STATUS_DESCRIPTIVE

ADV

STATUS_DESCRIPTIVE

ADV, NEGY

Fwyfwy (more and more,
increasingly)
Ddim (not)

STATUS_CLOSED-
AUTONOMOUS

VBN, ADV, ADJ

STATUS_CLOSED-AUTONOMOUS

YNPRED<->ADJ
VBADJ<->ADJ
YNPRED<->THING_PARTICIPANT
VBADJ<->THING_PARTICIPANT
YNPRED<-
>PROCESS_CONTINUATIVE-
AUTONOMOUS
CYSY5TAIR<->ADJ

Yn tynnu (Pulls, Draws)
Yn yr ail (in the second)
Yr un melfedaidd, esmwyth (the
velvety, smooth one)
Yn dda (well)
Cyn gynted (as soon as)
wedi ei wysgo (exhausted)

EVENT_CONTINUATIVE-
AUTONOMOUS

EVENT_CONTINUATIVE-
DEPENDANT<-
>EVENT_CLOSED-
AUTONOMOUS

EVENT_CONTINUATIVE-
DEPENDANT<-
>STATUS_CLOSED-
DEPENDANT

EVENT_CONTINUATIVE-
DEPENDANT<-
>THING_CLOSED-
AUTONOMOUS

EVENT_CONTINUATIVE-
AUTONOMOUS

EVENT_CONTINUATIVE-
DEPENDANT<->EVENT_CLOSED-
AUTONOMOUS

EVENT_CONTINUATIVE-
DEPENDANT<->STATUS_CLOSED-
DEPENDANT

EVENT_CONTINUATIVE-
DEPENDANT<->THING_CLOSED-
AUTONOMOUS

EVENT_CLOSED-AUTONOMOUS

os nad awn ni (If we don’t go)

a yw’n wir

Tra ei fod yn wir

Wrth siarad â'r gohebwyr

EVENT_CONTINUATIVE-
DEPENDANT

ADP, ADV, DET

EVENT_CONTINUATIVE-
DEPENDANT

CONJ, VBF

os nad awn ni adref (If we do
not go home)

pan fydd hyn yn digwydd (When
this happens)..

EVENT_COMBINATIVE-
DEPENDANT

DET, PRON, ADJ

EVENT_COMBINATIVE-
DEPENDANT

VBF, RELPRON, PVPART

anodd i ni erbyn heddiw ydyw
dychmygu 'r a gymerai 'r saint
ym y bobl (It is difficult for us to
imagine today what the saints

146

took from the people).

Y llyfr y clywsom amdano (The
book that we heard about)

y prif broblemau yw cost a y
prosesau sy 'n ymwneud a+ 'r
(The main problems are the cost
and the processes involved).

EVENT_CLOSED-
AUTONOMOUS

(PARTICIPANT)<-
>PROCESS_CLOSED-
AUTONOMOUS

(DESCRIPTIVE)<-
>PROCESS_CLOSED-
AUTONOMOUS

EVENT_CLOSED-AUTONOMOUS

(PARTICIPANT)<-
>PROCESS_CLOSED-
AUTONOMOUS

EVENT_CLOSED-CONTINUATIVE

(DESCRIPTIVE)<-
>PROCESS_CLOSED-
AUTONOMOUS

Y mae ‘r bws in sefyll yn yr orsaf
fysiau (The bus is standing in the
bus station)

The list of differences mentioned above are based on our personal observations of how the

same function is realised differently in the two languages. Typologically, both English and

Welsh are right branching languages where the modifiers come after the head in a sentence.

The occurrence of modifiers after the head is more prevalent in Welsh where many adjectives,

numeric adjectives, determiners, subjects and objects of the sentences occur after their

respective heads. Adverbs are expressed as adjectives in atemporal relationship with verbs.

The English adverb ‘well’ is expressed as ‘yn dda’ which can be construed as ‘being in a good

atemporal relationship with a process’. This construction is analogous to how finite verb

phrases are realised in Welsh e.g., ‘John is speaking’ is expressed as ‘Mae ef yn siarad’

(Literally: ‘Is John in-speaking’ where the verb phrase is expressed as imperfect processes

(yn+<verb>) assembled with with finite, perfect atemporal relationships (i.e., mae, bydd, gall

etc.). Tenses may also be expressed morphologically (‘aeth’ - ‘went’, ‘meddai’ - ‘told’). In some

cases, the modalities are expressed as experience for the subject (‘rhaid i mi’ - Literally:

‘necessity for me’). Perfect aspect is expressed as imperfect process in adverbial relation with

finite, perfect atemporal relationships (‘wedi dod’ - Literally: ‘Is john after coming’, meaning

‘John has come’, ‘efallai fod John wedi dod’ - Literally ‘Possibly is John after coming’ meaning

‘Joh may have come’). Wherever constructions have similar construals, they are expected to

exhibit similar functional behaviour and therefore we group them under same or similar

schemas in our definitions.

147

Our ability to adapt the schema definition component for Welsh has been limited by our lack

of intimate knowledge of Welsh language. Linguists and native speakers of Welsh language

with better understanding about the range of constructions available in Welsh and their

functional behaviour can take up this approach and identify what syntactic constructions are

functionally analogous to each other to create better definitions in the schema definition

component.

In this chapter we have presented the schema definition, schema assembly and schema

prediction components. The adaptation of the schema definition component for Welsh

language and the implementation of schema prediction component using ANN was discussed.

An algorithm that uses these three components for incremental cognitive parsing and the

overview of the system was also shown. This chapter focussed on the design of the system

and its implementation details. In the next chapter, we will present the experiments and

evaluation of the proposed parser.

148

Chapter 6 Evaluation

In this chapter, we describe the experiments that were conducted to evaluate the parser’s

performance. Most commonly, parsers are evaluated against a gold standard, which has been

manually annotated by the experts. The major evaluation bottleneck for a radically different

parsing approach is the lack of an appropriate gold standard. In section 6.1, we describe the

inherent limitations of gold standard evaluation in detail. In section 6.2, we present some

examples from the parser outputs to demonstrate why multiple valid parses are possible in

our approach. This makes defining a gold standard inherently impossible. Because of these

issues, we propose four different ways of evaluation to rate the parser performance and to

ascertain the meaningfulness of the chunks identified and their labels:

1. Repurposing existing parse treebanks to enable quantitative evaluation of the

chunking performance against the constituents in a phrase structure tree

2. Manual evaluation by listing the range of linguistic constructions covered by the

parser

3. Identifying the number of edits required to obtain a correct assembly

4. Qualitative expert evaluation based on Likert scales in online surveys

The English and Welsh corpora selected for the experiments in the first three evaluations are

described in detail in section 6.3. The fourth evaluation strategy was performed at the final

stage of research and therefore a different corpus was used for Welsh language alone. These

four evaluation methodologies and their results are described in sections 6.4, 6.5, 6.6 and 6.7

respectively. Finally, we conclude the chapter by discussing the strengths and limitations of

our evaluation strategies and scope for future improvements.

6.1 Limitations of gold standard evaluation

From the systematic literature review described in chapter 2, we find that the most common

evaluation strategy used in state-of-the-art parsers is comparison against a gold standard.

This method is suitable only when annotations are available. This approach is problematic for

a number of reasons. Out of around 7000 languages in the world (Abney and Bird, 2010), only

a small number of languages (20 languages) are considered high-resourced languages

(Baumann and Pierrehumbert 2014). When it comes to parsing, natural language resources

like syntactic treebank are available only for major languages like English, Chinese, German,

149

Portuguese, etc. Apart from this, there is a more fundamental problem with gold standard

evaluation. Although papers on parsing may report higher accuracy in terms of precision,

recall and F-measure against gold standard, it need not translate into higher impact in NLP

applications as such (Poibeau and Messiant 2008). Tools like parsers are developed so that

they can be used as building blocks for real-world NLP applications such as text

summarisation, machine translation, question-answer systems and so on. It is implicitly

assumed that the higher the parser accuracy when evaluated against the gold standard, the

more suitable it will be for the real-world applications.

However, there are many studies which reveal that there is a weak, sometimes negative,

correlation between the improvement in gold standard accuracy and the usefulness of the

tool in real NLP applications. For example, Miyao et al (2009) report that with a 1% absolute

improvement in the parser accuracy, there is approximately 0.25% performance

improvement in an application that extracts protein-protein-interaction. Diego and Molla

(2003) report their findings from comparing the intrinsic and extrinsic evaluations of parsing

systems. They point out that intrinsic evaluations are of very limited value in the context of

an answer extraction system. Kilgarriff et al. (2014) show that there is no correlation between

gold standard evaluation of a parser and the performance of the collocation extraction system

where the parser was used. Katz-Brown et al. (2011) reported that there is negative

correlation between machine translation performance and the English parsers that were used

in the translation system. The higher the accuracy of the translation application the lower the

accuracy of the gold standard evaluation. Kovar et al. (2016) discuss the problems in the

evaluation methods used in NLP and argue that comparing against a gold tree structure is not

meaningful in the context of NLP applications. This evaluation only measures the ability of the

parser to imitate the predefined syntactic annotation scheme laid out in annotation manuals

based on some linguistic theory. What is learned by the parser is heavily dependent on the

gold annotation decisions which might not reflect the language intuition that are needed in

the actual applications. In addition to these complexities, there are also NLP tasks where the

conception of a gold standard is not truly possible, especially with high inter-annotator

agreement. For example, terminology extraction, topic detection, text summarisation are

some tasks where gold standards are difficult to define or used only for specific tasks, thus

cannot be generalised. For example, a gold standard corpus created for extracting

terminology in the biomedical domain (Kim et al., 2003) skews the results when used for a

general terminology extraction application.

150

Thus, the inherent limitations of evaluation against a gold standard are:

● The training model runs the risk of overfitting the gold standard

● The problem of inter-annotator agreement

● Weak correlation of the intrinsic evaluation with extrinsic evaluations

6.2 Unsuitability of gold standard evaluation for the proposed

parser

The outputs of our parser do not represent constituency or dependency trees. The parser

matches the tokens from raw text to basic construction schemas and assembles them into

higher level construction schemas based on patterns of assembly. The construction schemas

of the chunks can be assembled into higher level schemas via multiple valid paths. Therefore,

defining a gold standard annotation for the outputs of the proposed parser is inherently

impossible. An example sentence and one valid path of assembly is shown in tables 6.1, 6.2

and 6.3.

Table 6.1 Tokens in an input sentence

The federal government suspended sales of U.S savings bonds because

Congr
ess

has not lifted the ceiling on governm
ent

debt .

Table 6.2 POS Tags of tokens in an input sentence

DT JJ NN VBD NNS IN NNP NNS NNS IN

NNP VBZ RB VBN DT NN IN NN NN .

Table 6.3 One of the possible valid parses of the input sentence

Word Construction schema

The STATUS_QUALIFIER_DEPENDENT

federal THING_COMBINATIVE_DEPENDENT

government THING_PARTICIPANT_AUTONOMOUS

151

The federal government THING_PARTICIPANT_AUTONOMOUS

suspended PROCESS_CLOSED_AUTONOMOUS

sales THING_PARTICIPANT_AUTONOMOUS

The federal government suspended
sales

EVENT_CLOSED_AUTONOMOUS

of STATUS_COMBINATIVE_DEPENDENT

U.S THING_COMBINATIVE_AUTONOMOUS

savings THING_COMBINATIVE_AUTONOMOUS

bonds THING_PARTICIPANT_AUTONOMOUS

U.S savings bonds THING_PARTICIPANT_AUTONOMOUS

of U.S savings bonds STATUS_COMBINATIVE_AUTONOMOUS

sales of U.S savings bonds THING_PARTICIPANT_AUTONOMOUS

The federal government suspended the
sales of U.S savings bonds

EVENT_CLOSED_AUTONOMOUS

because EVENT_CONTINUATIVE_DEPENDENT

Congress THING_PARTICIPANT_AUTONOMOUS

has PROCESS_CONTINUATIVE_DEPENDENT

not STATUS_ASSOCIATIVE_DEPENDENT

lifted PROCESS_CLOSED_AUTONOMOUS

has not lifted PROCESS_CLOSED_AUTONOMOUS

Congress has not lifted EVENT_CLOSED_AUTONOMOUS

because Congress has not lifted EVENT_CONTINUATIVE_AUTONOMOUS

the STATUS_QUALIFIER_DEPENDENT

ceiling THING_PARTICIPANT_AUTONOMOUS

on STATUS_QUALIFIER_DEPENDENT

government THING_COMBINATIVE_AUTONOMOUS

debt THING_PARTICIPANT_AUTONOMOUS

. OPERATOR_CLOSED_AUTONOMOUS

government debt THING_PARTICIPANT_AUTONOMOUS

152

on government debt STATUS_QUALIFIER_AUTONOMOUS

the ceiling on government debt . THING_PARTICIPANT_AUTONOMOUS

because Congress has not lifted the
ceiling on government debt.

EVENT_CONTINUATIVE_AUTONOMOUS

The federal government suspended the
sales of U.S savings bonds because
Congress has not lifted the ceiling on
government debt .

EVENT_CLOSED_AUTONOMOUS

In the parse shown above, each expression is mapped to a construction schema starting from

individual tokens to phrase chunks, clausal chunks and even the entire sentence. There are

multiple valid ways to group and assemble the words into larger schemas. Therefore, there

are multiple valid paths to build a correct parse. Mapping them to a single gold standard

annotation is therefore not possible. In this section, we present examples from parser outputs

to explain this point. Consider the following sentence from the Wall Street Journal corpus

used as input for the English parser.

Table 6.4 Two valid paths of assembly to arrive at the same construction schema

Sentence ‘['Newsweek', ',', 'trying', 'to', 'keep', 'pace', 'with', 'rival',
'Time', 'magazine', ',', 'announced', 'new', 'advertising', 'rates',
'for', '1990', 'and', 'said', 'it', 'will', 'introduce', 'a', 'new',
'incentive', 'plan', 'for', 'advertisers', '.', '']

A chunk in the sentence [‘trying to keep pace with rival Time magazine..’]

Construction schema for the chunk EVENT_CONTINUATIVE_AUTONOMOUS

Possible paths of
assemblies (words and
schemas)

Path 1 1. [‘trying’]<->[‘to keep pace’]<->[‘with rival Time magazine’]
 [PROCESS_CONTINUATIVE-AUTONOMOUS]<-
>[PROCESS_CONTINUATIVE- AUTONOMOUS]<-
>[STATUS_PARTICIPANT]

2. [‘trying’]<->[‘to keep pace with rival Time magazine’]

[PROCESS_CONTINUATIVE-AUTONOMOUS]<-
>[PROCESS_CONTINUATIVE-AUTONOMOUS]

3. [‘trying’]<->[‘to keep pace with rival Time magazine’]

[PROCESS_CONTINUATIVE-AUTONOMOUS]<-
>[EVENT_CONTINUATIVE-AUTONOMOUS]

153

4. [‘trying to keep pace with rival Time magazine’]

[EVENT_CONTINUATIVE-AUTONOMOUS]

Path 2 1. [‘trying’]<->[‘to keep pace’]<->[‘with rival Time magazine’]
 [PROCESS_CONTINUATIVE-AUTONOMOUS]<-
>[PROCESS_CONTINUATIVE- AUTONOMOUS]<-
>[STATUS_PARTICIPANT]

2. ['trying to keep pace']<->['with rival Time magazine']

[PROCESS_CONTINUATIVE-AUTONOMOUS]<-
>[PROCESS_CONTINUATIVE-AUTONOMOUS]

3. ['trying to keep pace']<->['with rival Time magazine']

[PROCESS_CONTINUATIVE-AUTONOMOUS]<-
>[EVENT_CONTINUATIVE-AUTONOMOUS]

4. [‘trying to keep pace with rival Time magazine’]

[EVENT_CONTINUATIVE-AUTONOMOUS]

In table 6.4, the construction schema of the gerund phrase is schematised as

EVENT_CONTINUATIVE-AUTONOMOUS. However, this construction schema is assembled

from lower-level construction schemas along two different paths of assembly. Both the paths

are valid according to the schema definitions and patterns of schema assembly defined in the

schema definition component. In this manner, a single construction schema can be assembled

in multiple valid ways. Therefore, annotating a sentence as an assembly of construction

schemas and comparing the parser output against the gold standard is not feasible. In order

to evaluate whether what is learned by the system is even meaningful or valid, we performed

evaluation using four approaches. The English and Welsh corpora selected for our experiment

purposes using the first three evaluation methods are described in the next section.

6.3 Corpus selection

For the first three experiments we used a total of 3,912 sentences from a freely available

portion of Wall Street Journal Corpus (WSJ) for English and 3,000 sentences from a portion of

Cronfeg Electroneg o Cymraeg corpus (CEG) for Welsh (Ellis et al. 2001). WSJ corpus is a

component of the Penn Treebank (Marcus et al. 1993) and it is available for free as a part of

Python Natural Language Toolkit (NLTK) (Bird 2006). The corpus contains sentences of

154

different length and it is a resource that is useful for studying different constructions. The

corpus has articles that are POS tagged and annotated for their formal syntactic structure. We

use only the raw tokens and the POS information from the corpus and use it for the parser

algorithm and ignore the syntactic annotations. The POS tagset of Penn treebank is shown in

table 6.5.

Table 6.5 POS tagset used in Penn Treebank

POS tag name POS tag description

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

155

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

A sample annotation from the corpus is shown in figure 6.1.

Figure 6.1 Sample sentence from the WSJ corpus

There are many different conventions for annotating the POS tags of the words in a corpus.

The WSJ corpus uses the Penn tagset made of 36 POS tags which are given in table 6.5. Since

these tags are too granular for our schema definitions, we mapped each POS tag in the

treebank to a smaller number of tags that are less granular. For example, JJ (adjective), JJR

(comparative adjective), JJS (superlative adjective) are different types of adjectives

156

recognised in the Penn tagset. We map these three tags to a single tag ADJ which is definitely

less detailed but captures enough information to be mapped to the token level schemas in

our schema definition component. The list of POS tags that are finally used in the schema

definition component are: NOUN, NUM, DET, PRON, TO, VB, VBG, MD, VBZ, VBD, ADV, ADP,

ADJ, PRP$, CONJ. The POS tags from the annotated WSJ corpus are mapped to one of the

above POS tags and used for experiments and evaluation. For our evaluation purposes, we

chose sentences which had more than three words but less than 20 words. This is to avoid

sentences which are mere interjections or replies to some questions (less than three words)

but also to avoid a large continuous discourse (more than 20 words). A sample sentence from

the text file used for our experiments and its token level schema assignments is shown below:

Table 6.6 Sample sentence from the corpus

Words
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join', 'the', 'board', 'as', 'a',

'nonexecutive', 'director', 'Nov.', '29', '.', '']

POS tags ['NOUN', 'NOUN', '.', 'NUM', 'NOUN', 'ADJ', '.', 'MD', 'VB', 'DET', 'NOUN', 'ADP',

'DET', 'ADJ', 'NOUN', 'NOUN', 'NUM', '.', '']

Possible token-

level schemas

[['THING_COMBINATIVE', 'THING_PARTICIPANT'], ['THING_COMBINATIVE',

'THING_PARTICIPANT'], ['OPERATOR_JOIN', 'OPERATOR_CLOSED'],

['STATUS_QUALIFIER', 'THING_PARTICIPANT'], ['THING_COMBINATIVE',

'THING_PARTICIPANT'], ['STATUS_CLOSED-AUTONOMOUS', 'STATUS_QUALIFIER',

'STATUS_CLOSED-DEPENDANT'], ['OPERATOR_JOIN', 'OPERATOR_CLOSED'],

['PROCESS_CLOSED-DEPENDANT'], ['STATUS_CLOSED-AUTONOMOUS',

'STATUS_QUALIFIER', 'PROCESS_CLOSED-AUTONOMOUS', 'STATUS_CLOSED-

DEPENDANT', 'PROCESS_CONTINUATIVE-AUTONOMOUS'],

['EVENT_COMBINATIVE-DEPENDANT', 'STATUS_COMBINATIVE',

'EVENT_CONTINUATIVE-DEPENDANT', 'THING_PARTICIPANT'],

['THING_COMBINATIVE', 'THING_PARTICIPANT'], ['STATUS_QUALIFIER',

'STATUS_CONTINUATIVE-DEPENDANT', 'EVENT_CONTINUATIVE-DEPENDANT'],

['EVENT_COMBINATIVE-DEPENDANT', 'STATUS_COMBINATIVE',

'EVENT_CONTINUATIVE-DEPENDANT', 'THING_PARTICIPANT'], ['STATUS_CLOSED-

AUTONOMOUS', 'STATUS_QUALIFIER', 'STATUS_CLOSED-DEPENDANT'],

['THING_COMBINATIVE', 'THING_PARTICIPANT'], ['THING_COMBINATIVE',

'THING_PARTICIPANT'], ['STATUS_QUALIFIER', 'THING_PARTICIPANT'],

157

['OPERATOR_JOIN', 'OPERATOR_CLOSED'], ['STATUS_CLOSED-AUTONOMOUS',

'STATUS_QUALIFIER', 'EVENT_QUALIFIER', 'EVENT_COMBINATIVE-DEPENDANT',

'PROCESS_CLOSED-DEPENDANT', 'THING_COMBINATIVE', 'PROCESS_CLOSED-

AUTONOMOUS', 'EVENT_PARTICIPANT', 'EVENT_CLOSED-DEPENDANT',

'STATUS_CONTINUATIVE-DEPENDANT', 'STATUS_PARTICIPANT',

'OPERATOR_JOIN', 'STATUS_CLOSED-DEPENDANT', 'STATUS_COMBINATIVE',

'EVENT_CONTINUATIVE-AUTONOMOUS', 'PRON_PARTICIPANT',

'OPERATOR_DESCRIPTIVE', 'EVENT_CONTINUATIVE-DEPENDANT',

'STATUS_DESCRIPTIVE', 'EVENT_CLOSED-AUTONOMOUS', 'THING_CLOSED-

AUTONOMOUS', 'PROCESS_CONTINUATIVE-AUTONOMOUS',

'OPERATOR_CLOSED', 'THING_PARTICIPANT']]

The CEG corpus that is used for Welsh experiments has 1 million words of written Welsh prose

selected from a wide range of text types in modern written Welsh. We chose the CEG corpus

for Welsh language experiments because we started working on this when the CorCenCC

corpus (Knight 2020) was not fully ready and because the initial results were published using

this corpus. The sentences which had more than three words but less than 20 words were

chosen for our experiments just like in English. The CEG corpus contains the following

information annotated for each sentence: token, lemma, POS tag, document number,

sentence number, token number. We used the token and POS tag for our experiments. The

POS tagset was more granular like in English, which we mapped to less detailed tags in order

to be used in the schema definition component. All the original POS tags available from the

CEG corpus are given in table 6.7. They are reduced to one of the following tags and used in

the schema definition component: NOUN, ADP, VBF, PRON, CONJ, DET, YNPRED, NOUN, EXCL,

ADV, ADJ, VBADJ, VB, PVPART, OPER, NEGPART, NUM, CARDIN, PRT, RELPRON, NEGY and

CYSY5TAIR.

Table 6.7 Mapping the Welsh POS tags to less granular tags

Original tag New tag Original tag New tag

np NOUN foreign NOUN

prep ADP NegPart NEGPART

vbf VBF number NUM

pron PRON alphnum NUM

158

conj CONJ DemPron PRON

DefArt DET part PRT

YnPred YNPRED punct OPERATOR

npl NOUN excl EXCL

cardm CARDIN adv ADV

RelPron RELPRON nperson NOUN

CompAdj ADJ letter NOUN

adj ADJ npm NOUN

vbadj VBADJ other NOUN

vb VB npf NOUN

nf NOUN negy1 NEGY

cardf CARDIN SupAdj ADJ

card CARDIN cprep ADP

nm/f NOUN cysy5tair CYSY5TAIR

nplace NOUN EqAdj ADJ

pronm PRON pronf PRON

adjf ADJ PvPart PVPART

adjpl ADJ conj CONJ

negyd NEGY abbr ABBR

Two sample sentences with annotation are shown below.

Table 6.8. Sample sentences with POS mappings

Sentence
No.

Token POS tag Mapped POS tag Lemma

1 doedd vbf VBF bod:62

1 yr DefArt DET yr

1 iaith nf NOUN iaith

1 ddim negy1 NEGY dim

159

1 yn vbadj VBADJ yn

1 gwybod vb VB gwybod

1 . punct CONJ .

1 . punct CONJ .

2 doedd vbf VBF bod:62

2 cefn npf NOUN cefn

2 ddim negy1 NEGY dim

2 yn vbadj VBADJ yn

2 gwybod vb VB gwybod

2 chwaith adv ADV chwaith

2 . punct CONJ .

We chose a subset of the WSJ corpus and CEG corpus where the sentence lengths were

more than 5 but less than 20. Table 6.9 shows the summary of the datasets used in the

experiments for English and Welsh.

Table 6.9 Summary of the datasets used

Data English (WSJ) Welsh (CEG)

Number of sentences 3912 3000

Average sentence length 13.65 12.78

Maximum sentence length 19 19

Minimum sentence length 6 6

Out of the total number of sentences, the final 50 sentences were considered for evaluation

and the remaining sentences were all used for training the schema prediction.

6.4 Quantitative evaluation by comparing chunks against the

constituents in phrase structure tree

In this approach, the parse output is not an explicit representation such as constituency or

dependency tree. The correctness of the parse is implicit in the schema definitions and the

160

order in which the words are assembled progressively from token level schemas into event

level schemas. As long as each step of assembly is valid and larger spans of text are

successfully mapped to one or more of the valid schemas in the schema definition

component, the parsing is considered valid. The entire sentence would be analysed as some

type of CLOSED schema finally. The parsed output does not follow traditional representation

such as constituency or dependency tree, but the sequence in which locally cohesive schemas

were assembled into self-similar schemas at higher levels of organisation. Therefore, it was

not possible to reuse existing treebanks as a gold standard directly. Since these definitions

are manually defined by us, how do we measure the validity of the patterns recognised by the

parser? One naive approach that we considered was to evaluate the intermediate assemblies

in the parse against the constituents in the constituency tree. We assumed that if the

assembly heads predicted by the system are correct, the text within the span must match the

constituents in the standard phrase structure tree. The idea is that if the parse chosen by the

network is correct, the words and the schemas involved in all the assemblies that make up a

parse should be a valid constituent in the constituency tree. The matching constituent should

not be the leaf nodes in the tree because those are just words. When all the assembly heads

of the network’s parse match at some constituency level in a constituency, we consider it to

be correct and otherwise incorrect. We used the constituency representation of 50 sentences

in English and manually annotated the constituency representation of 50 sentences in Welsh.

The accuracy of predicting assembly heads all of which have a match in the constituency tree

are shown in table 6.10. Adding synset information to the model parameters along with POS

tags and the construction schemas improves the accuracy of getting a correct parse.

Table 6.10 Evaluation results

Language Accuracy (Constituencies matched / Total number
of constituencies)

Condition

English 83.46% Without synsets

Welsh 76.51% Without synsets

English 87.19% With synsets

Welsh 78.85% With synsets

This is a baseline result for parsing by applying the theoretical insights from Cognitive

Grammar. These evaluation results were obtained for 50 test sentences. Also, the evaluation

criterion of comparing the assembly heads with constituents allows for ungrammatical

161

structures such as inverted constituencies (e.g., ‘from Japan the man’ instead of ‘the man

from Japan’) to be evaluated as valid outputs. To overcome the above limitations, we used

two other strategies for parser evaluation.

6.5 Manual evaluation by listing the range of constructions

covered by the parser

One simple way to evaluate the grammatical coverage of the parser is to do a manual survey

of a list of linguistic constructions covered by the system and not covered by the system. This

evaluation procedure does not involve any corpus resource. Moreover, by looking at how the

parser chunks the words, what schemas are assigned and how these chunks are assembled

together to form more complex expressions, we shall be able to identify the list of

constructions covered by the parser. This method is at least useful in the sense of guiding and

monitoring how good the development of the cognitive parsing strategy has been. With that

goal in mind, we attempted to collect a list of linguistic constructions covered by the parser.

The list in table 6.11 was prepared by manually going through the schemas and assemblies

recognised by the parser on the 50 test sentences in English (out of 3,912 sentences from WSJ

corpus) and 50 test sentences in Welsh (out of 3,000 sentences from CEG corpus).

Table 6.11 Construction patterns covered by the English parser

Type of grammatical
construction

Construction schemas involved Examples from test sentences
recognised by the parser

Nouns, Noun phrases,
pronouns as arguments
of a verb

THING_PARTICIPANT
PRON_PARTICIPANT
THING_CLOSED-AUTONOMOUS

‘the substance’
‘an old story’
‘surviving workers’
‘Going for a walk everyday’

'The average seven-day compound
yield of the 400 taxable funds'

Preposition phrases as
arguments of verb

STATUS_PARTICIPANT ‘In 1956’
‘to the problem’

Part of a named entity,
Part of a noun
compound, Genitive
case expressions

THING_COMBINATIVE ‘Consolidate Gold Fields PLC’
‘of cancer deaths’
‘Its’

Relative clauses EVENT_QUALIFIER ‘symptoms that show up’
‘Researchers who studied the
workers’

162

Noun phrases modified
by relative clauses

EVENT_PARTICIPANT ‘Those of us who study’
‘factory that made paper’

Verb phrase in gerund
form, To + verb phrase

PROCESS_CONTINUATIVE-
AUTONOMOUS

THING_CLOSED-AUTONOMOUS

‘.. currently waiving management
fees..’
‘Hasn't any authority to issue new
debt obligations’

‘To prove to 125 corporate decision
makers ...’

Copula with predicate
nominals, predicate
adjectives

PROCESS_CONTINUATIVE-
DEPENDANT
STATUS_CLOSED-DEPENDANT
THING_PARTICIPANT
PROCESS_CLOSED-
AUTONOMOUS

‘Mr. Vinken is chairman of Elsevier
N.V.’
‘Imports were for $50.38 billion’
‘Crocidolite is unusually resilient’

Auxiliary and modal verb
constructions

PROCESS_CLOSED-DEPENDANT
PROCESS_CONTINUATIVE-
DEPENDANT
PROCESS_CLOSED-
AUTONOMOUS

‘will support’
‘is going’
‘have died’

Passive form of verb,
Stative verbs connected
to adjectives / past
participle form of verbs

STATUS_CLOSED-DEPENDANT
PROCESS_CLOSED-
AUTONOMOUS

‘Is owned’
‘are classified’
‘Will be outlawed’
‘Lie low’
‘Remains unchallenged’

Adverbs, adjuncts STATUS_PARTICIPANT
STATUS_DESCRIPTIVE

‘Into the campus’
‘Particularly’, ‘more importantly’

Numerical adjectives
Attribute adjectives
Appositive phrases
Genitive case
Past participle noun
modifiers

STATUS_QUALIFIER
STATUS_COMBINATIVE
THING_COMBINATIVE
PRON_COMBINATIVE

‘imported material’
‘Clouds of blue dust’
‘asbestos-related diseases’
‘35 years’, ‘these events’, ‘our work’
‘Dreyfus World-wide Dollar, the top-
yielding fund’

Coordinating
conjunctions,
punctuations, Sentence
adverbials

OPERATOR_DESCRIPTIVE,
OPERATOR_JOIN,
OPERATOR_CLOSED

‘But you have to recognise ..’

‘... managers can vary maturities
and go after higher rates…’

‘Champagne, desert followed ...’

Subordinate clauses EVENT_CONTINUATIVE-
AUTONOMOUS

‘While imports increased sharply..’
‘If congress doesn’t act..’

Main clause, Sentence,
Nuclear part of a

EVENT_CLOSED-AUTONOMOUS ‘The treasury said ..

163

discourse or a dialogue ‘Not this year.’

‘Yes, Speaking.’

Attributive clauses EVENT_CLOSED-DEPENDANT
THING_CLOSED-AUTONOMOUS

‘The idea is to prove that it’s a good
place for a company to expand’
‘That the news was not reported is
surprising’.

These are some of the example construction patterns that could be covered by the parser

based on the outputs from the 50 test sentences. While manually going through the output

we could notice many instances of ungrammatical patterns recognised as valid construction

schemas. Listed in table 6.12 are some of those instances.

Table 6.12 Examples of parse errors in English

Wrong assembly of words Construction pattern
identified

Our comment

['with the substance , 28']

Sentence context: … worked with

the substance, 28 have died.

STATUS_PARTICIPANT
Treated ‘28’ as an apposition
modifying ‘the substance’ and
grouped them together as one
unit.

Correct parse should have
grouped [‘with the substance’] as
one chunk and assemble ‘28’ with
upcoming words.

['that these events took place']

Sentence context: … that these

events took place 35 years ago.

EVENT_CONTINUATIVE-

DEPENDANT

Treats the attributed clause just
like any other subordinate clause.

Should recognised this group as
EVENT_CLOSED-DEPENDANT

['Despite recent declines in yields ,

investors']

Sentence context: Despite recent

declines in yields, investors

continue to pour cash...

STATUS_PARTICIPANT

This schema is a valid
interpretation if we assume that
the decline is in both yields as
well as investors. But it is wrong
in the context of the sentence.

The whole sentence finally could
not be parsed fully because of
this interpretation. After
processing all the words, the
parser had a series of
unassembled schemas. If we had
implemented a parse
rectification/edit component that
revisits earlier parse decisions
this can be handled.

164

['And the city decided to treat its

guests more like royalty or rock']

Sentence context: And the city

decided to treat its guests more like

royalty or rock stars than factory

owners …

EVENT_CLOSED_AUTO

NOMOUS

Technically this is not incorrect.
By changing the number of
landing points and retain span in
the parser settings, this kind of
grouping can be avoided.

['The next morning , with a']

Sentence context: The next

morning, with a police escort,

busloads of executives and their

wives raced …

THING_PARTICIPANT

The preposition and article
should not have been assembled
together with the noun phrase.

If the advantage of this method is that it does not need any corpus resource, its disadvantage

is that such a listing does not give any precise information about the coverage of linguistic

data. This is because much of the complexity of human languages arises from a range of

interactions between its core constructions and its peripheral constructions whose

boundaries are unclear.

For example, given a grammar, one might claim that relative clause is a type of construction

covered by the grammar and a few examples could indeed be covered by it but it might not

be able to deal with relative clauses which involve resumptive pronouns e.g., ‘the opportunity

which the investor thought he cannot afford to miss’. These types of constructions are usually

missed because they are thought of as peripheral or marginal. The other disadvantage is that

identifying the coverage of constructions in this manner is inherently subjective with no

objective measure of the regularities in language captured by the parser. Having such a metric

would be preferable because then the parser can be applied to different types of corpus and

cross-corpus comparison and evaluation of the parser can be done.

6.6. Evaluation by identifying the number of edits required for

a correct assembly

We did not choose a gold standard evaluation because there are multiple valid paths of

assembly. This means there are many gold standards to the parser output. So instead of

evaluating the output as either correct or incorrect and measuring the accuracy of the parser,

165

the idea is to measure how much correct or incorrect the parser analysis is. This can be done

by measuring how many edits are required along the path of assembly to produce a valid

parse. Every parse can be seen as repeated assembly of constructions and the path in which

the words are assembled incrementally. We say that a parser is wrong when it groups words

in such a way that there is no valid way to assemble the current schemas subsequently and

we end up with an unassembled, disjoint sequence of schemas. The parser’s decisions are

also wrong if it results in a sequence of assembly that is not one of the many gold standards.

If one or more decisions along the path of assembly can be edited and it results in subsequent

valid parse then the performance of the parser can be measured in terms of how many edits

are required before a valid assembly is formed. Let us consider that a sentence is made of a

number of assemblies. If it requires e number of edits to arrive at a correct sequence of

assembly, then the ratio e/a for every sentence gives an idea of how good or bad the parser

is for the given sentence. For the same 50 English sentences and 50 Welsh sentences used in

the previous experiments (in section 6.2), we manually calculated the ‘e/a’ ratio for each

sentence and found the mean value for 50 sentences. If the average ratio is more, then it

means that the decisions made by the parser in intermediate steps are more incorrect and

more edits were required and the parser performance is bad. The average e/a ratio for English

and Welsh sentences were 0.32 and 0.56 respectively.

6.7 Qualitative evaluation

In the context of evaluating the validity and meaningfulness of the chunks produced by the

parser, we adopted a qualitative approach where the fluent speakers of English and Welsh

languages were involved in online evaluation surveys. The idea behind this evaluation strategy

is that since the construction schema definitions were identified by unifying syntax and

semantics, they should be meaningful to the speakers of the language. In order to quantify

the meaningfulness of chunks, which is essentially qualitative, a scientifically accepted and

validated method is needed. Likert scale is one of the most fundamental and frequently used

tools in educational and social sciences research that measures the attitude of the

participants in a study (Joshi et al. 2015). A Likert scale is a set of statements given to the

participants who are asked to show their level of agreement or disagreement to the given

statements on a metric scale.

As a part of the qualitative evaluation of the chunks identified by our parser, we prepared a

questionnaire where the participants were given sentences that are parsed into labelled

166

chunks. The task of the participants was to judge the correctness / meaningfulness of the

chunks and their labels. The survey provided the instructions, which covered a total of 14

chunk labels, their definitions and examples (see figures 6.2 and 6.3 for examples). Each

question corresponds to a sentence. The answers were elicited for each labelled chunk as

analysed by our parser. Each chunk was associated with its own five-point Likert scale (from

strongly disagree to strongly agree). The average number of chunks in each sentence was 9.9

(with standard deviation of 1.1) for English and 9.2 (with standard deviation of 1.7) for Welsh.

We prepared a total of 200 sentences in English and Welsh, respectively. There was a total of

1,982 chunks in English and 1,839 chunks in Welsh.

167

Figure 6.2 Participant instructions page for English

In the earlier three experiments described up to section 6.5, we used the CEG corpus

sentences for Welsh and a portion of the WSJ corpus for English. For the sake of qualitative

evaluation by fluent speakers, we parsed the sentences of CorCenCC corpus (Corpws

Cenedlaethol Cymraeg Cyfoes). CorCenCC is a large-scale, open-source corpus of

contemporary Welsh language containing over 11 million words of spoken, written and

electronic data collected from various sources (Knight et al., 2017; 2020). In the earlier

experiments we could not use CorCenCC corpus because the corpus development was taking

place in parallel to this research. For English questionnaires, we used the sentences from the

168

same WSJ corpus just like previous experiments. Ethical approval for the involvement of

human participants was granted by the School of Computer Science and Informatics' Research

Ethic Committee (SREC) (Refer to Appendix C). We distributed an open call online. The

participants were fluent speakers of the language that they were going to rate (either Welsh

or English). Once the participants expressed their willingness to take part, we sent them the

participant information sheet and obtained a consent from them. The participant information

sheet contained information about the scope of the project, the purpose of the survey,

information on what the participation would involve, clarification about participant freedom

to withdraw at any stage, the possible benefits and risks in taking part in the project.

169

Figure 6.3 Participant instruction page for Welsh

Specifically, we mentioned clearly that the participation was voluntary, that there was no

need for the participants to explain their reasons for not taking part in the study and that they

were free to withdraw their consent and participation at any time they wanted. No personal

details were collected from participants except their email addresses to identify their

submissions. The questionnaires were prepared using online forms and distributed to the

participants (refer to figures 6.4 and 6.5). The contents of the instruction page were sent to

the participants to refer back to the labels and examples while rating the sentences.

170

Figure 6.4 Evaluation page for participants in English

Figure 6.5 Evaluation page for participants in Welsh

171

There was a total of 8 participants in English and 7 participants in Welsh who took part in the

qualitative evaluation. Each participant was given an option to rate as many sentences as they

wanted. The participants submitted their ratings independently of one another. We elicited a

total of 4,768 evaluations for English and 4,431 evaluations for Welsh chunks. Their

distribution is shown in figures 6.6 and 6.7.

Figure 6.6 Distribution of number of chunks evaluated for English

Figure 6.7 Distribution of number of chunks evaluated for Welsh

6.7.1 Statistical analysis

In statistics, validity refers to the extent to which the results represent what is supposed to

be measured. In the absence of a gold standard, quantifying the validity of the parser output

in terms of parser accuracy becomes impossible. Therefore, we measured the reliability of

the parser outputs instead. Reliability refers to the consistency of the measure where the

172

results can be reproduced under the same conditions. When multiple evaluators rate the

same sentence chunks under the same conditions, the inter-rater reliability can be assessed

using a range of statistics. We chose two such statistics:

● Pairwise Cohen’s Kappa coefficient (κ)

● Krippendorf’s alpha (α)

Cohen’s kappa coefficient (Cohen, 1960) is a statistical measure that quantifies the reliability

of two evaluators rating the same quantity and how frequently they are in agreement with

their judgements. Given N items that have to be rated in C categories, Cohen’s kappa

measures the agreement between any two raters to classify the N items into C categories. In

our experiment, we had in total 1,982 labelled chunks in English and 1,839 labelled chunks in

Welsh that were rated into one of the 5 classes: Strongly agree, Agree, Neither agree nor

disagree, Disagree, Strongly disagree. The evaluator ratings were compared and their

frequencies and proportions of agreement were measured and a kappa score was calculated.

It is possible that a chance agreement occurs when two evaluators make guesses about their

rating due to uncertainty. This can influence the reliability of the agreement measure. The

advantage of kappa score is that it accounts for chance agreement of ratings between the

participants. Cohen’s kappa coefficient treats all disagreements equally, which is not suitable

when the annotation categories are ordered as is the case with a Likert scale. In this case, it

is preferable to use weighted kappa coefficient, which accounts for the degree of

disagreement (Cohen, 1968).

Not all participants were expected to annotate all chunks from 200 sentences. By definition,

inter-annotator agreement could not be calculated for chunks that had less than two

annotations. Similarly, pairwise Kappa score cannot be calculated immediately when more

than two annotations were available for a single chunk. In this scenario we need a metric that

measures the overall agreement instead of pairwise agreement between participants. In

order to deal with the problems of missing annotations for some chunks and multiple

annotations for some other chunks, we need an agreement metric that is not affected by

missing data, able to accommodate varying sample sizes and number of evaluators.

Krippendorff’s alpha (α)Krippendorff, 1970; 2011) is a statistical metric that is suitable in this

context because it can handle missing data and supports categorical, ordinal, interval and

ratio type data as well. We present our results in terms of both pairwise Cohen’s kappa scores

and Krippendorff’s alpha score.

173

Wherever chunks are rated by at least two participants, we compare the ratings of each pair

of participants to calculate their weighted kappa score as well as the agreement of their

frequencies and proportions. The kappa scores were calculated using quadratic weighting.

This is because the difference between the ratings ‘Strongly agree’ and ‘Agree’ should not be

weighted similar to the difference between ‘Agree’ and ‘Neither agree nor disagree’. The pairs

of participants and the number of chunks commonly annotated by them are shown in figures

6.8 and 6.9 for English and Welsh respectively.

Figure 6.8 Number of chunks commonly annotated by pairs of participants - English

Figure 6.9 Number of chunks commonly annotated by pairs of participants - Welsh

From figures 6.8 and 6.9, we see that there are 13 participant pairs in English and 12

participant pairs in Welsh who had chunks common in their evaluations. The pairwise kappa

scores calculated for each of these pairs in English and Welsh are shown in figures 6.10 and

6.11. In English questionnaires, there were 8 pairs of participants whose kappa scores ranged

from 0.3084 to 0.5011 showing that the level of agreement between each of these pairs of

174

participants ranged from fair to moderate. Further 4 pairs showed slight to fair agreements

ranging from 0.2086 to 0.2852. Only 1 pair showed none to slight agreement with the kappa

score 0.1679. In Welsh, there was substantial agreement between 2 pairs of participants,

moderate agreement between 5 pairs, slight to fair agreements between 3 pairs of

participants, and no agreement between two pairs of participants (participant pairs P3-P6 and

P3-P7). The kappa scores for both these pairs are plotted as -0.01 in figure 6.11 to make them

visible.

Figure 6.10 Kappa scores with quadratic weighting for 13 pairs of English participants

Figure 6.11 Kappa scores with quadratic weighting for 12 pairs of Welsh participants

The frequencies of agreement observed and the proportions of agreement observed are

175

compared against the frequencies and proportions that are expected by chance. The results

of the comparisons for English and Welsh are plotted in figures 6.12, 6.13 and 6.14, 6.15

respectively. It was observed that both the frequencies and proportions of agreement

between each pair of participants was more than those expected by chance.

Figure 6.12 Frequencies of agreement compared against chance expected - English

Figure 6.13 Proportions of agreement compared against chance expected - English

For Welsh, we observed that the participant pairs (P3, P6) and (P3, P7) for whom the kappa

score could not be calculated, the frequencies and proportions of agreement were less than

176

those expected by chance.

Figure 6.14 Frequencies of agreement compared against chance expected - Welsh

Figure 6.15 Proportions of agreement compared against chance expected - Welsh

In order to deal with varying chunk sizes and number of evaluators involved, we measured

the agreement using Krippendorff’s alpha score. The alpha score for 8 English participants

involving 35 cases calculated for ordinal data was 0.78. For 7 Welsh participants involving 35

cases calculated for ordinal data was 0.89. We calculated Krippendorff’s alpha score for

177

ordinal data because the Likert scale is ordinal. Krippendorff’s alpha score ranges from -1 to

1. A score of 1 indicates perfect agreement, 0 indicates no agreement beyond chance and

negative values indicate systematic disagreement between the participants. The alpha score

between 0.67 to 0.8 indicates tentative reliability while anything greater than 0.8 indicates

high reliability. The scores obtained for English and Welsh reveal that there is a tentative to

high reliability in agreement between the participants for the respective languages.

6.7.2 Disagreement analysis

To gain further insight into the performance of the parser, we analysed the chunks and the

labels with which the participants disagreed and recognised that the following factors were

relevant:

● Overgeneralisation of construction schemas in the parser output

● Misunderstanding of the labels in the instructions

● Ambiguity in the level of analysis chosen to schematise the chunk

Chunks whose labels were overgeneralisations when a more specific label could have been

chosen were marked by some participants as ‘Disagree’ or ‘Strongly disagree’. For instance,

pronouns and referring expressions involving predicate adjectives are best analysed as

PRONOMINAL schema instead of a more general THING schema. This is one of the common

mistakes that is found in the output chunk labels which some participants disagreed with. The

conclusion here is that the given parse is still valid albeit suboptimal.

The second type of disagreement came with the differences in the participants’

understanding of the proposed construction schemas. Since no explicit training was given to

the participants on the schema labels, these disagreements provide insights on the

interpretability of the labels. Based on informal definitions and a few example phrases in the

instruction page, the participants developed their own understanding of the chunk labels and

tried to evaluate the outputs. Some participants contacted us through email and wanted to

clarify if it is okay to consistently disagree with the outputs based on one or two parts of the

chunk label. For instance, one of the participants mentioned that they disagreed with all the

chunks that were labelled by the parser as PROCESS_CLOSED_DEPENDENT. In their

understanding, a DEPENDENT chunk by definition cannot be CLOSED. They also provided a

short explanation of their understanding by giving some examples. The fact that the

participants are able to give consistent, meaningful interpretations to the chunk labels is an

178

indication that the unified syntactic-semantic labels used by the parser are interpretable by

humans. The participant feedback may therefore be used to update the knowledge base

iteratively.

The third type of disagreement occurred with chunk labels that can have two valid levels of

analysis at the same time. For example, a finite verb with its arguments can be analysed at

the PROCESS level and EVENT level. Some participants disagreed with EVENT level

interpretations before the entire clause was parsed. We also noticed that assigning EVENT

level labels to the clausal connectives had more disagreements from the participants. Again,

this provides important feedback that can be used to improve the related parser's

components.

6.8 Limitations and future work

By unifying syntax and semantics, we proposed construction schema definitions using

knowledge engineering and developed a parser that analyses sentences in terms of assembly

of construction schemas. Four evaluation methodologies were adopted to measure the

validity of the outputs produced by the parser in the absence of a gold standard. The

evaluation section also demonstrated the reliability and interpretability of the labelled parsed

chunks using statistical analysis of the ratings provided by fluent speakers on a Likert scale of

5.

To reuse the proposed ideas for a new language, creating the knowledge base and developing

a schema definition component is very crucial. In order to create the definitions in the schema

definition component, language experts were involved who provided their inputs on how

constructions that occur in different formal syntactic environments are functionally

analogous to each other. A wide range of grammatical constructions in the language were

schematised with the same label based on how they are functionally analogous to each other.

The involvement of experts in creating the knowledge base is one of the potential challenges

in adapting the proposed idea for other languages. However, as we demonstrated with

English and Welsh, the schema definitions can be created for one language and can be

adapted to another language with relatively few changes. The effort involved in creating the

knowledge base is also not as expensive as that of annotated treebanks.

Although we established the reliability of the parser output labels through a qualitative

evaluation task, a more thorough evaluation is needed to establish the utility of the parser

179

outputs in other NLP tasks. The utility of the assembly of construction schemas produced by

the parser would be best demonstrated in extrinsic NLP tasks such as question-answering,

grammar correction, machine translation and so on. As this is a more comprehensive task, we

are planning to conduct an extrinsic evaluation of our parser as a future work.

180

Chapter 7 Conclusion

In this work, we have developed a novel approach to parsing based on ideas from usage-

based, functional, cognitive theories of grammar and implemented unsupervised, cognitive

parsers for English and Welsh languages. The research was motivated by the necessity to

develop a parser for Welsh language, which is a minoritised, low-resourced language. Because

most of the world’s languages do not have large treebanks annotated with syntactic

information as is the case for Welsh language, it was necessary to develop a suitable

unsupervised approach to parse raw sentences. In this context, we identified the following

research question that is central to our work: Can an unsupervised learning approach be used

to develop a syntactico-semantic parser? We hypothesised that the answer is affirmative and

set four research objectives explicitly to verify the hypothesis. The research objectives that

we started with and the results that were obtained on completing the research are as follows:

RO 1: To utilise the existing body of knowledge and identify research gaps in the field of

unsupervised parsing. Specifically, a systematic literature review is to be conducted to survey

the existing approaches to unsupervised learning of parsing rules in terms of their theoretical

underpinnings, practical implementations and evaluation.

In order to meet this research objective, we conducted a systematic literature review on

unsupervised approaches to parsing. From the literature review, we identified that although

unsupervised parsing methodologies have been around for nearly two decades, they

exhibited two problems: (a) Their performance was significantly lower than their supervised

counterparts. (b) They treated parsing as the problem of modelling the probabilistic patterns

of a language generated by simple, hidden statistical models of syntactic structure. The

improvements in the performance of unsupervised parsers depended on how sophisticated

their inference methods were in estimating the probabilities of the grammatical structures in

a language. We also noticed that most of these approaches were influenced by the formal

syntactic theoretical ideas, often representing their outputs in the form of dependency tree

or constituency tree, and evaluated the parser performance by comparing against the gold

standard annotation.

The literature review also revealed that there were significant gaps between the theoretical

schools of grammar (such as functional, cognitive, usage-based theories of grammar) and

experimental studies on human online parsing (reading, eye-tracking and other

181

psycholinguistic studies) on the one hand and the statistical and computational aspects of

parsing on the other. We identified that this gap should be addressed to enable further

advancements in computational approaches to parsing. This leads to the second research

objective.

RO2: To ground an unsupervised learning approach to developing a syntactico-semantic

parser into linguistic theory in an effort to bridge the gap between the functional-cognitive

schools of grammar and the computational models of language processing. Based on this

investigation we aim to synthesise some of the essential properties that the syntactico-

semantic parser should have.

This objective was attained by synthesising ideas from Cognitive Grammar, Construction

Grammar and Karaka theory and based on them we defined a set of construction schemas for

English (and similarly for Welsh). These construction schemas were identified by noticing the

morphosyntactic patterns in a given language and by recognising meaningful templates of

semantic construals behind the morphosyntactic patterns. Linguistic experts were involved

during knowledge engineering in order to inform the development of construction schema

labels. Each schema was defined in terms of how it could be composed from other self-similar

schemas. Using these schema definitions, we were able to learn the mapping between surface

forms and functional usage patterns.

RO3: To use the findings from RO1 and RO2 to design and implement a practical approach to

unsupervised parsing that takes the advantages of prevalent parsing approaches in

computational linguistics and NLP while introducing novelty based on the lessons learnt from

the psycholinguistic properties of online sentence parsing by humans and the functional-

cognitive theories.

We recognised that only two parts were sufficient to develop a syntactico-semantic parser -

a lexical component and a statistical component. The lexical component was implemented as

dictionary cum rules. The dictionary part is realised in our system as the schema definition

component while the rule part was realised as the schema assembly component that utilises

these definitions to map portions of raw text to all possible construction schemas. The schema

definition component was developed based on the knowledge base identified from

knowledge engineering. In the schema assembly component, we proposed an algorithm that

The statistical component was implemented as a feedforward neural network with

backpropagation to predict the most likely assembly given two component schemas. Using

182

this methodology, we created a prototype parser that could parse raw sentences by

assembling them into successively higher units of organisation incrementally.

RO4: To evaluate the effectiveness of the approach proposed in RO3 and see how it generalises

across structurally different languages. The two languages spoken in Wales, Welsh and

English, fit this requirement. Given the unsupervised nature of the proposed approach, a novel

evaluation framework will be designed to address the lack of ground truth.

Evaluation posed a major problem in our approach as there was no single gold standard to

compare against. There are many correct ways to parse a sentence depending on how the

intermediate assemblies were composed. We conducted four evaluation experiments to

validate the sequence of construction schema assemblies and their labels. First, in an attempt

to quantitatively evaluate the parser outputs, we compared the intermediate assembly heads

against the constituents in the constituency tree. We measured the accuracy of the parser as

the number of assembly heads exactly matching with any level in the constituent tree except

the leaf nodes. Realising the weakness of this approach, we chose manual evaluation of the

coverage of the grammar as the second approach to evaluation. In this approach, we reported

the coverage of the grammar by manually listing the types of constructions recognised by the

parser and listed some of the errors made by the system. In the third approach, we measured

how good or bad the parse is by calculating the ratio of the number of assembly edits needed

in a parse to the total number of assemblies recognised by the parser.

In all these three approaches, we were not able to directly establish the validity of the parser

output since there is no gold standard to compare against. When validity cannot be

established in terms of parser accuracy, we proposed to evaluate the reliability of the parser

outputs instead. By quantifying the consistency of the agreement between various human

evaluators for the same outputs, we assessed the inter-rater reliability and reported them

using weighted Cohen's kappa and Krippendorff’s alpha scores. The best way to evaluate the

parser is to use it extrinsically in another application and see if it is really useful or not. This

was outside the scope of this particular project but it provided direction for future research

in this area.

The novel research contribution of this work is that it provides a framework for parsing the

skeletal structure of a sentence by recognising parts of sentences as instances of construction

schemas. The proposed parser uses an unsupervised approach that can be adapted for

parsing other languages, including minority languages that have very few resources, because

183

the implementation does not require syntactic treebanks for training. The path of assembling

smaller schemas into larger schemas produced better results when additional semantic

information from wordnet was used.

More specific contributions of this project in terms of outputs produced are fivefold. The first

contribution is that a systematic literature review was conducted and research gaps between

existing computational approaches to unsupervised parsing and the theoretical as well as

experimental studies on parsing were identified. Secondly, construction schemas were

proposed through knowledge engineering by involving language experts and a schema

definition component was developed. The third contribution is the synthesis of ideas from

Cognitive Grammar, Computational Paninian Grammar and psycholinguistic studies on online

sentence processing in humans to identify the parser specifications. The fourth contribution

is the implementation of a parsing model that bridges the research gaps identified from

literature review and incorporates the parser specifications identified in the previous stage.

Finally, we proposed suitable evaluation methodologies in the absence of a gold standard and

presented the results obtained.

In this research, we have taken the first step towards exploring an unsupervised approach for

parser development by unifying syntax and semantics that is incremental, bottom-up and

usage-based. We hope that more research will follow in the direction of overcoming the

limitations of this work and expanding on it.

184

Appendix A

S.

No.

Title Findings Reference

1. Corpus-Based Induction of

Syntactic Structure: Models

of Dependency and

Constituency

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-incremental

Output: Dependency tree

Evaluation strategy: Comparison against gold standard

Features: Tokens, Head, valency, direction of attachment, word

distribution clusters

Implementation methodology: Top-down dependency

grammar model

Klein and Manning (2004)

2. Unsupervised multilingual

grammar induction

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-incremental

Output: Constituency tree

Evaluation strategy: Comparison against gold standard

Features: POS tags, word alignments

Implementation methodology: Similarity or exemplar-based

models

Snyder et al. (2009)

3. Unsupervised context

sensitive language acquisition

from a large corpus

Theory: Theory-neutral

Representing productivity: Hierarchical

Processing productivity: Non-incremental

Output: Directed multigraph

Evaluation strategy: Grammaticality judgement task

Features: Tokens

Implementation methodology: Automatic Distillation of

Structures (ADIOS)

Solan et al. (2004)

4. An All-Subtrees Approach to

Unsupervised Parsing

Theory: Theory-neutral

Representing productivity: Hierarchical

Processing productivity: Non-incremental

Output: Constituency tree

Evaluation strategy: Comparison against gold standard

Features: Tokens, POS tags

Implementation methodology: Data Oriented Parsing (DOP)

Bod (2006)

5. From Baby Steps to

Leapfrog: How “Less is

More” in Unsupervised

Dependency Parsing

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-incremental

Output: Dependency tree

Evaluation strategy: Comparison against gold standard

Features: Tokens, POS tags, Head, Direction of attachment,

Valence

Implementation methodology: Top-down dependency

grammar model

Spitkovsky et al. (2010)

6. Unsupervised Grammar

Induction by Distribution and

Attachment

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-incremental

Output: Constituency tree

Evaluation strategy: Comparison against gold standard

Features: Heuristics, distributed representation of words

Implementation methodology: Distribution-based model

Brooks (2006)

7. What are the Productive

Units of Natural Language

Grammar? A DOP Approach

Theory: Theory-neutral

Representing productivity: Hierarchical

Processing productivity: Non-incremental

Zuidema (2006)

185

to the Automatic

Identification of

Constructions

Output: Constituency tree

Evaluation strategy: Comparison against gold standard

Features: Tokens, POS tags

Implementation methodology: Data Oriented Parsing (DOP)

8. Simple Unsupervised

Grammar Induction from

Raw Text with Cascaded

Finite State Models

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-incremental

Output: Constituency tree

Evaluation strategy: Comparison against gold standard

Features: Tokens

Implementation methodology: Chunker and its extension

Ponvert et al. (2011)

9. Characterizing Motherese:

On the Computational

Structure of Child-Directed

Language

Theory: Theory-neutral

Representing productivity: Hierarchical

Processing productivity: Non-incremental

Output: Directed multigraph

Evaluation strategy: Comparison of models trained on disjoint

corpora with respect to sentence acceptability.

Features: Tokens

Implementation methodology: Automatic Distillation of

Structures (ADIOS)

Brodsky and Waterfall (2007)

10. Unsupervised induction of

labeled parse trees by

clustering with syntactic

features

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-incremental

Output: Constituency tree

Evaluation strategy: Comparison against gold standard

Features: POS, chunks

Implementation methodology: Chunk-based approach,

Clustering approach

Reichart and Rappoport

(2008)

11. A survey of grammatical

inference methods for natural

language learning

Findings:

14 studies, six computational techniques(Statistical methods,

Evolutionary computing techniques, Minimum description

length, Heuristic methods, Greedy search, Clustering

techniques), two presentation sets (text and informant), three

types of information for learning (supervised, unsupervised,

semi-supervised), three types of evaluation methods (Looks-

good-to-me, compare against treebank, rebuilding known

grammars).

D’Ulizia et al. (2011)

12. A probabilistic generative

model for an intermediate

constituency-dependency

representation

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Dependency tree

Evaluation strategy: Comparison against gold standard

Features: Tokens, POS tags, Head, direction of attachment,

valence

Implementation methodology: Top-down dependency

grammar model

Sangati (2010)

13. Identifying Patterns for

Unsupervised Grammar

Induction

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Constituency tree

Evaluation strategy: Comparison against gold standard

Features: Tokens, POS tags, Heuristics

Implementation methodology: Heuristics

Santamaria and Araujo (2010)

14. From ranked words to

dependency trees: two-stage

unsupervised non-projective

dependency parsing

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Dependency tree

Søgaard (2011)

186

 Evaluation strategy: Comparison against gold standard

Features: Tokens, Distributed representation of words

Implementation methodology: Distribution-based model

15. Posterior Sparsity in

Unsupervised Dependency

Parsing

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Dependency tree

Evaluation strategy: Comparison against gold standard

Features: Tokens, POS tags, Head, direction of attachment,

valence

Implementation methodology: Top-down dependency

grammar model

Gillenwater et al. (2011)

16. Capitalization Cues Improve

Dependency Grammar

Induction

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Dependency tree

Evaluation strategy: Comparison against gold standard

Features: Tokens, Orthographic cues, head, valence, direction of

attachment

Implementation methodology: Top-down dependency

grammar model

Spitkovsky et al. (2012)

17. Exploiting Reducibility in

Unsupervised Dependency

Parsing

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Dependency tree

Evaluation strategy: Comparison against gold standard

Features: Tokens, POS tags, head, valence, direction of

attachment

Implementation methodology: Top-down dependency

grammar model

Mareček and Žabokrtsk

(2012b)

18. Unsupervised Dependency

Parsing using Reducibility

and Fertility features

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Dependency tree

Evaluation strategy: Comparison against gold standard

Features: Tokens, head, valence, direction of attachment

Implementation methodology: Top-down dependency

grammar model

Mareček and Žabokrtský

(2012a)

19. Learnability and falsifiability

of Construction Grammars

Theory: Usage-based grammar

Representing productivity: Non-hierarchical

Processing productivity: Non-Incremental

Output: Construction slots

Evaluation strategy: Maximum-coverage, minimum-size,

stability measures for a usage-based grammar.

Features: Tokens, POS tags, Construction association measures

Implementation methodology: Construction grammar

induction

Dunn (2017a)

20. Boosting Unsupervised

Grammar Induction by

Splitting Complex Sentences

on Function Words

Theory: Theory-neutral

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Directed multigraph

Evaluation strategy: Comparison against gold standard, Output

is compared against an artificial grammar that generated the test

corpus.

Features: Tokens

Implementation methodology: Automatic Distillation of

Structures (ADIOS)

Berant et al. (2007)

187

21. Evaluation Strategies for

Computational Construction

Grammars

Theory: Usage-based

Representing productivity: Non-hierarchical

Processing productivity: Non-Incremental

Output: Transient structure

Evaluation strategy: Comparison against gold standard.

Features: POS, Heuristics

Implementation methodology: Construction grammar

induction

Marques and Beuls (2016)

22. Learning Syntactic

Constructions from Raw

Corpora

Theory: Theory-neutral

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Directed multigraph

Evaluation strategy: Comparison against gold standard, Output

is compared against an artificial grammar that generated the test

corpus.

Features: Tokens

Implementation methodology: Automatic Distillation of

Structures (ADIOS)

Edelman et al. (2005)

23. Punctuation: Making a Point

in Unsupervised Dependency

Parsing

Theory: Formal grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Dependency tree

Evaluation strategy: Comparison against gold standard.

Features: Tokens, orthographic cues

Implementation methodology: Top-down dependency

grammar model

Spitkovsky et al. (2011)

24. An Exemplar-based

Approach to Unsupervised

Parsing

Theory: Theory-neutral

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Constituency tree

Evaluation strategy: Comparison against gold standard.

Features: Tokens, POS tags

Implementation methodology: Similarity or exemplar-based

model

Dennis (2005)

25. Bayesian Tree Substitution

Grammars as a Usage-based

approach

Theory: Theory-neutral

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Constituency tree

Evaluation strategy: Comparison against gold standard.

Features: Tokens, POS tags

Implementation methodology: Data Oriented Parsing

Post and Gildea (2013)

26. Computational learning of

construction grammars

Theory: Usage-based

Representing productivity: Non-hierarchical

Processing productivity: Non-Incremental

Output: Construction slots

Evaluation strategy: Qualitative, Maximum coverage and

minimum size of grammar

Features: Tokens, POS tags, semantic tags, construction

association measures

Implementation methodology: Construction grammar learning

Dunn (2017b)

27. Unsupervised Grammar

Induction with Depth-

bounded PCFG

Theory: Formal grammar or generative grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Constituency tree

Evaluation strategy: Comparison against gold standard.

Features: Tokens

Implementation methodology: Probabilistic Context Free

Grammar (PCFG)

Jin et al. (2018)

188

28. From Exemplar to Grammar:

A Probabilistic Analogy-

Based Model of Language

Learning

Theory: Theory-neutral

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Constituency tree

Evaluation strategy: Comparison against gold standard.

Features: Tokens, POS tags

Implementation methodology: Data Oriented Parsing (DOP)

Bod (2009)

29. Grammar Induction from

Text Using Small Syntactic

Prototypes

Theory: Formal or generative grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Dependency tree

Evaluation strategy: Comparison against gold standard.

Features: Tokens, POS tags, head, valence, direction of

attachment

Implementation methodology: Top-down dependency

grammar model

Boonkwan and Steedman

(2011)

30. Improving Unsupervised

Dependency Parsing with

Richer Contexts and

Smoothing

Theory: Formal or generative grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Dependency tree

Evaluation strategy: Comparison against gold standard.

Features: Tokens, POS tags, head, valence, direction of

attachment

Implementation methodology: Top-down dependency

grammar model

Headden et al. (2009)

31. Limitations of Current

Grammar Induction

Algorithms

Findings:

Survey paper, Different grammar induction algorithms such as

EMILE, ADIOS, ABL are discussed. Tested on Eindhoven

corpus. Two experiments were conducted on various Grammar

induction (GI) approaches. The results from the experiments

show that the current grammar induction systems like EMILE,

ADIOS, ABL have severe shortcomings in deriving meaningful

structure from language as complicated as Eindhoven corpus. An

incremental grammar induction strategy is suggested as

preferable and a short illustration of how the system should be is

presented at the end.

,

Cramer (2007)

32. Towards High Speed

Grammar Induction on Large

Text Corpora

Theory: Formal or generative grammar

Representing productivity: Hierarchical

Processing productivity: Non-Incremental

Output: Constituency tree

Evaluation strategy: Comparison against gold standard.

Features: Distributional representation of words

Implementation methodology: Chunker and it extension,

Probabilistic context-free grammar (PCFG)

Adriaans et al. (2000)

33. Unbounded Dependency

Recovery for Parser

Evaluation

Findings:

Parser evaluation paper, five different parsers compared. The

five parsers are: C&C, Enju, DCU, Rasp and Stanford.

The suitability of PARSEVAL metrics as a measure of the

performance of parsers is called into question in the paper. By

pointing out that the parser performance on recovering

unbounded dependencies are bad, the study motivates the

necessity of better parser evaluation metrics.

Rimell et al. (2009)

34. Evolving Natural Language

Grammars without

Supervision

Theory: Formal or generative grammar

Representing productivity: Hierarchical

Processing productivity: Incremental

Output: Constituency tree

Araujo and Santamaría (2010)

189

Evaluation strategy: Comparison against gold standard.

Features: POS, Heuristic rules

Implementation methodology: Heuristic approach

35. Unsupervised Induction of

Dependency Structures Using

Probabilistic Bilexical

Grammars

Theory: Formal or generative grammar

Representing productivity: Hierarchical

Processing productivity: Non-incremental

Output: Dependency tree

Evaluation strategy: Comparison against gold standard.

Features: Tokens, POS, head, valence, direction of attachment,

Implementation methodology: Top-down dependency

grammar model

Dominguez and Infante-

Lopez (2011)

36. Fast Unsupervised

Incremental Parsing

Theory: Formal or generative grammar

Representing productivity: Hierarchical

Processing productivity: Incremental

Output: Shortest common cover link sets

Evaluation strategy: Comparison against gold standard.

Features: Words, Distribution

Implementation methodology: Distributed-based

Seginer (2007)

37. Use of predictive

dependencies in language

learning

Goal: To verify experimentally if abstract grammatical

hierarchies can be learnt using the statistical cues of local

predictive dependencies

Method: Artificial language learning task by humans.

Experiment: Adult participants exposed to sentences from

artificial language. They had no semantic,visual or any other clue

except the distribution of words and their category.

Conditions: Groups: Intentional group, Incidental group, Control

group

Tests: Rule test, fragment test

Result: Experimental groups (intentional and incidental)

significantly outperformed control group on both the tests under

various conditions

Insights: Predictive dependencies on the naturally occurring text

can lead to simple phrase structure acquisition. We can exploit this

for unsupervised learning.

Summary: The results support the hypothesis that learners can

detect predictive dependencies in the service of acquiring simple

phrase structure.

Saffran (2001)

38. The role of discourse context

in the processing of a flexible

word-order language

Goal: To find out if the processing difficulty associated with non-

canonical word order in a language is reduced in an appropriate

discourse context.

Method: Conducting experiments on speakers of Finnish by

presenting them with non-canonical word order sentences to see

the effect.

Experiment:

Two experiments –

1. Self paced reading task

2. Eye tracking while hearing the spoken description of scenes

Conditions:

40 Finnish speakers, given 20 sentences in four patterns.

Eye-tracking during listening

Result: Reading time in first experiment and eye movements in

second experiment support the idea that people use word order

patterns to predict upcoming referents on the basis of discourse

status.

Insights:

Discourse is not taken into consideration while modelling

computational grammar induction. The study provides the

theoretical motivation for such an approach.

Summary: The processing of non-canonical structures is

facilitated by the presence of an appropriate discourse context.

Kaiser and Trueswell (2004)

190

39. A Linguistic Investigation

into Unsupervised DOP

Goal: Study if a computational bootstrapping model of language

can explain the abstract linguistic properties of natural languages

without assuming a universal grammar

Method: An unsupervised DOP model which computes the

most probable tree from among the shortest derivations of

sentences. Use this model to explain both rule-based and

exemplar-based properties of a natural language.

Result: Learning discontiguous construction patterns, agreement,

movement were all shown to be possible for computational

bootstrapping without a need for special, top down abstract

grammar

Summary: Recursive tree structure and an analogical matching

algorithm can help us learn various syntactic phenomena that

usually appeal to an abstract, universal grammar that generates

sentences top down.

Bod (2007)

40. A Statistical Test for

Grammar

Goal: To see if the children acquire language through a

productive grammatical system (typically expressed as generative

grammar) or usage based schematic patterns.

Method: A statistical test is proposed to check if grammar is

abstract and productive or lexically-specific and usage-based.

Experiment: Through case studies on the children’s speech data,

a measure of overlap between theoretical prediction (productive

grammar vs lexical-specific usage based) is measured.

Conditions: Productivity, Usage-based

Result: Results of the statistical test show that a lexically-specific,

usage-based, memory-and-retrieval approach is unsupported. The

results are consistent with a productive abstract grammatical

system in child speech.

Summary: These results do not resolve the innateness debate in

language acquisition: they only point to the very early availability

of an abstract and productive grammar.

Yang (2011)

41. How hierarchical is language

use?

Goal: It is assumed that hierarchical phrase structure rules play an

important role in natural language processing? Is it true? Can

sequential model predict statistical regularities in language?

Method: Comparison of emerging ideas in various

neurophysiology, behaviour and computational studies suggest

that sequential sentential structure has considerable explanatory

power.

Task: Discussion of evidences from multiple research fields:

Cognitive neuroscience, psycholinguistics, Computational models

of language acquisition

Insights: Combining productive grammatical units need not

happen hierarchically but a sequential process would suffice.

Summary: Such a model of language processing has implications

for the fields of linguistics, ethology, psychology and computer

science / natural language processing.

Frank et al. (2012)

42. Rich Syntax from a Raw

Corpus: Unsupervised Does

It

Goal: Compare the theoretical and computational properties of

ADIOS system to some recent works in computational linguistics

and in grammar theory

Method: Discussing the computational principles behind the

ADIOS model, by comparing it to select approaches from

computational and formal linguistics.

Results: Principles behind ADIOS: (a) Pattern significance is

learnt probabilistically

(b) Patterns are context sensitive

(c) Patterns are hierarchical

Insights: Comparison of ADIOS with grammar and

computational theories is done. Similar to Construction grammar

Edelman et al. (2003)

191

in its general philosophy of linguistic representations and Tree

adjoining grammar in its computational capacity

Summary: Evaluation strategy for a purely empirical , usage-

based approach to grammar induction should be found.

43. Subjacency Constraints

without Universal Grammar:

Evidence from Artificial

Language Learning and

Connectionist Modeling

Goal: To experimentally verify if subjacency constraints which

usually appeal to universal grammar can be acquired through

limitations on sequential learning.

Method: Two types of experiments were conducted to enquire

about the nature of subjacency constraints. Artificial language

learning experiments and connectionist simulations using the

same data were also made.

Experiment:

Two experiments –

1. Created two artificial languages, natural (NAT) and unnatural

(UNNAT). Each artificial language consisted of a set

of letter strings, each letter representing a specific grammatical

class. Subjects were randomly assigned to one of three conditions

(NAT, UNNAT, and CONTROL). NAT and UNNAT were

trained using the natural and unnatural languages, respectively.

The CONTROL group completed only the test session. During

training, individual letter strings were presented briefly on a

computer. After each presentation, participants were prompted to

enter the letter string using the

keyboard. Training consisted of 2 blocks of the 30 items,

presented randomly. During the test session, participants

decided if the test items were created by the same (grammatical)

or different (ungrammatical) rules as the training items.

2. Simple Recurrent Networks (SRNs) were used to show the

connectionist simulations of the same human data discussed

earlier in Experiment 1.

Conditions:

1. Sixty undergraduates were recruited from an introductory

psychology class at Southern Illinois University for the

Experiment 1

2. Standard feed-forward neural networks equipped with an extra

layer of context units.

Result: An overall t-test indicated that NAT (59%) learned the

language significantly better than UNNAT (54%). This result

indicates that the UNNAT was more difficult to learn than the

NAT.

Insights: The results therefore corroborate the hypothesis that

constraints on the learning and processing of sequential structure

can explain why subjacency violations tend to be avoided: they

were weeded out because they made the sequential structure of

language too difficult to learn.

Summary: The results suggest that constraints arising from

general cognitive processes, such as sequential learning and

processing, are likely to play a larger role in sentence processing

than has traditionally been assumed. This means that what we

observe today as linguistic universals may be stable states that

have emerged through an extended process of linguistic evolution.

Ellefson and Christiansen

(2000)

192

Appendix B

Dynet parameter initialisation

Calculate score vector for the chunk

193

Appendix C

PARTICIPANT CONSENT FORM

Title of research project: Automatic Grammar Induction from Free Text Using Insights from

Cognitive Grammar – Survey for rating the output of a parser

SREC reference and committee: COMSC/Ethics/2022/046

Name of Chief/Principal Investigator: Vigneshwaran M, PhD Research Scholar

 Please

initial box

I confirm that I have read the information sheet dated 07/05/2022 version

2.0 for the above research project.

I confirm that I have understood the information sheet dated 07/05/2022

version 2.0 for the above research project and that I have had the

opportunity to ask questions and that these have been answered

satisfactorily.

I understand that my participation is voluntary and I am free to withdraw at

any time without giving a reason and without any adverse consequences

(e.g.,, to medical care or legal rights, if relevant). I understand that if I

withdraw, information about me that has already been obtained may be

kept by Cardiff University.

194

I understand that data collected during the research project may be looked

at by individuals from Cardiff University or from regulatory authorities,

where it is relevant to my taking part in the research project. I give

permission for these individuals to have access to my data.

I consent to the processing of my personal information (Name and Email ID)

for the purposes explained to me. I understand that such information will

be held in accordance with all applicable data protection legislation and in

strict confidence, unless disclosure is required by law or professional

obligation.

I understand who will have access to personal information provided, how

the data will be stored and what will happen to the data at the end of the

research project.

I understand that after the research project, anonymised data may be made

publicly available via a data repository and may be used for purposes not

related to this research project. I understand that it will not be possible to

identify me from this data that is seen and used by other researchers, for

ethically approved research projects, on the understanding that

confidentiality will be maintained.

I understand how the findings and results of the research project will be

written up and published.

I agree to take part in this research project.

195

Name of participant (print) Date Signature

Name of person taking consent Date Signature

(print)

Role of person taking consent

(print)

THANK YOU FOR PARTICIPATING IN OUR RESEARCH

YOU WILL BE GIVEN A COPY OF THIS CONSENT FORM TO KEEP

196

Recruitment Poster

School of Computer Science and Informatics Cardiff

University

PARTICIPANTS NEEDED FOR

RATING THE OUTPUTS OF A PARSER

We are looking for fluent Welsh speakers to take part in a survey being

conducted as a part of a PhD research project.

If you volunteer to be in this study, your participation will consist of rating

the outputs of a parser. The survey will contain Welsh sentences parsed

into labelled chunks. Your task will be to rate the correctness /

meaningfulness of the chunks and their labels. An explanation of the

relevant concepts will be provided in the instructions page of the survey

Your participation would involve filling the survey which will take not more

than 45 minutes of your time.

In appreciation of your time, the first 20 participants will get a £15

Love2Shop voucher each upon completion of the survey.

For more information about this study, please contact:

Vigneshwaran Muralidaran (PhD Scholar)

E-mail: MuralidaranV@cardiff.ac.uk

This study has been reviewed by, and received ethics clearance

through School Research Ethics Committee (SREC), School of Computer Science and

Informatics, Cardiff University

197

 Ethical Approval

Research project title: Automatic Grammar Induction from Free Text Using Insights from

Cognitive Grammar – Survey for rating the output of a parser

SREC reference: COMSC/Ethics/2022/046

The SCHOOL OF COMPUTER SCIENCE & INFORMATICS RESEARCH ETHICS COMMITTEE

(‘Committee’) reviewed the above application at the meeting held electronically on

11/5/2022.

Ethical Opinion: FAVOURABLE

The Committee gave a favourable ethical opinion of the above application on the basis

described in the application form, protocol and supporting documentation.

Additional approvals:

This letter provides an ethical opinion only. You must not start your research project until all

appropriate approvals are in place. This is not a matter for the committee to advise on. For

student projects, you should contact your supervisor. For staff projects/supervisors, contact

the School Research Office comsc-research@cardiff.ac.uk.

Amendments:

Any substantial amendments to documents previously reviewed by the Committee must be

submitted to the Committee via comsc-ethics@cardiff.ac.uk for consideration and cannot be

implemented until the Committee has confirmed it is satisfied with the proposed

amendments.

You are permitted to implement non-substantial amendments to the documents previously

reviewed by the Committee but you must provide a copy of any updated documents to the

Committee via comsc-ethics@cardiff.ac.uk for its records.

Monitoring requirements:

The Committee must be informed of any unexpected ethical issues or unexpected adverse

events that arise during the research project. This notification should be made via email to

us. The Committee must be informed when your research project has ended. This notification

198

should be made to comsc-ethics@cardiff.ac.uk within 3 months of research project

completion.

Complaints/Appeals:

If you are dissatisfied with the decision made by the Committee, please contact the school's

Ethics Officer, Dr Katarzyna Stawarz in the first instance to discuss your complaint. If this

discussion does not resolve the issue, you are entitled to refer the matter to the Head of

School for further consideration. The Head of School may refer the matter to the Open

Research Integrity and Ethics Committee (ORIEC), where this is appropriate. Please be

advised that ORIEC will not normally interfere with a decision of the Committee and is

concerned only with the general principles of natural justice, reasonableness and fairness of

the decision.

Please use the Committee reference number (SREC reference) on all future correspondence.

The Committee reminds you that it is your responsibility to conduct your research project

to the highest ethical standards and to keep all ethical issues arising from your research

project under regular review.

You are expected to comply with Cardiff University’s policies, procedures and guidance at

all times, including, but not limited to, its Policy on the Ethical Conduct of Research involving

Human Participants, Human Material or Human Data and our Research Integrity and

Governance Code of Practice.

199

Bibliography

Abney, S. and Bird, S., 2010. The human language project: building a Universal Corpus of the

world's languages.

Adriaans P., Trautwein M. and Vervoort M. (2000). Towards high speed grammar induction

on large text corpora. In International Conference on Current Trends in Theory and Practice

of Computer Science. Berlin, Heidelberg: Springer, pp. 173–186.

Amaglobeli, G., 2012. Semantic triangle and linguistic sign. Journal in Humanities, pp.37-40.

Aoshima, S., Phillips, C. and Weinberg, A., 2004. Processing filler-gap dependencies in a head-

final language. Journal of memory and language, 51(1), pp.23-54.

Araujo L. and Santamaría J. (2010). Evolving natural language grammars without supervision.

In Evolutionary Computation (CEC), 2010 IEEE Congress on (pp. 1–8). IEEE.

Austin, J.L., 1975. How to do things with words (Vol. 88). Oxford university press.

Bates E. and McWhinney B. (1982). Functionalist approaches to grammar.

Baumann, P. and Pierrehumbert, J.B., 2014, May. Using Resource-Rich Languages to Improve

Morphological Analysis of Under-Resourced Languages. In LREC (pp. 3355-3359).

Berant J., Gross Y., Mussel M., Sandbank B., Ruppin E. and Edelman S. (2007). Boosting

unsupervised grammar induction by splitting complex sentences on function words. In

Proceedings of the Boston University Conference on Language Development.

Bharati, A. and Sangal, R., 1993, June. Parsing free word order languages in the Paninian

framework. In 31st Annual Meeting of the Association for Computational Linguistics (pp. 105-

111).

Bharati, A., Bhatia, M., Chaitanya, V. and Sangal, R., 1996. Paninian grammar framework

applied to english. Department of Computer Science and Engineering, Indian Institute of

Technology, Kanpur.

Bhatta, V.P., 1988. THEORY OF KARAKA. Bulletin of the Deccan College Research Institute, 47,

pp.15-22.

200

Bird, S., 2006, July. NLTK: the natural language toolkit. In Proceedings of the COLING/ACL 2006

Interactive Presentation Sessions (pp. 69-72).

Bloom L., Hood L. and Lightbown P. (1974). Imitation in language development: if, when, and

why. Cognitive Psychology 6, 380–420.

Bloomfield L. (1962). Language. 1933. Holt, New York.

Bod R. (2006). An all-subtrees approach to unsupervised parsing. In Proceedings of the 21st

International Conference on Computational Linguistics and the 44th annual meeting of the

Association for Computational Linguistics. Association for Computational Linguistics, pp. 865–

872.

Bod R. (2007). A linguistic investigation into unsupervised DOP. In Proceedings of the

Workshop on Cognitive Aspects of Computational Language Acquisition. Association for

Computational Linguistics, pp. 1–8.

Bod R. (2009). From exemplar to grammar: a probabilistic analogy-based model of language

learning. Cognitive Science 33, 752–793.

Boonkwan P. and Steedman M. (2011). Grammar induction from text using small syntactic

prototypes. In Proceedings of 5th International Joint Conference on Natural Language

Processing, pp. 438–446.

Brin S. and Page L. (1998). The anatomy of a large-scale hypertextual web search engine.

Computer Networks and ISDN Systems 30, 107–117.

Briscoe T. and Waegner N. (1992). Robust stochastic parsing using the inside-outside

algorithm. In Proc. of the AAAI Workshop on Probabilistic-Based Natural Language Processing

Techniques, pp. 39–52.

Brodsky P. and Waterfall H. (2007). Characterizing motherese: on the computational structure

of child-directed language. In Proceedings of the Annual Meeting of the Cognitive Science

Society, Vol. 29.

Brooks D.J. (2006). Unsupervised grammar induction by distribution and attachment. In

Proceedings of the Tenth Conference on Computational Natural Language Learning.

Association for Computational Linguistics, pp. 117–124.

201

Cao, Z., Wei, F., Dong, L., Li, S. and Zhou, M., 2015, February. Ranking with recursive neural

networks and its application to multi-document summarization. In Proceedings of the AAAI

Conference on Artificial Intelligence (Vol. 29, No. 1).

Chen D. and Christopher M. (2014). A fast and accurate dependency parser using neural

networks. Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP).

Chomsky N. (1957). Syntactic Structures. The Hague: Mouton.

Chomsky N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.

Chomsky N. (1968). Remarks on Nominalization. Linguistics Club, Indiana University.

Chomsky N. (2014). Aspects of the Theory of Syntax, vol. 11. MIT Press.

Christianson, K., Hollingworth, A., Halliwell, J.F. and Ferreira, F., 2001. Thematic roles assigned

along the garden path linger. Cognitive psychology, 42(4), pp.368-407.

Clark A. and Lappin S. (2010). Linguistic Nativism and the Poverty of the Stimulus. John Wiley

& Sons.

Clifton Jr, C., Staub, A. and Rayner, K., 2007. Eye movements in reading words and sentences.

Eye movements, pp.341-371.

Cocos A., Masino A., Qian T., Pavlick E. and Callison-Burch C. (2015). Effectively crowdsourcing

radiology report annotations. In Proceedings of the Sixth International Workshop on Health

Text Mining and Information Analysis, pp. 109–114.

Cohen, A.L. and Staub, A., 2014. Online processing of novel noun–noun compounds: Eye

movement evidence. Quarterly Journal of Experimental Psychology, 67(1), pp.147-165.

Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46

Cohen J. Weighted kappa: nominal scale agreement provision for scaled disagreement or

partial credit. Psychol Bull. 1968;70(4):213–20

Cole, P. and Morgan, J.L., 1977. Syntax and semantics. Volume 3: Speech acts.

Covington, M.A., 1990. A dependency parser for variable-word-order languages. University of

202

Georgia

Cramer B. (2007). Limitations of current grammar induction algorithms. In Proceedings of the

45th Annual Meeting of the ACL: Student Research Workshop. Association for Computational

Linguistics, pp. 43–48.

Croft, W., 2001. Radical construction grammar: Syntactic theory in typological perspective.

Oxford University Press on Demand.

Cunliffe, D., Vlachidis, A., Williams, D. and Tudhope, D., 2022. Natural language processing for

under-resourced languages: Developing a Welsh natural language toolkit. Computer Speech

& Language, 72, p.101311.

Dalrymple M. (2001). Lexical Functional Grammar. Brill.

Daltrozzo, J. and Schön, D., 2009. Conceptual processing in music as revealed by N400 effects

on words and musical targets. Journal of cognitive neuroscience, 21(10), pp.1882-1892.

Daneš, F., 1987. On Prague School functionalism in linguistics. In Functionalism in linguistics

(p. 3). John Benjamins.

Das, A., Halder, T. and Saha, D., 2017, May. Automatic extraction of Bengali root verbs using

Paninian grammar. In 2017 2nd IEEE International Conference on Recent Trends in

Electronics, Information & Communication Technology (RTEICT) (pp. 953-956). IEEE.

Debusmann, R., 2000. An introduction to dependency grammar. Hausarbeit fur das

Hauptseminar Dependenzgrammatik SoSe, 99, pp.1-16.

Dennis S.J. (2005). An exemplar-based approach to unsupervised parsing.

Di Caro, L. and Grella, M., 2013. Sentiment analysis via dependency parsing. Computer

Standards & Interfaces, 35(5), pp.442-453.

Dik S. (1987). Some principles of functional grammar. Functionalism in Linguistics 20, 81.

Dik S. (1991). Functional grammar. Linguistic theory and grammatical description, pp. 247–

274.

Dominguez M.A. and Infante-Lopez G. (2011). Unsupervised induction of dependency

structures using Probabilistic Bilexical Grammars. In Natural Language Processing and

203

Knowledge Engineering (NLP-KE), 2011 7th International Conference on (pp. 314–318). IEEE.

Dunn J. (2017a). Learnability and falsifiability of construction grammars. Proceedings of the

Linguistic Society of America 2, 1. Dunn J. (2017b). Computational learning of construction

grammars. Language and Cognition 9, 254–292.

D’Ulizia A., Ferri F. and Grifoni P. (2011). A survey of grammatical inference methods for

natural language learning. Artificial Intelligence Review 36, 1–27.

Edelman S., Solan Z., Horn D. and Ruppin E. (2003). Rich syntax from a raw corpus:

unsupervised does it. In NIPS-2003 Workshop on Syntax, Semantics and Statistics.

Edelman S., Solan Z., Horn D. and Ruppin E. (2005). Learning syntactic constructions from raw

corpora. In 29th Boston University Conference on Language Development.

Ellefson M.R. and Christiansen M.H. (2000). Subjacency constraints without universal

grammar: Evidence from artificial language learning and connectionist modeling. In

Proceedings of the Annual Meeting of the Cognitive Science Society, vol.22, No. 22.

Ellis, N. C., O'Dochartaigh, C., Hicks, W., Morgan, M., & Laporte, N. (2001). Cronfa Electroneg

o Gymraeg (CEG): A 1 million word lexical database and frequency count for Welsh. [On-line]

Evans V. (2006). Cognitive Linguistics. Edinburgh University Press.

Evans, V., 2012. Cognitive linguistics. Wiley Interdisciplinary Reviews: Cognitive Science, 3(2),

pp.129-141.

Falk Y. (2011). Lexical-Functional Grammar. Oxford University Press.

Fauconnier G. (1994). Mental Spaces: Aspects of Meaning Construction in Natural Language.

Cambridge University Press.

Federmeier, K.D. and Kutas, M., 2001. Meaning and modality: Influences of context, semantic

memory organization, and perceptual predictability on picture processing. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 27(1), p.202.

Fedorenko, E., Gibson, E. and Rohde, D., 2007. The nature of working memory in linguistic,

arithmetic and spatial integration processes. Journal of Memory and Language, 56(2), pp.246-

269.

204

Feist, M.I., 2008. Space between languages. Cognitive science, 32(7), pp.1177-1199.

Ferreira, V.S. and Yoshita, H., 2003. Given-new ordering effects on the production of scrambled

sentences in Japanese. Journal of psycholinguistic research, 32(6), pp.669-692.

Fiebach, C.J. and Schubotz, R.I., 2006. Dynamic anticipatory processing of hierarchical

sequential events: a common role for Broca's area and ventral premotor cortex across

domains?. Cortex, 42(4), pp.499-502.

Fiebach, C.J., Schlesewsky, M. and Friederici, A.D., 2002. Separating syntactic memory costs

and syntactic integration costs during parsing: The processing of German WH-questions.

Journal of Memory and Language, 47(2), pp.250-272.

Filik, R., 2008. Contextual override of pragmatic anomalies: Evidence from eye movements.

Cognition, 106(2), pp.1038-1046.

Frank S.L., Bod R. and Christiansen M.H. (2012). How hierarchical is language use?

Proceedings of the Royal Society of London B: Biological Sciences, p.rspb20121741.

Frazier, L. and Rayner, K., 1982. Making and correcting errors during sentence comprehension:

Eye movements in the analysis of structurally ambiguous sentences. Cognitive psychology,

14(2), pp.178-210.

Galley, M. and Manning, C.D., 2009, August. Quadratic-time dependency parsing for machine

translation. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and

the 4th International Joint Conference on Natural Language Processing of the AFNLP (pp. 773-

781).

Gamallo, P., Garcia, M. and Fernández-Lanza, S., 2012, April. Dependency-based open

information extraction. In Proceedings of the joint workshop on unsupervised and semi-

supervised learning in NLP (pp. 10-18).

Gazdar G., Klein E., Pullum G.K. and Sag I.A. (1985). Generalized Phrase Structure Grammar.

Harvard University Press.

Gillenwater J., Ganchev K., Pereira F. and Taskar B. (2011). Posterior sparsity in unsupervised

dependency parsing. Journal of Machine Learning Research 12, 455–490.

Givón T. (1983). Topic Continuity in Discourse: A Quantitative Cross-Language Study, vol. 3.

205

John Benjamins Publishing.

Goldberg A.E. (2003). Constructions: a new theoretical approach to language. Trends in

Cognitive Sciences 7, 219–224.

Goldberg, A.E., 1992. The inherent semantics of argument structure: The case of the English

ditransitive construction.

Gregoromichelaki, E., Kempson, R., Howes, C. and Eshghi, A., 2013. On making syntax

dynamic. Alignment in communication: Towards a new theory of communication, pp.57-86.

Guo, J., Che, W., Wang, H. and Liu, T., 2016, December. A universal framework for inductive

transfer parsing across multi-typed treebanks. In Proceedings of COLING 2016, the 26th

International Conference on Computational Linguistics: Technical Papers (pp. 12-22).

Guo, Y. and Stylios, G., 2005. An intelligent summarization system based on cognitive

psychology. Information Sciences, 174(1-2), pp.1-36.

Gupta, A., Akula, A., Malladi, D., Kukkadapu, P., Ainavolu, V. and Sangal, R., 2012, November.

A novel approach towards building a portable nlidb system using the computational paninian

grammar framework. In 2012 International Conference on Asian Language Processing (pp. 93-

96). IEEE.

Hagoort, P., 2007. 11 The memory, unification, and control (MUC) model of language.

Automaticity and control in language processing, 1, p.243.

Hagoort, P., Brown, C.M. and Osterhout, L., 1999. The neurocognition of syntactic processing.

The neurocognition of language, pp.273-316.

Hajic J., Hajicová E., Panevová J., Sgall P., Bojar O., Cinková S., Fucíková E., Mikulová M., Pajas

P., Popelka J. and Semecký J. (2012). Announcing Prague Czech-English Dependency Treebank

2.0. In LREC, pp. 3153–3160.

Hampe B. and Grady J.E. (eds.) (2005). From Perception to Meaning: Image Schemas in

Cognitive Linguistics, vol. 29. Walter de Gruyter.

Harrison C., Nuttall L., Stockwell P. and Yuan W. (2014). Introduction: cognitive grammar in

literature. In Cognitive Grammar in Literature. John Benjamins, pp. 1–16.

206

Harrison M.A. (1978). Introduction to Formal Language Theory. Addison-Wesley Longman

Publishing Co., Inc.

Hauser, M.D., Chomsky, N. and Fitch, W.T., 2002. The faculty of language: what is it, who has

it, and how did it evolve?. Science, 298(5598), pp.1569-1579.

Headden III W.P., Johnson M. and McClosky D. (2009). Improving unsupervised dependency

parsing with richer contexts and smoothing. In Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the Association for

Computational Linguistics. Association for Computational Linguistics, pp. 101–109. In

Proceedings of the 22nd International Conference on Computational Linguistics, vol. 1.

Association for Computational

Hengeveld, K. and Mackenzie, J.L., 2006. Functional discourse grammar. Encyclopedia of

language and linguistics, 4, pp.668-676.

Inoue, A. and Fodor, J.D., 1995. Information-paced parsing of Japanese. Japanese sentence

processing, pp.9-63.

Jackendoff R. (1977). X syntax: A study of phrase structure. Linguistic Inquiry Monographs 4.

Cambridge, Mass., (2),pp. 1–249.

Jain, A.K., Mao, J. and Mohiuddin, K.M., 1996. Artificial neural networks: A tutorial. Computer,

29(3), pp.31-44.

Jensen K.E. (2014). Performance and competence in usage-based construction grammar. In

Multidisciplinary Perspectives on Linguistic Competences, pp. 157–188.

Jijkoun, V., Mur, J. and de Rijke, M., 2004. Information extraction for question answering:

Improving recall through syntactic patterns. In COLING 2004: Proceedings of the 20th

International Conference on Computational Linguistics (pp. 1284-1290).

Jin L., Doshi-Velez F., Miller T., Schuler W. and Schwartz L. (2018). Unsupervised Grammar

Induction with Depth-bounded PCFG. arXiv preprint arXiv:1802.08545.

Jones K.S. (2007). Computational linguistics: what about the linguistics? Computational

Linguistics 33, 437–441.\

Joshi A.K. (1985). Tree adjoining grammars: How much context-sensitivity is required to

207

provide reasonable structural descriptions? In Dowty D.R., Karttunen L. & Zwicky A.M. (eds),

Natural language parsing, Cambridge University Press, pp. 206–250.

Joshi, A., Kale, S., Chandel, S. and Pal, D.K., 2015. Likert scale: Explored and explained. British

journal of applied science & technology, 7(4), p.396.

Kaiser E. and Trueswell J.C. (2004). The role of discourse context in the processing of a flexible

word-order language. Cognition 94, 113–147.

Kak, S.C., 1987. The Paninian approach to natural language processing. International Journal

of Approximate Reasoning, 1(1), pp.117-130.

Kamide, Y. and Mitchell, D.C., 1999. Incremental pre-head attachment in Japanese parsing.

Language and cognitive processes, 14(5-6), pp.631-662.

Kasabov, N.K., 1996. Foundations of neural networks, fuzzy systems, and knowledge

engineering. Marcel Alencar.

Katz-Brown, J., Petrov, S., McDonald, R., Och, F.J., Talbot, D., Ichikawa, H., Seno, M. and

Kazawa, H., 2011, July. Training a parser for machine translation reordering. In Proceedings

of the 2011 Conference on Empirical Methods in Natural Language Processing (pp. 183-192).

Kennedy, M., 2001. The domain specificity of the resources required for sentence processing

(Doctoral dissertation, University of British Columbia).

Kesidi, S.R., Kosaraju, P., Vijay, M. and Husain, S., 2013. CONSTRAINTBASED HYBRID

DEPENDENCY PARSER FOR TELUGU (Doctoral dissertation, Ph. D. thesis, International

Institute of Information Technology Hyderabad, India).

Kilgarriff, A., Rychlý, P., Jakubicek, M., Kovár, V., Baisa, V. and Kocincová, L., 2014, May.

Extrinsic Corpus Evaluation with a Collocation Dictionary Task. In LREC (pp. 545-552).

Kim, J.D., Ohta, T., Tateisi, Y. and Tsujii, J.I., 2003. GENIA corpus—a semantically annotated

corpus for bio-textmining. Bioinformatics, 19(suppl_1), pp.i180-i182.

Kiperwasser E. and Yoav G. (2016) Simple and accurate dependency parsing using bidirectional

LSTM feature representations. Transactions of the Association for Czomputational Linguistics

4, 313–327.

208

Kitchenham B. and Charters S. (2007). Guidelines for performing systematic literature reviews

in software engineering.

Klein D. and Manning C.D. (2004). Corpus-based induction of syntactic structure: models of

dependency and constituency. In Proceedings of the 42nd Annual Meeting on Association for

Computational Linguistics. Association for Computational Linguistics, p. 478.

Knight, D., 2020. CorCenCC: Corpws Cenedlaethol Cymraeg Cyfoes–the National Corpus of

Contemporary Welsh. Oxford Text Archive Core Collection.

Knight, D., Fitzpatrick, T., Morris, S., Evas, J., Rayson, P., Spasić, I., Stonelake, M., Thomas,

E.M., Neale, S., Needs, J. and Piao, S., 2017. Creating CorCenCC (Corpws Cenedlaethol Cymraeg

Cyfoes-The National Corpus of Contemporary Welsh).

Knight, D., Loizides, F., Neale, S., Anthony, L. and Spasić, I., 2020. Developing computational

infrastructure for the CorCenCC corpus: The National Corpus of Contemporary Welsh.

Language Resources and Evaluation, pp.1-28.

Kovár, V., Jakubıcek, M. and Horák, A., 2016. On Evaluation of Natural Language Processing

Tasks. In Proceedings of the 8th International Conference on Agents and Artificial Intelligence

(pp. 540-545).

Krippendorff, K., 1970. Estimating the reliability, systematic error and random error of interval

data. Educational and Psychological Measurement, 30(1), pp.61-70.

Krippendorff, K., 2011. Computing Krippendorff's alpha-reliability.

Król-Markefka A. (2014). Between usage-based and meaningfully-motivated grammatical

rules: a psycholinguistic basis of applied cognitive grammar. Studia Linguistica Universitatis

Iagellonicae Cracoviensis 131, 43.

Kuperberg, G.R., Kreher, D.A., Sitnikova, T., Caplan, D.N. and Holcomb, P.J., 2007. The role of

animacy and thematic relationships in processing active English sentences: Evidence from

event-related potentials. Brain and language, 100(3), pp.223-237.

Lakoff G. and Johnson M. (1980). Conceptual metaphor in everyday language. The Journal of

Philosophy 77, 453–486. Lakoff G. (1988). Cognitive semantics. Meaning and Mental

Representations 119, 154.

209

Langacker R.W. (1987). Foundations of Cognitive Grammar: Theoretical Prerequisites, vol. 1.

Stanford university press.

Langacker R.W. (2008). Cognitive Grammar: A Basic Introduction. Oxford University Press.

Langacker R.W. (2009). Investigations in Cognitive Grammar, vol. 42. Walter de Gruyter.

Langacker, R.W. and Langacker, R., 2008. Cognitive grammar: A basic introduction. OUP USA.

Langacker, R.W., 1987. Foundations of cognitive grammar: Theoretical prerequisites (Vol. 1).

Stanford university press.

Langacker, R.W., 2001. Discourse in cognitive grammar. Cognitive linguistics, 12(2), pp.143-

188.

Langacker, R.W., 2012. Essentials of cognitive grammar. Oxford University Press.

Laszlo, S. and Federmeier, K.D., 2008. Minding the PS, queues, and PXQs: Uniformity of

semantic processing across multiple stimulus types. Psychophysiology, 45(3), pp.458-466.

Lawrence S., Giles C.L. and Fong S. (2000). Natural language grammatical inference with

recurrent neural networks. IEEE Transactions on Knowledge and Data Engineering 12, 126–

140.

Leech G.N. (1993). Statistically-Driven Computer Grammars of English: The IBM/Lancaster

Approach (No. 8). Rodopi.

Levine R.D. and Meurers W.D. (2006). Head-driven phrase structure grammar. Encyclopedia

of Language and Linguistics 5, 237–252.

Li, Y., Zhou, X., Sun, Y. and Zhang, H., 2016. Design and implementation of Weibo sentiment

analysis based on LDA and dependency parsing. China Communications, 13(11), pp.91-105.

Li, Z., Callison-Burch, C., Dyer, C., Khudanpur, S., Schwartz, L., Thornton, W., Weese, J. and

Zaidan, O., 2009, March. Joshua: An open source toolkit for parsing-based machine

translation. In Proceedings of the Fourth Workshop on Statistical Machine Translation (pp.

135-139).

Lin, J.W., 2006. Time in a language without tense: The case of Chinese. Journal of semantics,

23(1), pp.1-53.

210

Linguistics, pp. 721–728.

Loper, E. and Bird, S., 2002. Nltk: The natural language toolkit. arXiv preprint cs/0205028.

Maier, W., 2006, July. Annotation schemes and their influence on parsing results. In

Proceedings of the COLING/ACL 2006 Student Research Workshop (pp. 19-24).

Marcus, M., Santorini, B. and Marcinkiewicz, M.A., 1993. Building a large annotated corpus of

English: The Penn Treebank.

Marecˇek D. and Žabokrtský Z. (2012a). Unsupervised dependency parsing using reducibility

and fertility features. In Proceedings of the NAACL-HLT Workshop on the Induction of

Linguistic Structure. Association for Computational Linguistics, pp. 84–89.

Marecˇek D. and Žabokrtský Z. (2012b). Exploiting reducibility in unsupervised dependency

parsing. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning. Association for

Computational Linguistics, pp. 297–307.

Marques T. and Beuls K. (2016). Evaluation strategies for computational construction

grammars. In Proceedings of COLING 2016, the 26th International Conference on

Computational Linguistics: Technical Papers, pp. 1137–1146.

Matthiessen C.M. and Halliday M.A.K. (2009). Systemic functional grammar: a first step into

the theory.

McHugh, M.L., 2012. Interrater reliability: the kappa statistic. Biochemia medica, 22(3),

pp.276-282.

Miller, G.A., 1995. WordNet: a lexical database for English. Communications of the ACM,

38(11), pp.39-41.

Miyamoto, E.T., 2002. Case markers as clause boundary inducers in Japanese. Journal of

psycholinguistic research, 31(4), pp.307-347.

Miyao, Y., Sagae, K., Sætre, R., Matsuzaki, T. and Tsujii, J.I., 2009. Evaluating contributions of

natural language parsers to protein–protein interaction extraction. Bioinformatics, 25(3),

pp.394-400.

211

Mollá, D. and Hutchinson, B., 2003, April. Intrinsic versus extrinsic evaluations of parsing

systems. In Proceedings of the EACL 2003 Workshop on Evaluation Initiatives in Natural

Language Processing: are evaluation methods, metrics and resources reusable? (pp. 43-50).

Moshier M. (1988). Extensions to unification grammar for the description of programming

languages.

Muralidaran, V., Palmer, G., Arman, L., O'Hare, K., Knight, D. and Spasic, I., 2021. A practical

implementation of a porter stemmer for Welsh.

Muralidaran, V. and Sharma, D.M., 2016, April. Construction grammar based annotation

framework for parsing Tamil. In International Conference on Intelligent Text Processing and

Computational Linguistics (pp. 378-396). Springer, Cham.

Muralidaran, V., Spasić, I. and Knight, D., 2020, October. A Cognitive Approach to Parsing with

Neural Networks. In International Conference on Statistical Language and Speech Processing

(pp. 71-84). Springer, Cham.

Muralidaran, V., Spasić, I. and Knight, D., 2020. A systematic review of unsupervised

approaches to grammar induction. Natural Language Engineering, pp.1-43.

Nasukawa, T. and Yi, J., 2003, October. Sentiment analysis: Capturing favorability using

natural language processing. In Proceedings of the 2nd international conference on

Knowledge capture (pp. 70-77).

Neale, S., Donnelly, K., Watkins, G. and Knight, D., 2018, May. Leveraging lexical resources and

constraint grammar for rule-based part-of-speech tagging in Welsh. In Proceedings of the

Eleventh International Conference on Language Resources and Evaluation (LREC 2018).

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Ammar, W., Anastasopoulos, A., Ballesteros,

M., Chiang, D., Clothiaux, D., Cohn, T. and Duh, K., 2017. Dynet: The dynamic neural network

toolkit. arXiv preprint arXiv:1701.03980.

Neves M. and Ševa J. (2019). An extensive review of tools for manual annotation of

documents. Briefings in Bioinformatics.

Nichols J. (1984). Functional theories of grammar. Annual Review of Anthropology 13, 97–

117.

212

O’Grady, W., 2010. An emergentist approach to syntax. The Oxford handbook of linguistic

analysis, pp.257-83.

Paillet J.P. (1973). Computational linguistics and linguistic theory. In Proceedings of the 5th

Conference on Computational Linguistics, vol. 2. Association for Computational Linguistics,

pp. 357–366.

Pao, Y.H. and Sobajic, D.J., 1991. Neural networks and knowledge engineering. IEEE

transactions on knowledge and data engineering, 3(2), pp.185-192.

Patel, A.D., 2012. Language, music, and the brain: a resource-sharing framework. Language

and music as cognitive systems, pp.204-223.

Petticrew M. 2001. Systematic reviews from astronomy to zoology: myths and

misconceptions. British Medical Journal 322, 98–101.

Piao, S.S., Rayson, P.E., Knight, D. and Watkins, G., 2018. Towards a Welsh semantic

annotation system.

Poibeau, T. and Messiant, C., 2008. Do we still need gold standard for evaluation?.

Pollard C. and Sag I.A. (1994). Head-Driven Phrase Structure Grammar. University of Chicago

Press.

Ponvert E., Baldridge J. and Erk K. (2011). Simple unsupervised grammar induction from raw

text with cascaded finite state models. In Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies, vol. 1. Association

for Computational Linguistics, pp. 1077–1086.

Porter, M.F., 2001. Snowball: A language for stemming algorithms.

Post M. and Gildea D. (2013). Bayesian tree substitution grammars as a usage-based

approach. Language and Speech 56, 291–308.

Primus, B., 2009. Case, grammatical relations, and semantic roles. In The Oxford Handbook of

Case.

Prys, D., Jones, D., Prys, G., Watkins, G., Cooper, S., Roberts, J.C., Butcher, P., Farhat, L.,

Teahan, W. and Prys, M., 2021. Language and Technology in Wales: Volume I.

213

Radford A. (1981). Transformational Syntax: A Student’s Guide to Chomsky’s Extended

Standard Theory. Cambridge University Press.

Rayner, K., Warren, T., Juhasz, B.J. and Liversedge, S.P., 2004. The effect of plausibility on eye

movements in reading. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 30(6), p.1290.

Reichart R. and Rappoport A. (2008). Unsupervised induction of labeled parse trees by

clustering with syntactic features.

Rimell L., Clark S. and Steedman M. (2009). Unbounded dependency recovery for parser

evaluation. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing, vol. 2. Association for Computational Linguistics, pp. 813–821.

Roberts, I.G., 2005. Principles and parameters in a VSO language: a case study in Welsh.

Oxford University Press on Demand.

Roche E. and Schabes Y. (eds) (1997). Finite-State Language Processing. MIT press.

Saffran J.R. (2001). The use of predictive dependencies in language learning. Journal of

Memory and Language 44, 493–515. Sangati F. (2010). A probabilistic generative model for

an intermediate constituency-dependency representation. In Proceedings of the ACL 2010

Student Research Workshop. Association for Computational Linguistics, pp. 19–24.

SANGAL, R., Chaitanya, V. and Bharati, A., 1995. Natural language processing: a Paninian

perspective. PHI Learning Pvt. Ltd.

Santamaria J. and Araujo L. (2010). Identifying patterns for unsupervised grammar induction.

In Proceedings of the Fourteenth Conference on Computational Natural Language Learning.

Association for Computational Linguistics, pp. 38–45.

Schabes Y., Roth M. and Osborne R. (1993). Parsing the Wall Street Journal with the inside-

outside algorithm. In Proceedings of the sixth conference on European chapter of the

Association for Computational Linguistics. Association for Computational Linguistics, pp. 341–

347.

Seginer Y. (2007). Fast unsupervised incremental parsing. In Proceedings of the 45th Annual

Meeting of the Association of Computational Linguistics, pp. 384–391.

214

Shanmuganathan, S., 2016. Artificial neural network modelling: An introduction. In Artificial

neural network modelling (pp. 1-14). Springer, Cham.

Sharma, S., Sharma, S. and Athaiya, A., 2017. Activation functions in neural networks. towards

data science, 6(12), pp.310-316.

Silveira, N., Dozat, T., De Marneffe, M.C., Bowman, S., Connor, M., Bauer, J. and Manning,

C.D., 2014, May. A gold standard dependency corpus for English. In Proceedings of the Ninth

International Conference on Language Resources and Evaluation (LREC'14) (pp. 2897-2904).

Skinner B.F. (2014). Verbal Behavior. BF Skinner Foundation.

Skut, W., Krenn, B., Brants, T. and Uszkoreit, H., 1997. An annotation scheme for free word

order languages. arXiv preprint cmp-lg/9702004.

Snyder B., Naseem T. and Barzilay R. (2009). Unsupervised multilingual grammar induction. In

Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th

International Joint Conference on Natural Language Processing of the AFNLP, vol. 1.

Association for Computational Linguistics, pp. 73–81.

Solan Z., Horn D., Ruppin E. and Edelman S. (2004). Unsupervised context sensitive language

acquisition from a large corpus. In Advances in Neural Information Processing Systems, pp.

961–968.

Spitkovsky V.I., Alshawi H. and Jurafsky D. (2010). From baby steps to leapfrog: How less is

more in unsupervised dependency parsing. In Human Language Technologies: The 2010

Annual Conference of the North American Chapter of the Association for Computational

Linguistics. Association for Computational Linguistics, 751–759.

Spitkovsky V.I., Alshawi H. and Jurafsky D. (2011). Punctuation: Making a point in unsupervised

dependency parsing. In Proceedings of the Fifteenth Conference on Computational Natural

Language Learning. Association for Computational Linguistics, pp. 19–28.

Spitkovsky V.I., Alshawi H. and Jurafsky D. (2012). Capitalization cues improve dependency

grammar induction. In Proceedings of the NAACL-HLT Workshop on the Induction of Linguistic

Structure. Association for Computational Linguistics, pp. 16–22.

Staub, A., 2015. Reading sentences: Syntactic parsing and semantic interpretation. The Oxford

handbook of reading, pp.202-216.

215

Staub, A., Rayner, K., Pollatsek, A., Hyönä, J. and Majewski, H., 2007. The time course of

plausibility effects on eye movements in reading: Evidence from noun-noun compounds.

Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(6), p.1162.

Structures, S., 1957. The Hague: Mouton. Janua Linguarum

Stroud, C. and Phillips, C., 2012. Examining the evidence for an independent semantic

analyzer: An ERP study in Spanish. Brain and language, 120(2), pp.108-126.

Studer, R., Benjamins, V.R. and Fensel, D., 1998. Knowledge engineering: principles and

methods. Data & knowledge engineering, 25(1-2), pp.161-197.

Søgaard A. (2011). From ranked words to dependency trees: two-stage unsupervised non-

projective dependency parsing. In Proceedings of TextGraphs-6: Graph-based Methods for

Natural Language Processing. Association for Computational Linguistics, pp. 60–68.

Talmy, L., 1975, September. Figure and ground in complex sentences. In Annual meeting of

the berkeley linguistics society (Vol. 1, pp. 419-430).

Taylor A., Marcus M. and Santorini B. (2003). The Penn treebank: an overview. In Treebanks.

Dordrecht: Springer, pp. 5–22. Yang C. (2011). A statistical test for grammar. In Proceedings

of the 2nd workshop on Cognitive Modeling and Computational Linguistics. Association for

Computational Linguistics, pp. 30–38.

Taylor, J.R., 1988. Contrasting prepositional categories: English and Italian. Topics in cognitive

linguistics, 50, pp.299-326.

Telljohann, H., Hinrichs, E., Kübler, S. and Kübler, R., 2004. The TüBa-D/Z treebank: Annotating

German with a context-free backbone. In Proceedings of the Fourth International Conference

on Language Resources and Evaluation (LREC 2004).

Van Gompel, R.P., Pickering, M.J. and Traxler, M.J., 2001. Reanalysis in sentence processing:

Evidence against current constraint-based and two-stage models. Journal of Memory and

Language, 45(2), pp.225-258.

Van Herten, M., Kolk, H.H. and Chwilla, D.J., 2005. An ERP study of P600 effects elicited by

semantic anomalies. Cognitive brain research, 22(2), pp.241-255.

Van Petten, C., Coulson, S., Rubin, S., Plante, E. and Parks, M., 1999. Time course of word

216

identification and semantic integration in spoken language. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 25(2), p.394.

Van Valin Jr, R.D., 1990. Semantic Roles and Grammatical Relations.

Vigneshwaran, M., 2016. Construction grammar approach for Tamil dependency parsing

(Masters thesis, International Institute of Information Technology Hyderabad).

Wang, S., Mo, D., Xiang, M., Xu, R. and Chen, H.C., 2013. The time course of semantic and

syntactic processing in reading Chinese: Evidence from ERPs. Language and cognitive

processes, 28(4), pp.577-596.

Warren, T. and McConnell, K., 2007. Investigating effects of selectional restriction violations

and plausibility violation severity on eye-movements in reading. Psychonomic bulletin &

review, 14(4), pp.770-775.

Willis, D., 2006. Negation in Middle Welsh. Studia Celtica, 40(1), pp.63-88.

Wright, S.E., 2003. From the semiotic triangle to the semantic web. Journal of the International

Institute for Terminology Research, 14, pp.111-135.

Yegnanarayana, B., 2009. Artificial neural networks. PHI Learning Pvt. Ltd..

Zhang, Y. and Xue, N., 2014, October. Automatic inference of the tense of chinese events using

implicit linguistic information. In Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP) (pp. 1902-1911).

Zhang, Y., Yu, J. and Boland, J.E., 2010. Semantics does not need a processing license from

syntax in reading Chinese. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 36(3), p.765.

Zuidema W. (2006). What are the productive units of natural language grammar?: a DOP

approach to the automatic identification of constructions. In Proceedings of the Tenth

Conference on Computational Natural Language Learning. Association for Computational

Linguistics, pp. 29–36.

Zwarts, J., 2017. Spatial semantics: Modelling the meaning of prepositions. Language and

linguistics compass, 11(5), p.e12241.

217

Östman J.O. and Fried M. (eds) (2005). Construction Grammars: Cognitive Grounding and

Theoretical Extensions, vol. 3. John Benjamins Publishing.

