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Abstract

This study presents a numerical modelling framework based on complex variable meshless methods, which can accurately
nd efficiently track arbitrary crack paths in two-dimensional linear elastic solids. The key novelty of this work is that the
roposed meshless modelling scheme enables a direct element-free approximation for the solutions of linear elastic fracture
echanics problems. The complex variable moving least-squares approximation with a group of simple complex polynomial

asis is applied to implement this meshless model, with which the fracture problems with both stationary or progressive cracks
re considered and studied. The effects of choosing different definitions of weighted complex variable error norm and different
orms of complex polynomial basis on the computational accuracy of crack tip fields and crack paths prediction are analysed
nd discussed. Five benchmark numerical examples were studied to demonstrate the superiority of the present complex variable
eshless framework over a standard element-free Galerkin method in tracking arbitrary crack paths in two-dimensional elastic

olids.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Complex variable moving least-squares (CVMLS) approximation; Complex variable element-free Galerkin (CVEFG) method;
omputational fracture mechanics; Crack growth/propagation; Stress intensity factor

1. Introduction

With the concept that applies nodes and their local influence/support domains to replace the conventional
lements for domain discretization and field variable approximation [1,2], the meshless methods have shown
uperior advantages and flexibilities in dealing with mechanics problems with large strains [3–7] and arbitrary
rack propagation [8–34]. When applying conventional element-based methods to model these problems, the
odelling accuracy and efficiency will be largely limited by the predefined elements. Since the advent of meshless
ethods, applying meshless methods to model these two types of mechanics problems, as one of the alternative

echniques to the conventional element-based methods, has attracted lots of research interests [8]. From the
revious published works, it can be seen that many different types of meshless methods including element-free
alerkin (EFG) method [8–14,18–20,24,26], reproducing kernel particle method (RKPM) [21,23,28,31] and other
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so-called node-based or particle-based methods [15–17,22,25,27,34], have been widely and successfully applied
to, simple force-induced [8–15] or multi-field-driven [16,26,29,33], fracture problems in solids [8–15,18–20] and
structures [21,22,27,28,31] with stationary [8,15–17,21–23] or progressive cracks [24–28,30–34].

In general, the advantages of applying meshless methods in tracking arbitrary crack propagation are mainly
ttributed from two aspects. On one hand, compared with the methods using predefined elements, arbitrary
rack propagation paths can be simulated and tracked, easily and accurately, by a set of nodes and their
ocal influence/support domains [8–34]. For the element-based method for which naturally repel discontinuities,
ncorporating cracks generally involves time-consuming remeshing schemes or complicate modification to its shape
unctions with extended enrichments. However, in meshless methods, only the local definition of shape functions
eeds to be modified when approximating the discontinuous field variables in the support domain where the cracks
ropagate [8–11]. Therefore, a lot of advanced techniques for the processing of crack discontinuity field had been
eveloped, such as the transparency method [8,9], the diffraction method [8,9], the level set approach [12,19],
he crack particles scheme [14], and the weight-enriched function [18]. On the other hand, accurate computation
f the crack tip stress fields is critical for the determination of crack nucleation and propagation [8–34]. The
ode/domain-based scheme provides a much more flexible means than the element-based method for the simulation
f crack-tip-singular-field. This is because either extended basis functions [8–12] or any other kinds of enrichment
ethods [10,13,26] can be straightforwardly applied by the node/domain-based meshless methods.
The complex variable meshless methods are a type of improved meshless methods that apply the complex

olynomial basis functions to construct the trial functions for the unknown fields in mechanics problems [35–40].
he number of terms of the complex variable basis functions that possess the same modelling degree of freedom

s much less than that of the corresponding real polynomial basis functions. As such, the number of minimum
odes in each nodal support domain is largely reduced and the computational efficiency improves, substantially.
his complex variable meshless modelling idea was first proposed in J.H. Li’s doctoral dissertation [35], in
hich the complex variable moving least-squares (CVMLS) approximation and the complex variable element-free
alerkin (CVEFG) method were developed. Despite the flaw in its error functional [36,40], the CVEFG method
ad been successfully applied in the nonlinear analysis of solids and structures [39,41]. A few years later, the
rror functional of the CVMLS approximation was corrected by H.P. Ren, who developed an improved CVMLS
ICVMLS) approximation [36]. At the same time, another set of ICVMLS formulas based on the conjugate form
f the original complex polynomial basis functions was proposed and shown a better computational accuracy for
ertain kinds of problems [40]. Both the ICVMLS approaches with the original form and the conjugate form of
omplex variable polynomial basis have been successfully applied for the analysis of nonlinear materials with large
eformation, such as gels [42–44]. Recently, the complex variable meshless methods had been applied to solve
hree-dimensional solid problems [45,46]. Moreover, the idea of using the complex polynomial basis functions had
een successfully introduced into other meshless methods resulting in a series of new complex variable meshless
ethods, such as the complex variable boundary element-free method (CVBEFM) [47], the complex variable RKPM

CVRKPM) [48], the complex variable meshless local Petrov–Galerkin (CVMLPG) method [49], the complex
ariable moving Kriging interpolation (CVMKI) method [50], the complex variable interpolating moving least-
quares (CVIMLS) method [51] and the complex variable meshless manifold method (CVMMM) [52]. These
ethods have been extensively applied in many engineering problems like the elastodynamic analysis of isotropic

nd functionally graded materials, the bending of thin plates on elastic foundations and the pattern transformation
n hydrogels [47–52].

The complex variable methods play an important role in the early development of linear elastic fracture theory,
s the analytical solutions of linear elastic fracture problems are often in the form of complex functions [53,54].
owever, almost all the previous numerical approaches aimed to establish the approximation for crack tip fields
nly using real variable functions. Obviously, real variable functions are not as accurate and efficient as complex
ariable functions to approximate the solutions of crack tip fields, which are originally in complex forms. Different
ith previous element-free methods, the complex variable meshless method applied in this work enables a direct

onstruction of the complex form solutions for the linear elastic fracture mechanics. The CVMLS approximation
ethod with a group of simple complex polynomial basis is applied for the meshless method to model the linear

lastic fracture mechanics in a Cartesian coordinate plane.
Although the complex variable meshless methods can directly approximate the complex variable solutions at and
round the crack tip region, it remains a great challenge to apply it to model arbitrary crack growth problems. From
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a thorough literature review, only very limited research works were found to apply the complex variable meshless
methods to solve linear elastic fracture problems, e.g., predicting the stress intensity factor in elastics with a single
stationary crack by Cheng and Li [37]. Although the CVMLS approximation has flaws in the definition of its error
norm, which could reduce the numerical accuracy [36,40], it still showed better accuracy and higher efficiency than
the traditional meshless method in the computation of singular stress field at a crack tip [37]. From these early
encouraging results, we believe that the ICVMLS approximation with a correctly defined error functional will yield
high accurate simulation results for fracture problems [36,40]. Extending the complex variable meshless methods
from modelling the stationary cracks problems to tracking arbitrary crack growths, is valuable and challenge. In this
paper, an improved CVEFG (ICVEFG) method that combines the ICVMLS approximation and the Galerkin weak
form of governing equations is developed. Moreover, the proposed ICVEFG method is, for the first time, successfully
tracking arbitrary crack propagation path for linear elastic fracture problems. Compared with the conventional
MLS approximation, the ICVMLS approximation applied in the ICVEFG method can substantially reduce the
computational costs in tracking arbitrary crack paths. Applying an accurate definition of error norm functional
ensures the ICVEFG method to yield higher accuracy than the CVEFG method in computing crack tip stress fields
and tracking arbitrary crack paths. The effectiveness, robustness, and efficiency of applying this proposed ICVEFG
method with both original and conjugate forms of the complex variable polynomial basis functions to track arbitrary
crack paths are studied and approved with five different fracture problems in this work.

The outline of this paper is as follows. In Section 2, the ICVMLS approximation method is reviewed. In
ection 3, the complex variable meshless method for two-dimensional fracture problems of elasticity is derived.
n the derivation, a basis-function-enriching scheme for the singular field of crack tips, criteria for the discontinuity
eld at crack tips, criteria for the directions of cracks, and computational methods for related fracture parameters
re introduced. In Section 4, five numerical benchmark examples are presented.

. Brief review of ICVMLS

One of the key steps in the implementation of complex variable meshless methods is to construct the trial
unctions using complex polynomial bases [35–40]. Generally, a complex variable trial function ũh(x) for a meshless

method within a local support domain of point x (x1, x2, x3) is expressed in terms of two arbitrary independent field
ariables, uk(x) and ul(x) as in the following form,

ũh(x) = uh
k (x) + iuh

l (x) =

m∑
j=1

p j (x)a j (x) = pT(x)a(x), (1)

here pT(x) = (p1(x), p2(x), . . . , pm(x)) is the vector of complex polynomial basis functions, and aT(x) =

a1(x), a2(x), . . . , am(x)) is the vector of coefficients for each term in the basis, which are also in complex forms.
is the number of terms in the basis and i is the imaginary unit. The construction meaning of Eq. (1) is shown

n Fig. 1, in which an arbitrary unknown function f (xk, xl) defined in a Cartesian plane is completely represented
y an equivalent function in a complex plane. In the previous works [35–46], the trial functions for the complex
ariable meshless methods are always constructed by a pair of two arbitrary real variables in a complex form.
hese meshless methods only benefit from the complex variable methods with reduced number of trial functions in

he modelling. As considering that the analytical solution of a crack tip field is originally in the form of complex
ariables, in this work, ICVMLS is directly applied to construct the complex variable trial functions to establish a
omplex variable element-free model for linear elastic fracture problems. In doing so, this modelling method not
nly has reduced number of trial functions but also will benefit with high accuracy and efficiency due to a nature
omplex variable approximation for linear elastic fracture problems.

The complex polynomial bases are constructed as follows [35–40]:
Linear basis:{

pT(x) = (1, x1 + ix2) f or 2D

pT(x) = (1, xk + ix j , xk + ixl), k, j, l = (1, 2, 3) f or 3D
(2)

uadratic basis for 2D:
T 2
p (x) = (1, x1 + ix2, (x1 + ix2) ) (3)

3
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Fig. 1. Arbitrary function on a Cartesian plane and a Complex plane.

There is more than one form of the quadratic complex polynomial bases for 3D problems, one of which is given
as:

pT(x) = (1, xk + ix j , xk + ixl , (xk + ix j )2, (xk + ixl)2, (x j + ixl)2), k, j, l = (1, 2, 3) (4)

Note, most of the complex variable trial functions for meshless methods are constructed based on the above
riginal form of complex polynomial bases. However, applying the conjugate form of complex polynomial bases,
amely, p̄T(x) to model mechanics problems can yield better computational accuracy [40] than using the original
nes. The inconsistent numerical precision of these two types of complex polynomial bases in modelling of different
roblems is because that the complex polynomial basis often failures to accomplish the completeness requirement
or trial functions. Thereby, the accuracy of applying ICVMLS to track arbitrary crack paths using different forms of
omplex variable polynomial basis needs to be further studied and examined. Compared with the original polynomial
asis, whether applying a complex polynomial basis or a conjugate one, the number of terms in the admissible
unctions is greatly reduced. This is in particular true when high order basis function is used. To approximate high
rder singularity of the stress field at the tip of a crack, the enriched high order basis is generally needed, therefore
pplying ICVMLS approximation in tracking crack paths can reduce computational costs, substantially.

The ICVMLS approximation uses a well-defined weighted complex variable error norm, which ensures that the
omplex form trial function can accurately approximate the two independent field variables with real and imaginary
arts, simultaneously [40]. This is an essential progress of complex variable meshless methods to ensure the accuracy
f their approximation, especially in the modelling of the complicated crack tip fields. The weighted complex
ariable error norm is defined as,

J =

n∑
I=1

w(x − x I )
⏐⏐ũh(x I , x) − ũ(x I )

⏐⏐2

=

n∑
I=1

w(x − x I )(ũh(x I , x) − ũ(x I ))(ũh(x I , x) − ũ(x I ))
(5)

here w(x − x I ) is a weight function defined within the support domain of point x, x I (I = 1, 2, . . . , n) and is
sed to denote the nodes within the support domain. ũh(x I , x) and ũ(x I ) are the complex form trial and target
unctions of two arbitrary independent field variables uk(x I ) and ul(x I ) at point x I , respectively. In this work, a

weight function based on the Student’s t-distribution is applied [11], as given by,

w(x − x I ) =

⎧⎨⎩
(1 + β2(d2

I /d2
m))−((1+β)/2)

− (1 + β2)−((1+β)/2)

1 − (1 + β2)−((1+β)/2) , dI ≤ dm

0 , dI > dm

(6)

here β is a parameter defined for controlling the shape of weight function, dI is the distance from a sampling
oint to a node, as dI = ∥x − x I∥. dm is the size of influence domain and given by dm = dmax dc, in which dmax is

scaling parameter, and dc is the characteristic nodal spacing distance.

4
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When the above complex variable polynomial basis in the original form is used, the error norm is rewritten in

he following matrix form as,

J =

n∑
I=1

w(x − x I )(
m∑

j=1

p j (x I ) · a j (x) − ũ(x I ))(
m∑

j=1

p j (x I ) · a j (x) − ũ(x I ))

= (Pa(x) − ũ(x))TW (x)(Pa(x) − ũ(x))

(7)

where

ũ = (ũ(x1), ũ(x2), . . . , ũ(xn))T
= Qu (8)

u = (uk(x1), ul(x1), uk(x2), ul(x2) . . . , uk(xn), ul(xn))T (9)

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 i 0 0 0 0 · · · 0 0
0 0 1 i 0 0 · · · 0 0
0 0 0 0 1 i · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · 1 i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
n×2n

(10)

P =

⎡⎢⎢⎢⎢⎣
p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)

⎤⎥⎥⎥⎥⎦
n×m

(11)

W (x) =

⎡⎢⎢⎢⎢⎣
w(x − x1) 0 · · · 0

0 w(x − x2) · · · 0
...

...
. . .

...

0 0 · · · w(x − xn)

⎤⎥⎥⎥⎥⎦ (12)

Minimization of J with respect to a(x) leads to [35–40],

a(x) = A−1(x)B(x)ũ (13)

with

A(x) = P̄TW (x)P (14)

B(x) = P̄TW (x) (15)

The trial function of ICVMLS with complex variable polynomial basis in the original form is expressed as,

ũh(x) = Φ(x)ũ =

n∑
I=1

φI (x)ũ(x I ) (16)

where Φ(x) is the shape function expressed in the following form,

Φ(x) = (φ1(x), φ2(x), . . . , φn(x)) = pT(x)A−1(x)B(x) (17)

Therefore, two arbitrary independent field variables for the ICVMLS are defined and given by,

uh
k (x) = Re[Φ(x)ũ] = Re[

n∑
I=1

φI (x)ũ(x I )] (18)

uh
l (x) = Im[Φ(x)ũ] = Im[

n∑
I=1

φI (x)ũ(x I )] (19)
5
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Fig. 2. Local coordinate and enriched zone at crack tip.

Similarly, in case that the conjugate complex variable polynomial basis needs to be used, the shape function in
Eq. (17) is directly derived as [40],

Φ(x) = (φ1(x), φ2(x), . . . , φn(x)) = p̄T(x) Ā−1
(x)B̄(x) (20)

. Complex variable meshless method for 2D linear elastic crack growth problems

.1. Trial functions in complex variable meshless method for the approximation of crack tip fields

The presence of cracks generally leads to discontinuous displacement fields and singular stress fields at the crack
ip, both of which will inevitably give rise to challenges to the numerical modelling. Several techniques [8,9,12,
4,18,19,24] have been developed to consider discontinuities of shape functions within local support domains in
eshless methods. The transparency criterion [8,9] that can be directly applied to implement the complex variable
eshless fracture analysis is applied in this work. As the meshless trial functions that can be easily p-refined,

ntroducing a set of basis functions to enrich specific analytical solutions will be able to effectively simulate the
ingular stress field at the crack tip. In general, a full enrichment for the basis function is given by [10],[

√
r cos

θ

2
,
√

r sin
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

]
(21)

here r and θ are distance and angle of a particular point away from the crack tip, respectively, as shown in Fig. 2.
ince the singular field is confined to the vicinity around the crack tip [10], the crack tip region is divided into an
nriched zone, a bridging zone, and a non-enriched zone for the purpose of reducing computational costs. The trial
unction of complex variable meshless method, the complex polynomial basis with and without the full enrichment
re adopted in the enriched and the non-enriched zone, respectively. The shape function in the crack tip region is
xpressed as,

φ̃I (x) = Rφ̂I (x) + (1 − R)φI (x) (22)

here φ̂I (x) is the shape function with fully enriched basis, φI (x) is the shape function with non-enriched basis, R
s a ramp function to bridge and ensure a compatible displacement field of the two regions. Both of the following
inear and quantic polynomials are used for ramp functions.

R =

{
1 − λ , linear
1 − 10λ3

+ 15λ4
− 6λ5 , quintic

(23)

here λ = (r − r )/(r − r ), r and r are the radius of the enriched zone and bridging zone, respectively.
1 2 1 1 2

6
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3.2. Discretization of Galerkin weak form in meshless method

For two-dimensional linear elastic fracture problems, the independent field variables at an arbitrary point x (x1,
2) are horizontal displacement u1 and vertical displacement u2. From Eqs. (18), (19) and (22), their ICVMLS trial
unction is given by,

ũh(x) = u1(x) + iu2(x) = Φ̃(x)ũ =

n∑
I=1

φ̃I (x)ũ(x I ) (24)

nd [
u1(x)

u2(x)

]
=

n∑
I

[
Re[φ̃I (x)] −Im[φ̃I (x)]

Im[φ̃I (x)] Re[φ̃I (x)]

] [
u1(x I )

u2(x I )

]
=

n∑
I

N I (x)u I = Nu (25)

here

N = (N1(x), N2(x), . . . , Nn(x)) (26)

N I (x) =

[
Re[φ̃I (x)] −Im[φ̃I (x)]

Im[φ̃I (x)] Re[φ̃I (x)]

]
(27)

The linear strain is derived and expressed as,

ε(x) = Bu (28)

here

B = (B1(x), B2(x), . . . , Bn(x)) (29)

B I (x) =

⎡⎢⎢⎣
Re[φ̃I,1(x)] −Im[φ̃I,1(x)]

Im[φ̃I,2(x)] Re[φ̃I,2(x)]

Re[φ̃I,2(x)] + Im[φ̃I,1(x)] −Im[φ̃I,2(x)] + Re[φ̃I,1(x)]

⎤⎥⎥⎦ (30)

Then, with the constitutive matrix, the stress field can be computed and given by,

σ (x) = D · ε(x) = D · Bu (31)

here

D =
E ′

1 − ν ′2

⎡⎢⎢⎣
1 ν ′ 0
ν ′ 1 0

0 0
1 − ν ′

2

⎤⎥⎥⎦ (32)

here E′ and v′ are the equivalent Young’s Modulus and Poisson’s ratio with respect to a specific two-dimensional
tress and strain state. For a plain stress problem, E ′

= E and ν ′
= ν. For a plain strain problem, E ′

= E/(1 − ν2)
nd ν ′

= ν/(1 − ν). E and ν are the Young’s modulus and the Poisson’s ratio of the material.
Applying the penalty method to ensure the essential boundary conditions, the Galerkin weak-form formula for

two-dimensional linear elastic fracture problem is expressed as,∫
Ω

δεTσdΩ −

∫
Ω

δuTbdΩ −

∫
Γt

δuT t̄dΓ − αδ

∫
Γu

1
2

(u − ū)T(u − ū)dΓ = 0 (33)

here b is the body force, t̄ is the surface traction, α is the penalty factor. From left to right, the items on the left side
f the equal sign in the above formula are the variations of strain energy, work done by body force, work done by
urface traction, and the penalty functional corresponding to the displacement boundary conditions u = ū on Γu .

Substituting Eqs. (24)–(31) into Eq. (33), the final algebraic equation is written as,

[K + Kα]U = F + Fα (34)
7
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where K is the global stiffness matrix, Kα is the global penalty stiffness matrix, U is the global displacement
vector, F is the global force vector, Fα is the global penalty force vector, and they are expressed as follows,

K =

∫
Ω

BT DBdΩ (35)

F =

∫
Ω

NbdΩ +

∫
Γt

N t̄dΓ (36)

Kα

I J
= α

∫
Γu

N I SNT
J dΓ (37)

Fα

I
= α

∫
Γu

N I SūdΓ (38)

and

S =

[
s1 0

0 s2

]
(39)

when the boundary conditions, e.g., ui = ūi , are applied, the corresponding Si is set as 1, otherwise it will be 0.

3.3. Simulation of crack growth

For two dimensional problems, the direction of in-plane crack extension can be determined using the maximum
principal stress criterion [55]. This theorem states that a crack will grow along the direction, which is perpendicular
to the maximum hoop stress, σθθ . A crack often propagates along a path with the crack tip is locally under mode
I, in other words, along where the hoop stress near the crack tip σθθ (r, θ) arrives a minimum, as,

σθθ (r, θ) =
K I

√
2πr

cos3(
θ

2
) − 3

K I I
√

2πr
cos2(

θ

2
) sin(

θ

2
) (40)

he crack propagation angle θ is obtained from ∂σθθ/∂θ = 0 and ∂2σθθ/∂θ2 < 0, which gives,

θ = 2 arctan
K I − sign(K I I )

√
K I

2
+ 8K I I

2

4K I I
(41)

here KI and KI I are stress intensity factors of mode I and mode II cracks, respectively.
To obtain stress intensity factors with high numerical precision, accurate computation of the stress field at the

rack tip is critical for the prediction of crack propagation angle and path. A correctly defined error functional for
CVMLS that can ensure high accuracy of the complex variable meshless approximation is critical for modelling
he crack problems. The M integral, which is also known as interaction integral [56], is used for the extraction of

ixed-mode stress intensity factors in our numerical implementation. The M integral in a local domain of a crack
ip, as shown in Fig. 3, is expressed as,

M (1,2)
=

∫
A

[
σ

(1)
i j

∂u(2)
i

∂x1
+ σ

(2)
i j

∂u(1)
i

∂x1
− W (1,2)δ1 j

]
∂q
∂x j

d A (42)

here the superscripts (1) and (2) denote the actual state corresponding with given boundary condition and an
uxiliary state, respectively. W (1,2) = (σ (1)

i j ε
(2)
i j + σ

(2)
i j ε

(1)
i j )

/
2 is the mutual strain energy density of the elastic body.

he function q takes the form of

q =

{
(1 − d1)(1 − d2) d1 ≤ 1 and d2 ≤ 1

0 otherwise
(43)

where d1 = 2
⏐⏐⏐x1 − x ti p

1

⏐⏐⏐ /L x and d2 = 2
⏐⏐⏐x2 − x ti p

2

⏐⏐⏐ /L y , L x × L y is the area of the domain integral A, (x ti p
1 , x ti p

2 )
is the coordinates of the crack tip. Stress intensity factors KI and KI I can be determined as,

K I =
E ′

M (1,I) (44)

2
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Fig. 3. Local domain for M integral at a crack tip.

K I I =
E ′

2
M (1,II) (45)

here E ′ is the same as in Eq. (32), M (1,I) and M (1,II) are M integrals obtained by choosing mode I and model II
olutions as auxiliary states in Eq. (42), respectively.

. Numerical examples

In this section, one example of an elastic body with static crack and four benchmark examples of quasi-static
rack growths under different conditions are investigated using the present complex variable meshless methods
ith ICVMLS approximation. Both the complex polynomial basis in original and conjugate forms are examined

n the ICVMLS implementation. To distinguish these two types of approaches, in the following context of this
aper, we refer ICVMLS approximation meshless method with the original complex variable polynomial basis as
CV(I), and use ICV(II) to denote the ICVMLS approximation meshless method with the conjugate form of complex
ariable polynomial basis. Numerical results obtained from the EFG method (referred as MLS), the CVEFG method
referred as CV), and other published works are compared with the results obtained using the proposed ICV(I) and
CV(II) methods. In the implementation of these meshless methods, the penalty method is used to enforce essential
oundary conditions for each problem. The rectangular support/influence domain is adopted in the meshless analysis.
our-point Gaussian integration along each direction of a single quadrature cell is used for the computation of weak-
orm variational integrals and the M integrals. The transparency method is used for discontinuity processing in the
odelling. A fixed incremental length of crack ∆a in each step is assumed for each case with evolutionary cracks.
he computational parameters involved in these examples include the uniform meshes Nx × Ny and nx × ny for
enerating nodes and quadrature cells, respectively, the scaling factor dmax controlling the size of local influence
omain of nodes, the penalty factor α for enforcing displacement boundary conditions, the assumed crack-length
ncrement ∆a, the size of the local domain Lx × Ly and uniform quadrature mesh mx × my for evaluating M
ntegral. Both the corresponding linear polynomial basis with and without full enrichment are examined in the
umerical analysis. The quantic ramp function in Eq. (23) is employed when the full enrichment is adopted in the
ocal zone around the crack tip.

To indicate the types of meshless methods and associated computational parameters that are applied in each
imulation, the obtained results in each example for evolutionary cracks are labelled as “ICV(I)/ICV(II)/CV/MLS-
x × Ny-nx × ny- dmax -α-∆a- Lx × Ly - mx × my- L1/(Len-r1 × r2)”. “ICV(I)/ICV(II)/CV/MLS” indicates which
ethod is used in the analysis. “L1” stands for only the corresponding linear polynomial basis is employed in the

hape function. “Len-r1 × r2” denotes that the full enrichment is adopted around the crack tip in the enriched zone
ith radius r1 and the radius of bridging zone is r2.

.1. A square plate with mode I crack on boundary

The first example considered in this study is a square plate with a stationary mode I crack, which initially occurs
n its boundary, as shown in Fig. 4(a). The side length of plate is L = 16 mm. The length of the crack is a = 8 mm.
9
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Fig. 4. (a) A square plate with a stationary mode I crack; (b) Uniform mesh 20 × 20 for nodes and J integral domain.

he Young’s modulus and Poisson’s ratio of the plate are E = 2×105 MPa and ν = 0.286, respectively. The applied
isplacement field is given by,

u =
K I

2G

√
r

2π
cos

θ

2
(
3 − ν

1 + ν
− 1 + 2 sin2 θ

2
) (46)

v =
K I

2G

√
r

2π
sin

θ

2
(
3 − ν

1 + ν
+ 1 − 2 cos2 θ

2
) (47)

The analytical solutions of the stresses around the crack tip are

σx =
K I

√
2πr

cos
θ

2
(1 − sin

θ

2
sin

3θ

2
) (48)

σy =
K I

√
2πr

cos
θ

2
(1 + sin

θ

2
sin

3θ

2
) (49)

σxy =
K I

√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
(50)

here SIF K I = FI σ
√

πa with FI = 1.12 − 0.231( a
L ) + 10.55( a

L )2
− 21.72( a

L )3
+ 30.39( a

L )4 [57]. In this example,
the applied stress is assumed to be σ = 1 GPa.

The purpose of choosing this simple example is to approve the accuracy of the proposed complex variable
eshless methods, by directly comparing against well-known analytical solutions. Uniformly distributed nodes and

ectangular J integral domain as shown in Fig. 4(b) are used in each meshless analysis. The global enrichment
sing full basis is applied in the meshless analysis to study this example. The near-tip stresses obtained using the
resent complex variable meshless methods are presented and compared in Figs. 5 and 6, in which the displacements
nd stresses at points ahead of the crack tip and their relative errors are plotted, respectively. The complex variable
eshless approaches with the complex polynomial basis either in original or conjugate forms achieved more accurate

esults for the approximations of the near-tip displacements and stresses than that of the MLS. This is attributed to
he direct approximation of the complex variable field function at the crack tip by using the ICVMLS, which obtains
igher accuracy than the real variable approximation of the MLS. Although the CV approach results in relatively
mall errors for displacement solutions compared with the ICV(I) and ICV(II) methods, its stress solutions are much
oor. The poor performance of CV is attributed to the invalid definition of error norm function in its shape function.

To provide an overall comparison for the crack-tip stress field, the contour plots of the near-tip von Mises stresses
iven by analytical solution, MLS and ICV (I) are presented in Fig. 7. It can be seen that the contour lines of the
on Mises stress in the MLS solution is not as smooth as those in the analytical solution and the ICV(I) solution.

The stress intensity factors (SIF) KI with a series of different crack lengths a are obtained using MLS, ICV (I),
and ICV (II) meshless methods and listed in Table 1. The relative errors for the results given by MLS, ICV(I) and
ICV(II) methods are also listed for the purpose of comparison. As the accuracy of the results given by CV method
is very poor, CV solutions are not presented in Table 1. As shown in Table 1, all SIFs calculated by ICV(I) method
for various crack lengths a are better than the MLS solutions, however, the results given by ICV(II) are worse than
hat the MLS solutions. It concludes that different complex variable meshless methods lead to different accuracy in
pproximating the crack tip field due to the use of different polynomial basis functions. Therefore, an appropriate
10



D.M. Li, J.-H. Liu, F.-H. Nie et al. Computer Methods in Applied Mechanics and Engineering 399 (2022) 115402
Fig. 5. (a) Results of u for points located ahead of crack tip and (b) relative errors.

Fig. 6. (a) Results of σx for points located ahead of crack tip and (b) relative errors.

Fig. 7. Contour plot of near-tip Mises stress by (a) Analytical solution, (b) MLS and (c) ICV(I).
11
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Table 1
Solutions of SIF K I with different crack length a.

a KI [57] (Analytical solution) MLS ICV (I) ICV (II)

KI Relative error (%) KI Relative error (%) KI Relative error (%)

4 5321 5237 1.57 5239 1.54 5219 1.91
5 6758 6653 1.54 6666 1.35 6608 2.22
6 8564 8513 0.59 8533 0.36 8469 1.11
7 10 940 10 799 1.29 10 801 1.27 10 685 2.33
8 14 169 13 948 1.56 13 949 1.56 13 903 1.88
9 18 637 18 352 1.53 18 383 1.36 18 226 2.20
10 24 836 24 690 0.59 24 753 0.34 24 565 1.09

Fig. 8. (a) An edge-cracked plate subjected to a unit shear traction; (b) An example for uniform mesh 13 × 31 for nodes and 2 × 2 M
ntegral domain for the first step.

election of complex variables polynomial basis function is necessary to analyse these two ICV(I) and (II) meshless
ethods.

.2. An edge-crack plate under mixed-mode loading

The second example in this study is an edge-cracked plate, in which the bottom edge is fixed, and the top edge
s subjected to a far-field unit shear stress τ = 1 MPa, as shown in Fig. 8(a). The dimensions of the plate are

= 7 mm, H = 16 mm. The initial crack length is a = 3.5 mm. Material parameters are Young’s modulus
E = 3 × 107 MPa and Poisson’s ratio ν = 0.25. The plate is under the plane stress condition. The crack path for
his example had been modelled by Rao et al. [58] with a FEM-meshless coupling approach and Yang et al. [59]
ith a non-matching finite element-scaled boundary finite element coupled method.
In this example, uniformly distributed grid nodes and rectangular M integral domain as shown in Fig. 8(b) are

dopted in each meshless analysis. Firstly, the crack paths predicted by the ICV (I), ICV (II), CV and MLS meshless
ethods with linear polynomial basis are presented in Fig. 9, in which the influences of applying different values

f scaling factor dmax on the results are illustrated. To show more details of the predicted crack paths, a 10-times
along y direction) enlarged image is shown in each diagram. From the numerical results shown in Fig. 9 (with
urrently chosen parameters), when the same uniform grid nodes and the same value of dmax are used, the crack
ath predicted by ICV (I) is more in line with the results given in [58,59] than the solutions given by other methods.

oreover, the results given by ICV (I) and (II) are much better than that of CV. This is due to the use of weighted

12
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Fig. 9. Crack propagation paths with (a) MLS, (b) ICV (I), (c) ICV (II) and (d) CV using corresponding linear polynomial basis.

error norm given by Eq. (5) for ICV (I) and (II) methods, which can yield much better accuracy than the one
adopted in the CV method. However, when applying the same uniform nodes, a much large value of dmax , and a
mall size of M integral domain, are needed for obtaining accurate results for ICV (II) method in this case. On
he other hand, the results obtained with the use of linear basis are all deviated from the results given in [58,59].
his is mainly because that the linear basis cannot accurately catch the singular stress field of the crack tip. At the
ame time, it also can be observed that the crack paths predicted by ICV (I) and (II) are closer to the results given
y [58,59] than the MLS solution when the same computing parameters are applied.

Secondly, the effect of applying different values of the penalty factor in these four types of meshless methods
ith linear polynomial basis is studied. The crack paths obtained by four different kinds of shape functions with
enalty factors ranging from 103

× E to 106
× E are presented in Fig. 10. From the results, it can be seen that

ll the methods, except CV, are not sensitive to the change of penalty factors in this case study. When linear basis
unctions are applied, the crack paths predicted by ICV (I) and (II) methods are closer to the literature results than
he predictions given by the other two methods.

Subsequently, the meshless analysis using different sizes of M integral domain is performed to test its influence

n the predicted crack paths. Numerical results given by these four meshless methods using linear polynomial basis

13
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m

Fig. 10. Crack propagation paths by (a) MLS, (b) ICV (I), (c) ICV (II) and (d) CV using corresponding linear polynomial basis with
different penalty factor.

and different sizes of local domain for M integrals are presented in Fig. 11. Although the crack paths predicted by
these four methods are varying with the size of the M integral domain, the simulation results of ICV (I) and (II) are

ore stable than that given by other meshless methods. Moreover, as shown in Fig. 11, when M integral domain
size is appropriately selected, the ICV(II) is the most robust method that results in the closest solution compared
to the published results in literature.

The last parameter considered in this study is the assumed crack-length increment ∆a. Similarly, the crack paths
predicted by these four different meshless methods using linear polynomial basis and different ∆a are obtained
and presented in Fig. 12. Regarding to the numerical accuracy and modelling robustness, under a same assumed
crack-length increment ∆a, ICV (II) is the best, CV is the worst, and ICV (I) is slightly better than MLS.

To further improve the simulation results for the crack-tip singular stress field, the full enrichment basis function is
introduced to construct the crack tip shape function. The predicted crack propagation paths are presented in Fig. 13.
The results, as shown in Fig. 13, are obtained based on the consideration of the above parameter analysis, from
which the most appropriate parameters are selected. Although we have examined a large number of computations

with various parameter combinations, CV cannot give any meaningful results, the crack path predicted by CV is

14
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Fig. 11. Crack propagation paths by (a) MLS, (b) ICV (I), (c) ICV (II) and (d) CV using corresponding linear polynomial basis with
different sizes for M integral.

omitted in Fig. 13. The present results match with the literature results much closer than the above numerical
results obtained only using linear polynomial basis functions. The numerical results obtained by both MLS and
ICV(I) methods are close to the results given in [59], and the ICV(I) are relatively better than MLS. Although the
results given by ICV(II) is closer to the one in [58], ICV(II) needs more nodes to achieve convergent solutions.
In terms of computational efficiency, the CPU time of ICV(I), MLS and ICV(II) is 708 s, 1110 s and 3886 s,
respectively. Therefore, ICV(I) method has 36% higher computational efficiency than the MLS method. As ICV(II)
needs more nodes for modelling this problem than that of other methods, its computational efficiency is greatly
reduced.

The effects of applying different weight functions and different basis functions in ICV (I) on the predicted crack
paths are demonstrated in Figs. 14 and 15, respectively. From the numerical results shown in Fig. 14, the paths
obtained by Gaussian and cubic splines are worse than those obtained by other splines. According to Fig. 15, the
crack path obtained by quadratic basis is more stable than that given by linear polynomial basis. Moreover, the
crack paths obtained by a rectangular domain and a circular domain for M integral are presented in Fig. 16. Both

the length and the width of the rectangular domain are set to 2, and the radius of the circular domain is set to 1,
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Fig. 12. Crack propagation paths by (a) MLS, (b) ICV (I), (c) ICV (II) and (d) CV using corresponding linear polynomial basis with
different ∆a.

other parameters are the same with those given in Fig. 13. The results show that the shape of M integral domain
has insignificant impact on crack path. The deformed nodes during the crack propagation process are illustrated in
Fig. 17, which clearly shows the crack path.

4.3. A double cantilever beam

The third example is to study a double cantilever beam (DCB), which is fixed at the right boundary and has a
kinked crack at its left edge, as shown in Fig. 18. The beam is subjected to a pair of opposite concentrated loads
F = 100 N on the left edge. The length of the beam is L = 300 mm, the height is H = 100 mm. The kinked
crack consists of two segments, one segment is horizontal with 138 mm long and the other is inclined with an
angle θ = 2.6◦ and 12 mm long. The material properties of the plate are Young’s modulus E = 2 × 105 MPa and
Poisson’s ratio ν = 0.3. This double cantilever beam is assumed under the plane stress condition. The experimental
results of crack propagation path for this problem had been provided by Sumi et al. [60]. Ventura et al. [12], Ooi

et al. [61] and Yang et al. [59] have conducted numerical simulation to predict the crack propagation path for this
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Fig. 13. Crack propagation paths by MLS, ICV (I) and ICV (II) using corresponding linear polynomial basis and enrichment.

Fig. 14. Crack propagation paths by ICV (I) using different weight function.

problem using an EFG approach with a new vector level set method, a polygon scaled boundary finite element
method, and a non-matching finite element-scaled boundary finite element coupled method, respectively. All these
published results are used to compare the present numerical solutions in this paper. Note, there is a significant
difference between the crack paths from these three numerical studies and they all have certain amount of deviation
from the experimental results.

For this DCB example, the crack path is predicted using MLS, ICV (I), ICV (II) and CV methods, and their
numerical results are presented and compared with each other in Fig. 20. The domain discretization is based on
uniformly distributed nodes, as shown in Fig. 19. Several groups of computational parameters are tested, with which
appropriate parameters are chosen for obtaining accurate modelling results. The crack paths predicted by these
meshless methods are shown in Fig. 20 and compared with the experimental results. To reveal more details for the
crack paths, an enlarged image (7 times along x direction and 2 times along y direction), is presented in Fig. 20(b).
From the parametric study of ICV(II) and CV methods for applying to solve this DCB example, it is difficult to
obtain accurate results when a linear basis function with or without full enrichment is used. For the MLS method,

accurate prediction of crack path can only be achieved when the linear basis function is applied. Nevertheless, for

17



D.M. Li, J.-H. Liu, F.-H. Nie et al. Computer Methods in Applied Mechanics and Engineering 399 (2022) 115402
Fig. 15. Crack propagation paths by ICV (I) using linear basis and quadratic basis.

Fig. 16. Crack propagation paths by ICV (I) using rectangular and circular domain for M integral.

ICV (I) method, no matter which kind of basis functions is applied, accurate solutions can always be obtained. As
shown in Fig. 20, the crack paths predicted by both of the MLS method and the ICV(I) method with linear basis are
in good agreement with the numerical results obtained by Ventura et al. [12] and Ooi et al. [61]. Moreover, the crack
path predicted by ICV(I) matched very well with the experimental results given in [60], and it is much better than
the numerical results from Yang et al. [59]. When using linear basis, the CPU time for the computational process
of MLS and ICV(I) is 1136 s and 457 s, respectively. Compared with MLS, the computational cost of ICV(I) is
reduced by 59.7%. The pattern of deformed nodes during the crack propagation process is shown in Fig. 21.

4.4. A single-edge notched shear beam

The fourth example is to study a single-edge notched beam subjected to two concentrated loads, as shown in
Fig. 22. The length of the beam is L = 916 mm, the height is H = 306 mm, and the thickness is U = 152 mm. The
length of the vertical crack is 82 mm. The magnitude of the load is F = 112.1 kN (the other load on top-right corner
is 0.13 F). The material properties for this beam are Young’s modulus E = 24.8 GPa and Poisson’s ratio ν = 0.18.

This problem is considered under the plane stress condition. This beam crack problem has been widely accepted
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Fig. 17. Deformation of nodes during the propagation of crack.

Fig. 18. A double cantilever beam.

Fig. 19. An example for uniform mesh 37 × 13 for nodes.

as a benchmark for the validation of mixed-mode crack propagation models. Yang and Proverbs had conducted
numerical simulation for this problem using a nonlinear finite element approach [62]. Yang et al. had analysed this
problem with a non-matching finite element-scaled boundary finite element coupled method [59]. Xie et al. [63]
proposed an energy-based approach for the finite-element modelling of this problem, and their result is slightly
different from that of the other two approaches. The crack paths provided in all these references are used for the

purpose of comparison in this section.
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Fig. 20. Crack propagation paths with different meshless methods.

Fig. 21. Deformation of nodes during the propagation of crack.

Fig. 22. A single-edge notched shear beam.

The uniformly distributed grid nodes, as shown in Fig. 23, are used in these four meshless methods to model this
problem. Fig. 24 shows (a) the predicted crack growth paths; and (b) the enlarged image (5.5 times in x direction)
obtained by these four different meshless methods using linear basis function. The results given by MLS, ICV(I) and
(II) are obviously better than that obtained by CV when linear basis functions and the same computational parameters
are used. The results obtained by MLS and ICV(I) are the best. The predicted crack paths and the enlarged image
(5.5 times in x direction) that are obtained from these four meshless methods using linear basis with full enrichment
20
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Fig. 23. Uniform mesh 35 × 13 for nodes.

Fig. 24. Crack propagation paths with different meshless methods using linear basis.

are presented in Fig. 25(a) and (b), respectively. The crack path predicted by ICV(I) is obviously more consistent
with the published results than that obtained by the MLS method when linear basis with full enrichment, when the
same computational parameters are applied. The load-crack mouth sliding displacement (CMSD) curve obtained
with MLS and ICV(I) are compared with the experimental results and numerical solutions in literatures, as shown
in Fig. 26. It shows that the ICV(I) leads to the results that match better with the experimental results than the other
methods. Fig. 27 shows the nodal deformation after the crack propagation.

4.5. A double-edge notched shear concrete beam

The fifth example is a double-edge notched beam subjected to two concentrated loads, as shown in Fig. 28. The
magnitude of the first load is F (the other load at the top-left corner is F/5). The length of the beam is L = 800 mm,
the height is H = 200 mm. There are two vertical cracks in the upper mid-span and lower mid-span of the beam.
The positions and the lengths of the two initial cracks are shown in Fig. 25. The material parameters of this beam
are Young’s modulus E = 27 GPa and Poisson’s ratio ν = 0.1. The plane stress condition is considered for
this problem. The experimental work for this problem had been done by Bocca et al. and presented in [64]. The
numerical simulations using different computational methods can be found in many previous published literatures
[14,65–67]. Clear crack paths provided in [67] for this example are used to compare and validate the results obtained
from the meshless methods. Note, the crack path from the experimental results originally obtained in [64] is taken
from [67].

A 39 × 10 uniformly distribution of grid nodes for the domain discretization, as shown in Fig. 29, is applied in
the meshless analysis of this problem after a series of parametric studies. Similar with the previous case studies, both

the linear basis functions with and without full enrichment are employed in these four meshless methods to predict
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Fig. 25. Crack propagation paths with different meshless methods using linear basis with full enrichment.

Fig. 26. Load-CMSD curve.

Fig. 27. Deformation of nodes during the propagation of crack.
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Fig. 28. A double-edge notched shear concrete beam.

Fig. 29. Uniform mesh 39 × 10 for nodes.

the crack path for this double-edge notched beam problem. Fig. 30 shows the predicted crack paths using these four
meshless methods with linear basis functions and different values of dmax , compared with the experimental results.

oth the crack paths predicted by MLS and ICV(I) methods converge very well within the region of experimental
esults given by [64], and the crack path of ICV(I) gives better results than MLS. The crack paths predicted by
CV(II) are slightly away from the experimental results, albeit the results are convergent eventually. Even with
se of the complex variable approximation, the incorrectly defined weight complex error norm obviously damages
he accuracy of CV. A larger support domain needs to be used, that is, dmax should be larger than 3.5 to obtain
ppropriate results for CV. Overall, the prediction of the crack path by ICV(I) is the most accurate and efficient,
ollowed by MLS, ICV(II) and CV when linear basis function and the same computational parameters are applied.

Fig. 31 shows the crack paths predicted by these four meshless methods with enriched basis functions and
ifferent values of dmax . From the numerical results, it can be seen that ICV(I) remains to be the best method
n prediction of the crack paths and follows by the MLS method. The crack paths obtained by ICV(II) become

ore unstable compared with the simulation results given by other methods when linear basis function with full
nrichment is used. CV can only generate reasonable results when dmax = 4.0. The incorrectly defined error norm
n CV not only makes the numerical accuracy worse, but also indicates that the original intention of using complex
olynomial basis function to reduce the minimum number of nodes in the support domain to save computational
ime is no longer tenable. The total load vs. the vertical displacement of the right loading point is plotted in Fig. 32
nd compared with other results obtained in previous works [14,64,66]. It shows that the results obtained by ICV(I)
ave a good agreement with experiment. Fig. 33 shows a nodal deformation pattern during the crack propagation
rocess.

. Conclusions

In this paper, the complex variable meshless methods, for the first time, are applied to model two-dimensional
rack propagation problems under the theoretical framework of linear elastic fracture mechanics. The main
otivation and innovation of this work is to directly construct an element-free complex variable approximation
23
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Fig. 30. Crack propagation paths by (a) MLS, (b) ICV(I), (c) ICV(II) and (d) CV using linear basis.

of the target function, which is originally in complex form for the linear elastic fracture problems. A numerical
framework for the complex variable meshless method that applies the CVMLS approximation with a group of simple
complex variable polynomial basis function and accurately defined error functionals is established to model the crack
tip fields and arbitrary crack path with improved accuracy and efficiency. Five benchmark examples are studied
using four different meshless methods (ICV(I), ICV(II), MLS, and CV) with linear basis function (with/without
enrichment) and different computational parameters. The numerical results and predicted crack paths obtained from
these four meshless methods are compared with each other and compared with the experimental and numerical
results published in previous research works. In general, the proposed improved complex variable meshless methods,
especially the ICV(I), have been approved to provide great simulation precision and high computational efficiency
in modelling the crack propagation problems. To accurately model the progressive cracks problems, employing a
precise definition of complex variable error norm in shape function is critical and the form of complex polynomial

basis plays an important role in obtaining stable and accurate numerical results. Although this work successfully
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Fig. 31. Crack propagation paths by (a) MLS, (b) ICV(I), (c) ICV(II) and (d) CV using linear basis with full enrichment.

pplies the complex variable meshless method to model crack problems, the extended terms in the enriched basis
unction adopted by the present method are still expressed in terms of real variables. Therefore, this proposed
ethod is not a full complex variable method. In future work, we will develop a full complex variable meshless
ethod and apply it to modelling three-dimensional fracture problems.
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Fig. 32. Load–displacement results, compared with the results of Bocca et al. [64], Rabczuk et al. [14], and Areias et al. [66].

Fig. 33. Deformation of nodes during the propagation of crack.
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