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GENETIC VARIANCE IN HUMAN DISEASE:

DECODING DIVERSITY TO ADVANCE MODERN MEDICINE

Deep phenotyping for precision medicine in Parkinson’s disease
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ABSTRACT

A major challenge in medical genomics is to understand why
individuals with the same disorder have different clinical symptoms
and why those who carry the same mutation may be affected by
different disorders. In every complex disorder, identifying the
contribution of different genetic and non-genetic risk factors is a key
obstacle to understanding disease mechanisms. Genetic studies
rely on precise phenotypes and are unable to uncover the genetic
contributions to a disorder when phenotypes are imprecise. To
address this challenge, deeply phenotyped cohorts have been
developed for which detailed, fine-grained data have been
collected. These cohorts help us to investigate the underlying
biological pathways and risk factors to identify treatment targets,
and thus to advance precision medicine. The neurodegenerative
disorder Parkinson’s disease has a diverse phenotypical presentation
and modest heritability, and its underlying disease mechanisms are
still being debated. As such, considerable efforts have been made to
develop deeply phenotyped cohorts for this disorder. Here, we focus
on Parkinson’s disease and explore how deep phenotyping can
help address the challenges raised by genetic and phenotypic
heterogeneity. We also discuss recent methods for data collection
and computation, as well as methodological challenges that have to
be overcome.
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Introduction

To elucidate the genetic and molecular processes that contribute to
disease, the research community has made considerable efforts
to develop large case/control genetic studies. These have been
remarkably successful in identifying common genetic risk variants
associated with various disorders. Over 6000 genome-wide
association studies (GWAS; see Glossary, Box 1) have been
published for over 1000 traits that report on tens of thousands of
genetic risk variants (Watanabe et al., 2019; https:/www.ebi.ac.uk/
gwas/). However, they do not fully explain why some carriers of risk
alleles do not develop the associated disorder and why people who
carry similar risk alleles develop distinct phenotypes.

A critical challenge in medicine is to understand why patients
diagnosed with the same disorder vary in their clinical presentation.
This is especially true for Parkinson’s disease (PD), for which the
age of onset, rate of progression, and type and severity of symptoms
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differ among the 9.3 million people worldwide who live with this
disorder (Maserejian et al., 2020). As the frequency of the
misdiagnosis of PD is particularly high, ~30% (Beach and Adler,
2018), and its consequences are dramatic, it is crucial to identify the
aetiology of this clinical heterogeneity. One of the challenges of
studying PD is that direct access to the relevant tissue, the brain, is
limited. In addition, a long prodromal phase (Box 1) precedes
the first clinical symptoms, and 90% of cases are considered
sporadic, with an assumed genetic heritability of ~30% (Keller
et al., 2012).

Precision medicine investigates the plethora of pathophysiologies
that are associated with a disorder (Robinson, 2012). Its goal is to
offer the best medical care tailored to a patient at a given time.
Precision medicine is thus contrasted by the traditional one-size-fits-
all approach, whereby a certain treatment is given to all patients
suffering from a certain disorder. Oncology was one of the first
clinical specialities to adopt this approach (Kupstas et al., 2020;
Nowakowski and Czuczman, 2015; Punt et al., 2017), by analysing
the genomic landscape of cancer cells to identify cancer subtypes
that respond well to certain treatments (Berland et al., 2019; Schmitz
etal., 2018; van der Velden et al., 2019). Detailed data are gathered
throughout a patient’s life, which enables early risk stratification
and monitoring of high-risk patients. Prevention and -early
intervention thus become possible. Furthermore, these detailed
data allow the selection of the best available treatment approach for
each patient. The prospect of treating PD through a precision
medicine approach requires knowledge about the disease
mechanisms and treatment targets. Deep phenotyping may aid in
the acquisition of such knowledge by guiding clinical trial design
and providing insights into disease stratification (Dorsey et al.,
2020).

Recently, we have seen the emergence of large, deeply
phenotyped cohorts for various disorders, in which valuable
clinical, imaging, genetic and biometric data have been collected,
often together with longitudinal monitoring, for example the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jones-
Davis and Buckholtz, 2015) and the Parkinson’s Progression
Markers Initiative (PPMI) (Marek et al., 2018). Such datasets allow
researchers to investigate disease actiologies and the biomarkers of
disease progression, and to identify risk factors. In particular, for PD
and other complex disorders, with frequent misdiagnoses, unclear
disease mechanisms and diverse clinical presentations, deep
phenotyping presents the opportunity to fill these gaps in
knowledge. Numerous deeply phenotyped PD cohorts are
currently available to researchers; nothing comparable has as yet
been developed for other genetic disorders.

In this Review, we therefore use PD as a paradigm to introduce
deep phenotyping and demonstrate how it can advance precision
medicine, in which treatments are tailored to genetically and
phenotypically heterogeneous patients. We further discuss recent
methodological advances that have allowed us to utilise and
understand the large and ever-increasing amount of available data.
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Box 1. Glossary

Apathy: a lack of motivation.

Bradykinesia: a slowness of movement, one of the clinical hallmark
symptoms of Parkinson’s disease.

Classification: a group of supervised machine learning methods that
predict a discrete outcome (category) based on a set of variables.
Clustering: a group of unsupervised machine learning methods that
groups data points into clusters. Objects in the same cluster are similar to
one another and less similar to objects from other clusters.
Convolutional neural network (CNN): a type of neural network often
used to analyse visual imagery where neighbouring inputs are
considered together.

Deep learning (DL): a subdivision of machine learning in which neural
networks, which are computational methods inspired by biological neural
networks, with multiple layers extract increasingly high-level features
from raw input.

Dimensionality reduction: a group of unsupervised machine learning
methods that transform high-dimensional data into a low-dimensional
representation that retains most of the information.

Diplopia: simultaneous perception of two images from one object.
Dosage effect: Change in a phenotype due to alternations in the dose/
amount of the product of a gene.

Dyskinesia: involuntary, uncontrolled muscle movements.

Dysphagia: difficulty swallowing.

Genome-wide association studies (GWAS): statistical, hypothesis-
free methods to test for the association of genetic loci and phenotypic
traits.

Hyposmia: reduced ability to smell.

Latent class: a group of unsupervised machine learning methods that
relate observations to latent factors that are assumed to cause the
observations.

Mendelian randomisation: a method to test for putative causal
relationships between modifiable risk factors and diseases.

Molecular neuroimaging: techniques to visualise molecular or cellular
processes in the brain through a probe or imaging agent that creates a
signal through the interaction with the event of interest.

Neuronopathy: a subgroup of disorders of the peripheral nervous
system that occur as a result of neuron degeneration.

Orthostatic hypotension: low blood pressure when standing up.
Polygenic risk score (PRS): a metric of disease risk given by the
combined contribution of multiple genetic variants calculated from
GWAS statistics.

Prodromal phase: a latent time period preceding the clinical diagnosis,
in which symptoms appear but clinical diagnostic criteria are not yet met.
Quantitative trait: a measurable phenotype that varies between
individuals on a continuous scale.

Regression: a group of supervised machine learning methods that
predict a continuous outcome (real-valued) based on a set of variables.
Supervised machine learning: algorithms that learn a relationship
between predictors and outcomes based on labelled data.

Swarm network: a conglomerate of individual sites with private data
(nodes) that exchange model parameters.

Unsupervised machine learning: algorithms that identify patterns in
unlabelled data.

In particular, we focus on the emergence of deeply phenotyped
cohorts in response to advancements in genetic research.

The imprecise diagnosis and complex genetics of PD
Precision medicine emerged because the traditional one-size-
fits-all approach has proven unsuccessful for many disorders.
One such disorder is PD, which presents a unique challenge,
as its diagnosis remains difficult and its genetic background is
diverse. Conventional treatment approaches have thus far been
unsuccessful, and a more targeted and personalised approach is
required.

Imprecise diagnosis of PD

PD symptoms result from the progressive loss of dopaminergic
neurons in a brain region called the substantia nigra, the primary
function of which is motor control. A definitive diagnosis is often
challenging, as PD can be confounded with other Parkinsonian
syndromes (Williams and Litvan, 2013); however, PD can be
distinguished from these by its prolonged response to dopaminergic
medication (Williams and Litvan, 2013). Nevertheless,
misdiagnosis occurs up to 30% of the time (Schrag et al., 2002).
The consequences of these diagnostic errors are dramatic. A recent
survey of 2000 people, conducted by the Parkinson’s UK charity,
revealed that 50% of misdiagnosed individuals with PD receive
treatment for a non-existent condition and 6% undergo unnecessary
operations or procedures (https:/www.parkinsons.org.uk/news/
poll-finds-quarter-people-parkinsons-are-wrongly-diagnosed).

In an effort to improve the accuracy of PD diagnoses, the
diagnostic criteria for PD in 2015 were updated to include non-
motor symptoms (Postuma et al., 2015). The new criteria further
include guidance on the use of neuroimaging to rule out PD when
no presynaptic dopaminergic deficiency is found. A molecular
neuroimaging (Box 1) technique commonly used for this purpose
is DaTscan, which involves the injection of a radioactive tracer
(Ioflupane, 123-1-FP-CIT) that attaches itself to dopamine
transporters on dopaminergic neurons (Djang et al., 2012).
DaTscan can discriminate PD from essential tremors and from
other non-degenerative tremors (Benamer et al., 2000) and can
distinguish PD from healthy controls with high accuracy (Tagare
et al., 2017). However, DaTscan cannot differentiate between
PD and atypical Parkinsonian disorders, such as multiple system
atrophy (MSA) or progressive supranuclear palsy (PSP), which
show similar degenerative characteristics. Nevertheless, new magnetic
resonance imaging (MRI) techniques, such as neuromelanin-
sensitive MRI, and iron-sensitive MRI, are showing promising
results that will help to make this distinction and that will further
refine PD stratification and prognosis (Prange et al., 2019). Despite
their utility for ruling out PD, no neuroimaging techniques are
currently recommended for the routine diagnosis of PD. This
might be because of the phenotypic heterogeneity of PD, even in
brain imaging. For example, a group of patients with a clinical
diagnosis of PD but no sign of a dopaminergic deficit in DaTscan
has been identified, called scans without evidence of dopaminergic
deficit (SWEDD). To date, it is debated whether SWEDD is
an early form of PD, a misdiagnosis of clinical PD, or whether
it is a distinct movement disorder (Erro et al., 2016; Lee et al.,
2021; Marek et al., 2014). At present, the only certain means of
diagnosis is the discovery, at autopsy, of depleted brainstem
pigmented neurons with Lewy bodies, which are abnormal
aggregations of a-synuclein and can be detected histologically.
Hence, there is a strong clinical need for the development of
accurate, in vivo tests at the earliest stages of the disease, for example
molecular neuroimaging tracers to visualise o-synuclein (Shah
et al., 2020), and these have recently been successfully developed
such that future research in this area will soon clarify the distribution
of a-synuclein in the brain (Capotosti et al., 2021)

One reason why PD is difficult to diagnose is because of the
broad variation in its early clinical manifestations (Foltynie et al.,
2002) (Fig. 1). Rapid eye movement sleep behaviour disorder
(RBD) is a sleep condition characterised by the physical enactment
of dreams that are vivid, intense and often violent. RBD often
precedes PD, but not systematically before the first clinical motor
symptoms (Postuma, 2014). At diagnosis, over 50% of
dopaminergic neurons are already lost (Lang and Lozano, 1998),
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and patients present with a diverse array of neurological, motor and
autonomic impairments, each of which also demonstrate variable
severity (Foltynie et al., 2002). Disease progression is also highly
variable, not only in the rate of decline, but also in the development
of additional impairments, such as dementia (Braak et al., 2005;
Emre et al., 2007). Clinicians treat dementia with Lewy bodies
(DLB) and Parkinson’s disease dementia (PDD) as two distinct
disease entities. DLB is diagnosed when cognitive impairment
precedes Parkinsonian motor signs or begins within 1 year of
its onset, whereas PDD develops within the setting of well-
established PD (Fig. 5, see ‘1 year rule’) (Jellinger, 2018; Jellinger
and Korczyn, 2018). Although this timing distinction is often
considered arbitrary, recent neuroimaging and post-mortem studies
have demonstrated differences in the quantity and distribution
patterns of Lewy bodies and o-synuclein between DLB and PDD,
which suggest that these conditions have distinct aetiologies
(Jellinger, 2018).

Imprecise genetics of PD

Most PD cases are currently thought to be sporadic but likely
have a genetic component. The heritability of PD is estimated
to be ~26%, with over 90 common variants associated with
sporadic PD (Nalls et al., 2019). Individually, these variants have
low effects and no clinical utility. However, the overall genetic
risk of developing PD can be calculated with polygenic risk
scores (PRSs; Box 1). Although people in the highest decile of
the PRS distribution are six times more likely to have PD compared
to the rest of the population (Nalls et al., 2019), the distributions
of PRSs for PD cases and controls are highly overlapping. This
means that PRSs for PD currently have a low predictive value
for diagnosis and are therefore of limited value for precision
medicine.

Around 10% of PD patients have monogenic forms of the disease.
The identification of these rare genetic forms was a key step in
understanding PD mechanisms. The first identified monogenic
cause of PD was a missense mutation within SNCA, which causes
the p.A53T amino-acid substitution in the o-synuclein protein
(Polymeropoulos et al., 1997). This missense is involved in the
formation of Lewy bodies, the main hallmark of PD, but is not
unique in causing PD. Rare duplications and triplications of SNCA
(Singleton et al., 2003) also cause PD with a ‘dosage effect’
(Box 1): greater numbers of SNCA copies, causing increasing

4-12 years

8-10 years

endogenous levels of a-synuclein, have been associated with earlier
and more severe clinical symptoms (Eriksen et al., 2005). Moreover,
several other PD-causing missense and multiplication mutations
have been identified in the SNCA gene (Appel-Cresswell et al.,
2013; Kruger et al., 1998; Rosborough et al., 2017; Zarranz et al.,
2004). To understand the disease mechanisms associated with
different genetic variants, we need to capture the full spectrum of
variants associated with disease severity and identify the types of
symptoms presented by individuals.

The most important and common risk factor for PD is loss-of-
function mutations in the glucocerebrosidase gene (GBA). These
mutations cause lysosomal accumulation of glucocerebroside due to
a deficiency in the glucocerebrosidase enzyme, which leads to
lysosomal dysfunction (Holleran et al., 1993), resulting in increased
levels of a-synuclein via inhibition of the autophagic pathway (Du
etal., 2015). However, a key challenge in developing drugs to target
GBA impairments is that this same mutation can cause multiple
disorders, and disease models do not accurately mimic the clinical
effects of these mutations in humans (Fig. 2). In Gaucher’s disease
(GD), a multi-systemic metabolic disorder that typically manifests
by adolescence, both homozygous and heterozygous GBA
mutations increase the risk of developing PD (Riboldi and Di
Fonzo, 2019). GD is categorised into three main subtypes with
patients exhibiting varied clinical presentations. The most common
subtype is non-neuronopathic (Box 1) Type I. The neuronopathic
Type 1I subtype has an earlier onset and is more severe with acute
neurological involvement, whereas the neuronopathic Type III
subtype has a more chronic presentation (Alaei et al., 2019). There
are over 300 pathogenic mutations in GBA that affect the structural
stability of glucocerebrosidase and reduce its enzymatic activity
(Smith et al., 2017). GD Type I patients are frequently associated
with N370S GBA mutations, while Type II and Type III are
typically associated with L444P mutations (Riboldi and Di Fonzo,
2019). However, both heterozygous and homozygous N370S
mutations in GBA have been found among PD patients with no
GD symptoms (Aharon-Peretz et al., 2004). Moreover, an elevated
frequency of disease-associated GBA alleles has been found among
individuals with RBD (Beavan et al., 2015; Gamez-Valero et al.,
2018).

The phenotypic heterogeneity induced by these pathogenic
variants is uniquely observed in humans. N370S and the L.444P are
the most frequent GBA variants linked to PD (Lesage et al., 2011).
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Fig. 2. GBA mutations: genetic heterogeneity in human versus disease
models. GBA mutations are the most common genetic risk factor for
Parkinson's disease (PD). However, GBA mutations are also found in different
human disorders, such as Gaucher’s disease (GD), dementia with Lewy
bodies (DLB) and rapid eye movement sleep behaviour disorders (RBDs), and
in healthy individuals. Different models of GBA mutations, including mouse
and human induced pluripotent stem cell (iPSC)-derived neuron models,
develop the same observable phenotypes. Together, this suggests that other
genetic or non-genetic factors contribute to GBA-mutant PD in the human
population.

In human induced pluripotent stem cell (iPSC) models, these variants
consistently cause cellular abnormalities, such as dysfunctional
autophagy in the endolysosomal pathway (Fernandes et al., 2016).
However, in mouse models, N370S homozygosity is lethal at the
neonatal stage of development (Xu et al., 2003), while most other
mouse models of GBA mutations do not exhibit Parkinsonian
phenotypes unless combined with a second risk factor, such as
o-synuclein overexpression (Do et al., 2021; Farfel-Becker et al.,
2019). This suggests that genetics alone is unable to explain the
disease, because other genetic and non-genetic factors, including
ageing, oxidative stress and epigenetics, modulate the clinical
phenotype associated with GBA mutations in the human population.

LRRK?2 encodes leucine-rich repeat kinase 2, also known as
dardarin/PARKS. G2019S is the most common mutation associated
with PD; in some populations, it can be found in 40% of people with
this disorder (Lesage et al., 2010). This gain-of-function mutation in
LRRK?2 has been associated with a higher risk of PD, and
consequently LRRK?2 inhibitors have been pursued as a potential
avenue for PD treatment (Zhao and Dzamko, 2019). However,
whether LRRK2 inhibition in patients is sufficient to reverse or to
potentially prevent PD manifestation is currently debated. One
reason for this scepticism is the incomplete genetic penetrance of the
G2019S mutation, which suggests that other risk factors alter

disease risk in carriers of this variant. Another reason is that some
G2019S carriers exhibit the clinical manifestations of PD without
developing Lewy bodies (Kalia et al., 2015).

Although PD patients with LRRK?2 and GBA mutations represent
a small fraction of PD cases, they are nevertheless crucial for
precision medicine. This is because by understanding the genetic
and phenotypic heterogeneity of these mutations we can hopefully
develop successful therapies to reverse their effects in PD patients.
As sporadic patients represent the majority of PD cases, genomic
data might also play an important role in extending the application
of these therapies to sporadic patients with GBA/LRRK2-associated
mutations, should these mutations be identified in this cohort.
Indeed, some GBA mutations have already been reported to
exacerbate disease outcome in sporadic patients and were associated
with accelerated development of dementia and a more aggressive
motor course (Stoker et al., 2020).

This illustrates that improving our understanding of genetic
heterogeneity and how it corresponds to clinical variability should
increase our ability to both predict disease and define subtypes by
their aetiology, thus paving the way for more precise treatments
(Hennekam and Biesecker, 2012). To achieve the aim of providing
patients with tailored treatment that considers their unique genetic
and phenotypic presentation, a deep understanding of the
phenotypes and genetics of a disorder is needed. Precision
medicine hence requires such fine-grained, deep data.

Precision medicine requires deep genomic and

phenotypic data

As exemplarily presented for PD, a clinical disorder can be
associated with diverse clinical phenotypes that render diagnosis
difficult and with a diverse genetic background that renders
treatment development and selection difficult. The one-size-fits-
all approach does not account for such heterogeneity. Precision
medicine could provide more tailored treatments, but achieving this
requires deep understanding of the disorder, which necessitates in-
depth data collection and analysis.

Why do we need better phenotypes?

The genetic and phenotypic heterogeneity observed within complex
disorders complicates research. If a heterogeneous patient group is
described by a single label, as often occurs in case-control studies,
any subsequent analysis of this group will inherit the uncertainty
and confounders from this broad diagnostic label. This has a
negative impact on clinical practice, which relies on insights gained
from such studies. To improve research outcomes, broad clinical
labels should be replaced by sensitive, objective and detailed
phenotypes.

Medical intervention research relies heavily on clinical trials, in
which the effectiveness of a treatment is compared between groups.
Given that the aforementioned broad diagnostic labels can capture
multiple aetiologies, we may well see heterogeneous responses to
treatment in a clinical trial, with only a small subset of patients
showing a benefit (Fig. 3). The overall verdict in such cases would
be that the treatment is not effective, despite its efficacy on a
particular subset. This one-size-fits-all approach may partly explain
why many clinical trials investigating disease-modifying drugs for
PD have failed (Athauda and Foltynie, 2016). As such, clinical trials
could greatly benefit from more granular stratifications of PD and
from more personalised approaches.

When several treatments for a disorder successfully pass clinical
trials, treatment selection becomes a difficult task for clinicians.
Clinicians mostly rely on clinical expertise and general treatment
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guidelines when deciding which treatment to prescribe, creating a
long journey of trial-and-error until a suitable treatment is found.
Treatment selection could thus benefit from the insights of subtype-
sensitive clinical trials and a general investigation into the
association of treatment effect and biotypes. For example, clinical
trials assessing treatments that target genetic forms of PD are
starting to become more common (Mullin et al., 2020; Schneider
and Alcalay, 2020), despite these forms being much rarer than
sporadic PD. As precision medicine aims to consider the
pathophysiological uniqueness of an individual as well as the
genetic background, understanding the genetic basis of a disorder is
an important first step in this direction.

Phenotypes that are accurate, sensitive and robust are important,
as the quality of the measurement determines the utility of the
analysis, especially so for genetic studies (O’Sullivan and Ioannidis,
2021). In a genetic association analysis, if the case group contains
control and/or misdiagnosed subjects, disease-associated genetic
loci may not be identified (Manchia et al., 2013). In addition, the
selection of controls must be monitored closely as some controls,
despite being healthy at study onset, may go on to develop a disorder
at a later stage. In such a situation, we need better defined and more
precise phenotypes to identify genetic associations rather than
solely prioritising larger sample sizes for better statistical power
(Manchia et al., 2013). Pastor (2012) identified two objectives for
improving phenotype quality and hence the quality of genetic
analysis: (1) the confirmation of clinical diagnoses through long-
term follow up or additional biomarker tests and scans; and (2) the
differentiation of sub-phenotypes or the usage of traits that more
accurately reflect the disease spectrum. Quantitative traits (Box 1)
have been shown to have better reproducibility in GWAS compared
to binary traits, which often encompass broad diagnostic classes
with inherent heterogeneity (O’Sullivan and loannidis, 2021).
For example, the genetic associations for height measured in
centimetres are more likely to be reproducible across different
cohorts compared to genetic associations for the binary trait of being
taller than 180 cm. Recent efforts to investigate the genetic basis of
more precise phenotypes include studies that reveal the heritability
of image-derived phenotypes (IDPs), like brain region volumes or
cortical thickness measurements (Elliott et al., 2018). Thus,
unbiased, objective and sensitive measures are needed to describe
phenotypes.

With the emergence of next-generation sequencing, Hennekam
and Biesecker (2012) foresaw the need for next-generation

phenotyping back in 2012. A decade later, deeply phenotyped
cohorts have become a major subject of interest for clinicians and
medical geneticists, as we discuss next.

What is deep phenotyping?

In clinical practice, a phenotype is a label assigned to a specific set
of observable traits, including, among others, morphological,
physiological and/or behavioural traits (Robinson, 2012). Such
traits can be inferred from medical history, questionnaires, clinical
tests, blood tests, imaging and/or physical examinations (Fig. 4).
Instead of reducing this highly complex set of traits into one disease
label, deep phenotyping aims to retain this information. It tries to
capture an individual’s phenotypic presentation in a precise and
comprehensive manner by leveraging information gained from
different data sources (Robinson, 2012). These metrics are also
monitored over time, instead of focusing on a single time point
when a diagnosis is made (Weng et al., 2020). As a result, an
individual’s specific phenotype is described in all of its dimensions.
Deep phenotyping thus offers a more complete picture of a disorder
so that its nature, treatment and subtypes can be better understood
(Dorsey et al., 2020) (Fig. 3).

Deep phenotyping also provides measures at different scales,
such that the journey of a given protein can be followed from the
level of genetics through omics and all the way through to
manifestations in behaviour. A phenotypic assessment on different
scales thus gives a better understanding of disease manifestations,
their impact on daily life and their relation to pathophysiology.
Combined with genetic data, which are becoming increasingly
accessible due to falling costs, we can explore the heritability and
true genetic basis of objective and precise phenotypes (O’Sullivan
and Joannidis, 2021). Such deep understanding can guide drug
discovery and advance precision medicine in an objective and
effective manner.

How can we analyse and utilise deep phenotyping data?

Traditional research primarily relies on hypothesis-driven
approaches, using which specific data are gathered to answer one
question. Data-driven approaches have gained popularity following
advances in data collection, storage and computing. Deep
phenotyping produces an abundance of high-dimensional data
that can be leveraged to answer a multitude of questions. Such an
abundance of data also allows for data-driven approaches (Goecks
et al., 2020).
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The abundant data generated by deep phenotyping, however,
pose unique challenges to statistical methods. Deeply phenotyped
cohorts offer a large amount of data for a comparably small number
of individuals. Despite global efforts, including the sharing of data,
to obtain a more representative number of participants, cohorts
remain small in relation to the number of collected features; for
example, the PPMI study collected 2442 measures on 1683
individuals. Therefore, special care must be taken when
performing statistical tests and building models. Additionally,
large amounts of missing, highly correlated or multi-modal data
pose further challenges to conventional statistics in these cohorts.
This is because standard statistical tools often fail to account for
such data characteristics (Johnstone and Titterington, 2009).

Machine learning (ML) approaches are, therefore, required to
handle such challenging data (Goecks et al., 2020). There are four
broad applications of ML that are relevant for medicine: risk
analysis, diagnosis, stratification and prognosis (Fig. 4). A major
aim of precision medicine is to identify people at risk early, such that
preventive measures can be applied. Risk analysis, as well as
diagnosis, can be achieved through supervised ML (Box 1)
techniques like regression (Box 1) and classification (Box 1)
methods that reveal potential risk and protective factors (Solana-
Lavalle and Rosas-Romero, 2021). Another aim of precision
medicine is to provide tailored treatment to individual patients,
which can be achieved by classifying patients into finely grained
disease subtypes that respond better to certain treatments.
Unsupervised ML (Box 1) methods like clustering (Box 1)
approaches and latent class (Box 1) can reveal such subtypes
(Brendel et al., 2021). Precision medicine also aims to identify
treatment tailored to a specific stage of a disorder. Knowledge about
these different aspects can be gained through disease progression
modelling (Oxtoby et al., 2021).

Data generated through deep phenotyping therefore pose
challenges; however, powerful methods, mainly from the field of
ML, exist and are being developed to handle them. When such
methods are successfully applied to rich and valuable datasets, we
can answer important questions about disorders and thus advance
precision medicine.

Data collected for deep phenotyping and the insights gained
Precision medicine requires deep phenotyping, and methods exist
to handle and analyse such data to provide useful insights
into disorders. Here, we discuss how such valuable data can be
collected and what information can be gained through each
modality.

Deep clinical phenotyping

Clinical phenotyping in PD often uses information from clinical
tests, questionnaires or subjective descriptions of an individual’s
tremor to assign a disease label. Deep clinical phenotyping begins
with a traditional clinical examination, in which such data are
gathered, and then expands on this information with sensors that
monitor patients over longer periods in real-life situations (Dorsey
et al., 2020).

Traditional clinical examinations already provide information
about phenotypic heterogeneity that can be leveraged to study
subtypes. Collected data can include clinical tests and examinations
for motor impairment, autonomic function and cognitive abilities,
as well as questionnaires about mental health, sleep quality and
problems with the activities of daily living. The identification of PD
subgroups has been a research focus since 1990 (Jankovic et al.,
1990). Instead of studying differences between cases and controls,
differences between cases can be studied through data gathered in
clinical examinations that are then analysed with ML methods.
Early efforts focus on motor symptoms of PD assessed with the
Unified Parkinson Disease Rating Scale (UPDRS) and differentiate
three subtypes based on the ratio of the summed scores of specific
domains: tremor dominant, postural instability and gait difficulty,
or akinetic rigid and intermediate (Kang et al., 2005; Schiess et al.,
2000). The inclusion of non-motor symptoms increases the
stability and consistency of these subtypes (Ren et al., 2021).
Efforts to include a broader range of clinical examinations and
apply clustering techniques have identified discrete PD clinical
subgroups, each displaying a characteristic set and degree of
symptoms (Fereshtehnejad et al.,, 2015; Lawton et al., 2015).
The subtypes revealed by Fereshtehnejad et al. (2015) have
been subsequently shown to predict disease progression
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(De Pablo-Fernandez et al., 2019). As Fereshtehnejad et al. (2017)
noted, several studies reveal clinical subtypes identified through ML
approaches, but no consensus has been established, nor have these
methods been incorporated into clinical practice. This might be
because the proposed subtypes and the methods used to define
them lack consistency and stability (von Coelln et al., 2021). The
inconsistency in such methods could be due to the selection of
different variables for the model and the instability could be due to a
selection bias introduced via data cleaning (Fereshtehnejad et al.,
2017). Furthermore, the longitudinal aspects of PD have thus far
been disregarded in most of these approaches, such that snapshots of
patients at different stages of the disorder have been used. Owing to
these issues, more fine-grained and consistently collected data that
better represent the clinical phenotype or incorporation of other
phenotype modalities and the application of methods that combine
clustering and progression modelling (Young et al., 2018) could
improve stratification efforts.

Data-driven PD diagnosis does not focus on traditional clinical
examinations; instead, it uses these as the prediction target. As PD is
a clinical diagnosis, a diagnosis based on clinical examinations is
straightforward and does not require ML. However, a recent study
showed that data gathered through other means, e.g. voice
recordings, gait analysis, etc., have resulted in good prediction of
PD using ML methods (Mei et al., 2021).

Digital sensors

Clinical phenotypes gathered through traditional clinical
examinations have several limitations. First, detailed clinical tests
and questionnaires have been criticised for their lack of precision
(Regnault et al., 2019). Second, clinical tests are conducted at
specific time points and only reveal snapshots of a person’s
phenotype. Such snapshots can be confounded by the increased
phenotypic variability observed with ageing and with disease
onset and progression (Sheridan et al., 2003). Third, detailed
investigations by clinicians are time consuming and expensive.
These specifically designed tests can take several hours and are
conducted by trained staff, meaning that participants must attend
clinics or be assessed at home. If an impairment is too advanced,
patients may drop out due to the time investment and strain of the
procedures (Dorsey et al., 2020). Finally, clinical tests are conducted
in an artificial environment and do not accurately reflect real-world
circumstances (Dorsey et al., 2020).

Digital sensors, which collect data and convert and transmit them
digitally, can address these limitations (Brognara et al., 2019). Such
devices tend to be more sensitive and accurate than traditional
approaches. They also enable long-term data collection, which can
provide a clearer picture of phenotypes and their trends by averaging
measures over longer periods of observation (Hayes et al., 2008). In
addition, these digital sensors allow automatic, non-disruptive data
collection, in a real-world setting that does not depend on
experienced staff. For example, in addition to extensive biannual
assessments, the Personalized Parkinson Project (PPP) collects day-
to-day real-world data through a wearable smart device known as the
Verily Study Watch (Bloem et al., 2019). Participants are asked to
wear the device all day throughout the 2 years of the study. This
multi-sensor device collects data about acceleration, pulse rate,
electrodermal activity, electrocardiogram, relative humidity,
environmental temperature and ambient light level. Preliminary
analyses show that such digital data have promising features that
discriminate healthy controls from PD patients and that sensitively
describe motor symptom progression (Schlachetzki et al., 2017,
Shah et al., 2020).

Digital sensors provide large amounts of data and thus power for
statistical analyses: a considerable number of observations are
acquired per person per second over a long time. Such sensors can
also be worn by anyone and are relatively inexpensive and non-
invasive. For comparison, polysomnography monitors the sleep of a
single person over a single night in an artificial sleep laboratory,
which is both costly and an inconvenience for the participant. By
contrast, wrist-worn accelerometers can provide data about
sleep for many participants over several nights at home
(Sundararajan et al., 2021). Although the sleep features assessed
by wearable sensors do not match polysomnographies perfectly,
they provide valuable and valid information about numerous
clinical features about sleep, steps taken, physical activity,
distance, etc. for many people (Evenson et al., 2015), and thus
help us gain longitudinal insights into impairments in everyday life
(Johansson et al., 2018).

Biomarkers and intermediate phenotypes

One strength of deep phenotyping is that it captures phenotypes at
different scales and enables the study of biomarkers, which are
endogenous, measurable, characteristics that mark either the risk
for, or the manifestation of, a disease. Biomarkers allow deeper
understanding of ongoing changes in disease pathology, from the
molecular to the behavioural level. For example, changes in the
brain can be detected via medical imaging, while cellular
perturbations can be detected through omics measures.

These quantitative traits can be used to study the differences
between clinically defined groups. However, like in genetic
analyses, the inherent uncertainty and imprecision of binary
disease labels affect such studies, especially in neurodegenerative
disease research (Mattsson-Carlgren et al., 2020). An alternative
approach is to objectively identify homogeneous groups based
on biomarkers and then explore the association between these
groups and clinical phenotypes (Espay et al., 2017) (Fig. 5).
Methods like Mendelian randomisation (Box 1) can help identify
causal links between genes and environmental factors or biomarkers
(Noyce and Nalls, 2016). Thus far, a limited number of biomarkers
have shed light on the neuropathophysiology of disease subtypes
and have been helpful for monitoring disease progression and
predicting its course. For example, the cerebrospinal fluid (CSF)
biomarkers amyloid-p (AB42), total tau and phosphorylated tau can
serve as early markers of Alzheimer’s disease and thus provide
clinically relevant diagnostic information (Blennow and Zetterberg,
2018). Other biomarker modalities that assess molecular markers,
like CSF and blood, or positron-emission tomography (PET) have
shown great prospects in understanding disease mechanisms and
spreading of pathologies in neurodegeneration (Lashley et al.,
2018).

Blood and CSF biomarkers

The Alzheimer’s disease examples highlighted above (Blennow and
Zetterberg, 2018; Lashley et al., 2018) show that blood and CSF can
be useful sources of biomarkers for neurodegenerative disorders. To
aid prognostic and diagnostic decision-making, biochemical
markers of early PD have also been extensively studied. However,
no single marker has so far been sufficient to accurately diagnose
PD. For example, astrocytic cell death in PD can be detected by
elevated blood and CSF levels of glial fibrillary acidic protein (Ding
etal., 2021). However, this signature is also observed in MSA, PSP
and corticobasal degeneration, thus complicating the differentiation
of typical and atypical Parkinsonian disorders (Constantinescu
et al., 2010). Conversely, neurofilament light protein levels can
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distinguish PD from PSP and MSA, but are unable to distinguish
between PSP and MSA (Constantinescu et al., 2010). As such, a
repertoire of biomarkers needs to be studied simultaneously to aid
the diagnosis of PD (Schapira, 2013).

The loss of dopaminergic neurons in PD likely involves
inflammation, either as a cause or a consequence (Appel, 2012).
A recent study reported the appearance of an a-synuclein-reactive
T-cell population in the blood 10 years prior to diagnosis with
motor PD (Lindestam Arlehamn et al., 2020). This result suggests
that it might be possible to identify modifications in the blood of
individuals prior to developing symptomatic PD or another

Table 1. Overview of deeply phenotyped cohorts for Parkinson’s disease

Biomarker-driven stratification

Fig. 5. Clinical phenotype-driven versus biomarker-
driven research. (A) Biomarkers are useful for identifying
differences between clinical phenotypes and clinical
subgroups, and in providing a differential diagnosis.

i::: (B) Biomarkers can also differentiate disease subtypes,
— 054 which can then be associated with clinical phenotypes
and behaviour. For example, in patients with pure
2044 synucleinopathy, we expect to only see PD-specific
FYTY biomarkers (red), whereas in those with AD co-
[ AAdA pathologies, we expect abnormalities in AD-specific
| -CI biomarkers as well (blue). The distinction between DLB
and PDD is defined by the "1-year rule’: if the onset of
| dementia symptoms is within 1 year of parkinsonism, the
'-D disorder is called DLB; if parkinsonism is present for more
than 1 year before the onset of dementia, the disorder is
called PDD. AD, Alzheimer’s disease; DLB, dementia
— with Lewy bodies; MCI, mild cognitive impairment; PD,
[ bB Parkinson’s disease; PD-D, Parkinson’s disease

dementia.

o-synucleinopathy, such as DLB and MSA. As such, changes in
the blood’s transcriptome, as obtained by RNA profiling, could
identify novel PD biomarkers.

Brain imaging biomarkers

Brain imaging offers rich, detailed in vivo data that can assist with

differential diagnosis, prognosis and subtyping (Pagano et al.,

2016). Various imaging modalities exist that can investigate

structural, functional and molecular changes in diseased brains.
Structural MRI with T1 weighting is the most commonly

available standard brain imaging resource in deeply phenotyped

Study PPMI PPP Luxembourg Parkinson’s Study OPDC, Discovery CCBP Fox Insight
Sample size n cases 1400 650 800 900 4000 (also AD) 22205
n controls 200 800 200 1000 8231
Timing Duration (years) >10 2 4 >5 >5
Frequency (months) 3-12 12 12 18 12 3-12
Clinical measures Motor 4 v v v v 4
Non-motor 4 v v 4 v 4
Neuro-psychological v v v v v v
Daily living (ADLs) v v v v 4
Gait 4
Voice v
Digital tools Accelerometer 4 v 4
Pulse rate 4 v v
ECG v 4
Gait sensor v
Microphone v
Sleep v
Touch screen v
Biospecimen CSF 4 4
Blood 4 v 4 v v
Stool v v
Urine 4 4
Genomics Genotype v v v v v v
WES/WGS v v
RNA sequencing v
Imaging MRI 4 v v v
DaTscan 4 v

Various studies with different goals have collected a rich amount of data to study PD. These studies share many data modalities that can be merged in data-
sharing efforts. Longitudinal PD cohorts that incorporate clinical measures, digital tools, biological samples and imaging are highlighted here. AD, Alzheimer’s
disease; ADLs, activities of daily living; CSF, cerebrospinal fluid; ECG, electrocardiography; MRI, magnetic resonance imaging; WES, whole-exome sequencing;

WGS, whole-genome sequencing.

Data sources: Parkinson Progression Marker Initiative (PPMI) (Marek et al., 2018), the Personalized Parkinson Project (PPP) (Bloem et al., 2019), the
Luxembourg Parkinson’s Study (Hipp et al., 2018), the Oxford Parkinson Discovery Centre (OPDC), Discovery cohort (Griffanti et al., 2020), the Cincinnati Cohort
Biomarker Program (CCBP) (Sturchio et al., 2020) and the Fox Insight Study (Smolensky et al., 2020).
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cohorts. Structural imaging measures from such cohorts have
revealed neuroanatomical PD subgroups that correspond to clinical
subtypes and that can predict disease progression (Shu et al., 2021;
Wang et al., 2020). Some cohorts offer molecular imaging data that
can be used to research the spreading patterns of proteins in the
brain. Some cohorts (Table 1) include DaTscan imaging, which can
shed light on the SWEDD subgroup (Choi et al., 2017). In general,
molecular imaging has been used to investigate the spreading
pattern of a-synuclein in PD (Horsager et al., 2020) and to identify
distinct subtypes. Such insights are valuable for precision medicine
as the identification of biotypes, which are clusters of individuals
that share biological signatures, can inform treatment responses in
several disorders, such as cancer and Alzheimer’s disease (Cattaneo
et al., 2016; Machado et al., 2020).

Imaging data from deeply phenotyped cohorts are becoming
increasingly available to non-imaging experts in the form of IDPs,
which provide a great tool for studying the brain. IDPs summarise
high-dimensional data as informative, subject-level measures of
thickness, volume, connectivity or protein levels. These measures
can either be curated from expert knowledge or acquired in a data-
driven objective manner (Gong et al., 2021). IDPs can be linked to
genetics to reveal the genetic contributions to brain abnormalities
relevant for psychiatric and neurological disorders, as well as for
ageing. For example, a GWAS with IDPs using data from the UK
Biobank has shown that many brain characteristics are heritable and
some genes, such as EGF, are associated with brain lesions (Elliott
et al., 2018).

Cohorts and data sharing

Several PD cohorts now exist that provide data from diverse sources,
enabling research into the complexity of the disease. Such cohorts
include the aforementioned PPMI (Marek et al., 2018), the Oxford
Parkinson Discovery Centre Discovery cohort (Griffanti et al.,
2020), the PPP (Bloem et al., 2019), the Cincinnati Cohort
Biomarker Program (Sturchio et al., 2020), the Luxembourg
Parkinson’s Study (Hipp et al., 2018) and the Fox Insight Study
(Smolensky et al., 2020) (Table 1). Although these cohorts follow
different objectives, they share a vast amount of common data
modalities that could be merged to increase the sample size, e.g. for
GWAS. Data-sharing efforts are needed to create larger, more
unbiased population samples that better capture heterogeneity,

Challenges

« Harmonisation of semantics
« Variety of clinical tests
« Long-term storage

e Multi-modal data
» Heterogeneous data
« High-dimensional data

« Transfer to clinical settings
» Robustness
« Transparency and interpretability

especially in terms of genetics. Platforms like the Dementia
Platforms UK (Koychev et al., 2020) are set up to combine data
from several cohorts into a standardised framework. A similar tool
for PD is still required, despite several efforts and calls for it, for
example by the BioLoC-PD working group (Heinzel et al., 2017).
However, some efforts to combine and harmonise PD cohorts do
exist, such as the Accelerating Medicines Partnership Parkinson’s
Disease platform (Iwaki et al., 2021).

As medical data are sensitive and require protection, indirect ways
in which to securely share such data are being explored. Instead of
defining data-sharing agreements between study sites, decentralised
approaches, such as swarm learning (SL), can be followed. SL does
not require data exchange or a central structure. Instead, parameters
are trained by local models on local data and are included in a swarm
network (Box 1) that consists of multiple local sites (Warnat-
Herresthal et al., 2021).

In addition to the technical and legal challenges of data sharing,
data storage, analysis and transferability issues are also a concern.
These are discussed in the following section.

Challenges and opportunities

New techniques may enable the faster and easier collection of large
amounts of data, but they also pose new challenges in the curation,
integration, sharing and interpretation of the data (Fig. 6). Data
collection and storage require agreed-upon standards and global
efforts. The analysis of these data is complicated by the sheer
heterogeneity, multi-modality and scale of the data. Furthermore,
one of the biggest challenges lies in transforming these complex
data into medically actionable resources with clinical utility. Here,
we focus on the data analysis aspect, as the other elements have
recently been reviewed elsewhere (Matrana and Campbell, 2020;
Weng et al., 2020).

How to merge data modalities?

Deep phenotyping produces different data modalities that have to be
studied together. The classical method used to integrate different
data sources is to merge different modalities into a single matrix.
However, this can introduce a bias, as higher-dimensional data (e.g.
imaging), unlike lower-dimensionality data (e.g. demographics),
will often be preferred by algorithms simply because of their size
and thus larger influence. Markello et al. (2021) have proposed

Fig. 6. Overview of challenges and
resulting opportunities. Deep
phenotyping produces large amounts of
data, which present various challenges in
three domains: data storage, analysis and

« Security « Ethics and legality application. However, these challenges
give us the opportunity to set global
standards and, once the infrastructure is in

Data‘ Data Application z:ac?c,1 t(r) g“a1|r1tvalr:1abli?i novetl |nsr|ghitsi |:to
collection analysis A in clinical Sz, ers that can guide us fo precisio
and / and practice medicine.
storage handling ‘
Opportunities

« Global naming conventions
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swarm learning

« Data integration
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« Precision medicine

» Deep learning,
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creating a similarity network for each data modality separately and
then iteratively fusing these together. This similarity network fusion
approach has the advantage of overcoming the dimensionality bias,
plus it generates a low-dimensional representation of each source
that can be interpreted.

Another issue is the noise associated with each modality. Gene
network methods are widely used to identify perturbed molecular
pathways that underlie complex genetic disorders. A common
limitation of all these approaches stems from the functional datasets
themselves, as no single dataset or data modality can provide a
complete picture of the functional association between genes.
Although it is possible to merge different datasets and to build a
more comprehensive and unique network, different levels of noise
from each data source get incorporated into the result, which can
lead to false associations. Honti et al. proposed a powerful method
to address this issue by weighting functional similarities between
genes according to their likelihood of influencing the same
mammalian phenotype(s) (Honti et al., 2014; Sandor et al., 2017).

Analysing imaging and genetic data

New fields of study have emerged that deal with the combination of
different data modalities. Imaging genetics integrates analysis of
brain imaging and genomics to gain insights into the genetic impact
on brain function and structure. In early efforts, a single genetic
marker (e.g. a single-nucleotide polymorphism) and a single
imaging trait were studied, and then PRSs and multiple IDPs were
studied together (Shen and Thompson, 2020). Today, methods that
integrate multiple single-nucleotide polymorphisms and multiple
traits exist that model the influence of genetic variation on several
IDPs. To decrease the amount of parameters needed to fit such
univariate models, sparse multivariate models have emerged in
which all features are integrated into a single large model. This
further allows us to model the relationship between genetics and
phenotypes while accounting for dependencies between phenotypes
(Nathoo et al., 2019).

Analysing imaging and transcriptomic data

Analogously to imaging genetics, imaging transcriptomics deals
with the integrated analysis of brain imaging and gene expression
data to gain insights into the molecular changes associated with
neurodegeneration. As omics offer a dynamic dimension, disease
progression can be followed by using imaging transcriptomics
(Katrib et al., 2016). A common approach is to correlate gene
expression with IDPs through shared defined regions of interest
(Mroczek et al., 2021). This means that a discrete map is applied to
the brain in which all measures in one region are summarised to
represent that region. This is largely made possible through the
publicly available dataset from the Allen Human Brain Atlas
(https:/human.brain-map.org/), which holds gene expression data
for 102 brain regions and for 20,000 genes of six post-mortem
brains from healthy donors (Hawrylycz et al., 2012). Guidelines to
handle this dataset have been proposed to standardise the research in
this emerging field (Arnatkeviciute et al., 2019). Recent efforts have
attempted to utilise the spatial resolution of both data sources
(Zarkali et al., 2021).

Heterogeneity as an opportunity

In disease research, the problems arising from high heterogeneity
should also be viewed as an opportunity. Past efforts to investigate
PD have led neither to a successful understanding of the disorder
nor to a disease-modifying treatment. Thus embracing data
heterogeneity and investigating it could provide new insights.

Several methods for uncovering heterogeneity in large datasets have
been proposed. We can classify these approaches as subtype and
stage models: subtype models focus on finding homogeneous
subgroups while ignoring the disease stage; stage models ignore
subtype heterogeneity but investigate the disease stage. The SuStaln
model (Young et al., 2018) combines both of these efforts by
integrating clustering and disease progression modelling. It has
successfully shed light on Alzheimer’s disease subtypes based on
the spreading of phosphorylated tau (Vogel et al., 2021) and could
inform spreading patterns and progression subgroups in PD as well.

How to handle large data?

Deep phenotyping combined with genetic data has led to the
generation of unprecedented amounts of data, which comes with its
own set of challenges. First, the storage and handling of high-
dimensional data is very computationally demanding. This issue is
typically addressed through the use of high-performance computing
systems, by sharing resources among research institutes and by
using cloud-based systems (Bauermeister et al., 2020). Second, the
analysis of high-dimensional data requires large sample sizes to
provide sufficient statistical power. Data-sharing efforts and the
decreasing costs of data collection are helping in this regard (Iwaki
et al., 2021). Third, appropriate methods to process such data need
to be developed and applied. Typically, dimensionality reduction
(Box 1) techniques are used to extract meaningful features that can
be interpreted (Tao et al., 2017). An alternative approach is deep
learning (DL; Box 1). Despite its debated role in medicine due to a
lack of transparency and model interpretation, DL is gaining
popularity for its ability to handle high-dimensional datasets.
Especially in medical imaging, convolutional neural networks
(CNNs; Box 1) are often applied with good results (Choi et al.,
2017). The concerns regarding transparency are being addressed
through the branch of interpretable and explainable artificial
intelligence that, for example, generates visualisations of the
decision process, such that physicians can review the decision
made by the model (Magesh et al., 2020).

From deeply phenotyped cohorts to the general population

Although deeply phenotyped cohorts constitute a unique
opportunity for precision medicine, the collection and analysis of
certain data modalities are time consuming for clinicians, patients
and researchers alike. This means that participation cannot be
extended to the general population nor to cohorts that include
hundreds of thousands of individuals. One such resource-heavy data
modality is the definitive diagnosis of RBD using
polysomnography, which monitors various body functions during
sleep in a specialised clinic (Hogl and Stefani, 2017). Identifying
RBD in the general population is crucial as RBD patients that carry
severe GBA variants show faster transition to PD and dementia
(Krohn et al., 2020). Fortunately, in vitro models have also
highlighted a possible alternative diagnostic tool for RBD based on
findings that implicate lysosomal storage dysfunction as an early
marker of GBA deficiency (Bae et al., 2015). These insights,
combined with data resources such as the UK Biobank, offer a
unique opportunity to identify severe GBA variant carriers or
individuals with sleep disorders. The UK Biobank provides a broad
range of phenotypic data, including cognitive and sleep measures,
digital markers like movement recorded by smartwatch
accelerometers, genetic information and, more recently, blood
proteomic profiles for over 500,000 adults aged 37-73 years
(Bycroft et al., 2018). To expand the search for individuals in the
prodromal phase of RBD in the general population, we need to
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Fig. 7. A model for precision medicine in diagnosing and treating PD. To evaluate how pharmacological interventions might reverse the early (pre)clinical
symptoms of PD, the features of in vitro disease models, such as lysosomal dysfunction in fibroblasts with GBA mutations, need to be linked to the phenotypes of
RBD/PD patients, such as their sleep and biomarker profiles. The UK Biobank population could also be profiled to identify the earliest features of RBD and thus
help more at-risk patients. Cognitron is an artificial intelligence tool to evaluate mental skills of an individual (Hampshire et al., 2021; https:/www.cognitron.co.uk/).
GBA, glucocerebrosidase gene; MRI, magnetic resonance imaging; PD, Parkinson’s disease; PSG, polysomnography; RBD, rapid eye movement sleep

behaviour disorder; WES, whole-exome sequencing.

assemble such diverse sources of data across different scales,
spanning in vitro cellular models and clinical cohorts, as well
as the general population (Fig. 7). Additionally, using novel
computational approaches, features of in vitro cellular models have
to be linked to biomarker profiles of deeply phenotyped patients on
an individual level and expanded to the UK Biobank population to
identify the earliest features of disease.

Precision medicine has been criticised for its lack of clinical utility
and its failure to address the demands of public health (Ramaswami
et al., 2018). With key exceptions, such as the UK Biobank, which
combines principles of deep phenotyping with general health aims
(Bycroft et al., 2018), most deeply phenotyped cohorts focus on one
disorder and explore it in depth with a strong emphasis on clinical
interventions and drug research. On the surface, this focus on one
disorder can be regarded as a financial investment without much
benefit for the general population. However, methods developed for
deeply phenotyped cohorts, and the research insights into disease
mechanisms and risks, provide valuable information for the general
public. Furthermore, identifying disorders earlier could achieve a
shift from treatment to prevention, which would greatly benefit the
general population.

Future perspectives

Deeply phenotyped cohorts offer tremendous opportunities to
advance our understanding of complex disorders. The observed
phenotypic and genetic heterogeneity of such diseases must be
addressed to understand their underlying mechanisms and to
provide targeted treatments. High-throughput sequencing
technologies provide insights into genetic heterogeneity, while
deep phenotyping provides insights into phenotypic heterogeneity
via clinical (and intermediate biological) phenotypes. These
complex data challenge traditional statistical methods, but

advances in ML and data-sharing efforts show how such data can
be translated into meaningful and clinically valuable information.

One of the biggest challenges is to transfer disease insight
captured in deeply phenotyped cohorts to the general population
and dissect the prodromal phase of a disorder. Gathering as much in-
depth data from the general population is not feasible, but it is done
for deeply phenotyping cohorts. Therefore, novel approaches to
transfer our insights to clinical practice are needed. As most cohorts
focus on specific disorders, they provide limited merit to the general
population. Nevertheless, such shortcomings can be addressed by
the wealth of data provided by public resources, such as the UK
Biobank, that pose a unique opportunity to align clinical cohorts to
the general population. This would require diverse skills and
expertise in diverse areas, including clinical, cellular, genomic,
pharmacological, computational and artificial intelligence, to come
together and embark on interdisciplinary collaboration to push the
boundaries of scientific research. Therefore, through combined
efforts of industry and academia, the goal of precision medicine is
reachable for PD and other complex disorders.
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