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Abstract  1 

 2 

The efficient prediction of biomechanical properties of bone plays an important role 3 

in the assessment of bone quality. However, the present techniques are either of low 4 

accuracy or of high complexity for the clinical application. The present study aims to 5 

investigate the predictive ability of the evolving convolutional neural network (CNN) 6 

technique in predicting the effective compressive modulus of porous bone structures. 7 

The T11/T12/L1 segments of thirty-five female cadavers were scanned using the 8 

HR-pQCT scanner and the images obtained from it were used to generate 10896 2 D 9 

bone samples, in which only the cancellous bony parts were processed and 10 

investigated. The corresponding 10896 heterogeneous finite-element (FE) models 11 

were generated, and then a CNN model was constructed and trained using the 12 

predictions of the FE analysis as the ground truths. Then the remaining 260 bone 13 

samples generated from the initial HR-pQCT images were used to test the predictive 14 

power of the CNN model. The results show that the coefficient of the determinant (R2) 15 

from the linear correlation between the CNN and FE predicted elastic modulus is 0.95, 16 

which is much higher than that from the correlation between the BMD and the FE 17 

predictions (R2 = 0.65). Furthermore, the 95th and 50th percentiles of relative 18 

prediction error are below 0.28 and 0.09, respectively. In the conclusion, the CNN 19 

model can efficiently predict the effective compressive modulus of human cancellous 20 

bone and can be used as a promising and clinically applicable method to evaluate the 21 

mechanical quality of porous bone.  22 

 23 

Keywords: Convolutional neural network, cancellous bone, mechanical property, 24 

prediction error  25 
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1. Introduction 1 

Prediction of the mechanical properties of the human bone tissues is of great 2 

importance for the assessment, prevention and early treatment of bone fracture. 3 

Currently, using the measurements of the bone mineral density (BMD), such as the 4 

areal bone mineral density (aBMD) obtained from the dual energy X-ray 5 

absorptiometry (DXA) and the volumetric BMD (vBMD) obtained from the 6 

quantitative computed tomography (QCT), are widely used in clinic. However, the 7 

aBMD obtained from the DXA contains neither the information on the bone 8 

microarchitecture nor any mechanical property of the bone tissues, and the vBMD 9 

cannot provide information on the distribution of the BMD and the bone 10 

microarchitecture. Because the increasing  risk of bone fracture is caused not only by 11 

the loss of bone mass but also by the deterioration of the bone microarchitecture, 12 

neither aBMD nor vBMD can provide a good prediction of the mechanical property 13 

of the bone tissues and approximately only 50% of the variability in the vertebral 14 

fracture can be predicted by these BMD measurements (Dong et al., 2018; Ebbesen 15 

et al., 2000; Lochmueller et al., 2002; Lu et al., 2015).  16 

In the last a couple of decades, the subject-specific finite element (FE) models of 17 

bone tissues have been widely used to predict the mechanical properties of bone 18 

tissues (Chevalier et al., 2009; Lu et al., 2014, 2019; Pistoia et al., 2002; Wang et 19 

al., 2012). It has been demonstrated that the three-dimensional (3D) FE models of 20 

bone have a higher ability for predicting the bone fracture loads than the densitometry 21 

measurements (aBMD and vBMD) (Lu et al., 2014; Wang et al., 2012). However, 22 

because of the high complexity in generating the 3D FE models of bone tissues 23 

(including the process of segmenting the bone tissues, mesh generation, etc.) and the 24 

high cost in performing the FE calculations, it is very challenging to transfer the 25 

subject-specific 3D FE modeling into the clinic for the routine use. In the recent years, 26 

the machine learning technique, e.g., the convolutional neural network (CNN), has 27 

emerged as a novel and crucial tool for predicting the properties of porous structures 28 

(Alber et al., 2019; Alastruely-Lopez et al., 2020; Chandran et al., 2018; Rane et 29 

al., 2019). For examples, Chandran et al. have managed the accurate prediction of the 30 
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thickness of cortex using the supervised machine learning algorithm (Chandran et al., 1 

2018); Rane et al. have managed the accurate prediction of the force of the skeletal 2 

muscles using the deep learning algorithm (Rane et al., 2019); Alastruely-Lopez et al. 3 

have developed the artificial neural network model to predict the impingement and the 4 

dislocation in the total hip arthroplasty (Alstruey-Lopez et al., 2020). In principal, 5 

the CNN technique takes the medical images, the patient’s information (such as the 6 

gender, age), etc. as the input and then establishes the relationship between the input 7 

variables and the output (such as the bone fracture risk, etc.) using the learning 8 

process based on a large amount of datasets. Therefore, compared to the 9 

subject-specific FE modeling technique, the CNN technique has the clear advantages 10 

of being efficient, accurate and real-time and has the potential for the direct clinic 11 

routine use. Despite these, to the best of our knowledge, the application of the CNN 12 

technique in predicting the mechanical property of the vertebral bone tissues using the 13 

CT data has not been fully elaborated.   14 

The aim of the present study was to assess the capability of the CNN method in 15 

predicting the mechanical property of the human cancellous bone tissues based on a 16 

large amount of the CT images of bone tissues. 17 

 18 

2. Materials and Method 19 

2.1. CT image datasets of the human cancellous bone 20 

The high resolution CT images (HR-pQCT) of human cancellous bone instead of 21 

the clinical CT images were used in the present study, because the bone samples were 22 

from the elderly female patients and the microarchitecture of these bone tissues can be 23 

hardly characterized in the regular clinical CT images. The detailed procedure for the 24 

acquisition of the HR-pQCT images of the vertebral specimens is described in the 25 

previous studies (Lu et al., 2014; 2015). In brief, thirty-five cadavers were harvested 26 

from female patients with a mean age of 81.3 ± 7.2 year-old (range: 65 to 90 27 

year-old). The spinal segment of T11/T12/L1 was dissected and the specimens were 28 

scanned during frozen using the HR-pQCT scanner (XtremeCT, Scanco Medical AG, 29 
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Bruettisellen, Switzerland) operating at 59.4 kV, 900 µAs with an image voxel size of 1 

82.0×82.0×82.0 µm3.  2 

 3 

2.2. The effective elastic modulus of the bone from the finite element analysis 4 

The effective elastic moduli of the cancellous bone tissues calculated from the FE 5 

models were taken as the ground truth and used to train the CNN model constructed 6 

in the present study. To obtain the effective elastic modulus, the heterogeneous FE 7 

model of the human cancellous bone was created using the method previously 8 

developed (Lu et al., 2019). In brief, first, a volume of interest was cropped out from 9 

the vertebral body, which contained only the cancellous bone part (Figure 1). Second, 10 

the grayscale image datasets were smoothed using a Gaussian filter (sigma = 1.2, 11 

support = 2.0) to reduce the influence of the image noise and then each image voxel 12 

was converted to a two-dimensional (2D) 4-node plane stress element (PLANE182). 13 

In the FE mesh model generated, the heterogenous material model was defined by 14 

converting the image grayscale values to the corresponding Young’s moduli (Figure 15 

2). The image grayscale values were first converted into the vBMD values based on 16 

the linear calibration equation provided by the HR-pQCT scanner. The vBMD values 17 

were then converted into the bone ash densities using the relationship reported in the 18 

literature, i.e., 𝜌𝑎𝑠ℎ = 0.877 × 𝜌𝐻𝐴 + 0.079 (  𝜌𝑎𝑠ℎ is the bone ash density, unit in 19 

mg/cm3; 𝜌𝐻𝐴 is the HA-equivalent vBMD, unit in mg/cm3) (Knowles et al., 2016). 20 

Young’s modulus of each bone element was then calculated from the bone ash density 21 

using the following exponential density-modulus relationship (Knowles et al., 2016): 22 

E = {

0.1127 × 12001.746,   𝜌𝑎𝑠ℎ > 1200 

0.1127 × 𝜌𝑎𝑠ℎ
1.746, 400 ≤ 𝜌𝑎𝑠ℎ ≤ 1200

0.0104,                        𝜌𝑎𝑠ℎ < 400

        (1) 23 

In the above definition, an upper threshold of 1200.00 mg/cm3 was set to eliminate the 24 

effect of the artificially high grayscale values. On the other hand, the material with the 25 

bone ash density lower than 400 mg/cm3 was regarded as the bone marrow, and the 26 

corresponding Poisson’ ratio was set to 0.49 (Crawford et al., 2003). The Poisson’s 27 

ratio for the bone elements was set to 0.30. An example of the heterogeneous FE 28 
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model is shown in Figure 2(b), where the color map shows the distribution of the 1 

tissue Young’s modulus and the black areas represent the pores. 2 

The representative volume element (RVE) method was used to calculate the 3 

effective elastic properties of the cancellous bone, which has been widely used to 4 

calculate the mechanical properties of complex composites (Omairey et al., 2019). In 5 

the present study, the FE model of the 2D bone sample was taken as the RVE and 6 

periodic boundary conditions (PBCs) were applied to the RVE, which can be 7 

expressed as:  8 

𝑢𝑖
𝑏+ − 𝑢𝑖

𝑏− = 𝜀�̅�𝑘∆𝑥𝑘
𝑏              (2) 9 

where,  𝑢𝑖
𝑏+ and 𝑢𝑖

𝑏− are the displacements on a pair of nodes 𝑥𝑘
𝑏+ and 𝑥𝑘

𝑏− of 10 

two opposite boundary surfaces, and ∆𝑥𝑘
𝑏 = 𝑥𝑘

𝑏+ − 𝑥𝑘
𝑏−  with the superscript b 11 

indicating a quantity pertaining to boundary.  12 

The elastic stiffness components 𝐶𝑖𝑗𝑘𝑙 can be determined from the calculation 13 

results of RVE by: 14 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀�̅�𝑙               (3) 15 

In the present study, a plane stress problem is assumed and thus the effective 16 

Young’s modulus E of the cancellous bone can be derived as: 17 

𝐸 =
𝐶1111+𝐶2222

2
(1 − 𝑣2)              (4) 18 

where, v is the Poisson’s ratio and  19 

𝑣 =
2𝐶1122

𝐶1111+𝐶2222
               (5) 20 

To enable the process of a large amount of the bone samples, all the 21 

pre-processing and post-processing were automated using the in-house developed 22 

Matlab (R2019, MathWorks, Natick, Massachusetts, U.S.A.) code and the finite 23 

element analysis was performed using the Ansys APDL (v18.0, ANSYS, Inc., 24 

Canonsburg, PA, U.S.A.).  25 

 26 

2.3. Training and cross-validation of the CNN model  27 

In the present study, a convolutional neural network (CNN) model was developed 28 

to predict the effective elastic modulus of the vertebral cancellous bone. The 29 
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procedure for the training and testing of the CNN model is presented in Figure 3. The 1 

training process of the CNN model can be briefly described as below: 10636 2D 2 

human vertebral cancellous bone samples covering a large range of the bone 3 

porosities and bone microarchitectures were processed. Their effective Young’s 4 

moduli were calculated from the FE analysis and served as the ground truth for the 5 

effective modulus of the cancellous bone tissue. The distribution of the effective 6 

elastic moduli of the bone samples is shown in Figure 4, where the 50th percentile of 7 

the elastic moduli is 988.7 MPa. The 10636 bone samples were randomly divided into 8 

two parts: one part has 8000 samples used for training the CNN model and the other 9 

has 2636 samples used for the cross-validation of the CNN model.  10 

The CNN model constructed is shown in Figure 5, which can be briefly 11 

described as below: First, several nonlinear layers were applied to gradually extract 12 

the features in the bone images; afterwards, the grayscale CT image was transformed 13 

to a numerical value as the output of the CNN. In the present study, the grayscale 14 

image with the size of 14.9 × 14.9 mm2 (182 × 182) was taken as the input for the 15 

CNN model. Eight convolution layers, four pooling layers and four fully connected 16 

layers were applied to the image. The convolution kernels were trained in a 17 

hierarchical manner, which consisted of the low-level features to generate more 18 

complex patterns. The size of all the convolution kernels was set to 3 × 3. The 19 

maximal pooling was applied after the convolutional layers to simplify the 20 

information of the output neurons (Li et al., 2019). To improve the accuracy of the 21 

CNN model, the 20% dropout was used in the four pooling layers, and the batch 22 

normalization was used to mitigate the effects of the initialization and to accelerate 23 

the training of the CNN model (Li et al., 2019). In the present study, the grayscale 24 

images of the human vertebral cancellous bone tissues were taken as the input for the 25 

CNN model constructed and the corresponding effective elastic modulus for each 26 

bone sample was the output from the CNN model.  27 

In the training process, the CNN model learned the valid representation 28 

describing the geometric features of the vertebral cancellous bone tissues and 29 

discarded those features less important. A loss function was defined to quantify the 30 
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difference between the effective elastic moduli predicted from the CNN model and 1 

those calculated from the FE analysis. Then, the kernels and biases in the 2 

convolutional layers and the weights in the fully connected layers were adjusted using 3 

the backpropagation algorithm (Rubio et al., 2011). Iterative adjustments were made 4 

to minimize the loss function using a large amount of bone image datasets. In the 5 

present study, the mean absolute error (MAE) was set as the objective function: 6 

MAE[𝑌, 𝑓(𝑋)] =
1

𝑛
∑ |𝑌 − 𝑓(𝑋)|𝑛

𝑖=1           (6) 7 

where, 𝑌 is the effective elastic modulus of the bone tissues calculated from the FE 8 

analysis; 𝑓(𝑋) is the corresponding effective elastic modulus calculated from the 9 

CNN model and 𝑛 is the number of samples used for the cross-validation (𝑛 = 2636 10 

in the present study).  11 

The training process was conducted on a desktop computer with the setting of 12 

i7-8700 CPU, 32G RAM, and the Nvidia GTX1060. The batch size was set to 128 13 

and the training was iterated for 200 epochs. The training process took approximately 14 

2.0 hours.  15 

2.4. Predictive power of the CNN model 16 

To assess the predictive power of the CNN model constructed, 260 new bone 17 

samples were processed. The effective elastic moduli of these bone samples were 18 

calculated using the trained CNN model and the FE analysis, respectively. The FE 19 

predictions were served as the ground truth and the predictive power of the CNN 20 

model was obtained by comparing the values obtained from the CNN and the FE 21 

models (Figure 3b). To quantify the accuracy of the CNN model, the relative 22 

prediction error (RPE) was used, which is defined as below:  23 

RPE = 
|PCNN−PRVE|

PRVE × 100%            (7) 24 

where, PCNN is the effective elastic modulus calculated from the CNN model, PRVE is 25 

the corresponding value calculated from the FE analysis.  26 

 27 

3. Results 28 

3.1 Training and cross-validation of the CNN model 29 
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The relation between the mean absolute error (MAE) and the training iteration is 1 

shown in Figure 6. Because the initial values of the weights and biases are randomly 2 

assigned, the MAE at the first a few iterations is high. However, after several 3 

iterations, the MAE rapidly descends and the MSE is below 100.0 MPa after 100 4 

training epochs. Therefore, no over-fitting is observed in the cross-validation. 5 

3.2 Predictive power of the CNN model  6 

The comparison using the 260 testing bone samples shows that the predictions 7 

from the CNN model are highly correlated with those from the FE analysis (R2 = 8 

0.91). The slope of the correlation line is 0.79, which is a bit deviated away from the 9 

diagonal line (y = x) (Figure 7), implying that some prediction errors are present in 10 

the CNN model. The distribution of the relative prediction error (RPE) shows that 11 

95th and 50th percentiles of the relative prediction error are below 0.28 and 0.09, 12 

respectively (Figures 8 and 9).  13 

 14 

4. Discussion 15 

In the present study, a convolutional neural network (CNN) model for the quick 16 

and accurate prediction of the elastic mechanical property of the porous bone tissues 17 

was presented. The predictive power of the CNN model was assessed, and a good 18 

accuracy was achieved, i.e., the 95th and 50th percentiles of the relative prediction 19 

error are below 0.28 and 0.09, respectively.  20 

The present study was motivated by the lengthy and complex nature of the 21 

nonlinear FE analysis on human bone tissues. To obtain the effective mechanical 22 

property of human bone, in the  previous studies (Lu et al. 2014; 2019), it took more 23 

than 8 hours to obtain the result using the 3D FE modeling technique (including the 24 

image processing, the FE model generation, the nonlinear calculation, etc.), and more 25 

than 4 hours to obtain the result using the 2D FE modeling technique. In contrast, it 26 

takes only less than one minute to obtain the result using the CNN technique without 27 

compromising the predictive power. The quick and accurate prediction of the effective 28 

mechanical property of bone tissues is crucial in the clinical settings, because in the 29 

scenario of bone trauma, a surgical plan has to be quickly decided, which can only be 30 
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made possible by a quick and accurate assessment of the bone quality. Additionally, 1 

the ‘easy to use’ feature of the CNN technique is another important factor in the 2 

clinical setting because the tool has to be easily operable by the clinical staff. The 3 

CNN technique takes only the 2D CT images of the bone tissues as the input and can 4 

quickly output the effective mechanical properties of the bone tissues within a few 5 

minutes and thus meets the requirements. In the present study, to obtain the effective 6 

elastic modulus of the bone tissue, it takes approximately 40 minutes using the FE 7 

analysis (including the process of the image segmentation, the model generation, the 8 

FE calculation, the post-processing, etc.), but it only takes approximately 30 seconds 9 

using the CNN model constructed.  10 

In the present study, the machine learning (ML) method of the CNN was used. 11 

Compared to other ML techniques, e.g., the support vector machine (Hao, 2009), the 12 

CNN is the most appropriate one for the specific challenges presented in the present 13 

study. First, the CNN model takes the medical image, which is readily available in the 14 

clinic, as the input. Second, the CNN technique uses the convolution kernel to extract 15 

the features from the medical image and consequently the model parameters and 16 

complexity are largely reduced (Li et al., 2019; Ye et al., 2019).  17 

In the present study, the 95th and 50th percentiles of the relative prediction error 18 

are below 0.28 and 0.09, respectively, which are comparable to the values reported in 19 

the literature for solving the similar problems. For examples, Ye et al. developed the 20 

deep neural network method for predicting the mechanical properties of porous 21 

composites and a relative error of smaller than 3.0% was achieved (Ye et al., 2019); 22 

Li et al. developed the deep learning method for predicting the effective mechanical 23 

property of heterogeneous materials and a relative error below 3.0% was reported (Li 24 

et al., 2019); Jiang et al. developed the support vector machine model for predicting 25 

the hip fracture risk and an accuracy of 74.0% Area Under Curve (AUC) was 26 

achieved. However, it should be noted that in the previous studies (Jiang et al., 2015; 27 

Li et al., 2019; Ye et al., 2019), the large datasets are artificially generated using the 28 

computer program, while the real clinical CT datasets are used in the present study. 29 

Therefore, the factors, such as the image noise and the partial volume effect, are taken 30 
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into account in the CNN model constructed and consequently the results from the 1 

present study can be of the direct clinical translation. 2 

The present study showed that if a large amount of the clinical image datasets can 3 

be obtained, the CNN model can be trained and used to predict the mechanical 4 

property of the bone tissues. This is crucial for clinical applications. For example, the 5 

model can be used to assess the bone fracture risk in case of a fall event 6 

(Bhattacharya et al., 2018), to predict the long-term quality of the bone tissues so as 7 

to help the design of the bone implant (Metz et al., 2019), etc. It should be noted that 8 

not only one apparent mechanical property of the bone tissue (demonstrated in the 9 

present study) can be predicted by the CNN technique, but also the distribution of the 10 

stress/strain within the human tissue can be predicted using the CNN technique 11 

(Liang et al., 2018; Li et al., 2021). Therefore, the CNN technique has the potential 12 

to act as a surrogate for the FE method in the medical engineering analysis. Taking 13 

use of the advanced ability of the CNN technique, i.e., the prediction of the strain 14 

distribution in the bone region, the mechanically weakest region in the bone tissue can 15 

be identified and consequently the specific bone region can be targeted for the 16 

effective prevention and treatment of the bone fracture. It should be noted that in the 17 

present study, the 2D numerical models are presented, which cannot consider the 3D 18 

architecture of the cancellous bone tissues. Therefore, to achieve a higher power for 19 

predicting the bone fracture risk, the future work should address the challenges related 20 

the 3D problems, e.g., the collection of a large amount of the medical image datasets, 21 

the automation of the processing of the 3D medical images, the automation of the 3D 22 

FE analysis, etc.  23 

Despite the advantages and potentials of the CNN technique, some limitations in 24 

the present study should be discussed. First, the HR-pQCT images, which have a 25 

higher image resolution than the regular clinical CT images, are used in the present 26 

study. In the present study, the bone samples from the elderly donors are harvested 27 

and their cancellous bone tissues have some extent of osteoporosis. Therefore, the 28 

HR-pQCT images have to be used to accurately obtain the mechanical property of the 29 

porous bone tissues. Although this complies with the aim of the present study, i.e., the 30 
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demonstration of the CNN technique in predicting the mechanical property of the 1 

porous bone tissues, the feasibility study using the clinical CT images should still be 2 

investigated in the future. Second, only the CT images of the bone tissue are taken as 3 

the input for training the CNN model. The mechanical properties of the bone tissue 4 

are determined not only by the tissue modulus and the microarchitecture of the bone 5 

sample, but also by the factors such as the chemical compositions and gene sequence 6 

which are not reflected in the medical CT images. Therefore, more input information, 7 

such as the patient’s body weight, gender, family medical history, etc., should also be 8 

used for training the CNN model. The authors of the present study are in the process 9 

of collecting a large amount of clinical datasets and investigating whether the 10 

predictive power of the CNN model can be improved by adding more bone 11 

information into the model training. Third, in the present study, the results from the 12 

FE analysis are taken as the ground truth for the mechanical property of the bone 13 

tissue. It should be noted that generally the results from the in vitro mechanical testing 14 

should be taken as the ground truth (Dong et al., 2018; Lu et al., 2014), because 15 

some behaviors of the bone tissue, such as the propagation of the bone micro crack, 16 

can be hardly captured in the FE analysis. However, the mechanical property of the 17 

bone tissue cannot be obtained from the in vitro testing in the clinical setting. 18 

Furthermore, it has been shown in the previous studies (Lu et al. 2014; 2019) that the 19 

predictions from the FE analysis have a high correlation with the results obtained 20 

from the in vitro mechanical testing. Additionally, the aim of the present study is to 21 

find an accurate and efficient surrogate approach for the FE analysis. Therefore, it is 22 

reasonable to take the predictions from the FE analysis as the ground truth for 23 

assessing the predictive power of the CNN model.   24 

In conclusion, the convolutional neural network (CNN) technique can be used to 25 

accurately and efficiently predict the mechanical properties of the porous cancellous 26 

bone tissues. Compared to the FE modeling technique, the CNN technique can be 27 

easily translated to the clinic for the routine use, e.g., the quick assessment of the bone 28 

quality. It should be noted that the CNN technique can also be used to calculate other 29 

physical properties of the porous/composite materials, e.g., the heat conductivity, the 30 
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fatigue life, the roughness (fracture toughness?), etc. 1 
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 1 

Figure 1. Extraction of the CT data of the human cancellous bone for the construction 2 

of the convolutional neural network model.  3 

 4 

  5 

(a)                              (b) 6 

Figure 2. Establishment of the heterogeneous finite element model for calculating the 7 

effective elastic modulus of bone tissues.  8 
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 1 

Figure 3. The workflow for the training and testing of the convolutional neural 2 

network (CNN) model.  3 

 4 

  5 

Figure 4. Distribution of the effective elastic moduli of bone samples used in the 6 

present study (all the bone samples, N = 10636). 7 
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 1 

Figure 5. The convolutional neural network model constructed in the present study. 2 

 3 

  4 

Figure 6. The relationship between the mean absolute error and the Epoch. 5 
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   1 

Figure 7. The relationship between the effective elastic moduli predicted from the 2 

convolutional neural network (CNN) model and those calculated from the finite 3 

element method (FEM) 4 

 5 

  6 

Figure 8. Distribution of the relative prediction errors of the convolutional neural 7 

network model  8 
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 2 

Figure 9. The relationship between the cumulative percentile and the relative 3 

prediction error of the convolutional neural network model  4 
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