
Publishers page: http://dx.doi.org/10.1164/rccm.202203-0606OC

Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Image phenotyping of preterm-born children using hyperpolarised ^{129}Xe lung MRI and multiple-breath washout

Ho-Fung Chan1, Laurie J. Smith1, Alberto M. Biancardi1, Jody Bray1, Helen Marshall1, Paul J.C. Hughes1, Guilhem J. Collier1, Madhwesha Rao1, Graham Norquay1, Andrew J. Swift1, Kylie Hart2,3, Michael Cousins2,3, W. John Watkins2, Jim M. Wild1, Sailesh Kotecha2,3

1POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom

2Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom

3Neonatal Unit, Cardiff and Vale University Health Board, Cardiff, United Kingdom

Corresponding Author: Professor Jim M. Wild

University MRI Unit, University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK. Email: j.m.wild@sheffield.ac.uk. Tel: +44 (0)114 215 9141

Author contributions:

SK and JW designed study; MC and KH recruited the children and conducted spirometry; HFC, LS, JB, GC, MR, GN and JW were responsible for MRI data acquisition; LS conducted multiple-breath washout testing; HFC, LS, AB, HM, PH, AS, WJW, JW, SK were responsible for the data analyses and interpretation; HFC, SK, JW and LS wrote the first draft of the manuscript which was subsequently commented on by all authors.
Funding sources: This work was supported by the Medical Research Council (MR/M008894/1 and MR/M022552/1) and National Institute for Health Research grant (NIHR-RP-R3-12-027). PH was funded by GlaxoSmithKline (BIDS3000032592). AS was funded by the Wellcome Trust (205188/Z/16/Z).

Running head: Hyperpolarised 129Xe MRI and MBW in preterm-born children

Subject category: 14.03 Neonatal Lung Disease & BPD

Word count: 3500

Scientific Knowledge on the Subject

A common consequence after preterm birth is decreased lung function or prematurity-associated lung disease (PLD). PLD is commonly reported in preterm-born children who developed bronchopulmonary dysplasia (BPD) in infancy. Different phenotypes of PLD such as prematurity-associated obstructive lung disease (POLD) and prematurity-associated preserved ratio of impaired spirometry (pPRISm) may be associated with different early life factors and endotypes.

What This Study Adds to the Field

Hyperpolarised 129Xe ventilation and diffusion-weighted MRI, and multiple breath washout (MBW) was used to assess the differential associations between the historical diagnosis of BPD and current lung function phenotypes on lung ventilation and microstructure in preterm-born children and term-born controls. Ventilation abnormalities from 129Xe ventilation MRI and MBW were observed in the lungs of preterm-born children who have POLD, and abnormal alveolar dimensions from 129Xe diffusion-weighted MRI were associated with preterm-born children who had BPD in infancy. 129Xe MRI can be utilised to assess and
phenotype functional and microstructural abnormalities in the lungs of preterm-born children.

This article has an online data supplement, which is accessible from this issue's table of content online at www.atsjournals.org
Abstract

Rationale: Preterm birth is associated with low lung function in childhood, but little is known about the lung microstructure in childhood.

Objectives: We assessed the differential associations between the historical diagnosis of bronchopulmonary dysplasia (BPD) and current lung function phenotypes on lung ventilation and microstructure in preterm-born children using hyperpolarised 129Xe ventilation and diffusion-weighted MRI, and multiple breath washout (MBW).

Methods: Data were available from 63 children (aged 9-13 years) including 44 born preterm (≤ 34 weeks’ gestation) and 19 term-born controls (≥ 37 weeks’ gestation). Preterm-born children were classified, using spirometry, into prematurity-associated obstructive lung disease (POLD, FEV$_1$<LLN, FEV$_1$/FVC<LLN); prematurity-associated preserved ratio of impaired spirometry (pPRISm, FEV$_1$<LLN, FEV$_1$/FVC\geqLLN); preterm- and term-born controls; and into those with and without BPD. Ventilation heterogeneity metrics were derived from 129Xe ventilation MRI and SF$_6$ MBW. Alveolar microstructural dimensions were derived from 129Xe diffusion-weighted MRI.

Results: 129Xe ventilation defect percentage and ventilation heterogeneity index were significantly increased in preterm-born children with POLD. In contrast, mean 129Xe apparent diffusion coefficient (ADC), 129Xe ADC interquartile range (IQR) and 129Xe mean alveolar dimension IQR were significantly increased in preterm-born children with BPD, suggesting changes of alveolar dimensions. MBW metrics were all significantly increased in the POLD group when compared to preterm- and term-born controls. Linear regression confirmed the differential effects of obstructive disease on ventilation defects and BPD on lung microstructure.
Conclusion: We show that ventilation abnormalities are associated with prematurity-associated obstructive lung disease, and BPD in infancy is associated with abnormal lung microstructure.

Abstract length: 245 words

Keywords: Hyperpolarised 129Xe MRI, bronchopulmonary dysplasia, multiple-breath washout, lung growth, lung function, chronic lung disease of prematurity, prematurity-associated lung disease.
Introduction

Decreased lung function (FEV$_1$<LLN) or prematurity-associated lung disease (PLD) is a common consequence after preterm birth. PLD is commonly reported in preterm-born children who developed bronchopulmonary dysplasia (BPD, also called chronic lung disease of prematurity, CLD) in infancy (1-3). Children born late-preterm at 33-36 weeks’ gestation are also now recognized to be at risk of PLD in childhood and beyond (4, 5). Indeed, we recently showed that gestation and intrauterine growth restriction (IUGR) but not BPD were significantly associated with PLD in multivariable regression models (6). Furthermore, it is likely that different phenotypes of PLD may be associated with different early life factors, such as BPD, IUGR, gestation, and may result in different endotypes (6). Most focus has been on those who develop prematurity-associated obstructive lung disease (POLD, FEV$_1$<LLN, FEV$_1$/FVC<LLN) (7), but preserved ratio of impaired spirometry (PRISm, FEV$_1$<LLN, FEV$_1$/FVC≥LLN) has been recently shown to be associated with development of chronic obstructive pulmonary disease (COPD), cardiovascular disease and increased all-cause mortality (8, 9). Although PLD has been shown to be associated with decreased lung function, the different phenotypes of PLD including POLD and prematurity-associated PRISm (pPRISm) have been less well reported (6).

Magnetic resonance imaging (MRI) has emerged as a powerful tool for functional and structural assessment of paediatric lung diseases including the use of advanced methods such as ultra-short echo time (UTE) structural MRI and inhaled hyperpolarised gas functional MRI (10, 11). Hyperpolarised helium-3 (3He) or xenon-129 (129Xe) MRI provides 3D in vivo measurements of lung ventilation and microstructure through ventilation and diffusion-weighted imaging, respectively (12, 13). Hyperpolarised gas MRI is safe and well-tolerated in
children (14), and has demonstrated sub-clinical sensitivity with the detection of lung ventilation abnormalities in diseases such as cystic fibrosis (CF) (15-17), asthma (18), and primary ciliary dyskinesia (PCD) (19). There is, however, a paucity of MRI studies of lung disease in preterm-born children. To date, MRI studies have included structural proton UTE imaging, (20-25), 3He diffusion-weighted MRI (26, 27) and dissolved 129Xe gas transfer MRI (28) in preterm-born neonates and children with BPD, and dynamic contrast-enhanced lung perfusion MRI in adult preterm-born survivors (29). To our knowledge, to date, no studies with 129Xe ventilation or diffusion-weighted MRI have been reported in the lungs of preterm-born children.

Multiple-breath washout (MBW) of inhaled inert gases (SF$_6$ or N$_2$) provides global measures of ventilation heterogeneity, which are sensitive to early lung disease in children with CF (30). Metrics derived from MBW, such as lung clearance index (LCI), phase-III slope in the conducting airways (S_{cond}), and acinar lung regions (S_{acin}) have demonstrated significant differences between preterm-born children including those who had BPD in infancy and term-born children (31-33), but this has not been consistently reported (34-36), most likely due to heterogeneous lung disease in preterm-born subjects. LCI measurements are likely to complement those findings from 129Xe ventilation and diffusion-weighted MRI to assess the function and microstructure of the preterm lung.

In this study, we assessed the differential associations between the historical diagnosis of BPD and current lung function with lung ventilation and microstructure in preterm-born children using 129Xe ventilation and diffusion-weighted MRI, and MBW, comparing results from term-
born children. Some of the results of this study has been previously reported in the form of abstracts (37, 38).

Methods

Study subjects

The Respiratory Health Outcomes in Neonates study (RHiNO, EudraCT: 2015-003712-20) is a comprehensive study of respiratory disease of preterm-born children (≤34 weeks’ gestation) and term-born controls (≥37 weeks’ gestation) from South Wales aged 7–12 years at enrolment, evaluating mechanisms (6), a randomised controlled trial (RCT) (39) and hyperpolarised \(^{129}\)Xe MRI. Pre-bronchodilator spirometry was performed 2-3 months prior to the MRI scans; quality controlled as per guidelines (40), and reported against GLI reference equations (41). Details on study recruitment and spirometry are described in the online data supplement.

65 children, aged 9-13 years at time of MRI, comprising 24 who entered the RCT, 20 preterm with %FEV\(_1\) >85% and 21 term-controls underwent MRI scanning at University of Sheffield, UK (see Figure E1 in online data supplement for CONSORT diagram). The children were classified according to their spirometry: prematurity-associated obstructive lung disease (POLD, n=13, FEV\(_1\)<LLN, FEV\(_1\)/FVC<LLN); prematurity-associated PRISm (n=4, pPRISm, FEV\(_1\)<LLN, FEV\(_1\)/FVC≥LLN); preterm controls (PT\(_C\), n=27, FEV\(_1\)>LLN); term-born controls (n=21) regardless of their spirometry. Information on early-life factors including gestational age, birthweight, diagnosis of BPD (according to National Institute of Child Health and Human Development criteria of oxygen supplementation at 28 days of age (42)), and IUGR were obtained from the
neonatal medical notes. IUGR was defined as <10th percentile for birthweight adjusted for sex and gestation using the LMS Growth program (Medical Research Council) (43). All children were free of respiratory infections for at least three weeks prior to the MRI visit. Ethical approval was obtained from the South-West Bristol Research Ethics Committee (15/SW/0289) and written informed consent/assent was obtained from the parents/children.

Hyperpolarised 129Xe MRI

Hyperpolarised 129Xe MRI was performed on a 1.5T (GE-HDx) scanner using a flexible transmit/receive quadrature vest coil (Clinical MR Solutions, Brookfield, WI). 3D 129Xe lung ventilation and diffusion-weighted MRI was performed in separate breath-holds ranging from 10-16 seconds following inhalation of a gas mixture of 129Xe and N_2 from functional residual capacity (FRC). Hyperpolarised 129Xe was produced with an in-house (POLARIS, Sheffield, UK) regulatory licenced polariser (~25% polarisation (44)), and gas mixture volumes and 129Xe doses were titrated according to the subjects’ heights to account for differences in lung volume (Table E1). 129Xe ventilation imaging was performed with a 3D balanced steady-state free precession sequence as described previously (45). 1H images of the thorax were acquired with a spoiled gradient echo (SPGR) sequence for anatomical reference. 129Xe diffusion-weighted MRI was acquired with a 3D multiple b-value SPGR sequence with compressed sensing under-sampling as described previously (46) with a 129Xe diffusion time=8.5ms and b-values=[0,12,20,30]s/cm². Further details on 129Xe diffusion-weighted parameters are reported in the online data supplement.

129Xe ventilation and 1H image pairs were segmented using a semi-automated method (47) to calculate the ventilated lung and thoracic cavity masks, respectively. These two
segmentations were used to derive the ventilation defect percentage (VDP) and ventilation heterogeneity index (VHI). VDP is the percentage of unventilated lung volume, and VHI is a measure of ventilation heterogeneity based upon the coefficient of variation of surrounding pixels (17). Under-sampled 129Xe diffusion-weighted images were reconstructed, and voxel-wise maps of ADC and mean alveolar dimension (L_mD) were derived from the stretched exponential model (SEM) of hyperpolarised gas diffusion in the lungs (48). ADC was calculated from a mono-exponential fit of the first two diffusion b-values ($b=0,12 \text{ s/cm}^2$); while L_mD was calculated from a SEM fit of all four b-values. The global mean and interquartile range (IQR) of all values were calculated from the respective 129Xe ADC and L_mD maps.

Multiple breath washout

Multiple breath washout (MBW) was performed a minimum of three times on the same day as 129Xe MRI with a modified open-circuit Innocor (Innovision, Glamsbjerg, Denmark) and 0.2% SF$_6$ (49). Lung clearance index (LCI), S_{cond}, and S_{acin} were calculated from the average of at least two technically acceptable trials.

Statistical analyses

The lower limit of normal (LLN) of spirometry was defined as <-1.64 z-scores (41). For each 129Xe MRI and MBW metric, the 95% upper limit value (mean+1.64SD) was calculated from the respective term-born control group as a threshold to evaluate abnormal metrics in the preterm-born children. One-way ANOVA with post-hoc Tukey’s test for multiple comparisons was performed (GraphPad Prism 7.04, San Diego, CA). Univariable and multivariable linear regression modelling were performed (SPSS V23.0, IBM, Armonk, NY) to identify associations
between early life factors and 129Xe MRI and MBW metrics in the preterm-born children only. P<0.05 was considered statistically significant.

Results

From the 65 children assessed, two term-born children were excluded as one had an upper respiratory tract infection at the time of MRI scanning; and the other due to a technical issue with the 129Xe MRI coil. Thus, data were available from 19 term-born children and 44 preterm-born children (13 with POLD, 4 with pPRISm and 27 were PTc). In addition, 11 preterm-born children had BPD in infancy. Participant demographics are shown in Table E2 and Table 1 summarises the 129Xe MRI and MBW metrics for the lung function phenotype and BPD groups separately.

Significantly higher 129Xe VDP (p=0.009, p=0.007), 129Xe VHI (p=0.001, p=0.001), S_{cond} (p<0.001, p<0.001) and LCI (p<0.001, p=0.003) were observed in the POLD group when compared to the PTc and term control groups, respectively (Figure 1). S_{cond} (p=0.015) was also significantly higher in the POLD group when compared to the pPRISm group, and S_{acin} (p=0.024) was significantly higher in the POLD group when compared to the PTc group only. There were no significant differences between the pPRISm, PTc and term-control groups for any 129Xe ventilation or MBW metrics. No significant differences between the lung function groups were observed for any 129Xe DW-MRI metrics (Figure E2).

Representative 129Xe ventilation images and 3D rendered ventilation videos from each group are shown in Figure 2 and Video E1-4 in the online data supplement, respectively. From the 13 POLD children, 6 (46%) had 129Xe VDP greater than the 95% upper term-born control value.
(VDP>1.16%) (dotted line in Figure 1A). For these 6 POLD subjects, 129Xe VHI, S_{cond}, S_{acin}, and LCI were also elevated, with respect to the 95% upper term-born control values, in 5, 6, 2, and 5 of the subjects, respectively. The elevated 129Xe VDP and VHI metrics in this subset of the POLD group were reflected in heterogeneous patterns in the 129Xe ventilation images (Figure 2A). Conversely, the remaining 7 subjects in the POLD group did not exhibit patterns of 129Xe ventilation heterogeneity despite having a significant obstructive pattern on spirometry (Figure 2B). 129Xe ventilation images in the pPRISm, PTc and term-born control groups all had a homogeneous pattern with low VDP and VHI values (Figure 2C-E).

When the BPD and no-BPD groups were compared, global mean 129Xe ADC was significantly increased in the BPD group when compared to the no-BPD (p=0.034) and term-control (p=0.049) groups (Figure 3A). Similar trends were observed for global mean 129Xe L_{mD}, just failing to reach statistical significance on ANOVA (p=0.055). However, only 3 out of 11 children with BPD had global mean 129Xe ADC and L_{mD} values greater than the 95% upper term-born control value of ADC (>0.032 cm2/s) and L_{mD} (>270 µm) (dotted lines in Figure 3A-B). Significantly increased 129Xe ADC and L_{mD} IQR were observed in the BPD group when compared to both the no-BPD (p=0.003, p<0.001) and the term-born control (p<0.001, p<0.001) groups (Figure 3C-D). Within the BPD group, 6/11 and 7/11 children had 129Xe ADC and L_{mD} IQR, respectively, that was greater than the 95% upper term-born control value (ADC IQR>0.010 cm2/s, L_{mD} IQR>67 µm) (dotted lines in Figure 3C-D). There were no significant differences between the no-BPD and term-control groups for any 129Xe diffusion-weighted metrics.
Representative 129Xe ADC and Lm$_D$ maps for each of the BPD groupings are shown in Figure 4. An increased number of elevated ADC or Lm$_D$ regions were observed in the maps of the preterm-born subjects with BPD associated with increased alveolar airspace heterogeneity and elevated 129Xe ADC or Lm$_D$ IQR (Figure 4A). In contrast, representative 129Xe ADC and Lm$_D$ maps in the no-BPD and term-born control groups were less heterogeneous when compared to the BPD maps (Figure 4B-C). No significant differences were observed for any of the 129Xe ventilation or MBW metrics between the BPD groupings (Figure E3).

Since both POLD and BPD groupings showed differential effects on the ventilation and microstructure metrics of the lung, we explored the associations of these two groupings as well as sex and IUGR with the various 129Xe MRI and MBW metrics in a sub-group analysis of the preterm-born children only. Univariable analyses showed that sex was not associated with any MRI or MBW metrics, but IUGR was associated with 129Xe ADC IQR, Lm$_D$ IQR and S_{acin}. POLD was significantly associated with 129Xe VDP, 129Xe VHI, and all MBW metrics. In contrast, BPD was associated with all of the 129Xe diffusion-weighted metrics (Table 2). These differential associations of POLD with ventilation parameters and BPD with microstructure remained unchanged when multiple variables with p<0.10, namely S_{acin}, 129Xe ADC IQR and 129Xe Lm$_D$ IQR, were included in multivariable models (Table 3).

Discussion

By using hyperpolarised 129Xe ventilation and diffusion-weighted MRI, alongside MBW, we report the differential effects of obstructive lung disease and BPD on functional and microstructural changes in the lungs of preterm-born children.
Increased 129Xe ventilation metrics (VDP and VHI) were observed in some preterm-born children with reduced FEV$_1$ and obstructive pattern on spirometry (POLD) when compared to preterm-born children with preserved FEV$_1$ (PTC) and term-born children. Although increased 129Xe VDP and VHI have been reported in children with other obstructive lung diseases such as CF (17) and asthma (18), 129Xe ventilation heterogeneity has not previously been reported in the preterm-born population. These data also demonstrate that most preterm-born children with preserved FEV$_1$ did not have ventilation abnormalities on MRI, with 129Xe ventilation images generally resembling those observed in the term-born control children. The preterm-born children with preserved ratio of impaired spirometry (pPRISm) had findings similar to the two control groups but since only four subjects were available for study, the findings should be interpreted with caution.

Furthermore, within the POLD group, despite their FEV$_1$≤LLN, 7 of the 13 children (54%) did not have significant ventilation abnormalities on 129Xe ventilation MRI (VDP<1.16%, the 95% upper term-born control value). This finding highlights significant discordance between the degree of impairment measured by FEV$_1$ and the ventilation images in preterm-born children with reduced lung function when compared to other paediatric airways disease. Studies of children with CF, PCD and asthma, for example, have all shown a strong correlation between low FEV$_1$ values and significant ventilation abnormalities (15-19). We have demonstrated here, however, that in preterm-born children with FEV$_1$ values as low as -3 z-scores, their ventilation images often appeared normal (Figure 2B). This suggests that the airflow obstruction has a different phenotype to those seen in subjects with ongoing lung disease progression such as in CF where active inflammation, infection and mucus plugging are
ongoing. In contrast, the remaining 6 POLD children demonstrated significant ventilation abnormalities that may highlight a phenotype whereby there is an ongoing active pathophysiological component to their airflow obstruction. Whether both or either group would benefit from inhaler treatment is speculative (39).

MBW metrics were consistent with the 129Xe ventilation MRI measures, with trends towards increased S_{cond}, LCI, and S_{acin} observed in the POLD group when compared with the pPRISm, PTC and term-born controls groups. In addition, similar to 129Xe VDP and VHI, only a small subset of children in the POLD group had MBW metrics that were greater than those observed in the term-born control group. Significantly increased S_{cond} in the POLD group is in agreement with MBW measured with N_2 reported by Yammine and colleagues (32); however, the significantly elevated S_{acin} and LCI in the POLD group are contrary to what was observed in Yammine’s study.

Increased LCI and S_{acin} in preterm-born children with or without BPD have previously been reported (31, 33), although other studies have not found any differences (34-36). In contrast, compared to previous studies (31, 33), in our study we did not find any differences for 129Xe ventilation or MBW metrics between the BPD and no-BPD groups when compared to the term-born controls. Taken together, these observations suggest that prematurity-associated obstructive lung disease (POLD) can result in ventilation defects, and BPD affects lung microstructure.

The 129Xe diffusion-weighted MRI measurements of acinar dimensions demonstrated increased global mean 129Xe ADC alongside significantly elevated 129Xe ADC and Lm_I IQR in
the BPD group when compared with the no-BPD and and term-born controls. Increased 129Xe ADC and LmD IQR in the BPD group indicates regional heterogeneity in alveolar dimensions, which may result from preterm birth at an early stage of lung development especially in those born extremely preterm and/or due to neonatal interventions including mechanical respiratory support and increased supplemental oxygen. Visible regions of elevated values in 129Xe ADC and LmD maps in some preterm born subjects with BPD (Figure 4A) illustrate this increased heterogeneity of alveolar dimensions. Furthermore, these subtle regional changes in alveolar dimensions go towards explaining why the IQR is a more sensitive metric than global mean in detecting alveolar dimension changes as a consequence of BPD in infancy.

The trends of increased and more heterogeneous 129Xe diffusion-weighted MRI metrics in BPD from our study are in agreement with a previous 3He diffusion-weighted MRI study by Flors et al. (26) where significantly increased 3He ADC was observed in preterm-born children with BPD. The differences in diffusion metrics between term-born controls and children with BPD in our 129Xe study were less striking than those observed in the Flors’ study (26). This discrepancy could possibly be related to the fewer children with moderate/severe BPD in our 129Xe study. Flors et al. (26) studied 16 subjects with moderate/severe BPD compared to 5 with mild BPD and 6 with moderate/severe BPD in our study. Furthermore, BPD subjects in our study were likely less severe as evidenced by only 3 subjects with global 129Xe ADC and LmD greater than the 95% upper term-born control values.

Contrary to the trends observed in this work and the study by Flors et al. (26), the 3He diffusion-weighted MRI study by Narayanan and colleagues (27) found no significant differences for 3He ADC between children with BPD and term-born controls. However, the
longer diffusion times of the diffusion sequence used in that study may inherently sensitise those measurements to longer inter-acinar diffusion length-scales beyond alveolar dimensions (50). In addition, the spectroscopic acquisition used by Narayanan et al. only derived a global metric of alveolar dimensions, and therefore, was unable to measure more subtle regional heterogeneity differences in alveolar dimensions that were observed in our study with 129Xe diffusion-weighted MRI.

In survivors of BPD, it has also been shown that decreased lung function is present in adulthood (4), therefore, we speculate that those subjects in the preterm with BPD group, including those with normal alveolar dimensions as measured with 129Xe MRI, may progress and exhibit more severe or elevated diffusion-weighted MRI metrics as the lung continues to develop into adulthood. This is supported by a small study of two adult survivors of BPD who demonstrated increased global mean 3He ADC when compared to healthy adults of similar ages (51).

To further confirm that preterm-born children with low lung function were associated with ventilation heterogeneity, and the BPD group were associated with lung microstructure, we used univariable and multivariable linear regression analyses to investigate which early life factors, including sex, IUGR, BPD and spirometry, were most closely associated with 129Xe MRI and MBW metrics. The multivariable regression results corroborated the findings observed after stratifying into low lung function groups and into BPD groups by reconfirming that all 129Xe ventilation MRI and MBW metrics were significantly associated with a current obstructive pattern of lung disease; while 129Xe diffusion-weighted metrics were significantly associated with a historical BPD diagnosis and the presence of IUGR. The 129Xe diffusion
regression results also suggest that alterations in lung microstructure are associated with both antenatal (IUGR) and postnatal (supplemental oxygen, respiratory support) factors.

This study has several strengths and weaknesses. The strengths of the study are that we used two different methods, 129Xe MRI and MBW, which both showed similar findings with regards to ventilation heterogeneity. Furthermore, 129Xe MRI was able to demonstrate changes in regional ventilation and microstructural heterogeneity in the lungs of preterm-born children, that is not possible with conventional lung function tests. The sensitivity of 129Xe diffusion-weighted MRI to lung microstructural changes is a particular strength especially with the paucity of histological or quantitative CT data available in the lungs of preterm-born children. We also assessed the role of important early life factors to demonstrate the differential effects of obstructive lung disease and BPD on ventilation and microstructure of the lung, respectively.

The weaknesses of the study are that we studied a relatively small number of subjects especially in some of the stratified groups, particularly the pPRISm group which should be interpreted with caution. Selection bias and recall bias given the small numbers may also be relevant. In addition, a wider range of gestation would have identified if the findings were associated with decreasing gestation and including greater numbers especially those with moderate/severe BPD would have strengthened our findings. A possible limitation for the acquisition of 129Xe MRI is the absence of precise lung volume control that could affect derived 129Xe MRI metrics. However, this was mitigated by coaching and practice bag inhalations prior to MRI scanning.
Conclusion

In conclusion, 129Xe ventilation and MBW metrics were noted to be significantly increased in the lungs of preterm-born children who had prematurity-associated obstructive lung disease, POLD. In contrast, 129Xe diffusion-weighted metrics were increased in preterm-born children who had BPD in infancy indicating alterations of alveolar dimensions. 129Xe MRI can, therefore, be utilised to assess and phenotype functional and microstructural abnormalities in the lungs of preterm-born children.

Acknowledgements

The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research and the Department of Health. We would like to acknowledge all members of the POLARIS research group at the University of Sheffield and the RHino team for their support. Finally, we would like to thank the children and their parents for their incredible enthusiasm and contribution for the study.
References

Table 1: Summary of subject demographics, and metrics from spirometry, 129Xe MRI and MBW for each grouping of preterm-born children based on either current lung function or historical diagnosis of BPD and term-born controls. All values are given as mean (standard deviation).

<table>
<thead>
<tr>
<th></th>
<th>Preterm Lung Function Grouping</th>
<th>Term Controls</th>
<th>Preterm BPD Grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POLD</td>
<td>pPRISm</td>
<td>PT<sub>C</sub></td>
</tr>
<tr>
<td>Subjects (% total)</td>
<td>13 (21%)</td>
<td>4 (6%)</td>
<td>27 (43%)</td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>4:9</td>
<td>1:3</td>
<td>11:16</td>
</tr>
<tr>
<td>Age (years)</td>
<td>11.7 (1.0)</td>
<td>11.4 (1.6)</td>
<td>11.7 (1.0)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>144.7 (9.5)</td>
<td>150.8 (18.6)</td>
<td>150.2 (10.7)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>37.7 (12.4)</td>
<td>44.9 (16.9)</td>
<td>40.6 (11.4)</td>
</tr>
<tr>
<td>Gestational Weeks</td>
<td>29 (2)</td>
<td>30 (3)</td>
<td>31 (3)</td>
</tr>
<tr>
<td>BPD</td>
<td>5/13 (38%)</td>
<td>1/4 (25%)</td>
<td>5/27 (19%)</td>
</tr>
<tr>
<td>Mild BPD</td>
<td>1/13 (8%)</td>
<td>1/4 (25%)</td>
<td>3/27 (11%)</td>
</tr>
<tr>
<td>Moderate/Severe BPD</td>
<td>4/13 (31%)</td>
<td>0/4 (0%)</td>
<td>2/27 (7%)</td>
</tr>
<tr>
<td>FEV<sub>1</sub> (z-scores)</td>
<td>-2.97 (0.66)</td>
<td>-1.99 (0.26)</td>
<td>-0.38 (0.94)</td>
</tr>
<tr>
<td>FEV<sub>1</sub> (%predicted)</td>
<td>64.5 (8.2)</td>
<td>76.5 (3.1)</td>
<td>95.3 (10.6)</td>
</tr>
<tr>
<td>FVC (z-scores)</td>
<td>-0.54 (0.78)</td>
<td>-1.77 (0.30)</td>
<td>0.10 (0.99)</td>
</tr>
<tr>
<td>FVC (%predicted)</td>
<td>93.7 (9.0)</td>
<td>79.5 (3.5)</td>
<td>100.7 (11.1)</td>
</tr>
<tr>
<td>FEV<sub>1</sub>/FVC (z-scores)</td>
<td>-3.14 (0.56)</td>
<td>-0.63 (0.46)</td>
<td>-0.78 (1.01)</td>
</tr>
<tr>
<td>FEV<sub>1</sub>/FVC (%predicted)</td>
<td>68.6 (8.8)</td>
<td>95.7 (3.2)</td>
<td>94.1 (7.7)</td>
</tr>
<tr>
<td>129Xe VDP (%)</td>
<td>2.51 (3.56)</td>
<td>0.99 (1.04)</td>
<td>0.57 (0.75)</td>
</tr>
<tr>
<td>129Xe VHI (%)</td>
<td>9.92 (2.31)</td>
<td>8.37 (0.80)</td>
<td>7.92 (1.35)</td>
</tr>
<tr>
<td>Mean 129Xe ADC (cm<sup>2</sup>/s)</td>
<td>0.0288 (0.0046)</td>
<td>0.0276 (0.0029)</td>
<td>0.0271 (0.0025)</td>
</tr>
<tr>
<td>129Xe ADC IQR (cm<sup>2</sup>/s)</td>
<td>0.0101 (0.0022)</td>
<td>0.0095 (0.0004)</td>
<td>0.0095 (0.0018)</td>
</tr>
<tr>
<td>Mean 129Xe Lm<sub>D</sub> (µm)</td>
<td>252 (23)</td>
<td>246 (15)</td>
<td>244 (13)</td>
</tr>
<tr>
<td>129Xe Lm<sub>D</sub> IQR (µm)</td>
<td>66 (8)</td>
<td>67 (4)</td>
<td>63 (9)</td>
</tr>
<tr>
<td>LCI</td>
<td>7.09 (1.55)</td>
<td>6.09 (0.11)</td>
<td>6.03 (0.42)</td>
</tr>
<tr>
<td>S_{cond} (L<sup>-1</sup>)</td>
<td>0.046 (0.025)</td>
<td>0.018 (0.007)</td>
<td>0.023 (0.012)</td>
</tr>
<tr>
<td>S_{sound} (L<sup>-1</sup>)</td>
<td>0.119 (0.049)</td>
<td>0.069 (0.044)</td>
<td>0.083 (0.028)</td>
</tr>
</tbody>
</table>

Abbreviations: POLD = prematurity-associated obstructive lung disease ($\text{FEV}_{1} \leq \text{LLN}$, $\text{FEV}_{1}/\text{FVC} \leq \text{LLN}$); pPRISm = prematurity-associated preserved ratio of impaired spirometry ($\text{FEV}_{1} \leq \text{LLN}$, $\text{FEV}_{1}/\text{FVC} > \text{LLN}$); PT_C = preterm with normal lung function ($\text{FEV}_{1} > \text{LLN}$); BPD = preterm with bronchopulmonary dysplasia (BPD) diagnosis; VDP = ventilation defect percentage; VHI = ventilation heterogeneity index; ADC = apparent diffusion coefficient; IQR = interquartile range; Lm_D = mean alveolar dimension; LCI = lung clearance index.
<table>
<thead>
<tr>
<th>Factors</th>
<th>129Xe VDP</th>
<th>129Xe VHI</th>
<th>S_{cond}</th>
<th>S_{acin}</th>
<th>LCI</th>
<th>129Xe ADC Mean</th>
<th>129Xe ADC IQR</th>
<th>129Xe Lm$_{0}$ Mean</th>
<th>129Xe Lm$_{0}$ IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (ref = male)</td>
<td>Beta</td>
<td>SE</td>
<td>95% CI</td>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.321</td>
<td>0.683</td>
<td>-1.66, 1.02</td>
<td>0.638</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IUGR (ref = no IUGR)</td>
<td>Beta</td>
<td>SE</td>
<td>95% CI</td>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.111</td>
<td>0.955</td>
<td>-1.76, 1.98</td>
<td>0.908</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preterm lung function</td>
<td>Beta</td>
<td>SE</td>
<td>95% CI</td>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ref = PT$_C$)</td>
<td>1.936</td>
<td>0.675</td>
<td>0.61, 3.26</td>
<td>0.004*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pPRISm</td>
<td>Beta</td>
<td>SE</td>
<td>95% CI</td>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ref = no BPD)</td>
<td>0.413</td>
<td>1.067</td>
<td>-1.68, 2.5</td>
<td>0.699</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPD (ref = no BPD)</td>
<td>Beta</td>
<td>SE</td>
<td>95% CI</td>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.09</td>
<td>0.758</td>
<td>-1.58, 1.40</td>
<td>0.905</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of univariable linear regression analyses of 129Xe MRI and MBW metrics in the preterm-born children only. Statistically significant factors related to early life (sex, BPD diagnosis, IUGR) and reduced lung function on spirometry are indicated in bold.
<table>
<thead>
<tr>
<th>Factors</th>
<th>S_{acin}</th>
<th>129Xe ADC IQR</th>
<th>129Xe L_m IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUGR (ref = no IUGR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>0.028</td>
<td>0.002</td>
<td>4.961</td>
</tr>
<tr>
<td>SE</td>
<td>0.016</td>
<td>0.001</td>
<td>3.082</td>
</tr>
<tr>
<td>95% CI</td>
<td>-0.003,0.06</td>
<td>0.004</td>
<td>-1.08,11</td>
</tr>
<tr>
<td>p-value</td>
<td>0.079</td>
<td>0.010*</td>
<td>0.107</td>
</tr>
<tr>
<td>Preterm lung function (ref = PTc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>0.029</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SE</td>
<td>0.012</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.01,0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-value</td>
<td>0.016*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pPRISm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>-0.012</td>
<td>0.002</td>
<td>8.613</td>
</tr>
<tr>
<td>SE</td>
<td>0.018</td>
<td>0.001</td>
<td>2.528</td>
</tr>
<tr>
<td>95% CI</td>
<td>-0.05,0.02</td>
<td>0.004</td>
<td>3.66,13.57</td>
</tr>
<tr>
<td>p-value</td>
<td>0.508</td>
<td>0.008*</td>
<td>0.001*</td>
</tr>
</tbody>
</table>

Table 3: Summary of multivariable linear regression analyses of 129Xe MRI and MBW metrics in the preterm-born children only. Statistically significant factors related to BPD diagnosis, IUGR and reduced lung function on spirometry are indicated in bold.
Figure 1: Plots of 129Xe ventilation defect percentage (VDP) (A), 129Xe ventilation heterogeneity index (VHI) (B), S_{cond} (C), S_{acin} (D), and lung clearance index (LCI) (E) for preterm-born children lung function phenotypes and term-born children. All plots have mean and standard deviation bars and p-values from ANOVA tests (boxed p-value is for Tukey’s multiple comparison tests between groups). Dotted lines represent 95% upper limit of each 129Xe MRI or MBW metric calculated from the term-born children group.

Figure 2: Representative single slice 129Xe ventilation MR images from each preterm lung function phenotype group and term-born children. (A) POLD subjects with elevated ventilation MRI metrics, (B) POLD subjects with ventilation MRI metrics within the normal range. (C-E) pPRISm, PTc and term-born control subjects with ventilation MRI metrics within the normal range.

Figure 3: Plots of 129Xe global mean apparent diffusion coefficient (ADC) (A), 129Xe global mean alveolar dimension (L_{mD}) (B), 129Xe ADC interquartile range (IQR) (C), and 129Xe L_{mD} IQR (D) for preterm-born children grouped by BPD diagnosis and term-born children. All plots have mean and standard deviation bars and p-values from ANOVA tests (boxed p-value is for Tukey’s multiple comparison tests between groups). Dotted lines represent 95% upper limit of each 129Xe diffusion-weighted MRI metric calculated from the term-born children group.

Figure 4: Representative single slice 129Xe diffusion-weighted MRI derived maps of apparent diffusion coefficient (ADC) and mean alveolar dimension (L_{mD}) of three different subjects from each BPD diagnosis grouping and term-born children.