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The Plug-in Hybrid Electric Refuse Vehicle Routing Problem for Waste 

Collection 

Abstract 

Commercial waste collection is an essential service requiring efficient and reliable provision for 

customers. At the operational level, one of the most challenging problems is to design a set of refuse 

vehicle routes to collect waste from a set of bins. To be used multiple times, these vehicles must be 

emptied regularly throughout the day. This paper investigates a waste collection problem with a 

homogeneous fleet of plug-in hybrid electric refuse vehicles powered by two different power sources, 

i.e., electricity and compressed natural gas (CNG). In addition, realistic fuel consumption functions are 

used to estimate total energy requirements for each type of fuel, including refueling and recharging, 

and the detailed energy consumption along the path between two nodes of interest. We propose a 

Hybrid Threshold Acceptance (HTA) algorithm for this problem and denote it as the Hybrid Waste 

Collection Problem (HWCP). Extensive computational experiments confirm that the proposed HTA 

algorithm provides good results against current state-of-the-art algorithms designed for the electric 

vehicle routing problem. Out detailed computational results demonstrate the performance of our 

method considering either full or partial recharging, as well as the effect of different battery/tank 

capacities. Compared to the standard CNG or electric vehicles, we also show the benefits of using a 

fleet of hybrid electric refuse vehicles in terms of operational costs and total distance traveled.  

Keywords: Vehicle routing problem; Energy consumption; Plug-in hybrid electric vehicle; 

Metaheuristic algorithm 

1. Introduction 

Waste collection is one of the most challenging problems that could undermine governments' and local 

authorities' drive for sustainable development. Even a small improvement in waste management planning can 

yield significant opportunities for reducing total costs and improving public health (Eurostat, 2017; Mesjasz-

Lech and Michelberger, 2019). The production of municipal solid waste is constantly increasing, with around 

486 kg of domestic waste per capita generated in the European Union (EU) in 2017 (Eurostat, 2017). This 

paper investigates the waste collection problem from a logistical perspective.  

This problem is known as the Waste Collection Vehicle Routing Problem with Time Windows 

(WCVRPTW), an NP-hard problem (Kim et al., 2006). The WCVRPTW extends the standard Vehicle Routing 

Problem with Time Windows by considering using intermediate facilities to empty the vehicles while 

collecting waste from households. In this problem, all locations (i.e., depot, customers' locations, landfill 

facilities) are known. Each location has a predefined time window during which a waste collecting refuse 

vehicle visit can take place. At the beginning of a service day, all refuse vehicles start from a central depot and 

visit customers to collect their waste. When a refuse vehicle is full, it must go to a landfill to empty its waste. 
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After unloading, the refuse vehicle returns to its duty. Given the increase in environmental interest in 

minimizing carbon dioxide-equivalent (CO2e) emissions from transportation activities, the WCVRPTW has 

many real-life applications to optimize the routes and reduce man-made emissions. Practical waste collection 

studies have been conducted in Hong Kong (Lee et al., 2016), Vietnam (Louati, 2016), Denmark (Zbib and 

Wøhlk, 2019), and Portugal (Ramos et al., 2018).  

As the literature shows, commercial, industrial, and residential waste are considered separately during their 

collection (Kim et al., 2006). In our research, we study the daily commercial waste collection problem. Day-

to-day commercial waste represents a small share of the total waste produced. However, it has considerable 

potential in avoiding emissions due to the large geographical spread. These locations are often within the city 

center, where traffic and emissions are often regulated. Within the scope of this service, waste collection 

vehicles visit business customers (restaurants, shopping malls, retailers, and other commercial establishments). 

Each route may serve between 60 and 400 customers during which trips to landfills need to be arranged (Kim 

et al., 2006). 

Real-life applications of the WCVRPTW may bring additional operational challenges, depending on the 

fleet’s characteristics. This research incorporates several of such challenges, namely, i) a fleet consisting of 

plug-in hybrid electric waste collection vehicles; ii) the presence of recharging and fuel stations; and finally, 

iii) a realistic and microscopic fuel consumption function. In what follows, we explain these operational 

challenges in detail. 

In most WCVRPTW studies, the collection of waste is performed using a fleet of vehicles operated with 

traditional internal combustion engines (ICEs) (see, e.g., Kim et al., 2006; Lee et al., 2016; Louati, 2016; 

Rabbani et al., 2018; Tirkolaee et al., 2019). However, this type of vehicle produces greenhouse gases (GHGs) 

(Demir et al., 2015). As an alternative, Electric Vehicles (EVs) (HVT, 2012) can be used by waste collection 

companies, and some models are available in different markets.  

Due to current technological limitations on EVs, hybrid vehicles offer a more reliable option than pure 

EVs. These vehicles have a battery, an ICE, and an electric machine (EM). Using this technology, Plug-in 

Hybrid Electric Vehicles (PHEVs) link both EM and ICE to the wheels, and a vehicle can be operated on ICE 

or EM. In general, PHEVs run on battery power as a primary fuel source; when it is depleted, the vehicle runs 

on petrol, which again leads to emissions (Murakami, 2018). Hence, PHEV fleets should be utilized by 

incorporating alternative fuels, such as biodiesel, natural gas, or compressed natural gas (CNG) (US DOE, 

2011). CNG can be used as an alternative fuel with a conventional diesel internal combustion engine where 

the engine regulates the natural gas pressure (Chen et al., 2018). 

With this motivation, we consider the WCVRPTW with a fleet of PHEVs powered by two types of fuel: 

electricity and CNG (CNG-PHEV). We investigate PHEVs considering real applications, such as the private 

waste and recycling company Renova AB in Sweden. The company is managed by 11 local authorities and 

provides local councils and businesses with a fleet of CNG and CNG-PHEVs for waste collection (Renova, 

2006). Other CNG-PHEV applications in operation are Green Fleet (2008) and Advantage Environment 

(2011). 
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Thus, the main motivation of this research is to introduce a new variant of the WCVRP that contains new 

technological advancements, such as using CNG-PHEV, which appear in reality and are used effectively in 

the field of waste collection. 

From the WCVRPTW point of view, including a CNG-PHEV fleet and realistic consumption modeling 

changes the problem in three ways: 

i) Two types of recharging stations must be considered, CNG and electricity, since the classical WCVRPTW 

does not consider refueling stations (not even traditional petrol stations). 

ii) With hybrid vehicles, driving range limitations must be considered. Therefore, these vehicles need to be 

charged en route. There is a rich literature on the driving range of hybrid vehicles and the necessity for 

refueling at specialized stations (e.g., Arslan et al., 2015; Mancini 2017; Yu et al., 2017). The standard 

objective in these studies is to plan routes efficiently while considering both customers' visits and visits to 

stations. In our case, we consider visiting recharging and refilling stations while collecting waste from 

customers and disposing of this waste at specialized facilities. 

iii) The use of an alternative fuel in routing problems is usually studied under GVRPs (Erdoğan and Miller-

Hooks, 2012). However, most of these studies consider the energy consumed as a linear function of the 

distance (e.g., Nejad et al., 2017; Mancini 2017; Yu et al., 2017). This assumption is not practical since fuel 

consumption depends on many factors, such as speed, fuel type, vehicle load, road slope, etc. (Bektaş and 

Laporte, 2011). We adopt the CMEM of Barth and Boriboonsomsin (2009) to estimate fuel consumption. 

To sum up, our problem considers CNG and PHEVs to solve the WCVRPTW. We call this problem the 

Hybrid Waste Collection Problem (HWCP). The HWCP can be seen as a combination of the classical 

WCVRPTW, which is NP-hard (Kim et al., 2006), and the HVRP, which is also NP-hard (Yu et al., 2017). 

The WCVRPTW is naturally NP-hard, and it is extremely difficult to obtain optimal solutions using standard 

mathematical solvers. Few used mathematical programming solvers (Tirkolaee et al., 2019) and most 

developed various approximation algorithms to solve the WCVRPTW and related extensions (Kim et al., 2006; 

Hannan et al., 2017; Liu and He, 2012). Regarding the HVRP, exact methods can only solve small-sized 

instances within reasonable computation times. Like in the WCVRPTW, most recent state-of-the-art 

algorithms developed for the HVRP can only solve small-sized instances (e.g., Mancini, 2017; Yu et al., 2017). 

Due to these difficulties, we propose a Hybrid Threshold Acceptance (HTA) metaheuristic algorithm to solve 

the HWCP.  

One challenge in most realistic applications of routing CNG plug-in hybrid electric refuse vehicles is that 

this technology poses new and challenging operational problems related to logistics distribution. For example, 

plug-in hybrid vehicles have limited battery/CNG capacities, leading to a relatively short driving range 

compared to ICE vehicles. The scarcity of CNG stations needed to refuel these vehicles and the fact that they 

are usually not evenly distributed, unlike the widely available gas stations (Shao et al., 2020), increase the 

complexity of finding an efficient solution. The challenge of this proposed problem is to efficiently plan routes 

while considering both customers’ visits and frequent visits to recharging and refueling stations during the 

working day.  

From an industrial perspective, considering new types of vehicles creates difficulties for planning their 

routes and assigning customer locations to these different vehicles. This eventually requires more advanced 
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and capable solution algorithms. Our research contributes to both the agenda of industry and academia as we 

provide algorithmic solutions to handle all reflected issues.  

The main contributions of our paper are threefold. First, we explore an extension of the WCVRPTW 

problem with a CNG-PHEV fleet and intermediate facilities for recharging and refueling, and test it on the 

traditional waste collection vehicle routing problem. In addition, our model considers a detailed and realistic 

fuel consumption function. Second, we propose an HTA metaheuristic algorithm for the HWCP. We develop 

several diversification and intensification mechanisms embedded into a new TA framework, leading to 

improved performance of our HTA algorithm. These include a crossover operator, a multi-start approach, and 

a shaking phase of variable neighborhood search for a better intensification. Finally, the results of extensive 

computational experiments show that our algorithm provides competitive results against the state-of-the-art 

ones by testing our method on a special case of the HVRP from the literature. We show the benefits of using 

a fleet of CNG-PHEV compared to pure electric and CNG vehicles in terms of travel distances and costs. 

Moreover, we also show that our different intensification and diversification mechanisms are required to 

improve the convergence of the traditional TA. 

The remainder of this paper is organized as follows: Section 2 provides an overview of the recent literature 

related to our problem; Section 3 gives a formal definition, while Section 4 provides a mathematical model for 

the proposed problem. Section 5 describes our proposed HTA algorithm; Section 6 reports the computational 

results obtained with HTA; and finally, Section 7 provides conclusions and discusses the future research 

directions. 

2. Literature review 

This section summarizes the recent waste collection and green/hybrid VRP studies in the literature. First, 

metaheuristic approaches and concepts studied in the WCVRPTW are provided. Then, we look at the most 

recent research studies on green/hybrid VRPs. Finally, we also briefly review the relevant literature on 

measuring fuel consumption in VRPs.  

2.1. The waste collection vehicle routing problems  

The WCVRPTW was first formalized by Kim et al. (2006). The authors investigated the commercial 

problem with multiple trips and a lunch break for drivers, and proposed an extension of the insertion algorithm 

of Solomon (1987) for solving the problem. In the study of Benjamin and Beasley (2010), the WCVRPTW 

with a homogeneous fleet of vehicles, landfill facilities, and driver rest periods is considered. The authors 

proposed a VNS algorithm to solve this variant of the WCVRPTW. The proposed algorithm is tested on newly 

generated instances containing 19 landfill facilities and around 2,000 customers on the WCVRP with lunch 

break instances of Kim et al. (2006). Recently, Tirkolaee et al. (2019) developed an SA algorithm to solve a 

WCVRP with multiple trips.  

Due to the complexity of the WCVRPTW and its variants, the problem cannot be solved effectively using 

state-of-art solvers within reasonable computational times (Wei et al., 2019). Therefore, several metaheuristics 

algorithms were developed in the literature. These include Variable Neighborhood Search (VNS) (Polacek et 

al., 2007); Ant Colony Optimization (ACO) (Bautista et al., 2008; Liu and He., 2012); Genetic Algorithm 
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(GA) (Karadimas et al., 2007); Simulated Annealing (SA) (Tirkolaee et al., 2019); and Particle Swarm 

Optimization (PSO) (Hannan et al., 2017). 

Different sets of realistic constraints in the WCRPTW can be found in Hannan et al.(2017), Nowakowski 

et al.(2018), and Zbib and Wøhlk (2019). For more details on the WCVRPTWs, interested readers are referred 

to the studies of Han and Cueto (2015) and Sulemana et al. (2018). 

2.2. The hybrid vehicle routing problems 

Under the green VRP (GVRP) literature, the hybrid version (HVRP) extends the purely electric VRP 

(EVRP). The main difference is that the PHEV fleet uses two different fuels (e.g., electricity and 

diesel/gasoline), while in the EVRP, only electricity is used.  

In recent years, the EVRP has received attention from researchers due to the benefits of EVs to the 

environment. Tahami et al. (2020) studied the Capacitated VRP using a fleet of EVs. To solve this problem, 

the authors developed a branch-and-cut (B&C) and a hybrid method. The methods were tested on newly 

generated instances based on the EVRP benchmark instances of Schneider et al. (2014). In another problem, 

Lin and Kuo (2021) investigated the benefits and deployment of EVs in the carsharing problem by considering 

stochastic demand and parking space to maximize the total expected profit. Wang et al. (2021) developed an 

exact method based on B&C to solve the electric location routing problem by considering multiple types of 

chargers for EVs. Lu et al. (2022) studied a fleet composed of electric and gasoline taxis to jointly serve a set 

of passengers and parcels by using recharging stations. A matheuristic is developed and tested on real-world 

instances from a taxi company in Kaohsiung, Taiwan. Recently, Basso et al. (2022) studied the dynamic 

stochastic EVRP. A Reinforcement Learning approach is developed and tested in real-life instances from 

Luxembourg. EVs are an emerging trend in VRP variants but not yet in the WCVRP. Interesting survey papers 

on the application of EVs are those of Bektaş et al. (2019), Kucukoglu et al. (2021), and Abid and Tabaa 

(2022). 

The HVRP with PHEVs has not been widely studied. In one of the earliest studies, Nejad et al. (2017) 

developed exact methods and an approximation procedure to solve a real-life routing problem in Southeast 

Michigan, US. Later, Mancini (2017) provided an integrated MILP model with a distance-based constant fuel 

consumption rate. The author developed a Large Neighborhood Search (LNS) algorithm to solve the GVRP 

using the benchmark instances of Erdoğan and Miller-Hooks (2012). The results showed that the LNS 

algorithm provides better solutions than the state-of-the-art algorithms for the GVRP. Like Mancini (2017), 

Vincent et al. (2017) developed two versions of a SA algorithm using the Boltzmann and Cauchy functions. 

The proposed methods were tested on the capacitated VRP benchmark instances. Hiermann et al. (2019) 

developed a new HVRP variant by considering different vehicle types (electric vehicles, PHEVs, and ICEVs) 

and recharging stations. A hybrid GA was used on EVRP benchmark instances. Recently, Bahrami et al. (2020) 

studied the HVRP by considering the powertrain control of the PHEV. The authors developed a branch-and-

cut (B&C) and a heuristic algorithm to solve a real-life case in Toronto, Canada.  

In most HVRPs, only the recharging of the electric battery of the PHEVs is considered. The surveys of 

Pelletier et al. (2017) and Asghari et al. (2020) provide more details on both EVRPs and HVRPs with various 

types of electric vehicles. Our research considers visiting recharging and refueling stations while collecting 
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waste. Considering two sets of fuel stations in the planning phase is more complex than assuming a single type 

of fuel station (Yu et al., 2017).  

2.3. Measuring fuel consumption in routing problems 

In addition to the routing problem, we further investigate energy consumption by adopting the 

Comprehensive Modal Emissions Model (CMEM) for hybrid refuse vehicles.  

The energy consumption depends on several attributes, such as acceleration/deceleration, speed, and road 

gradient. Most EVRP studies considered these main factors affecting fuel consumption (e.g., Travesset-Baro 

et al., 2015; Montoya et al., 2016; Koç et al., 2019). Macrina et al. (2019) studied vehicle speed, acceleration, 

and deceleration in urban areas. In their study, the CMEM considers three phases ℎ (ℎ = 1, 2, 3) for each arc 

(𝑖, 𝑗): an acceleration phase (ℎ=1), a deceleration phase (ℎ=3), and a constant speed value is considered as the 

second phase (ℎ=2), resulting in a trapezoidal function (1 → 2 → 3) or triangular function (1 → 3). In many 

other studies, including the one proposed by Macrina et al. (2019), the effect of road gradient on fuel 

consumption is also neglected and assumed to be zero in all arcs. However, it is known that the road gradient 

has one of the most significant influences on vehicle fuel consumption, as shown in Masmoudi et al. (2018b). 

Heni et al. (2019) developed the traditional CMEM by considering both fixed speeds or different speeds over 

time for each arc. Recently, Heni et al. (2021) provided effective machine learning tools to estimate fuel 

consumption by considering more realistic conditions than traditional CMEM, such as the time-varying speed 

and traffic frequency. Following this recent literature, we consider all the main factors, including vehicle speed, 

acceleration, deceleration, road gradient, environment, and traffic-related factors, as discussed in Demir et al. 

(2014). 

3. Problem description 

The goal of HWCP is to determine a set of CNG-PHEV routes to empty waste bins at a minimum cost. A 

solution to the HWCP must satisfy the following conditions:  

• All waste bins must be emptied. 

• A customer is visited by only one vehicle. 

• The total waste from the visited bins must not exceed the vehicle capacity, such that if it is full, 

then the vehicle should go to the landfill facility to be emptied before servicing the next customer. 

• Each vehicle can make multiple landfill visits during its working day. 

• Each customer should be served within its time windows, such that if a vehicle arrives early, it 

must wait until the beginning of the time window. 

• Each recharging/refueling station can be visited multiple times. 

• Each vehicle can visit a station node when the remaining power type level in its battery and tank is 

not sufficient to visit the next customer. We note that the CNG fuel is used only if the energy of the 

vehicle is not enough to visit the next node. 

• Each time a vehicle visits a station, the corresponding fuel is refilled until it reaches the maximum 

capacity. 

• Each vehicle must return empty to the depot. 



  7   
  

• And finally, each route should start and end at the depot while satisfying the maximum working 

time. 

3.1. Modeling CNG fuel consumption for the PHEVs 

In the standard VRP, all vertices can be visited by any vehicle, and each edge directly links a vertex to 

another. In a real-world network, there is not one edge directly linking each pair of vertices; there are many 

intersections in what is, in fact, a path between two locations (Jaballah et al., 2021). Moreover, while in the 

VRP one minimizes the total distance or time, when using a comprehensive consumption function, many other 

factors are considered, such as the slope of the segments being traversed (Demir et al., 2011; Heni et al., 2019). 

The cost-minimizing path might then not be the shortest one.  

In most of the literature, each arc (𝑖, 𝑗) connecting nodes 𝑖 to 𝑗 is assumed to be a direct link and ignores 

the underlying street network. In other words, these studies only consider a reduced graph by using visited 

nodes 𝑖 and 𝑗, without considering the intersections within each path (𝑖, 𝑗). We consider a more realistic 

network by also including intersections. In a real-world shortest path problem (SPP), each vertex denotes an 

intersection, and each edge denotes a road segment between intersections (Murakami, 2017; 2018). For 

example, each arc (𝑖, 𝑗) represents segments in which intersection nodes are associated with the arc (Fig.1.a). 

For example, in Fig (1.b), to travel from node 𝑖 to node j, a refuse vehicle must pass through two intersections, 

A and B, which form three segments. Thus, in our model, we incorporate several intersection points between 

each arc (𝑖, 𝑗) by using different road gradient values on each segment forming an arc (𝑖, 𝑗). Let 𝑆𝑖𝑗 be the set 

of segments of arc (i, j), indexed by s. The relevance of using such a modeling approach is to allow the vehicle 

to change driving modes (fuel, battery, CNG) for each traversed segment. 

 

Fig. 1.a. An example of segments forming the edges 

 

Fig. 1.b. Three segments forming arc (𝑖, 𝑗) 

Figure 1. Modeling the road network with intersection nodes 

 

In this research, the CNG-PHEVs are powered by two fuel source types, 𝑒 and 𝑟, which refer to the 

electricity and the CNG, respectively. Thus, it is necessary to develop a consumption fuel rate for each fuel 
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type throughout each segment s of arc (𝑖, 𝑗). We discuss the energy consumption function based on Macrina et 

al. (2019).  

We adopt the traditional mechanical power developed by Bektaş and Laporte (2011) to define the 

mechanical power of each segment 𝑠 of arc (𝑖, 𝑗), as denoted by 𝑝𝑠𝑀  that can be expressed by function (1):  𝑝𝑠𝑀[kW] = (𝑔 𝑠𝑖𝑛(𝛼𝑖𝑗𝑠) + 𝑔𝐶𝑟𝑐𝑜𝑠(𝛼𝑖𝑗𝑠 )(𝑄𝑖  + 𝑤) ) + (0.5𝐶𝑑𝐴𝜌)𝑣𝑠2)𝑣𝑠,                          (1) 

where 𝑔 is a constant parameter representing the gravitational constant, 𝐶𝑟 and 𝐶𝑑 represent rolling resistance 

and aerodynamic drag coefficients, and 𝛼𝑖𝑗𝑠  is the gradient of the road of segment 𝑠 in arc (𝑖, 𝑗). Let 𝑤 be the 

curb weight of a vehicle, and 𝑄𝑖 be the quantity of waste in the vehicle after visiting customer i; the frontal 

surface area of the refuse vehicle is denoted by 𝐴; 𝜌 is the air mass density; and 𝑣𝑠 is the vehicle speed 

traversing segment 𝑠. Hence, the energy consumption 𝑝𝑠𝐸 for segment 𝑠 of arc (𝑖, 𝑗) of distance 𝑑𝑠 can be 

defined as described in function (2): 𝑝𝑠𝐸(𝑄𝑖)[kW]=(𝑝𝑠𝑀(𝑄𝑖)/𝜂) 𝑑𝑠,                            (2) 

where 𝜂 represents energy efficiency from battery-to-wheel, defined by inequality (3), in which 𝜂 takes a 

positive value  𝜂+ when operating as a motor to discharge electric energy and a negative value  𝜂− when acting 

as a generator to recover energy during the regenerative state. 𝜂 = { 𝜂+ ≤ 1,      if 𝑝𝑠𝐸(𝑄𝑖) > 0 , and 0 ≤ 𝑝𝑠𝑀(𝑄𝑖) ≤ 100 𝑘𝑊  𝜂− ≥ 1,      if 𝑝𝑠𝐸(𝑄𝑖) < 0, and − 100 ≤ 𝑝𝑠𝑀(𝑄𝑖) ≤ 0 𝑘𝑊.                                        (3) 

Thus, based on equations (1) and (2), and following the CMEM as in Macrina et al. (2019), the energy  

consumption for the electric power type 𝑒 of the vehicle for a segment 𝑠 of arc (𝑖, 𝑗) can be calculated with 

function (4): 𝑝𝑖𝑗𝑒 𝑠(𝑄𝑖) [KW]=∑ ([(𝑎(𝑑𝑖𝑗𝑠ℎ) + 𝑔 sin(𝛼𝑖𝑗𝑠) +  𝑔𝐶𝑟 cos(𝛼𝑖𝑗𝑠) (𝑄𝑖  + 𝑤ℎ=1,2,3 ) + (0.5𝐶𝑑𝐴𝜌)𝑣(𝑑𝑖𝑗𝑠ℎ)2]𝑣 𝑑𝑖𝑗𝑠ℎ/𝜂) 𝑑𝑖𝑗𝑠ℎ     (4) 

where 𝑎(𝑑𝑖𝑗𝑠ℎ) represents both acceleration and deceleration phases ℎ, where 𝑑𝑖𝑗𝑠ℎis the distance of segment 𝑠 in arc (𝑖, 𝑗); and 𝑣(𝑑𝑖𝑗𝑠ℎ) represents vehicle speed at the beginning of state ℎ traversing a segment 𝑠 in arc 

(𝑖, 𝑗).  

Thus, the energy rate 𝑝𝑖𝑗𝑒  for each arc (𝑖, 𝑗) can be calculated as defined in function (5): 

                                𝑝𝑖𝑗𝑒 (𝑄𝑖)[kW]=∑ ∑ 𝑝𝑖𝑗𝑒 𝑠ℎ(𝑄𝑖)ℎ=1,2,3𝑠∈𝑆𝑖𝑗 .                                                        (5) 

The contribution of existing studies with the consideration of CNG fuel (Zhang et al., 2014; Xu et al., 

2015; Ercan et al., 2015) is to utilize the MOVES (MOtor Vehicle Emission Simulator) function proposed by 

the EPA (EPA, 2012). One of the disadvantages of this model is that it requires several input profiles (Wang 

and Rakha, 2018), which is time-consuming. As a more practical and potentially effective approach, we apply 

CMEM to estimate the CNG fuel consumption for CNG-PHEV. 

The fuel consumption for the CNG power type 𝑟 of the vehicle for arc (𝑖, 𝑗) can be calculated as:  

                         𝐹𝑅𝑖𝑗𝑟 (𝑄𝑖)=∑ ∑ 𝑚𝑎𝑥ℎ=1,2,3 {ξ𝜏ϑ (𝑓ND + 𝑀𝑖𝑗𝑠ℎ𝜇.𝜇𝑡 ) , 0}𝑠∈𝑆𝑖𝑗 ,               (6) 

 

where 𝜉 is the fuel-to-air mass ratio, 𝜏  is the heating value of a typical CNG fuel, ϑ is a factor converting the 

fuel rate from gram-per second to litter-per second, 𝑓 is the engine friction factor, 𝑁 is the engine speed, 𝐷 is 
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the engine displacement parameter, 𝜇 is the efficiency parameter for CNG engines, 𝜇𝑡 is the drive train 

efficiency parameter, and 𝑀𝑖𝑗𝑠ℎ  represents the mechanical power as defined by Macrina et al. (2019):  𝑀𝑖𝑗𝑠ℎ= [(𝑎(𝑑𝑖𝑗𝑠ℎ) + 𝑔 sin(𝛼𝑖𝑗𝑠 ) +  𝑔𝐶𝑟 cos(𝛼𝑖𝑗𝑠 ) (𝑄𝑖  +  𝑤)  + (0.5𝐶𝑑𝐴𝜌)𝑣(𝑑𝑖𝑗𝑠ℎ)2]𝑣( 𝑑𝑠ℎ).         (7) 

 

Physical constants and other parameters for the CNG-PHEVs are adopted from Macrina et al. (2019). These 

notations are also provided in Appendix A. 

4. Model formulation 

In the HWCP, let 𝐵= {1,…,𝑏} the set of b customers and 𝐿= {1, … , 𝑙} the set of 𝑙 landfills. In addition, let 𝐹𝑧 be the set of  𝑧 alternative fuel stations. The set 𝐹𝑧 is also divided into two type station subsets 𝐹𝑧 = 𝐹𝑒 ∪ 𝐹𝑟, 

where 𝐹𝑒  = {1, … , 𝑒}  is the set of 𝑒 charging stations, and 𝐹𝑟 = {1, … , 𝑟} is the set of 𝑟 refueling stations. In 

addition, copies of the recharging and refueling stations allow multiple visits to the same station. Thus, 𝐹𝑧′ is 

the set of dummy vertices to allow multiple visits to each node in the set 𝐹𝑧 of stations, where 𝐹𝑒′  ={𝑒 + 1, … , 𝑒 + 𝑒′} and 𝐹𝑟′  = {𝑟 + 1, … , 𝑟 + 𝑟′}. We obtain 𝐹𝑧′ = 𝐹𝑒′ ∪ 𝐹𝑟′. In our study, recharging stations i ∈𝐹𝑒 ∪ 𝐹𝑧′ are defined with a recharging speed i . Moreover, partial battery recharging is allowed at any 

station. The recharging time is proportional to the recharged energy, which is usually longer than the refueling 

time. Moreover, since the landfill facilities can be visited more than once, copies of landfill nodes are created. 

Thus, 𝐿′ is the set of dummy vertices to allow multiple visits to each node in the set of 𝐿 where 𝐿′= {𝑙 +1, … , 𝑙 + 𝑙′}.  

Using the defined sets and indies, the investigated problem is defined on a complete graph 𝐺 =  (𝑉 ∪ 𝑉′, 𝐴), 

where 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉 ∪ 𝑉′, 𝑖 ≠ 𝑗} is the set of arcs. The depot is also considered a refueling and charging 

station and belongs to the set 𝐹′𝑧, where vehicle routes should start and end. Since the depot is regarded as a 

refueling/recharging station, we duplicate the depot and denote by 𝑜 and 𝑜′ as the starting and ending nodes, 

respectively. For each arc (𝑖, 𝑗) ∈ 𝐴, we associate a non-negative travel time 𝑡𝑖𝑗 and a distance 𝑑𝑖𝑗  (𝑑𝑖𝑗 = 𝑡𝑖𝑗). 

The recharging (refueling) stations and the landfill facility nodes allow operation at any time during the day.  

A mixed-integer non-linear program formulation of the HWCP is now presented. This mathematical 

formulation is inspired from the works of Kim et al. (2006) and Macrina et al. (2019).  

Indices and sets 𝑜 starting depot 𝑜′ ending depot 𝐵 set of customers 𝐿 set of landfills 𝐹𝑒 set of charging stations 𝐹𝑟 set of refueling stations  𝐹𝑧 set of power sources, where  𝐹𝑧 = 𝐹𝑒 ∪ 𝐹𝑟 𝐿 set of dummy landfills vertices 𝐹𝑒′ set of dummy charging vertices 𝐹𝑟′ set of dummy refueling vertices 
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 𝐹𝑧′ set of dummy power sources vertices, where  𝐹𝑧′ = 𝐹𝑒′ ∪ 𝐹𝑟′. 𝑉 set of all physical nodes where 𝑉 = {𝐵 ∪ 𝐿 ∪  𝐹𝑧} 𝑉′ set of all dummy nodes where 𝑉′ = {𝐵 ∪ 𝐿′ ∪  𝐹′𝑧}   𝐴 set of arcs 𝑑𝑖𝑗 distance from 𝑖 to 𝑗 𝑡𝑖− earliest start time at which the vehicle starts the service time at customer 𝑖 𝑡𝑖+ latest start time at which the vehicle starts the service time at customer 𝑖 𝑞𝑖 amount of waste at customer  𝑡𝑖𝑗 time of arrival at node 𝑗 from 𝑖  𝑠𝑖 service time at node i. If node i belongs to 𝐿, then 𝑠𝑖 is the service time to empty the landfill. 

If node i belongs to 𝐹𝑟′, then 𝑠𝑖 is the refueling time at the refueling station.  𝑅𝑚𝑎𝑥 maximum route duration expressed by the total travel time, time of refueling and recharging time.  𝑐𝑧 cost rate associated with each fuel type  𝐶 maximum capacity payload of the vehicle 𝐻𝑒  battery capacity for the electricity 𝐻𝑟  tank capacity for the CNG fuel 

i  recharging speed at each charging station i ∈ 𝐹𝑒 ∪ 𝐹𝑒′ 
Decision variables 𝑥𝑖𝑗 binary variables equal to 1 if arc (𝑖, 𝑗) is traveled by a vehicle and 0 otherwise. 𝐵𝑖 continuous variables represent the time at which the vehicle starts servicing node 𝑖.  𝑄𝑖 continuous variables indicate the total waste carried on the vehicle immediately after visiting node 𝑖.  𝑦𝑗 continuous variables represent the remaining CNG in the tank upon arrival to node j.  𝑢𝑖𝑗𝑧  binary variables equal to 1 if the vehicle traverses arc (𝑖, 𝑗) using power type 𝑧, and 0 otherwise.  𝑑𝑖𝑗𝑧  binary variables represent the distance traveled by a vehicle traveling arc (𝑖, 𝑗) when power type 𝑧 is 

selected. In this case, this variable takes the actual distance value 𝑑𝑖𝑗, and 0, otherwise. 𝑜𝑖𝑗 continuous variables represent the remaining energy in the battery of the vehicle upon arrival to node 𝑗 from node 𝑖, with (𝑖, 𝑗) ∈ 𝐴 𝑔𝑖𝑗 continuous variables define the quantity of energy recharged from the recharging station node i ∈𝐹𝑒 ∪ 𝐹𝑒′ to travel at any node j ∈ 𝑉′   
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The objective function (8) optimizes the total routing costs of all vehicles. Constraints (9) guarantee that each 

customer must be served by only one vehicle. Constraints (10) define arc flows. Constraints (11) guarantee 

that each route vehicle starts and ends at the depot. Constraints (12) and (13) define arrival times, whereas (14) 

and (15) ensure that each vehicle returns to the depot no later than 𝑅𝑚𝑎𝑥. Time windows are defined in (16). 

Constraints (17) and (18) ensure that each vehicle leaves and returns with an empty load to the depot. 

Constraints (19) and (20) ensure vehicle capacity limitations. Constraints (21) set the weight of each vehicle 
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to zero after leaving a landfill station. In addition, constraints (19) and constraints (21) enforce that the vehicle 

must go to the landfill facility to be emptied when it is full. Constraints (22) ensure that a vehicle can visit the 

following location (customer or recharging/refueling station) or return from a landfill node to the depot. 

Constraints (23) guarantee that the distance from node i to j can be served by fuel type 𝑧. Constraints (24) 

ensure that one fuel type is used to travel from node i to node 𝑗. Constraints (25) ensure that the CNG fuel tank 

is reset to its maximum 𝐻𝑟 after visiting each refueling CNG station. If 𝑖 is a customer node and 𝑗 is visited 

immediately after 𝑖, the first term of constraints (26) ensures that the CNG level is reduced when the vehicle 

arrives at 𝑗 following the distance from 𝑖 to 𝑗 and the CNG consumption rate. Constraints (27) monitor the 

CNG fuel level. Constraints (28) and (29) guarantee that the battery capacity is respected, while constraints 

(30) model the partial recharging of the battery. Constraints (31) and (32) ensure the safe operation of the 

battery since full (100%) and empty (0%) charges can damage it. Finally, constraints (33)-(37) define the 

domains of decision variables. 

We note that the formulation is only presented to provide a formal mathematical definition, but it cannot 

be used to solve small instances. As previously stated, it generalizes and jointly considers several subproblems 

such as the WCVRP, the HVRP, and considers intersection points, which are themselves known to be difficult 

to solve to optimality. Moreover, consumption functions are highly non-linear. Therefore, in the next section, 

a Hybrid Threshold Acceptance (HTA) algorithm is developed for the particular requirements of the HWCP 

to face the challenges imposed by the specific aspects of this problem. 

5. Hybrid Threshold Acceptance algorithm for the HWCP 

This section presents our HTA algorithm tailored as an effective solution methodology for the HWCP. 

The Threshold Acceptance (TA) algorithms have been proposed as an efficient tool to solve a variety of routing 

problems, see, e.g., Nikolakopoulos and Sarimveis (2007), Bräysy et al. (2008), Braekers et al. (2014).  

The algorithm works as follows. Let 𝑥 be an initial solution and 𝑥𝑏𝑒𝑠𝑡 the current best solution. The 

threshold 𝑇 is initialized to its maximum value defined by 𝑇𝑚𝑎𝑥 . In a TA, a new solution 𝑥′ is generated from 

x. If the objective value of 𝑥′ (𝑓(𝑥′)) is better than that of 𝑥, the new solution 𝑥′ is accepted and, therefore, 

becomes a new solution in the next iteration. Otherwise, the solution x’ is accepted if the difference in the 

objective function values calculated by ∆= 𝑓(𝑥′) − 𝑓(𝑥) is less than the threshold value T. This value is 

reduced during the search until only improved solutions are accepted (Braekers et al., 2014).  

There are two distinct advantages to using a TA algorithm as a solution methodology: 1) it is relatively 

easy to adapt for various types of optimization problems; and 2) it relies only on a single parameter (𝑇), which 

makes the algorithm more robust and helps to reduce the burden of additional computational time, as in other 

advanced metaheuristic algorithms (see, e.g., Braekers et al., 2014). Moreover, the threshold acceptance 

function of the TA is less complex than the stochastic function of SA (Talbi, 2009). As far as we know, TA 

has not been considered in the literature to solve any WCVRPTW variants. Furthermore, we propose various 

modifications to improve the standard TA algorithm for the investigated problem. 

One of the disadvantages of TA, especially when solving highly constrained optimization problems, is that 

it may get stuck in a local optimum and not be able to leave it. To overcome this, we focus on enhancing the 



  13   
  

performance of the TA algorithm and its convergence to obtain high-quality solutions by using better 

diversification and intensification mechanisms.  

The proposed HTA algorithm has unique features and differs from other methods because it considers the 

main advantages of several well-known metaheuristics. In the literature, the authors have proposed various 

hybridization techniques such Bees Algorithm in Masmoudi et al. (2016), Bee Colony in Masmoudi et al. 

(2019), or Adaptive Large Neighborhood Search algorithm in Masmoudi et al. (2020). The main structural 

difference between this work and others has been achieved by including new features from state-of-the-art 

evolutionary-based algorithms and other diversification and intensification components from single solution-

based metaheuristic algorithms. The details are provided next.  

The main focus of TA is to search repeatedly around a single feasible solution, reducing the chance of 

looking at other potential solutions. In our HTA algorithm, we restart s at each TA iteration from a different 

initial solution.  We, therefore, look at a broader solution space during the search and avoid from unnecessary 

iterations around local optima. This multi-start approach has been used in various studied (e.g., Vincent and 

Lin, 2014; Koç et al., 2019; Masmoudi et al. , 2020). This is done by using the advantages of GA (the crossover 

and the ability to explore the search space (Masmoudi et al., 2020)). We build a new solution with the crossover 

operator of GA. A newly created solution is then used as the current solution for the subsequent iteration. This 

helps diversify the solution space. 

Generally, a new solution is created from the current solution, using a randomly selected neighborhood 

operator from a random order of the set of neighborhood searches 𝑁ℎ, and this solution is either accepted or 

rejected. Then, the next operator is applied from the set of neighborhood search operators. This standard 

mechanism can also be further improved. In our HTA, we use the following procedure instead of switching to 

the next operator as in the traditional TA (even to accept or reject the new solution). First, a predefined order 

of all neighborhood searches to be used. Then, the current neighborhood from this order is applied to the 

current solution 𝑥. If the new solution 𝑥′ is better than the current solution 𝑥, a new order is updated where the 

current neighborhood operator is switched to the first position. Otherwise, the next operator is applied. This 

technique is inspired from VND algorithms. This technique during the diversification phase provides a better 

solution quality than other ones obtained by standard methods (e.g., Karakostas and Sifalera, 2022). 

An advantage of using different diversification procedures is to discover new regions of the search space 

that may not have been visited yet by the neighborhood search operators. Our method balances diversification 

and intensification mechanisms to handle hard optimization problems, as is the case of our problem. The 

proposed enhanced TA is not only tailored to address HWCP but can be regarded as a new generalized 

algorithmic framework. 

Finally, a new speedup mechanism has been introduced to avoid unnecessary move evaluations and 

prevent the same search over a solution. This increases the runtime of the algorithm. 

A sketch of our HTA algorithm is provided in Algorithm 1. Let 𝑎𝑡𝑡, initialized to one, be the counter for 

the multi-start step, ilast initialized to zero be used as a counter of the number of iterations when 𝑥𝑏𝑒𝑠𝑡 is 

improved, a set of 𝑁ℎ neighborhood searches ℎ={1,…, ℎ𝑚𝑎𝑥}, 𝑥 the initial solution, and 𝑥𝑏𝑒𝑠𝑡 the current best 

solution that is initialized to 𝑥. The HTA runs until the stopping criterion has been met and returns the best 

solution 𝑥𝑏𝑒𝑠𝑡. Each run, except the first one, works as a multi-start step which calls the crossover operator. 
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Thus, a new solution is created, combining the current characteristics of 𝑥𝑏𝑒𝑠𝑡 and a newly generated solution 

by the constructive heuristic (Section 4.1). A new solution 𝑥’ is generated using the current neighborhood 

search 𝑁ℎ. In each iteration a re-ordering of the neighborhood operators is performed in descending order, 

based on the improvements achieved by applying each of them in each previous iteration. An initial predefined 

neighborhood order (from the most to the least complex) is adopted (line 3 of Algorithm 1). Next, for each 

diversification phase the neighborhood operators are successively selected according to their order (lines 15-

19 of Algorithm 1), and the incumbent solution 𝑥 is diversified (line 10 of Algorithm 1) to produce a new 

solution 𝑥’.  Then, a local search operator (line 11 of Algorithm 1, Section 4.4) is applied to 𝑥’ to provide an 

improved solution 𝑥’’. Each local search is applied with speed-up mechanism Static Move Descriptor (SMD) 

(line 11 of Algorithm 1, Section 4.4). 

After performing the neighborhood and local search operators, the solution may be infeasible due to fuel 

usage and vehicle capacity constraints. In this case, the following procedure is applied: first, the Remove 

Landfill (RL) and Insert Landfill (IL) operators are used to restore the feasibility with respect to capacity issues 

(line 12 of Algorithm 1); then, the Remove Fueling Station (RFS) and Insert Fueling Station (IFS) operators 

are performed to regain feasibility related to the fuel usage (line 13 of Algorithm 1). These procedures are 

described in Section 4.3. If the value of  𝑥′′ is less than that of 𝑥′ plus the threshold 𝑇,  𝑥′′ is used as a new 

current solution. This allows better space exploration and provides a chance for each new solution 𝑥” to become 

a promising solution during the search. In addition, if 𝑥" is better than the current one obtained from our 

neighborhood search in Section 4.2, a new order neighborhood is updated (lines 15-19 of Algorithm 1) and the 

neighborhood 𝑁ℎ is changed to the first neighborhood 𝑁1 according to its performance on the previous 

iterations (lines 21 in Algorithm 1); otherwise, 𝑁ℎ is changed to the next neighborhood (line 23 in Algorithm 

1). Finally, if the value of 𝑥 is better than that of 𝑥𝑏𝑒𝑠𝑡, 𝑥 becomes the new best solution (line 25 of Algorithm 

1). If no new best solution is obtained, the value of 𝑇 is reduced by the threshold reduction parameter ∆𝑇 (lines 

31-32 of Algorithm 1). If 𝑇 becomes negative, its value is reset to 𝑇𝑚𝑎𝑥 ∗ 𝛽, where 𝛽 is a  randomly generated 

number between zero and one (lines 33-36 of Algorithm 1). 

Algorithm 1: Hybrid Threshold Acceptance Algorithm 
1. Initialize: ilast = 0 and x = xbest = constructive heuristic; a set of neighborhood structures 𝑁ℎ, where h = {1, … , ℎ𝑚𝑎𝑥}; 

InitialNeighborhoodOrder; 

2. Repeat 

3.   Order←InitialNeighborhoodOrder                                                                      // initialize the order 

4.   ilast ← ilast + 1;                                                                                                      //iterations without improvement 

5.   If att >1 Then                                                                                                      // multi-start approach 

6.   𝑥𝑛𝑒𝑤← a newly generated solution using the constructive heuristic; 

7.    x← Crossover(𝑥𝑏𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤);                                                                               //create a new solution 

8.   h  1;                                                                                                                 //use neighborhood 1 

9. Repeat 

10.         Find a new solution  𝑥′ from the ℎ𝑡ℎ neighborhood of 𝑥 (𝑥′ ∈  𝑁ℎ(𝑥));    //generation of a new solution 

11.         x’’← local search operator(x’, SMD)                                                          // improve the solution 

12. Apply the RL and IL operators on x’';                                                          //improve landfills    

13. Apply the RFS and IFS operators on x’';                                                      //improve refuel/recharge                         

14. If  f (𝑥′) < f (x) +𝑇 Then 

15.              For  i← 1 to ℎ𝑚𝑎𝑥 Do                                                                            //  Generate the new Order 

16.              l←neighborhood with high improvement number; 
17.             UpdateOrder(i) ←l; 

18.       End For 

19.       Order←UpdateOrder; 

20.       x← x';                                                                                                    //update the current solution                      
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21.               h  1;                                                                                                  //use neighborhood 1 based on Order  

22.          Else 

23.               h  h +1;                                                                                            //use next neighborhood 

24.  If  f (x) < f (xbest) then 

25.               xbest ← x;                                                                                              //new best solution 

26.               ilast ← 0; 

27.       xbest ← f (xbest); 

28.  End if 

29. Until h=ℎ𝑚𝑎𝑥+1 

30.          𝑎𝑡𝑡 = 𝑎𝑡𝑡+1; 

31. If ilast > 0 then 

32. 𝑇 ← 𝑇-∆𝑇                                                                                                  //update threshold 

33. If T < 0 then 

34.                𝛽 ←Random number from the interval [0,1]; 

35.              T ←β  × Tmax; 

36. End if 

37.  End if 

38. Until the run time is reached 

39. Return xbest 

5.1. Constructive heuristic 

We propose an enhanced version of the insertion heuristic used by Masmoudi et al. (2018b). Additionally, 

we consider new features, such as fuel consumption (electricity and CNG) and multiple visits to landfill 

facilities.  

For the first feasible solution, a list 𝐿 with a set of customers is created. A customer (𝑖) is randomly selected 

from the list and inserted back into the existing route in the best position. This selection must satisfy time 

windows and maximum route duration constraints. The nearest landfill facility is inserted before node 𝑖 if the 

accumulated waste at node 𝑖 exceeds the vehicle's capacity. If a new customer 𝑖 cannot be visited due to limited 

fuel constraints, the selected customer is reinserted after the fuel recharging (refilling) node station. This is 

done by selecting the fueling station closest to the current node and inserting it between the previously inserted 

customer and the current customer node 𝑖. We note that at each visited CNG station, the fuel tank is refueled 

to its maximum capacity, while at a recharging station partial recharging is allowed. This is done by recharging 

the battery as much as necessary to visit the next node. Because the recharging time is much longer than the 

refueling time, the impact on time windows and maximum route duration must be considered. If they are 

respected and some customers are not serviced, a new route is created, and the same insertion procedure is run 

until all customers have been visited.  

5.2. Neighborhood structures 

The order of neighborhood search structure is the main key to the success of our HTA, as indicated in 

several VNS variants (Mladenović and Hansen, 1997). We propose four effective neighborhood search 

structures with various movement tactics based on Masmoudi et al. (2018b), as described below. The 

neighborhood searches N1 and N2 perform a small perturbation to the solution while N3 and N4 perform a 

higher perturbation to the incumbent solution.  

Swap-Exchange (N1): This operator swaps a random node selected from one route with another one from any 

route.  

Removing-insertion (N2): This neighborhood operator is similar to a greedy procedure. This move consists of 

randomly choosing two routes. Then, from each one, a sequence (𝑠𝑒𝑞) of consecutive nodes is selected. All 
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nodes forming the selected sequences (including the refueling and recharging nodes) are then removed and 

reinserted at their best positions on the other route. When inserting a node, the algorithm checks all possible 

combinations of insertion positions of the node on the current route. Nevertheless, each of these new routes 

can violate fuel-related constraints. In this case, a refueling or recharging station node is also inserted at its 

best position. The value of 𝑠𝑒𝑞 is selected randomly between one and five.  

Cross-exchange (N3)-(N4): In this move, we exchange nodes between two routes. First, 𝑏 consecutive nodes 

are transported from one route to another. Afterwards, 𝑑 consecutive nodes are transported from route two to 

route one. The selection of 𝑏 is limited to two and three, and 𝑑 is randomly chosen as 𝑏 or 𝑏-1, as the chance 

of having an effective swap is minimized with longer segment lengths. We limit the segment length to two 

(N3) and three (N4). Considering its capacity for effective diversification, this operator is mainly used at the 

perturbation stage (Hemmelmayr et al., 2009; Masmoudi et al., 2018b). 

At the end of the neighborhood and local search operators, redundant refueling, recharging, and landfill 

facility node visits might occur. Moreover, the current solution may require visiting refueling or recharging 

stations and landfill facility nodes. For these reasons, two operators related to the landfill facility and two 

operators related to fueling are proposed in the next section. 

5.3. Feasibility regain procedures 

To maintain the feasibility of the solution in terms of landfill and refuel/recharge constraints, we use two 

operators for the landfill constraints (Remove Landfill (RL) and Insert Landfill (IL)) and two for the 

refuel/recharge constraints (Remove Fueling Stations (RFS) and Insert Fueling Station (IFS)). These operators 

are described below.    

Remove Landfill (RL): The RL is performed at each route of a solution. The idea of this operator is to verify 

for every landfill facility visit if the total collected waste does not violate the capacity vehicle at the next node 

after the landfill. In this case, the landfill facility node is deleted.  

Insert Landfill (IL): The RL considers all nodes 𝑖 and 𝑗 of each route (∀ 𝑖, 𝑗 ∈ 𝐵), such that if the total amount 

of waste at node 𝑗 violates the capacity vehicle, a landfill facility is inserted prior to it. It is done by finding the 

closest landfill node to node 𝑖. After a visit to the landfill facility, the capacity of a vehicle is reset to zero.   

Remove Fueling Station (RFS): The RFS is similar to the RL operator. It investigates for every fueling station 

visit if the fueling (electric or CNG station) node can be removed such that the amount of fuel (electricity and 

CNG) is sufficient to reach the next node of the route. 

Insert Fueling Station (IFS): For each node 𝑖 ∈ 𝐵 ∪ 𝐿, if the remaining fuel in a tank and the charge level in a 

battery at node 𝑖 are not sufficient to reach the next node directly or to reach the closed station after that, a visit 

to the station closed to 𝑖 is performed. Starting at node 𝑖, the operator assumes that the remaining battery and 

CNG fuel at node 𝑖 are sufficient to reach the nearest station. This is done by calculating the current power 

type that needs to be used between the current node i and all recharge and refueling station nodes.  

5.4. Intensification mechanisms 

Four well-known local search operators are proposed to quickly and efficiently improve the solution 

obtained from the current neighborhood. We use two intra-route operators (relocate of Savelsbergh (1992) and 
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2-opt of Lin (1965)) and two inter-route operators (remove two insert one of Xiang et al. (2006) and relocate 

of Savelsbergh (1992)).  

These operators are computationally expensive. To improve the runtime, a speed-up mechanism is 

implemented.  

Static Move Descriptor (SMD): This mechanism is similar to the work of Beek et al. (2018). For a given route 

or pair of routes, we first determine the best-improving move of a particular neighborhood. We then store the 

information. If there is no improvement, we also store this information. At the start of the search, the algorithm 

verifies whether the given route or pair of routes have already been explored. Then, the SMD returns the 

information of the best-improving move or that there is no such move. If not, the search is performed normally, 

and it stores the corresponding information regarding the route or pair of routes. 

6. Numerical Experiments 

We now present the detailed numerical results. We have implemented the HTA algorithm in the C 

programming language on a system with an Intel Core i5-10310U processor running at 1.70 GHz with 8 GB 

RAM.  

We apply the HTA algorithm on a new set of instances generated as no benchmark publicity is available. 

We have adapted the well-known EVRP benchmark instances. For these instances, three sets are denoted as 

C, R, and RC, created by Schneider et al. (2014).  

We set the numbers 𝑒 and 𝑟 of stations based on the number of customers in each instance in our data set. 

For 𝑏 customers, the number of refueling stations (CNG) and recharging stations are assumed to be 0.1*𝑏, as 

done in Goeke and Schneider (2015), for each type of station. The coordinates of these nodes are randomly 

generated on a specific square area (i.e., [−10, 10]2). We note that the depot is also considered a refueling and 

recharging station. The number of landfill nodes is between two and three, also randomly generated.  

To consider the characteristics of different technologies, we assumed that the charging stations in the 

network are homogeneous. With this assumption, vehicles can be charged at any available station at the same 

cost and charging time. While different charging stations exist in reality, we have followed the work of Macrina 

et al. (2019) and considered only one type, i.e., recharging at 20,000 KWh/h. 

Finally, our adapted instances consider various levels of road gradients between -6% and 6% (Masmoudi 

et al., 2018b). The detailed instances and results can be found on the following website: https://hwcvrp-

45.webself.net/.   

In Section 6.1 we describe the parameter setting of our algorithm, and in Section 6.2 we assess the 

performance of our algorithm on the classical EVRP instances from the literature and perform a sensitivity 

analysis of the different elements of our algorithm on these results. In Section 6.3, we use the modified EVRP 

instances with new recharging stations and test the performance of our algorithm on our HWCP, where we test 

the performance of different consumption rates and energy usage. 

 

 

 

https://hwcvrp-45.webself.net/
https://hwcvrp-45.webself.net/
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6.1. Parameter setting 

We now provide the results of sensitivity analyses. The initial values of the parameters are determined 

based on previous experiments conducted in the literature. The performance of our HTA algorithm has a strong 

relationship with these parameters, and we fine-tune them as follows.  

The main TA parameter is the maximum threshold value (𝑇𝑚𝑎𝑥) (Braekers et al., 2014). Based on Braekers 

et al. (2014) and Masmoudi et al. (2018a), 𝑇𝑚𝑎𝑥 should be less than five. Based on preliminary tests, we set 𝑇𝑚𝑎𝑥=4. To assess the influence of this parameter, we tested our HTA algorithm on 20 large-sized instances, 

which were selected with various features. All experiments are run ten times on each instance.  

To tune parameters, the following procedure was performed. First, we fix the runtime (i.e., 10, 20, and 30 

minutes). Second, for each fixed runtime, we evaluate the robustness of different 𝑇𝑚𝑎𝑥 values (i.e., 2; 2.5; 3; 

3.5; 4). Table 2 provides the sensitivity analysis results for the parameter 𝑇𝑚𝑎𝑥. The column denoted "Best" 

("Avg") represents the average over all 20 instances of the best (average) solution value obtained by our HTA 

for each corresponding parameter combination. 

Table 2 Identification of the best parameters setting for the HTA algorithm 

  10 minutes 20 minutes 30 minutes 

 𝑇𝑚𝑎𝑥  2 2.5 3 3.5 4 2 2.5 3 3.5 4 2 2.5 3 3.5 4 

Best 1915.43 1914.26 1912.59 1910.90 1910.52 1894.64 1892.92 1891.22 1890.87 1890.11 1890.37 1889.38 1889.14 1888.67 1888.39 

Avg 1922.94 1922.26 1920.29 1918.11 1917.20 1906.41 1902.47 1897.78 1898.54 1897.14 1896.90 1896.49 1896.24 1896.14 1895.70 

Table 2 shows that no significant improvement has been achieved in average solution values after 20 

minutes. The quality of best and average solutions slightly improves when using 𝑇𝑚𝑎𝑥=4 and 30 minutes, but 

we consider that the gains are not worth the extra time. The results shown in Table 2 suggest that 𝑇𝑚𝑎𝑥 should 

be four. To balance solution quality and runtime for instances of different sizes, we stop the algorithm after 10 

consecutive iterations without improving the best solution. This choice also follows that of Masmoudi et al. 

(2016).  

6.2. Analysis on EVRP(-PR) benchmark instances  

To further demonstrate the efficiency of our HTA algorithm, EVRP benchmark instances are solved. By 

considering only electricity as the energy source in our fleet and by relaxing the constraints related to the 

landfills, our problem can be easily transformed into an EVRP-PR. The objective function aims to minimize 

the number of vehicles used and decrease the total distance. 

The state-of-the-art algorithm for this problem, namely the hybrid ILS of Cortés-Murcia et al. (2019), 

presents the most recent method to solve the EVRP-PR, and is compared with our HTA algorithm. We also 

list all the best-known solutions and the papers that obtained them. Table 3 compares our algorithm against 

the hybrid ILS of Cortés-Murcia et al. (2019) on the EVRP-PR instances. Column "BKS" refers to the best-

known solution, while "Best (%)" and "Avg (%)" are the percentage deviations from the best known (average) 

solution obtained in ten runs. We also present CPU times in minutes. Our algorithm stops when there is no 

improvement of the best solution after ten consecutive iterations. This stopping condition is inspired by 

Masmoudi et al. (2016) and intends to obtain a good quality solution. 
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It should also be noted that we cannot compare the performance of the algorithms to the computational 

time reported in Cortés-Murcia et al. (2019). This is because a different machine has been used to run our 

algorithms than that used for the hybrid ILS. Moreover, the speed factor of the configuration applied on HTA 

cannot be estimated by using Dongarra's (2014) results due to a lack of relevant information in Dongarra (2014) 

and Linpack (www.roylongbottom.org.uk).  

Table 3 

Comparison of our HTA with the hybrid ILS of Cortés-Murcia et al. (2019) on EVRP-PR instances 

Inst. Nb_Veh BKS 
Hybrid ILS[Cortés-Murcia et al., 2019]a   HTA 

Nb_Veh Best Best% CPU (min)   Nb_Veh Best Best% CPU (min) 

c101 12 1043.38c 12 1043.38 0.00 1.12  12 1043.38 0.00 2.68 

c102 11 1017.7b 11 1017.70 0.00 1.46  11 1017.70 0.00 4.14 

c103 10 971.19b 10 971.19 0.00 2.08  10 971.19 0.00 1.39 

c104 10 884.38d 10 884.38 0.00 1.72  10 884.38 0.00 2.76 

c105 11 1015.79b 11 1015.79 0.00 1.25  11 1015.79 0.00 2.07 

c106 11 1009.33b 11 1009.33 0.00 1.42  11 1009.33 0.00 1.38 

c107 10 1046.50b 10 1046.50 0.00 1.85  10 1046.50 0.00 1.74 

c108 10 1022.48b 10 1022.48 0.00 1.99  10 1022.48 0.00 5.68 

c109 10 940.38c 10 940.38 0.00 2.28  10 940.38 0.00 2.35 

c201 4 629.95d 4 629.95 0.00 1.11  4 629.95 0.00 2.91 

c202 4 629.95d 4 629.95 0.00 1.47  4 629.95 0.00 3.36 

c203 4 629.95d 4 629.95 0.00 1.91  4 631.97 0.32 4.24 

c204 4 628.91d 4 628.91 0.00 2.29  4 628.91 0.00 1.83 

c205 4 629.95d 4 629.95 0.00 1.41  4 629.95 0.00 4.85 

c206 4 629.95d 4 629.95 0.00 1.65  4 629.95 0.00 1.53 

c207 4 629.95d 4 629.95 0.00 1.73  4 629.95 0.00 2.54 

c208 4 629.95d 4 629.95 0.00 1.71  4 629.95 0.00 5.01 

r101 18 1606.98b 18 1606.98 0.00 2.49  18 1606.98 0.00 4.92 

r102 15 1461.23b 15 1461.23 0.00 2.68  15 1470.00 0.60 3.65 

r103 13 1212.37b 13 1212.37 0.00 2.81  13 1214.31 0.16 4.50 

r104 11 1051.41b 11 1051.41 0.00 3.09  11 1054.56 0.30 2.08 

r105 14 1347.80c 14 1362.31 1.08 2.77   14 1359.39 0.86 1.97 

r106 13 1256.19b 13 1256.19 0.00 2.76  13 1256.19 0.00 4.34 

r107 12 1108.47b 12 1108.47 0.00 2.56  12 1108.47 0.00 4.53 

r108 11 1020.52b 11 1020.52 0.00 3.01  11 1020.52 0.00 1.82 

r109 12 1185.77b 12 1185.77 0.00 3.24  12 1185.77 0.00 3.46 

r110 11 1070.99c 11 1071.92 0.09 3.18   11 1071.42 0.04 3.07 

r111 11 1072.46b 11 1072.46 0.00 3.25  11 1078.79 0.59 5.61 

r112 11 1001.79c 11 1001.79 0.00 3.22  11 1001.79 0.00 2.50 

r201 3 1255.81b 3 1255.81 0.00 3.04  3 1255.81 0.00 3.12 

r202 3 1051.46c 3 1051.46 0.00 2.23  3 1056.72 0.50 8.92 

r203 3 895.54d 3 895.54 0.00 2.73  3 895.54 0.00 2.95 

r204 2 780.91b 2 780.91 0.00 4.44  2 781.93 0.13 6.25 

r205 3 987.22b 3 987.22 0.00 2.56  3 987.22 0.00 10.21 

r206 3 922.70d 3 922.70 0.00 2.62  3 922.70 0.00 15.60 

r207 2 843.20c 2 857.07 1.64 3.61   2 851.72 1.01 9.41 

r208 2 736.12d 2 738.84 0.37 3.38  2 742.01 0.80 5.72 

r209 3 863.36c 3 870.68 0.85 2.49  3 871.39 0.93 3.46 

r210 3 843.36d 3 846.62 0.39 2.34  3 849.09 0.68 3.37 

r211 2 826.88c 2 826.88 0.00 3.79  2 826.88 0.00 2.80 

rc101 15 1648.99d 15 1661.53 0.76 2.62   15 1654.27 0.32 5.38 

rc102 14 1510.16c 14 1510.16 0.00 2.58  14 1510.16 0.00 7.65 

rc103 12 1346.83b 12 1346.83 0.00 2.62  12 1350.60 0.28 4.60 

rc104 11 1175.06c 11 1175.83 0.07 2.70  11 1180.47 0.46 7.69 

rc105 14 1446.30b 14 1446.30 0.00 2.55  14 1446.30 0.00 5.67 

rc106 13 1383.14b 13 1383.14 0.00 2.68  13 1383.14 0.00 5.35 

rc107 12 1244.83b 12 1244.83 0.00 2.63  12 1246.70 0.15 3.73 

rc108 11 1154.14c 11 1159.90 0.50 2.48  11 1161.30 0.62 6.16 

rc201 4 1443.07b 4 1443.07 0.00 2.34  4 1443.65 0.04 4.06 

rc202 3 1403.32b 3 1403.32 0.00 3.27  3 1403.32 0.00 7.65 

rc203 3 1060.32c 3 1068.28 0.75 3.04   3 1066.47 0.58 10.25 

rc204 3 884.75c 3 884.97 0.02 2.94  3 888.55 0.43 4.81 

rc205 3 1249.56b 3 1249.56 0.00 4.13  3 1254.43 0.39 8.30 

file:///E:/Waste%20Management/TRE%20(Third%20submission)%20-%20Copie/www.roylongbottom.org.uk
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rc206 3 1187.40b 3 1187.40 0.00 3.22  3 1188.35 0.08 2.98 

rc207 3 985.67c 3 996.63 1.11 3.36   3 994.15 0.86 18.28 

rc208 3 833.12c 3 833.12 0.00 3.17  3 834.87 0.21 5.82 

Avg - 1247.77 7.77 1043.39 0.14 2.55   - 1044.06 0.20 4.88 
a Results of Cortés-Murcia et al.(2019), programmed in C++ and executed on 2.3 GHz Intel Xeon with 8 GB RAM 
b Best-known solution provided by Cortés-Murcia et al.(2019) 
c Best-known solution provided by Hiermann et al.(2019)  
d Best-known solution provided by Keskin and Çatay (2016) 

 

Observing the tested EVRP-PR instances, the quality solution obtained by our HTA is very close to that 

of the hybrid ILS of Cortés-Murcia et al. (2019) with a small gap. The HTA has an average deviation (Best%) 

of 0.20% which ranges between 0.00% and 1.01% from the BKS, while it is 0.14% for the hybrid ILS (ranging 

between 0.00% and 1.64%). This can explain the slightly more robust solutions of the hybrid ILS with a partial 

recharging policy to solve the EVRP-PR. Our proposed HTA can find BKS results in 31 instances compared 

to 44 among 56 instances. In addition, the HTA can find five better solutions than the hybrid ILS, as shown in 

bold. Thus, we can see that our HTA provides good results against the hybrid ILS of Cortés-Murcia et al. 

(2019). 

Similar to the previous comparison, we compare our algorithm on the EVRP with full recharging 

benchmark instances where the battery is recharged to its maximum at each visit to the recharging station. In 

Table 4, we report the comparison of our algorithm against the hybrid GA of Hiermann et al. (2019). All 

columns of Table 4 have the same titles and meanings as in Table 3. 

Table 4 

Comparison of our HTA with the hybrid GA of Hiermann et al. (2019) on EVRP with full recharging instances 

Inst BKS Veh 

Hybrid GA [Hiermann et al., 2019]a   HTA 

Avg Avg% Veh Best Best% Veh 
CPU 

(min) 
  Avg Avg% Veh Best  Best% Veh 

CPU 

(min) 

c101 1053,83b 12 1053,83 0,00 12 1053,83 0,00 12 3,81  1053,83 0,00 12 1053,83 0,00 12 1,75 

c102 1051,38b 11 1057,45 0,58 11 1055,12 0,36 11 5,37  1055,38 0,38 11 1052,64 0,12 11 2,51 

c104 951,57c 10 958,91 0,77 10 953,63 0,22 10 10,07  951,57 0,00 10 951,57 0,00 10 3,32 

c105 1075,37b 11 1076,71 0,12 11 1075,37 0,00 11 4,65  1078,38 0,28 11 1077,74 0,22 11 1,75 

c106 1057,65b 11 1058,17 0,05 11 1057,65 0,00 11 5,25  1059,24 0,15 11 1057,65 0,00 11 3,02 

c107 1031,56b 11 1033,44 0,18 11 1031,56 0,00 11 7,00  1032,80 0,12 11 1031,56 0,00 11 1,60 

c109 1033,67b 10 1044,71 1,07 10 1060,78 2,62 11 11,26  1045,35 1,13 10 1043,49 0,95 11 6,55 

c201 645,16b 4 645,16 0,00 4 645,16 0,00 4 5,38  645,16 0,00 4 645,16 0,00 4 5,22 

c202 645,16b 4 645,16 0,00 4 645,16 0,00 4 7,59  645,16 0,00 4 645,16 0,00 4 4,28 

c203 644,98b 4 645,00 0,00 4 644,98 0,00 4 7,93  646,46 0,23 4 644,98 0,00 4 4,90 

c204 636,43b 4 636,92 0,08 4 636,43 0,00 4 8,57  641,97 0,87 4 638,91 0,39 4 4,98 

c205 641,13b 4 641,13 0,00 4 641,13 0,00 4 6,46  641,77 0,10 4 641,13 0,00 4 5,02 

c206 638,17b 4 638,17 0,00 4 638,17 0,00 4 7,32  638,17 0,00 4 638,17 0,00 4 3,64 

c207 638,17b 4 638,17 0,00 4 638,17 0,00 4 7,56  638,17 0,00 4 638,17 0,00 4 4,20 

c208 638,17b 4 638,17 0,00 4 638,17 0,00 4 7,54  638,17 0,00 4 638,17 0,00 4 4,54 

r101 1663,04b 18 1664,50 0,09 18 1663,04 0,00 18 7,74  1672,35 0,56 18 1670,02 0,42 18 4,16 

r102 1484,57d 16 1486,99 0,16 16 1484,57 0,00 16 7,95  1487,69 0,21 16 1484,57 0,00 16 2,62 

r103 1268,88d 13 1284,47 1,23 13 1268,88 0,00 13 11,89  1268,88 0,00 13 1268,88 0,00 13 3,04 

r104 1088,43b 11 1090,68 0,21 11 1103,50 1,38 11 14,74  1095,18 0,62 11 1093,33 0,45 11 2,68 

r107 1148,38d 12 1163,54 1,32 12 1148,38 0,00 12 13,78  1158,72 0,90 12 1155,27 0,60 12 2,33 

r108 1049,12d 11 1064,58 1,47 11 1049,12 0,00 11 15,23  1052,69 0,34 11 1049,12 0,00 11 1,59 

r111 1099,53d 12 1111,12 1,05 12 1099,53 0,00 12 14,72  1101,18 0,15 12 1099,53 0,00 12 1,71 

r112 1016,63d 11 1023,78 0,70 11 1016,63 0,00 11 14,25  1016,63 0,00 11 1016,63 0,00 11 3,18 

r201 1264,82b 3 1273,88 0,72 3 1267,14 0,18 3 9,81  1268,74 0,31 3 1264,82 0,00 3 3,81 

r202 1052,32b 3 1053,45 0,11 3 1052,32 0,00 3 10,96  1052,32 0,00 3 1052,32 0,00 3 5,81 

r203 895,54c 3 910,15 1,63 3 895,54 0,00 3 12,35  901,36 0,65 3 898,76 0,36 3 4,63 

r204 779,49 2 795,91 2,11 2 784,77 0,68 2 19,19  783,78 0,55 2 782,37 0,37 2 5,25 

r205 987,36c 3 995,02 0,78 3 987,36 0,00 3 11,51  993,48 0,62 3 990,12 0,28 3 7,42 

r206 922,19 3 932,97 1,17 3 925,34 0,34 3 14,18  925,14 0,32 3 923,30 0,12 3 3,94 

r207 845,26 2 851,73 0,77 2 847,59 0,28 2 18,08  849,06 0,45 2 846,19 0,11 2 7,63 
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r208 736,12 2 739,11 0,41 2 736,12 0,00 2 17,26  742,67 0,89 2 738,77 0,36 2 6,00 

r209 867,05 3 873,64 0,76 3 870,68 0,42 3 16,82  869,56 0,29 3 868,35 0,15 3 5,46 

r210 846,62c 3 850,48 0,46 3 846,62 0,00 3 17,86  850,60 0,47 3 846,62 0,00 3 7,62 

r211 827,89 2 834,94 0,85 2 836,27 1,01 2 19,45  835,09 0,87 2 834,18 0,76 2 5,38 

rc101 1723,79d 16 1723,79 0,00 16 1723,79 0,00 16 13,02  1723,79 0,00 16 1723,79 0,00 16 4,93 

rc103 1350,09 13 1350,98 0,07 13 1350,55 0,03 13 14,86  1351,44 0,10 13 1350,09 0,00 13 2,74 

rc104 1227,25 11 1235,85 0,70 11 1230,92 0,30 11 13,46  1236,09 0,72 11 1229,21 0,16 11 3,57 

rc105 1473,24c 14 1476,84 0,24 14 1473,24 0,00 14 12,13  1473,24 0,00 14 1473,24 0,00 14 3,79 

rc106 1423,27d 13 1433,67 0,73 13 1423,27 0,00 13 9,81  1425,36 0,15 13 1423,27 0,00 13 1,72 

rc107 1274,41d 12 1278,56 0,33 12 1274,41 0,00 12 13,72  1282,69 0,65 12 1274,41 0,00 12 2,67 

rc108 1197,41d 11 1203,61 0,52 11 1197,41 0,00 11 8,92  1199,92 0,21 11 1197,41 0,00 11 2,46 

rc201 1444,94b 4 1454,23 0,64 4 1446,03 0,08 4 10,10  1456,93 0,83 4 1452,60 0,53 4 4,44 

rc202 1410,74b 3 1430,52 1,40 3 1421,34 0,75 3 11,78  1421,46 0,76 3 1415,25 0,32 3 5,37 

rc203 1055,19 3 1069,15 1,32 3 1057,16 0,19 3 11,52  1057,62 0,23 3 1055,19 0,00 3 6,40 

rc204 884,72d 3 888,20 0,39 3 884,72 0,00 3 13,12  891,00 0,71 3 886,31 0,18 3 5,27 

rc206 1188,63 3 1209,22 1,73 3 1190,50 0,16 3 11,11  1195,29 0,56 3 1188,63 0,00 3 6,46 

rc207 985,03 3 1002,13 1,74 3 991,96 0,70 3 12,78  989,17 0,42 3 986,02 0,10 3 7,61 

rc208 836,29d 3 839,99 0,44 3 836,29 0,00 3 15,23  839,72 0,41 3 836,29 0,00 3 7,04 

Avg 1035,43 - 1041,85 0,61 - 1037,51 0,20 - 11,36   1039,18 0,36 - 1036,94 0,14 - 4,29 
a Results of Hiermann et al. (2019), programmed in Java and executed on 3.3 GHz Intel Xeon with 4 GB RAM 
b Best-known solution provided by Schneider et al.(2014)  
c Best-known solution provided by Goeke and Schneider(2015)  
d Best-known solution provided by Hiermann et al.(2019)  

 

Table 4 shows that our HTA is competitive against the hybrid GA of Hiermann et al. (2019) and provides 

good results on the EVRP with full recharging. Based on the number of best solutions (column Best), it is clear 

that our HTA outperforms the hybrid GA of Hiermann et al. (2019) by providing 16 best solutions compared 

to 9 for their hybrid GA. Considering the number of best average solutions found over ten runs (column Avg), 

our proposed HTA can also provide good results with 24 best average solutions compared to 17 for the hybrid 

GA. Regarding the average deviation of the best result (column Best), our HTA is slightly more efficient than 

the hybrid GA, with an average gap equal to 0.14%, compared to 0.20% obtained by the hybrid GA. The same 

holds for the average deviation of the average results from the best-known solutions (column Avg), where our 

HTA is also slightly more efficient with a gap of 0.36% compared to 0.61% by their hybrid GA.  

We now present the impact of different components, i.e., different diversification and intensification 

mechanisms such as the multi-start approach, using the shaking phase of the VNS framework, and the updated 

order of the neighborhood search structures on the solution quality. To this end, new configurations are 

compared to the standard TA found in the literature (e.g., Nikolakopoulos and Sarimveis, 2007; Bräysy et al., 

2008) by incorporating different component(s) each time. The detailed results are shown in Table 5, where the 

benchmark EVRP instances of Schneider et al. (2014) are used. First, in configuration “C1”, we apply the 

standard TA described early in Section 5. Configuration “C2” represents the traditional TA with the multi-start 

approach (lines 5-7 of Algorithm 1). Configuration “C3” represents the traditional TA with the shaking phase 

procedure. In “C4”, we apply our updating order of the different neighborhood structures into configuration 

C3 (lines 15-19 of Algorithm 1). Configuration “C5” combines C2 and C3. The last configuration, “C6”, 

reflects our HTA described in Algorithm 1, in which we use all the components of the multi-start, updating 

neighborhood search order, and the shaking phases. Table 5 recapitulates these different configurations. 
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        Table 5 

        A list of different configurations of the algorithmic components 

Configuration  Description 

C1 Traditional TA 

C2 Traditional TA + multi-start approach  

C3 Traditional TA + shaking phase procedure 

C4 Traditional TA + shaking phase procedure+ update order of neighborhood structures 

C5 Traditional TA + multi-start approach + shaking phase procedure 

C6 (HTA) Traditional TA + multi-start approach + shaking phase procedure+ update order of neighborhood structures (over 

algorithm) 

Table 6 provides in columns “Best%” and “Avg%” the deviation gap from the Best-Known Solutions 

(BKS) on the EVRP-PR. 

Table 6 

Impact of different components on the solution quality 

Inst. BKS 

Hybrid ILS of Cortés-

Murcia et al. (2019)  
C1 C2 C3 C4 C5 C6 (HTA) 

Best 
Best 

(%) 

Avg 

(%) 

Best 

(%) 

Avg 

(%) 

Best 

(%) 

Avg 

(%) 

Best 

(%) 

Avg 

(%) 

Best 

(%) 

Avg 

(%) 

Best 

(%) 

Avg 

(%) 

Best 

(%) 

c101 1043.38c 1043.38 0.00 3.84 2.06 2.27 1.22 1.66 0.89 1.15 0.53 0.80 0.37 0.00 0.00 

c102 1017.7b 1017.70 0.00 6.22 1.83 3.48 1.02 2.46 0.72 1.64 0.40 1.09 0.27 0.00 0.00 

c103 971.19b 971.19 0.00 6.65 1.95 3.81 1.12 2.73 0.80 1.85 0.46 1.25 0.31 0.00 0.00 

c104 884.38d 884.38 0.00 2.71 1.50 1.49 0.83 1.05 0.58 0.69 0.32 0.45 0.21 0.00 0.00 

c105 1015.79b 1015.79 0.00 3.51 2.54 2.00 1.45 1.43 1.04 0.97 0.59 0.66 0.40 0.00 0.00 

c106 1009.33b 1009.33 0.00 2.38 1.68 1.33 0.94 0.94 0.66 0.62 0.37 0.41 0.25 0.00 0.00 

c107 1046.50b 1046.50 0.00 3.82 2.79 2.19 1.60 1.56 1.14 1.06 0.65 0.72 0.44 0.00 0.00 

c108 1022.48b 1022.48 0.00 3.59 2.02 2.19 1.23 1.63 0.92 1.15 0.56 0.81 0.40 0.00 0.00 

c109 940.38c 940.38 0.00 5.45 4.68 3.09 2.65 2.20 1.89 1.48 1.07 0.99 0.72 0.89 0.00 

c201 629.95d 629.95 0.00 2.70 1.23 1.65 0.75 1.22 0.56 0.87 0.34 0.62 0.24 0.00 0.00 

c202 629.95d 629.95 0.00 1.29 0.07 0.73 0.04 0.51 0.03 0.34 0.02 0.23 0.01 0.21 0.00 

c203 629.95d 629.95 0.00 2.90 1.47 1.70 0.86 1.23 0.63 0.85 0.37 0.59 0.25 0.53 0.32 

c204 628.91d 628.91 0.00 3.65 2.08 2.07 1.18 1.47 0.84 0.99 0.48 0.67 0.32 0.59 0.00 

c205 629.95d 629.95 0.00 3.20 0.25 1.93 0.15 1.43 0.11 1.00 0.07 0.70 0.05 0.64 0.00 

c206 629.95d 629.95 0.00 2.50 0.93 1.42 0.53 1.01 0.38 0.68 0.21 0.46 0.14 0.41 0.00 

c207 629.95d 629.95 0.00 2.00 0.83 1.14 0.47 0.81 0.34 0.55 0.19 0.37 0.13 0.33 0.00 

c208 629.95d 629.95 0.00 4.99 2.61 2.96 1.55 2.16 1.13 1.50 0.67 1.04 0.47 0.94 0.00 

r101 1606.98b 1606.98 0.00 2.29 1.02 1.30 0.58 0.92 0.41 0.62 0.23 0.42 0.16 0.37 0.00 

r102 1461.23b 1461.23 0.00 6.73 4.52 4.45 2.60 3.20 1.87 2.18 1.08 1.48 0.73 1.02 0.60 

r103 1212.37b 1212.37 0.00 6.48 4.48 3.84 2.65 2.80 1.94 1.94 1.15 1.34 0.79 0.80 0.16 

r104 1051.41b 1051.41 0.00 7.44 4.68 4.47 2.81 3.29 2.07 2.30 1.24 1.61 0.87 1.46 0.30 

r105 1347.80c 1362.31 1.08 7.94 3.98 4.67 2.34 3.40 1.90 2.35 1.50 1.62 1.21 1.46 0.86 

r106 1256.19b 1256.19 0.00 6.19 3.02 3.63 1.77 2.63 1.28 1.81 0.75 1.25 0.52 0.90 0.00 

r107 1108.47b 1108.47 0.00 6.17 3.52 4.38 2.15 3.26 1.60 2.31 0.98 1.64 0.69 0.32 0.00 

r108 1020.52b 1020.52 0.00 5.70 3.25 4.58 1.93 3.36 1.42 2.33 0.84 1.62 0.59 0.65 0.00 

r109 1185.77b 1185.77 0.00 5.18 4.01 4.07 2.27 2.89 1.61 1.94 0.91 1.30 0.61 0.90 0.00 

r110 1070.99c 1071.92 0.09 6.07 3.76 3.65 2.26 2.69 1.67 1.89 1.00 1.32 0.70 1.20 0.04 

r111 1072.46b 1072.46 0.00 8.62 5.51 5.18 3.31 3.81 2.44 2.67 1.46 1.87 1.02 1.68 0.59 

r112 1001.79c 1001.79 0.00 7.23 3.69 4.37 2.23 3.23 1.65 2.27 1.00 1.60 0.70 0.44 0.00 

r201 1255.81b 1255.81 0.00 6.74 3.60 4.08 2.18 3.02 1.61 2.12 0.98 1.49 0.69 0.20 0.00 

r202 1051.46c 1051.46 0.00 2.81 1.38 1.71 0.84 1.27 0.62 0.90 0.38 0.64 0.27 0.57 0.50 

r203 895.54d 895.54 0.00 5.88 2.31 3.35 1.32 2.39 0.94 1.61 0.54 1.09 0.36 0.20 0.00 

r204 780.91b 780.91 0.00 5.35 4.26 3.59 2.41 2.55 1.71 1.72 0.97 1.15 0.65 1.03 0.13 

r205 987.22b 987.22 0.00 2.37 2.31 1.39 1.36 1.01 0.99 0.70 0.58 0.48 0.40 0.43 0.00 

r206 922.70d 922.70 0.00 5.80 3.16 3.39 1.85 2.45 1.34 1.68 0.78 1.15 0.54 0.60 0.00 

r207 843.20c 857.07 1.64 3.60 2.60 2.11 1.92 1.93 1.80 2.09 1.55 1.72 1.24 1.69 1.01 

r208 736.12d 738.84 0.37 2.84 2.34 2.05 1.97 1.89 1.56 1.61 1.32 1.42 1.22 1.06 0.80 

r209 863.36c 870.68 0.85 3.86 2.31 2.23 2.18 1.60 1.13 1.89 1.07 1.74 1.05 1.28 0.93 

r210 843.36d 846.62 0.39 3.69 2.09 2.09 1.57 1.89 1.40 1.63 1.02 1.51 0.85 1.05 0.68 

r211 826.88c 826.88 0.00 5.98 3.05 3.46 1.76 2.49 1.27 1.70 0.73 1.16 0.50 1.04 0.00 

rc101 1648.99d 1661.53 0.76 3.87 2.52 2.15 1.89 1.51 1.20 1.00 0.91 0.96 0.57 0.83 0.32 

rc102 1510.16c 1510.16 0.00 4.08 3.09 3.68 1.87 2.72 1.38 1.92 0.84 1.35 0.59 0.90 0.00 

rc103 1346.83b 1346.83 0.00 1.87 1.11 1.06 0.63 0.76 0.45 0.51 0.26 0.34 0.17 0.31 0.28 

rc104 1175.06c 1175.83 0.07 4.37 1.96 2.67 1.20 1.98 0.89 1.40 0.54 0.99 0.38 0.90 0.46 
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rc105 1446.30b 1446.30 0.00 4.39 2.98 2.50 1.70 1.78 1.21 1.20 0.69 0.81 0.46 0.72 0.00 

rc106 1383.14b 1383.14 0.00 6.65 4.91 3.98 2.94 2.92 2.16 2.04 1.29 1.42 0.90 0.20 0.00 

rc107 1244.83b 1244.83 0.00 6.98 4.13 4.00 2.37 2.86 1.69 1.94 0.97 1.31 0.66 0.50 0.15 

rc108 1154.14c 1159.90 0.50 4.66 3.41 2.74 2.01 2.00 1.46 1.38 0.86 0.95 0.59 0.86 0.62 

rc201 1443.07b 1443.07 0.00 2.33 1.13 1.36 0.66 0.98 0.47 0.67 0.28 0.46 0.19 0.41 0.04 

rc202 1403.32b 1403.32 0.00 3.50 1.96 1.97 1.10 1.39 0.78 0.93 0.44 0.62 0.29 0.56 0.00 

rc203 1060.32c 1068.28 0.75 4.47 2.29 3.72 1.99 3.02 1.73 2.52 1.20 1.92 0.84 1.58 0.58 

rc204 884.75c 884.97 0.02 3.49 2.71 2.93 1.96 2.16 1.68 1.77 1.05 1.52 0.76 1.09 0.43 

rc205 1249.56b 1249.56 0.00 4.27 3.02 2.60 1.84 1.94 1.37 1.37 0.84 0.97 0.59 0.88 0.39 

rc206 1187.40b 1187.40 0.00 3.65 2.02 2.08 1.15 1.48 0.82 1.00 0.47 0.67 0.32 0.60 0.08 

rc207 985.67c 996.63 1.11 4.97 3.32 2.90 2.24 2.10 1.90 1.94 1.66 2.02 1.32 1.78 0.86 

rc208 833.12c 833.12 0.00 4.79 3.08 2.82 1.81 2.05 1.32 1.42 0.78 0.98 0.54 0.88 0.21 

Avg 1247.77 1043.39 0.14 4.55 2.66 2.80 1.63 2.06 1.20 1.48 0.76 1.07 0.54 0.68 0.20 

a Results of Cortés-Murcia et al.(2019), programmed in C++ and executed on 2.3 GHz Intel Xeon with 8 GB RAM 
b Best-known solution provided by Cortés-Murcia et al.(2019) 
c Best-known solution provided by Hiermann et al.(2019)  
d Best-known solution provided by Keskin and Çatay (2016) 

From the results in Table 6, we can see that applying the traditional TA (“C1”) cannot provide better 

results. The average gap between the best (average) solutions and the best-known solutions equals 2.66% 

(4.55%). After applying the multi-start approach, we can observe that the solutions' quality has improved 

compared to the traditional TA, with an average gap of 1.03% (1.75%) (between C2 and C1). This 

improvement is due to the diversification SA mechanism to explore different search regions. In addition, a 

clear improvement is obtained using the shaking phase in the TA (C3), with an average gap of 1.46% (2.49%) 

compared to C1. Thus, configurations C2 and C3 show that using our multi-start and shaking phase contributes 

positively to the quality of solutions and outperforms the traditional TA. However, it still lacks intensification 

capabilities to improve the solutions, which the intensification case is clearly shown in C4. Using the updating 

neighborhood search into the shaking phase (C4) is beneficial to enhance the performance of the TA by 

obtaining an improvement in the instance r207 (in bold) compared to the one obtained by Cortés-Murcia et al. 

(2019). Comparing configurations C3 and C4, updating the neighborhood search into the shaking phase can 

improve the quality of the solution with an average of 0.44% (0.99%) (between C3 and C4). This can be 

explained by the good intensification capabilities of this procedure (C4) compared to the traditional technique 

in the shaking phase (C3), which is consistent with the work of Karakostas and Sifalera (2022). One of the 

main interesting points for applying both multi-start and shaking phase (without updating neighborhood 

search), as shown in C5, permits better space exploration and improves the efficiency of using them in different 

combinations separately. With an average gap between C5 and C3 of the best runs (column Best%) is equal to 

0.66% (1.20% - 0.54%) and 0.99% (2.06% - 1.07%) for the five runs (column Avg%). For the case of C5 and 

C4, the average gap of the best runs is 0.22% (0.76% - 0.54%) and 0.41% (1.48% - 1.07%) for five runs. 

Moreover, we can observe that applying these two components can improve the quality of the solution, where 

three instances (indicated in bold) are better than in Cortés-Murcia et al. (2019). However, the average gap in 

this configuration is still high compared to that found by the hybrid ILS of Cortés-Murcia et al. (2019). As a 

result, when applying both all diversification and intensification mechanisms of the multi-start, shaking phase 

and updating the neighborhood search (C6) give good results by providing five better solutions compared to 

Cortés-Murcia et al. (2019) even with a small high average (column Best%) of 0.20% compared to 0.14% of 

the hybrid ILS. In conclusion, applying all new components to the traditional TA provides the most effective 

configuration.  
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6.3. Analysis on the HWCP instances 

We present the results on the small- and large-sized instances in Figures 2 and 3, respectively. In Figure 

2.a, we provide the percentage deviation from the best solution ("Best") found after 10 minutes for the small 

instances, and after 20 minutes for large-sized instances in Figure 3.a. Figures 2.b and 3.b present the 

percentage of deviation from the best results solution obtained in terms of kilometers driven with each fuel 

type (electricity and CNG), found after 10 minutes for the small instances and after 20 minutes for large-sized 

instances. Each instance of each data set (C, R, and RC) is run five times. For all small instances with up 20 

customers, each instance was solved in 10 minutes by the proposed hybrid algorithm. The average of five runs 

after 2, 3, 4, 5, and 6 minutes, and the best solution of each run is compared to the best solution found after 10 

minutes. For large-sized instances with up 100 to customers, the best solutions obtained after 10, 12, 14, 16, 

and 18 minutes are stored, and the best solution values are compared to the best solution found after 20 minutes. 

The detailed results of these comparisons can be found on the previously mentioned website. 

 

 

Figure 2: Results for small-sized instances 

Figure 2.a shows that, on average, solutions found after two minutes deviate 3.40% from the best solution 

found in 10 minutes. A decrease of 0.37% (3.40% - 3.03%) occurs when the limited time varies from two to 

three minutes. Furthermore, a decrease in change of the gaps with as well as a 0.32% (3.03% - 2.71%) for the 

case when the limited time changes from three to four minutes, and 2.38% (2.71% - 0.33%) for the case when 

the run time changes from four to six minutes. After six minutes of running time, this difference is reduced to 
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0.33%. The improvement and the shape of the solution are related to reducing the traveled distance using CNG 

fuel and increasing the use of electric energy over time, as shown in Figure 2.b. In other words, the difference 

in the total traveled distance using CNG is decreased from 1,20% (in 2 minutes) to 0.34% (in 6 minutes) while 

an increase from -0.31% (in 2 minutes) to -0.01% (in 6 minutes) in terms of total distance using electricity is 

observed when compared to the solutions obtained after 10 minutes. Observing the number of visits to landfills, 

electricity, and CNG recharging stations, we can see that the same number of stations is visited over time. 

Thus, we can conclude that the consumption of energy/CNG during the route impacts the quality of solutions 

and their total cost. 

 

 

 Figure 3:  Results for large-sized instances 

In Figure 3.a, we can observe that the gap to the solution cost obtained after 20 minutes is about 6% for a 

10-minute runtime and that this gap is decreased by half for every 2 min added to the runtime. One of the most 

interesting observations from these results is that, unlike the tests on the small instances, the additional number 

of electric and CNG stations impacts the planning of routes and the quality of solutions over time. Based on 

the detailed results (available online), in 12 out of 20 instances, the number of CNG (electric) stations visited 

when the runtime is 10 minutes is larger than when the runtime is 20 minutes. Similar observations can be 

found for the different times, i.e., 12, 14, 16 minutes. The number of refueling visits is similar in 18 and 20 
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min, but with different distances traveled. This may be due to the slight difference in the recharging/refueling 

nodes used.  

As we obtained managerial insight from these instances, the most significant improvement is based on the 

consumption of each fuel type along the trip. In Figure 3.b, the total deviation of the traveled distance using 

CNG is decreased from 1.43% (in 10 minutes) to 0.12% (in 18 minutes), while it increases from 0.03% to 

0.19% in terms of total traveled distance using electricity.  

Figures 2 and  3 show that the objective function values converge with the increase in computational times. 

This articulates that our algorithm's diversification and intensification mechanisms considerably improve the 

solution quality over time.  

Figure 4 depicts the improvement percentage of the HTA over the first ten minutes for the large size 

instance. In all experiments, we use the average gap to the best solution. This paper selects two instances from 

each data set C, R, RC with different time windows and number of customers to show the convergence curves 

of the solution over time.  

 

 

 

Figure 4:  Convergence curve of the HTA during the first ten minutes 

Looking at Figure 4, we can see that the HTA converges slowly but achieves excellent solutions, a trade-

off often seen in metaheuristics (Talbi, 2009). This is because our procedure balances exploitation and global 

exploration to avoid the problem of converging too quickly to a non-acceptable local optimum. In addition, 

we can observe from Figure 4.a that in the instance C23, the algorithm converges and obtains the best solution 

after only around 6 minutes. 
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6.4. Impact of using compressed natural gas plug-in hybrid electric vehicles 

We now investigate the impact of using CNG-PHEVs compared to pure CNG and pure EVs. The CNG-

PHEVs use two fuel types, while CNG vehicles may only use CNG, and the EV uses only electricity. Both 

vehicles can recharge (refuel) their battery (tank) from an external station. We consider different battery and 

tank capacities to assess their impact on the use of recharging/refueling stations in terms of traversed distance 

and solution quality. We consider that each capacity (tank and battery) is multiplied by 1.5 and 2.0 in our 

experiments. In other words, if the regular battery capacity value is equal to 40 KW, we also test parameters 

60 KW and 80KW, and likewise for the tank capacity. To this end, different battery and fuel tank capacities 

are considered. Table 7 summarizes all these different configuration values. For example, in configuration R2, 

the CNG-PHEV fleet contains regular tanks and 1.5 the battery values.   

Table 7 

Different configuration tank and battery capacities 

Configuration Description 

R1 regular tank and regular battery (main values) 

R2 regular tank and 1.5 regular battery 

R3 regular tank and 2.0 regular battery 

R4 1.5 regular tank and regular battery  

R5 2.0 regular tank and regular battery 

R6 2.0 regular tank and 1.5 regular battery 

R7 1.5 regular tank and 1.5 regular battery 

R8 1.5 regular tank and 2.0 regular battery 

Figure 5 shows the results of the different comparisons on a small set of instances with different 

characteristics, such as tight and wide time windows, number of landfills, and randomly/clustered landfill 

locations. Figure 5.a shows the comparison between the different CNG-PHEV configurations (R2-R8) against 

the regular CNG-PHEVs fleet (R1). For each configuration, we compare the obtained results in terms of 

distance and cost for each configuration R2-R8 with the one obtained by R1. 

 

.The detailed results in Figure 5.a highlight that using a fleet of CNG-PHEVs with increased capacity 

values decreases the total traveling distance and costs for all different configurations. Using a doubled battery 

or tank capacity (configurations R3, R5, R6, and R8) yields the same distance reduction of almost 3% with 
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respect to the regular capacities R1. Indeed, the detailed solutions show that using a double-sized battery or 

tank is sufficient to serve all customers with fewer visits to recharging/refueling stations compared to the 

regular R1. In addition, using a double battery capacity leads to the best cost reduction observed in 

configurations R3 and R8, with an average improvement of 3.38% compared to the costs of configuration R1. 

Moreover, configurations R3 and R8 provide the best total traveled distance and costs compared to other 

configurations. In general, we can observe that increasing the battery capacity significantly impacts the number 

of recharging stations visited.    

We also assess the performance of different fleets. Figures 5.b and 5.c compare pure CNG vehicles and 

pure EVs with different tank and battery capacities against regular CNG-PHEVs (R1).  

 

The detailed results of Figure 5.b show that using a fleet of CNG vehicles with a regular tank capacity 

leads to an increase in the distance and cost of the solution compared to configuration R1 containing a hybrid 

fleet. An increased tank capacity decreases the total traveling distance (costs) with an average gap equal to 

1.01% (0.22%) for the CNG vehicles with 1.5 times the regular tank capacity tank, and by 1.54% (0.51%) 

when using 2.0 times the regular capacity values.  

 

Figure 5:  Impact of the battery and tank capacities  

Similar observations can be made when using pure EVs in Figure 5.c when using a larger battery capacity 

that decreases the total traveled distance and cost. As in the case of pure CNGs, a fleet of pure EVs with larger 

batteries can serve the customers and visit the landfills with fewer visits to recharging stations. The total 
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traveled distance and costs are increased by 1.23% and 0.94%, respectively, when using a regular battery 

compared to the original fleet in configuration R1. This is due to additional distances to visit the recharging 

stations. 

Finally, we also investigate the impact of adopting a realistic fuel consumption function in our HTA. To 

this end, we have applied two different strategies: a realistic consumption function (strategy 1 as used in this 

paper) and constant consumption (strategy 2), which uses a constant rate equal to 380 W/mile (EPA, 2016) 

and a constant CNG consumption rate that is equal to 0.19 diesel gallon/mile (ampCNG, 2015).  

Table 8 provides the obtained results for the energy and CNG consumption fuels for each strategy. Column 

% presents the percentage deviations from the best (average) solution obtained by our algorithm using the first 

strategy by comparing the electricity consumption (CNG consumption) found in strategy 2 to the energy 

consumption obtained by strategy 1. We note that in the detailed results of this table on the website, the Column 

"Nb-CNG (Nb-Elec)" shows the available number of CNG (electric) stations in each instance. In Column "Nb-

fuel", we present the number of recharging/refueling performed by the vehicles. 

      Table 8 

      The comparison between the two strategies  

Dataset 

HTA with strategy 1 (realistic)   HTA with strategy 2 (constant rate) 

Best   Avg 
 

Best   Avg 

Electric CNG Electric CNG   Electric % CNG % Electric % CNG % 

C 769.04 431.51 802.57 441.02  799.73 4.09 458.88 6.34 800.03 4.13 466.10 8.01 

R 804.02 431.98 821.58 441.21  838.56 4.31 459.75 6.43 838.92 4.36 466.55 8.00 

RC 785.06 432.07 803.35 441.86   822.66 4.95 459.53 6.36 822.99 4.99 465.52 7.75 

Avg 786.04 431.85 809.17 441.36   820.31 4.45 459.39 6.38 820.64 4.49 466.06 7.92 

As seen from the table, the realistic consumption instances (strategy 1) perform better than the second 

strategy in terms of electric consumption and CNG fuel. The average gap to the best electricity consumption 

is equal to 4.45% and ranges between 0.10% and 13.33%, while the average gap to the best CNG consumption 

is equal to 6.38% and ranges between 3.38% and 9.22%. Compared to the first strategy for the total consumed 

electricity (column Avg), the average deviation from the result solutions is 4.49% for the electric consumption 

and 7.92% for the CNG fuel. These results show that integrating the impact of different factors (aerodynamic 

drag, load, vehicle speed, acceleration, etc.) affects the energy consumption, leading to less fuel consumption, 

rather than considering a constant consumption value which has been confirmed by Masmoudi et al. (2018b), 

and Macrina et al. (2019). 

Based on the above experimental results, managerial insights can be suggested for industry and can be applied 

in real-life applications: 

i) The logistics industry has a crucial role in supply chain and transportation. The investigated HWCP 

can be used to improve a company's operations in charge of collecting waste by reducing their total 

travel costs. This study opens a discussion for a new problem, the WCVRP, which studies a new fleet 

of CNG-PHEVs by obtaining the most efficient routes to visit the most bins within a certain time limit. 

Results highlight the profitable use and a general application of CNG-PHEVs. The studied problem is 

quite complex as it simultaneously deals with route optimization and recharging-refueling decisions 

and considers a complex network with intersection nodes.  

http://www.ddarp-ev-73.webself.net/
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ii) Our analyses highlight that government and industry should invest more to increase the number of 

CNG-PHEVs due to the environmental benefits and ability to use two alternative fuels (CNG and 

electricity) in the same vehicle.  The developed HTA is proven to be a powerful tool in terms of 

efficiency and effectiveness in exploiting this flexibility. 

iii) Also, this research invites companies to replace their conventional vehicles (with diesel/gasoline fuel) 

or with traditional HEV (two fuel sources; electric and diesel fuel) with CNG-PHEV due to their 

advantages of low energy consumption, low pollution and GHG emissions since two alternative fuels 

can be used.  

iv) CNG-PHEV can be a temporary solution in electrification because they satisfy emission regulations 

without sacrificing the driving range. The use of EVs can cause drivers anxiety due to low battery 

capacities. However, CNG-PHEVs ensure regulations are respected without any range anxiety issues. 

v) Moreover, using CNG-PHEVs can provide lower costs than using a fleet of pure CNGs or EVs. In 

addition, it is preferable for the industry to use larger batteries, as demonstrated in our detailed 

experimental results, due to their benefit in terms of total costs.  

7. Conclusions 

We have studied the Waste Collection Vehicle Routing Problem with Time Windows (WCVRPTW) using 

a fleet of Compressed Natural Gas Plug-in Hybrid Electric Vehicles (CNG-PHEVs). This variant is denoted 

as the Hybrid Waste Collection Problem (HWCP). Hybrid vehicles introduce the challenge of planning routes 

for vehicles with two different power sources. Moreover, we utilize a realistic fuel consumption model that 

considers various features such as the road gradient and the path between two customer nodes, which allows 

the detailed calculation of the fuel and energy required during the trip besides allowing refueling/recharging 

of CNG-PHEVs. The problem is highly complex as it simultaneously considers route optimization and 

recharging-refueling decisions. An advanced solution method is developed to ensure that CNG-PHEV can be 

used in practice. Our Hybrid Threshold Acceptance (HTA) algorithm is guided by an efficient constructive 

heuristic, a diversification mechanism based on a multi-start approach, and an advanced deterministic and 

shaking procedure for the intensification mechanism. Extensive numerical experiments show that our HTA 

provides good solutions to the new HWCP instances and the EVRP(-PR) benchmark instances. The proposed 

HTA algorithm provides good results against state-of-the-art algorithms, particularly the hybrid GA of 

Hiermann et al. (2019) on the EVRP instances with full recharging and with the ILS of Cortés-Murcia et al. 

(2019).  

Sensitivity analyses have been conducted to study the impact and effect of the CNG-PHEVs on operational 

costs and traveling distances. A comparison between electric and CNG vehicles has also been provided. It is 

shown that using a fleet of CNG-PHEVs is beneficial and offers a good trade-off between operational costs 

and distances traveled, compared to using only electric or CNG vehicles. Optimized solutions for the HWCP 

can help companies or organizations reduce their total traveling costs by obtaining improved routing solutions 

while reaching consumers on time. In addition, computational experiments illustrated that stakeholders should 

focus on increasing the number of charging stations to reduce the dependency on fossil-based fuels. This 
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research also highlights the importance of replacing conventional vehicles with fuel-efficient vehicles as well 

as environmentally friendly ones. 

We aim to study a more practical variant in future work, namely the multi-depot WCVRPTW with 

synchronization constraints and a mixed fleet of electric vehicles.  
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Appendix A 

The parameters used in our CMEM are shown in Table A1. 

      Table A1 

      Parameters used in the HWCP model 

Notation Description Value 𝑔 Gravitational constant (meter/second2) 9.81 𝜌 Air density (kilogram/meter3) 1.2041 𝐴 Frontal surface area of the vehicle(meter2) 3.912 𝐶𝑟 Coefficient rolling friction 0.01 𝐶𝑑 Coefficient of aerodynamic drag 0.7 𝑤 Vehicle mass (kilogram)  6,350 𝑣 Vehicle speed (km/h) 50 𝛼𝑖𝑗 Angle of the road slope between nodes 𝑖 and 𝑗 Between -6% and 6% 𝜕+ Energy efficiency in motor mode 0.76 𝜕− Energy efficiency in recuperating mode 1.27 𝑐𝑒  Unit electric cost (dollar/kW) 0.11067 𝑐𝑟 Unit CNG cost (dollar/liter) 0.98a 𝜉 Fuel-to-air mass ratio 1 𝜏 Heating value of typical CNG fuel (kilojoules per gram) 38b 

£ Engine friction factor (kilojoules per revolution per litter) 0.2 

http://www.afdc.energy.gov/afdc/fuels/stations_counts.html
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𝑁 Engine speed (revolution per second) 33 𝐷 Engine displacement(liters) 5 ϑ Factor converting the fuel rate (grams per second to liters per second) 737 𝜇 Efficiency parameter for CNG engines  0.90 𝜇𝑡 Drive train efficiency 0.4 𝐻𝑒  Capacity of battery (kW) 40 𝐻𝑟  Capacity of CNG tank (GGE) 30 
                         a Estimated value from NGC (2017)     

        b Estimated value from Hagos et al.(2016) 

 

 

 

 

 


