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Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting. It
combines elements of classical time series analysis, multivariate statistics, multivariate geome-
try, dynamical systems and signal processing. SSA aims at decomposing the original series into
a sum of a small number of interpretable components such as a slowly varying trend, oscillatory
components and a ‘structureless’ noise. It is based on the singular-value decomposition of a
specific matrix constructed upon time series. Neither a parametric model nor stationarity-type
conditions have to be assumed for the time series; this makes SSA a model-free technique.

The commencement of SSA is usually associated with publication of the papers [1,2] by
Broomhead and King. Nowadays SSA is becoming more and more popular, especially in appli-
cations. There are several hundred papers published on methodological aspects and applications
of SSA, see [3–7] and references therein. SSA has proved to be very successful, and has already
become a standard tool in the analysis of climatic, meteorological and geophysical time series;
see, for example, [4-6]. More recent areas of application of SSA include engineering, medicine,
econometrics and many other fields. Most recent developments in the theory and methodology
of SSA can be found in [7]. We start with ‘Basic SSA’, which is the most common version of SSA.

Basic SSA.
Let x1, . . . , xN be a time series of length N . Given a window length L (1 < L < N), we

construct the L-lagged vectors Xi =(xi, . . . , xi+L−1)
T , i = 1, 2, . . . , K =N−L+1, and compose

these vectors into the matrix X = (xi+j−1)
L,K
i,j=1 = [X1 : . . . : XK ] . This matrix has size L × K

and is often called ‘trajectory matrix’. It is a Hankel matrix, which means that all the elements
along the diagonal i+j =const are equal.

The columns Xj of X, considered as vectors, lie in the L-dimensional space R
L. The singular-

value decomposition of the matrix XXT yields a collection of L eigenvalues and eigenvectors.
A particular combination of a certain number l < L of these eigenvectors determines an l-
dimensional subspace in R

L. The L-dimensional data {X1, . . . , XK} is then projected onto this
l-dimensional subspace and the subsequent averaging over the diagonals gives us some Hankel
matrix X̃ which is considered as an approximation to X. The series reconstructed from X̃

satisfies some linear recurrent formula which may be used for forecasting.
In addition to forecasting, the Basic SSA can be used for smoothing, filtration, noise re-

duction, extraction of trends of different resolution, extraction of periodicities in the form of
modulated harmonics, gap-filling [8,9] and other tasks, see [3]. Also, the Basic SSA can be
modified and extended in many different ways some of which are discussed below.

Extensions of the Basic SSA.

SSA for analyzing stationary series [5]. Under the assumption that the series x1, . . . , xN

is stationary, the matrix XXT of the Basic SSA is replaced with the so-called lag-covariance
matrix C whose elements are cij = 1

N−k

∑N−k

t=1
xtxt+k with i, j = 1, . . . , L and k = |i − j|. In

the terminology of [3], this is ‘Toeplitz SSA’.
Monte-Carlo SSA [6]. In the Basic SSA we implicitly associate the ’structureless’ component

of the resulting SSA decomposition with ‘white noise’ (this noise may not necessarily be ran-
dom). In some applications, however, it is more natural to assume that the noise is ’coloured’.
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In this case, special tests based on Monte Carlo simulations may be used to improve the quality
of the separation of signal from noise.

Improvement or replacement of the singular-value decomposition (SVD) procedure. There
are two main reasons why it may be worthwhile to replace the SVD operation in the Basic SSA
with some another operation. The first reason is simplicity: in problems where the dimensions
of the trajectory matrices is large, SVD may simply be too costly to perform; substitutions
of SVD are available, see [10,11]. The second reason is the analysis of the accuracy of SSA
procedures based on the perturbation theory [7]. For example, in the problems of separating
signal from noise, some parts of the noise are often found in SVD components corresponding
to the signal. As a result, a small adjustment of the eigenvalues and eigenvectors is advisable
to diminish this effect. The simplest version of the Basic SSA with a constant adjustment in
all eigenvalues was suggested in [12] and is sometimes called the minimum-variance SSA.

Low-rank matrix approximations, Cadzow iterations, connections with signal processing. As
an approximation to the trajectory matrix X, the Basic SSA yields the Hankel matrix X̃.
This matrix is obtained as a result of the diagonal averaging of a matrix of rank l. Hence X̃

is typically a matrix of full rank. However, in many signal processing applications, when a
parametric form of an approximation is of prime importance, one may wish to find a Hankel
matrix of size L×K and rank l which gives the best approximation to X; this is a problem of
the structured low-rank approximation [13]. The simplest procedure of finding a solution to this
problem (not necessarily the globally optimal one though) is the so-called Cadzow iterations
[14] which are the repeated alternating projections of the matrices (starting at X) to the set of
matrices of rank l (by performing the singular-value decompositions) and to the set of Hankel
matrices (by making the diagonal averaging). That is, Cadzow iterations are simply the repeats
of the Basic SSA. It is not guaranteed however that Cadzow iterations lead to more accurate
forecasting formulas than the Basic SSA [7].

SSA for change-point detection and subspace tracking [15]. Assume that the observations
x1, x2, . . . of the series arrive sequentially in time and we apply the Basic SSA to the observations
at hand. Then we can monitor the distances from the sequence of the trajectory matrices to
the l-dimensional subspaces we construct and also the distances between these l-dimensional
subspaces. Significant changes in any of these distances may indicate on a change in the
mechanism generating the time series. Note that this change in the mechanism does not have
to affect the whole structure of the series but rather only a few of its components.

SSA for multivariate time series. Multivariate (or multichannel) SSA (shortly, MSSA) is a
direct extension of the standard SSA for simultaneous analysis of several time series. Assume
that we have two series, X = {x1, . . . , xN} and Y = {y1, . . . , yN}. The (joint) trajectory matrix
of the two-variate series (X, Y ) can be defined as either Z = (X,Y) or Z = (X,Y)T , where X

and Y are the trajectory matrices of the individual series X and Y . Matrix Z is block-Hankel
rather than simply Hankel. Other stages of MSSA are identical to the stages of the univariate
SSA except that we build a block-Hankel (rather than ordinary Hankel) approximation Z̃ to
the trajectory matrix Z.

MSSA may be very useful for analyzing several series with common structure. MSSA may
also be used for establishing a causality between two series. Indeed, the absence of causality
of Y on X implies that the knowledge of Y does not improve the quality of forecasts of X.
Hence an improvement in the quality of forecasts for X which we obtain using MSSA against
univariate SSA forecasts for X gives us a family of SSA-causality tests, see [16].
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