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Prenatal health behaviours as
predictors of human placental
lactogen levels

Samantha M. Garay, Lorna A. Sumption
and Rosalind M. John*

School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
Placental lactogen (hPL) is a key hormone of pregnancy responsible for

inducing maternal adaptations critical for a successful pregnancy. Low levels

of placental lactogen have been associated with lower birth weight as well as

symptoms of maternal depression and anxiety. Lower placental lactogen has

been reported in women with higher body mass index (BMI) but it is unclear

whether prenatal health behaviours predict hPL levels or if hPL is associated

with infant weight outcomes. This study utilised data from the longitudinal

Grown inWales cohort, based in SouthWales. Participants were recruited at the

pre-surgical appointment for an elective caesarean section. This study

incorporates data from recruitment, post-delivery and a 12 month follow-up.

Measures of maternal serum hPL were available for 248 participants. Analysis

included unadjusted and adjusted linear and binary regression. Unadjusted,

prenatal smoking and a Health Conscious dietary pattern were associated with

hPL levels, however this was lost on adjustment for BMI at booking, Welsh Index

of Multiple Deprivation (WIMD) score and placental weight. When stratified by

maternal BMI at booking, a Health Conscious dietary pattern remained

associated with increased hPL levels in women with a healthy BMI (p=.024,

B=.59. 95% CI=.08,1.11) following adjustment for WIMD score and placental

weight. When adjusted for a wide range of confounders, maternal hPL was also

associated with increased custom birthweight centiles (CBWC) (p=.014,

B=1.64. 95% CI=.33,2.94) and increased odds of large for gestational age

deliveries (p=<.001, Exp(B)=1.42. 95% CI=1.17,1.72). This study identified that

consuming a Health Conscious dietary pattern in pregnancy was associated

with increased hPL, within women of a healthy BMI. Moreover, higher hPL

levels were associated with increased CBWC and increased odds of delivering a

large for gestational age infant. This improves the current limited evidence

surrounding the nature of hPL in these areas.
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Introduction

During pregnancy the mammalian mother undergoes

substantial adaptations to support fetal development and to

prepare for nurturing her offspring once they are born (1–5).

Playing an essential role in these maternal adaptations are the

hormones produced by, or dependent on, the fetally-derived

placenta. Placental hormones ensure sufficient nutrients are

available to support fetal and placental growth by increasing

maternal appetite, decreasing her activity and driving metabolic

adaptations throughout pregnancy (6, 7). Placental hormones

are also involved in inducing behavioural changes in the mother

during pregnancy priming her to respond expeditiously to her

offspring when they are born (8–13). Consequently, constraints

in the production of placental hormones can have wide reaching

consequences for fetal growth, maternal metabolism and

maternal behaviour potentially contributing to the co-

morbidity of common complications of pregnancy.

Human placental lactogen (hPL) is one of the key hormones

of pregnancy, and the most highly expressed peptide hormone of

the human placenta (14). hPL is collectively composed of two

identical placental lactogen peptides encoded by CHORIONIC

SOMATOMAMMOTROPIN HORMONE 1 and 2 (aka HPL-A

and HPL-B) (15). Placental lactogens are evolutionarily related

to the pituitary hormone prolactin (15) and signal via the

prolactin receptor to mediate their activity at target sites

around the body (15, 16). During pregnancy hPL is

synthesised in increasing amounts by the syncytiotrophoblast

and extravillous trophoblast lineages of the human placenta with

levels reaching 5–7 µg/ml in maternal blood at term, exceeding

that of any other peptide hormone (14, 15, 17). While there are

rare cases of pregnancy proceeding in the apparent absence of

hPL (18), several studies have reported associations between

lower than normal levels of hPL and pregnancy complications

(19). For example, reduced levels of maternal serum hPL levels

and placental CSH1/2 mRNA expression have been associated

with fetal growth restriction (20–22) while positive correlations

have been reported between hPL and birthweight (23, 24). One

study reported reduced serum hPL in gestational diabetes (25)

while another reported significantly reduced placental CSH1/2

associated with pre-eclampsia (26). We reported an association

between lower placental CSH1/2 at term and both clinically

diagnosed depression and questionnaire reported symptoms of

depression in pregnancy (27). More recently, we reported low

serum placental lactogen at term was associated with symptoms

of both depression and anxiety for up to ten weeks after birth

(28). In this same study we noted a positive association between

serum hPL and birthweight (g), placental weight and head

circumference consistent with previous studies. While these

studies in human populations do not demonstrate a causal

relationship between placental lactogen and birthweight,
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gestational diabetes or maternal mental health, data from

rodent models supports such a conclusion. For example,

transgenic overexpression of mouse placental lactogen targeted

to the beta cells of the pancreas increases the proliferation rate of

these cells in mice, and drives both fasting and postprandial

hypoglycaemia (29) while targeted deletion of the prolactin

receptor provides indirect evidence that placental lactogens

drive pancreatic b-cell expansion (30). Infusion of placental

lactogen into the non-pregnant female rodent brain stimulates

maternal caregiving behaviour (31, 32) while ablation of the

maternal prolactin receptor disrupts maternal caregiving (33–

37). Disruption of signalling via this receptor has also been

linked to increased postpartum anxiety (38). Our work on mice

with placental endocrine insufficiency driven by genetically

modified changes in the expression of imprinted genes further

demonstrates a role for placental hormones in regulating

birthweight with a reduction in the number of placental

endocrine cells linked to low birthweight in several models

(39–41). We also reported both maternal neglect and maternal

anxiety in response to the loss of placental endocrine lineages

(42, 43) with the mouse offspring exhibiting anxiety-like

behaviours later in life (44). Together, these data highlight the

importance of placental hormones, and more specifically

placental lactogens, for pregnancy health. Moreover, in

addition to genetic drivers of placental endocrine insufficiency,

a number of environmental stressors in pregnancy have been

linked to changes in the expression of placental hormones and

alterations in maternal behaviour (45) identifying a mechanism

with potential to link early life adversity to a variety of poor

health outcomes.

Given the importance of placental lactogen for a healthy and

successful pregnancy, it is vital that we identify factors that

positively or negatively influence the production of this

hormone. Previously pre-pregnancy obesity has been linked to

significantly lower placental expression of CSH1/2 (46–48).

Similarly, we have reported an association between maternal

BMI at booking (week 12-14 of pregnancy) and serum hPL at

term (28). In addition, we noted an association between serum

hPL and the Welsh Index of Multiple Deprivation (WIMD)

score. WIMD is the Welsh Government’s official measure of

relative deprivation for small areas in Wales calculated from

anonymised postcodes (http://wimd.wales.gov.uk). The small

areas used to construct the index are known as Lower Super

Output Areas (LSOAs) with an average population of 1,600

people. There are 1,909 LSOAs inWales - the most deprived area

is given a rank of 1 and the least deprived a rank of 1,909

therefore lower scores are indicative of higher levels of

deprivation. The WIMD is composed of a number of

indicators which include income, employment, health,

education, access to services, housing, community safety and

physical environment. We have previously reported that WIMD
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scores were significantly positively associated with a ‘Health

Conscious’ dietary pattern which in turn was significantly

associated with increased custom birthweight centile (CBWC)

(49). Together, these observations suggest that factors in

addition to maternal BMI may influence hPL levels. Here we

explored the association between a variety of modifiable health

behaviours in pregnancy and term serum hPL, as well as the

influence of hPL on a range of infant weight outcomes, using

data from the Grown in Wales Study.
Material and methods

Cohort

This study analysed data from the Grown in Wales (GiW)

cohort, a pregnancy cohort recruited in South Wales, UK with a

focus on maternal mental health (50). Full ethical approval for

the GiW study was obtained by the Wales Research Ethics

Committee (REC2 reference 15/WA/0004). Research was

carried out employing the principles of the Declaration of

Helsinki as revised in 2008. Recruitment occurred between

September 2015 and November 2016 at the University

Hospital of Wales (UHW) with women providing written

consent to the study. Women were recruited by two trained

research midwives at their morning pre-surgical appointment in

advance of an elective caesarean (ELCS), one to four days before

delivery. ELCS was chosen to maximise the potential for

collecting biological samples. At UHW women routinely

provide blood samples at their pre-surgical appointment

before their surgery facilitating the collection of maternal

blood for this study. The planned surgery took place during

the working week when the research midwives were available to

collect placental biopsies and cord blood samples. Recruitment

criteria consisted of women being between 37 weeks and 42

weeks of pregnancy, aged between 18 and 45, having a singleton

birth without fetal abnormalities or infectious diseases.

Participants have been followed up within one week of birth,

ten weeks and one year postnatally and most recently at four

years postpartum.
Participants

355 women were initially recruited and seven later withdrew.

Of these, hPL measures were available 272 participants within

the overall cohort. The current analysis focused on participants

who delivered at term (≥ 37 weeks) and those of Caucasian

ethnicity. This selection was required as the dietary patterns

were previously developed for these participants (49). This was

due to the recruitment small number of participants of other

ethnicities whose inclusion greatly influenced findings through

the introduction of variation, an issue especially relevant for
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smaller cohorts (51, 52). Following the exclusion criteria, hPL

data was available for 248 participants.
Human placental lactogen

Maternal venous serum samples were obtained at

recruitment from blood taken as part of a standard anaesthetic

review one to four days prior to surgery. Serum was obtained by

centrifugation of maternal venous blood which was then frozen

at −80°C. hPL levels were assayed in duplicate using the Leinco

Technologies Human Placental Lactogen (HPL) Micro-ELISA

test kit (Universal Biologicals product code T115-96 tests).

Assays were performed by the NIHR Cambridge Biomedical

Research Centre, Core Biochemical Assay Laboratory. Average

value = 8.3 µg/mL ± 2.75.
Demographic and biological data

Demographic data such as a participants education level and

income were obtained from the maternal questionnaire

completed at recruitment. Participant postcodes were also

collected and anonymised which enabled the calculation of

Welsh Index of Multiple Deprivation (WIMD) 2014 scores

(http://wimd.wales.gov.uk). The maternal questionnaires also

contained the Edinburgh Postnatal Depression Scale (EPDS)

(53) and the State-Trait Anxiety Inventory (STAI) (54) which

provided data on maternal mental health. Biological data such as

participants ethnicity, age, parity, weight and BMI at booking as

well as data on mode of delivery, placental weight and infant sex

were collected from the midwife recorded notes following

delivery. Gestational weight gain was calculated from data on

pre-pregnancy weight and weight at booking.
Prenatal health behaviours

Data on maternal prenatal smoking, alcohol intake and

exercise were acquired from the maternal questionnaire

completed at recruitment. Dietary patterns were identified

from data collected through a food frequency questionnaire

(FFQ), also completed at recruitment. The dietary patterns

within the GiW cohort were Western and Health Conscious,

with the process for obtaining the dietary patterns outlined in

detail in (49). Briefly, the dietary pattern scores were obtained

via the regression method following Principal Component

Analysis. Each participant has a score for both dietary

patterns. These scores are typically centred around zero, with

greater positive scores indicating higher adherence to a dietary

pattern and greater negative scores indicating lower adherence

to a dietary pattern.
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Infant weight outcomes

Data on birthweight (g) was obtained from the midwife

recorded notes following delivery. CBWC were later calculated

via the GROW bulk centile calculator (55) utilising the following

data from the midwife notes; maternal height, weight, ethnicity and

parity as well as infant gender, birthweight and gestational age. This

enabled the classification of infant birthweight as small for

gestational age (SGA), average for gestational age (AGA) or large

for gestational age (LGA). Data on infant weight at one year of age

was obtained from a maternally completed questionnaire.
Statistical analysis

All statistical analyses were undertaken utilising IBM SPSS

Statistics Version 27. Normality for relevant variables was

assessed via Kolmogorov-Smirnov test, Shapiro-Wilk test, normal

Q-Q plots and histograms. All relevant variables were determined

to be non-parametric, thus demographic statistics were displayed as

median (IQR) or % (n) as appropriate. Health behaviour predictors

of hPL were assessed utilising both unadjusted and adjusted linear

regression. In the adjusted analysis the significant predictors were

entered together in the model, with maternal BMI at booking

(continuous), WIMD score and placental weight (g) selected as

potentially confounding variables. Variables were selected as

confounding variables if a previous GiW study identified them to

be associated with hPL (28) or if the variables were found to be

associated with the outcome variables in a univariate analysis

(Supplementary Table 1). In light of the highly influential nature

of maternal BMI, the association between predictors and hPL was

also assessed when stratified by maternal BMI at booking, with the

exception of the underweight BMI category due to low numbers.

Unadjusted and adjusted linear and binary regression were

undertaken to assess the influence of hPL on infant weight

outcomes. The analysis of birthweight (g) was adjusted for the

following potentially confounding variables; BMI at booking

(continuous), WIMD score, maternal age, gestational weight gain

fetal sex, placental weight (g), gestational age, smoking and a Health

Conscious dietary pattern. Education and income were not

included as the WIMD score incorporates these measures. The

same variables were utilised for analyses of CBWC derived

variables, with the exception of fetal sex and gestational age which

are already accounted for within this birthweight measure.
Results

Demographic data for the 248 participants involved in the

analysis is provided in Table 1. Categorical data is displayed as %

(n) and continuous data as median (IQR).
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Health behaviour predictors of hPL

Linear regression was utilised to investigate if prenatal

maternal health behaviours influence levels of maternal serum

hPL (Table 2). Unadjusted univariate regression identified that

both smoking at any point in pregnancy and a Health Conscious

dietary pattern were associated with hPL measures. Specifically,

smoking compared to not smoking was associated with a

decrease in hPL of 1.24 µg/mL, whilst a one unit increase in

Health Conscious dietary pattern score was associated with an

increase in hPL of.40 µg/mL. These significant health behaviours

were adjusted for: maternal BMI at booking, WIMD score and

placental weight (g). Following adjustment, no prenatal health

behaviours remained significantly associated with hPL measures.

To understand the highly influential effect of BMI further, the

relationship between health behaviours and hPL was examined

when stratified by maternal BMI at booking (Table 3). It was

determined that a Health Conscious dietary pattern was

significantly associated with hPL measures in women classified

as having a healthy BMI at booking. This association remained

after adjustment for WIMD score and placental weight (g).

Specifically, for women with a healthy BMI at booking, a one

unit increase in Health Conscious dietary pattern score was

associated with an increase in hPL of .59 µg/mL equivalent to an

increase of 8% of the average value.
hPL & infant weight outcomes

Linear regression was again utilised to investigate the

relationship between hPL and a range of infant weight

measures, collected both at birth and at one year of age

(Tables 4, 5). The relationship between hPL and both

birthweight and CBWC is displayed in Figures 1, 2. At the

unadjusted level, hPL was significantly associated with all

measures of weight with the exception of infant weight at 12

months of age. These significant associations were adjusted for

the potentially confounding variables that included maternal

BMI at booking, maternal age, gestational weight gain, fetal sex,

placental weight, gestational age, smoking at any point in

pregnancy, Health Conscious dietary pattern score and WIMD

score. Following adjustment, hPL was no longer significantly

associated with birthweight (g) or the odds of being born SGA

compared to LGA. However, hPL remained significantly

associated with CBWC, with a one unit increase in hPL

associated with an increase in CBWC of 1.64 units.

Additionally, hPL was associated with being born LGA

compared to AGA, with a one unit increase in hPL associated

with increased odds of delivering an LGA compared to AGA

infant by a factor of 1.42.
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Discussion

This study aimed to investigate both the health behaviour

predictors of hPL and the influence of hPL on infant weight

outcomes. It was determined that, at the unadjusted level, both

smoking at any point in pregnancy and consuming a Health

Conscious dietary pattern were associated with hPL levels.

However, this was lost following adjustment for the

confounding variables of WIMD score, maternal BMI at

booking and placental weight. Given that BMI is known to

strongly influence maternal hPL, this association was also

examined when stratified by BMI. Following adjustment for

WIMD score and placental weight, consuming a Health

Conscious dietary pattern in pregnancy was associated with

increased hPL levels in participants with a healthy BMI at

booking. Regarding infant weight outcomes, prior to

adjustment hPL was associated with all weight outcomes with

the exception of infant weight at 12 months. This analysis was

adjusted for a range of confounding variables including maternal

BMI at booking, maternal age, gestational weight gain, fetal sex,

placental weight, gestational age, smoking at any point in

pregnancy, Health Conscious dietary pattern score and WIMD

score. After adjustment, maternal hPL was associated with

increased CBWC as well as increased odds of delivering an

LGA compared to AGA infant.

The associations between the modifiable prenatal health

behaviours of maternal smoking and adhering to a Health

Conscious diet on hPL were identified but did not remain

associated once adjusted for BMI at booking, WIMD score

and placental weight. However, given that BMI is known to be

highly influential for hPL levels, this analysis was stratified by

BMI at booking. When stratified, the association between a

Health Conscious dietary pattern and hPL remained significant
TABLE 1 Demographic data for the eligible GiW participants.

% (n) or median (IQR)

Maternal BMI at booking - overall 26.33 (7.23)

Maternal BMI at booking % (n)

Underweight .40 (1)

Healthy 38.20 (89)

Overweight 35.60 (83)

Obese 25.80 (60)

Maternal age at booking 33.00 (6.00)

Parity, % (n)

Multiparous 81.90 (203)

Nulliparous 18.10 (45)

Gestational weight gain (kg) 15.07 (7.88)

GDM % (n)

Yes 5.30 (13)

No 94.70 (230)

Hypertension % (n)

Yes 3.70 (9)

No 96.30 (236)

Fetal sex, % (n)

Female 54.40 (135)

Male 45.60 (113)

Placental weight (g) 655 (183)

Gestational age (weeks) 39.00 (0)

Birthweight (g) 3500.00 (650.00)

Birthweight classification

LBW 2.60 (8)

ABW 79.20 (247)

HBW 18.30 (57)

CBWC 57.85 (50.05)

Size for gestational age % (n)

SGA 6.90 (17)

AGA 80.60 (200)

LGA 12.50 (31)

Smoking in pregnancya, % (n)

No 89.80 (220)

Yes 10.20 (25)

Alcohol in pregnancya, % (n)

No 59.30 (144)

Yes 40.70 (99)

Strenuous exercise, % (n)

No 81.60 (200)

Yes 18.40 (45)

Western dietary pattern -.03 (1.28)

Health Conscious dietary pattern .05 (1.50)

Highest education level, % (n)

Left before GCSE 5.90 (14)

GCSE & Vocational 22.90 (54)

A-level 12.70 (30)

University 30.90 (73)

(Continued)
TABLE 1 Continued

% (n) or median (IQR)

Postgraduate 27.50 (65)

Family income (£), % (n)

<18,000 7.50 (18)

18 – 25,000 10.00 (24)

25-43,000 19.70 (47)

>43,000 52.30 (125)

Do not wish to say 10.50 (25)

WIMD 1270.00 (1211.00)

A1 EPDS total 7.00 (6.00)

A1 STAI total 34.00 (13.00)
IQR, Interquartile range; BMI, body mass index; GDM, gestational diabetes mellitus;
LBW, low birthweight; ABW, average birthweight; HBW, high birthweight; CBWC,
custom birthweight centile; SGA, small for gestational age; AGA, average for gestational
age; LGA, large for gestational age; WIMD, Welsh Index of Multiple Deprivation; EPDS,
Edinburgh Postnatal Depression Scale; STAI, State-Trait Anxiety Inventory.
aAt any point in pregnancy.
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for women within the healthy BMI category. This finding

supports the important influence of maternal diet in relation

to hPL levels. Moreover, there is potential for this to be a direct

relationship with studies in several experimental animal models

reporting that both overnutrition and undernutrition reduce the

expression of placental hormones (45). However, while this

relationship was evident in women of a healthy BMI, it was

not apparent in women with an unhealthy BMI. BMI is already

known to have an influential effect on maternal hPL serum levels

with structural changes in the placental hPL gene locus reported

in women with higher BMI compared to those on the normal

range (48). Together, these findings suggest that BMI has a

stronger influence on hPL levels than maternal diet. The caveat

is that, in our cohort, BMI and diet are linked with increasing

BMI associated with decreasing Health Conscious dietary

pattern score (49). Similarly in the majority of animal models

of overnutrition, both weight gain and exposure to diet occur
Frontiers in Endocrinology 06
concurrently in pregnancy. Distinguishing direct and indirect

relationships consequently presents a challenge.

We have previously reported a positive relationship between

term serum hPL and infant birthweight (g), head circumference

and placental weight (g) (28) consistent with a number of

previous studies (20, 21). This study went further by

examining additional weight measures. CBWC and the

associated classifications of SGA, AGA and LGA have several

advantages over the traditional population based weight

measures (55, 56) and have been recommended for use in the

UK by the Royal College of Obstetricians and Gynaecologists

since 2002 (57). In our cohort nearly twice the number of infants

would be classified as growth restricted by the CBWC criteria

(Table 1). However, these measures are rarely utilised in

research. We are unaware of any other studies reporting the

influence of hPL on these birthweight measures. As such, this

research strengthens and supports the current evidence base that
TABLE 2 Unadjusted and adjusted linear regression indicating the association between maternal prenatal health behaviours and hPL (mg/mL).

p B 95% CI

Unadjusted Smoking .036 -1.24 -2.40, -.08

Alcohol .359 .33 -.38, 1.04

Exercise .119 .72 -.19, 1.63

Western dietary pattern .640 -.09 -.47, .29

Health Conscious dietary pattern .029 .40 .04, .76

Adjusted Smoking .706 -.23 -1.42, .97

Health Conscious dietary pattern .618 .09 -.26, .44
front
CI, confidence interval. Bold values are significant at p < .05.
TABLE 3 Unadjusted and adjusted linear regression indicating the association between maternal prenatal health behaviours and hPL (mg/mL)
when stratified by maternal BMI at booking.

p B 95% CI

Unadjusted Healthy Smoking .179 -1.43 -3.53, .67

Alcohol .259 .66 -.49, 1.81

Exercise .264 .72 -.56, 2.00

Western dietary pattern .227 -.36 -.95, .23

Health Conscious dietary pattern .020 .65 .11, 1.19

Overweight Smoking .321 -1.29 -3.85, 1.28

Alcohol -1.14 .23 -1.14, 1.61

Exercise .837 .22 -1.93, 2.38

Western dietary pattern .720 -.14 -.88, .61

Health Conscious dietary pattern .338 .35 -.37, 1.07

Obese Smoking .448 -.66 -2.40, 1.08

Alcohol .914 .07 -1.28, 1.43

Exercise .161 1.39 -.57, 3.34

Western dietary pattern .214 .45 -.27, 1.17

Health Conscious dietary pattern .404 -.33 -1.10, .45

Adjusted Healthy Health Conscious dietary pattern .024 .59 .08, 1.11
CI, confidence interval. Bold values are significant at p < .05.
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TABLE 4 Unadjusted and adjusted linear regression indicating the association between hPL (mg/mL) and infant weight outcomes.

p B 95% CI

Unadjusted Birthweight (g) <.001 52.01 30.20, 73.82

CBWC <.001 3.82 2.62, 5.01

12 month weight (kg) .967 .00 -.17, .17

Adjusted Birthweight (g) .090 16.56 -2.64, 35.75

CBWC .014 1.64 .33, 2.94
Frontiers in Endocrinology
 07
 fro
CI, confidence interval; CBWC, custom birthweight centile. Bold values are significant at p < .05.
TABLE 5 Unadjusted and adjusted binary regression indicating the association between hPL (mg/mL) and infant weight categories.

p Exp (B) 95% CI

Unadjusted SGA .008 .70 .53, .91

LGA <.001 1.31 1.15, 1.49

Adjusted SGA .090 .72 .49, 1.05

LGA <.001 1.42 1.17, 1.72
nt
CI, confidence interval; SGA, small for gestational age; LGA, large for gestational age. Bold values are significant at p < .05.
FIGURE 2

The relationship between hPL (µg/mL) and infant custom birthweight centile.
FIGURE 1

The relationship between hPL (µg/mL) and infant birthweight (g).
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hPL is associated with birthweight outcomes. As there was no

association between hPL and infant weight at 12 months, this

also suggests that the influence of hPL on infant weight is short

term in nature.

There are several potential limitations to consider regarding

this study. Firstly, dietary patterns were originally identified

using data from Caucasian participants, a demographic which

forms the majority of the Grown in Wales study cohort (91%).

As such, the generalisability of the study to other ethnicities may

be limited and future research should be conducted with diverse

populations to validate the findings. Secondly, our population

were recruited to explore the impact of maternal depression on

the placenta and therefore focused on recruiting women booked

for ELCS. This selective process is both a limitation – due to the

restricted nature of the cohort – and an advantage since hPL

measures were all taken 1-4 days prior to birth by the same two

research midwives on the morning of the participants surgical

assessment. This focused timing in the collection of samples and

the somewhat homogenous nature of the cohort means that we

are able to detect subtle relationships in our relatively small

pregnancy cohort. However, an important question remains

unanswered which is the timings of the relationships. We have

a single measure of hPL at near term. Determining a more

precise timeline will be important.

In conclusion, we have established that there is a positive

association between a healthy maternal diet and hPL, a key

hormone of pregnancy, at least within women with a healthy

BMI category. Moreover, hPL is associated with birthweight

outcomes. While we have not established the extent to which

this is a direct relationship, it is clear that consuming a healthy

diet in pregnancy reduces the risk of a number of

complications of pregnancy and is likely to protect offspring

from the longer term problem association with exposure to

early life adversity.
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