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Searching for departures from general relativity (GR) in more than one post-Newtonian (PN) phasing coeffi-
cients, called a multi-parameter test, is known to be ineffective given the sensitivity of the present generation of
gravitational-wave (GW) detectors. Strong degeneracies in the parameter space make the outcome of the test
uninformative. We argue that Principal Component Analysis (PCA) can remedy this problem by constructing
certain linear combinations of the original PN parameters that are better constrained by gravitational wave
observations. By analyzing binary black hole events detected during the first and second observing runs (O1
and 02) of LIGO/Virgo, we show that the two dominant principal components can capture the essence of a
multi-parameter test. Combining five binary black hole mergers during O1/02, we find that the dominant linear
combination of the PN coefficients obtained from PCA, 6&3& - 18 consistent with GR within the 0.38 standard
deviation of the posterior distribution. Furthermore, using a set of simulated non-GR signals in the three-detector
LIGO-Virgo network with designed sensitivities, we find that the method is capable of excluding GR with high

confidence as well as recovering the injected values of the non-GR parameters with good precision.

I. INTRODUCTION

Despite the huge success general relativity (GR) has had
with the solar system and binary pulsar-based tests, there has
been enormous excitement to test the predictions of the theory
in the highly nonlinear regime of the mergers of compact bi-
naries comprising of black holes and neutron stars [1-4]. This
has been made possible by the recent detections [5—13] by the
global network of Advanced LIGO [14] and the Advanced
Virgo [15] detectors. Compact binary mergers observed so far
are all consistent with the predictions of GR within statistical
uncertainties [16—18]. However, with the expected enhance-
ment in the sensitivity of LIGO, Virgo, and KAGRA [19]
detectors in the coming years [20], we would be in a posi-
tion to either constrain GR to exceptional precision or detect a
deviation from GR.

One of the most generic tests of GR using GWs, employed
on all the GW detections, is the so-called parametrized test of
GR [21-27]. This test searches for potential deviations from
GR in the various post-Newtonian (PN) terms in the phase
evolution of a signal [28]. It is known that the PN phasing
coefficients carry the imprints of a variety of physical effects
in the general relativistic dynamics of a compact binary. For
example, they capture the effects of the ‘tail’ radiation due
to the backscattering of the wave by the source’s background
spacetime [29], tails of tails [30, 31], spin-orbit [32] and spin-
spin interactions [33], among others. In a modified theory of
gravity, one might expect one or more of these effects to have
behaviors that are qualitatively or quantitatively different from
GR [34-36], modifying one or more of the PN coefficients.
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Hence, precise quantification of the consistency of these coef-
ficients with the predictions of GR is a very powerful test of
GR [21, 22, 37, 38].

The frequency evolution of the gravitational-wave (GW)
phase can schematically be written in the PN approximation
as,

3 N
o(f) = W;[¢kvk+¢klvklnv], (1.1)

where v = (M f)!/ is the PN expansion parameter. M =
my + my is the total mass of the system in the detector frame
and n = mym,/M? is the symmetric massratio. N is the highest
PN order up to which we currently know the phase evolution.
¢ and ¢y denote the non-logarithmic and logarithmic PN phas-
ing coeflicients, respectively and they depend on the masses
and spins of the companion objects, within GR. In a modi-
fied theory of gravity, dependencies of the PN coefficients on
masses and spins could be different from GR or they may de-
pend on additional parameters that characterize the new theory.
This would potentially deform the unique structure of the PN
coefficients in GR.

The parametrized test searches for such possible deviations
from GR by modifying the phasing with dimensionless frac-
tional deviation parameters [39—41],

ba = ¢ (1+68), (12)
where the subscript, ‘a’ collectively represents both logarithmic
and non-logarithmic coefficients of Eq. (1.1). When 6@, = 0, it
implies “no deviations” from GR. GW data is used to quantify
the consistency of §¢, with zero which constitutes a “null’ test
of GR.

There are different ways in which this null test could be
performed. The most general and rigorous approach would be
to infer all the eight PN deformation parameters fogether from
the data [21]. Alternatively, a less general approach could be



to test a subset of them simultaneously, assuming the rest to
be consistent with GR. This class of tests, where a set of two
or more of the PN deformation parameters are simultaneously
tested, are usually referred to as multi-parameter tests [42—44].
However, such tests are not very effective and fail to yield
meaningful constraints on the deformation parameters due to
high correlations among themselves [21, 25, 45].

A more pragmatic as well as more restrictive approach is
to measure only one deformation parameter at a time while
keeping the rest at their GR values [22, 25, 45]. This is what
has been currently employed in the analyses of the LIGO-Virgo
data [18, 46]. This approach, referred to as one-parameter
tests, leads to eight separate null tests of GR, corresponding to
the eight PN coefficients in the phase evolution, although the
tests are not necessarily all independent. Past studies [39, 47]
have discussed the efficiency of one-parameter tests to capture
generic deviations from GR.

As the sensitivities of the current-generation GW detectors
are not good enough to break the correlations between various
parameters, multi-parameter tests are unlikely to be realized
shortly. It was recently suggested that multiband observations
of a population of stellar-mass black holes may help realize
this test in the future [42, 43]. Combining the data from stellar-
mass binary blackhole coalescences (BBH) in the milli-hertz
band of the Laser Interferometer Space Antenna (LISA) and
the audio band of ground-based detectors, it would be possible
to perform the multi-parameter tests with a precision better
than 10% [42, 43]. However, as multi-band observations of the
same systems require the operation of both ground- and space-
based detectors, such as LISA, this test may not be possible
before the mid-2030s.

Here we propose an alternative, which, in spirit, lies between
one-parameter tests and the multi-parameter test, but does
qualify as a test of the PN structure of the GW phasing formula
in GR. The proposal is to use principal component analysis
(PCA) to identify the best-measured linear combinations of a
set of PN deformation parameters. The bounds on these linear
combinations are arguably more effective in testing GR than
the one-parameter tests, as they are sensitive to multiple PN
coefficients in the phasing formula and consequently tests the
PN structure of the phasing in GR.

Previous works in the literature have pioneered the use of
PCA in the context of parameterized tests of GR. Ref. [48]
demonstrated how the leading eigenvalues and eigenvectors
can be used to reduce the effective dimensionality of multi-
parameter tests [48, 49], where they used non-spinning bina-
ries and a parameterization where the PN coefficients them-
selves were treated as test parameters, following [21]. A
more recent work [50], focused on the binary neutron star
merger GW 170817 [51], considered simultaneous estimation
of adimensional absolute deviations from GR, for the five PN
deformation coefficients between OPN and 2PN. They used
TaylorF2 waveform approximant [52] for their analysis. With
the PCA of the resulting posterior, they found good agreement
with GR for the leading linear combination of the five param-
eters. In this work, we choose to work with a different set of
fractional deformation parameters and focus mainly on BBH
systems. We also go further by devising a method to combine
the bounds on the PCA parameters from multiple events and
also demonstrate their effectiveness in recovering beyond-GR

injections.

The remainder of the paper is organized as follows. In Sec. II,
we explain how to derive the new deformation parameters using
PCA. The results from the selected GW events are discussed
in Sec. III. The role PCA could play in detecting a violation
of GR, if present, is discussed in Sec. IV. Our conclusions are
presented in Sec. V.

II. FORMALISM
A. Basic concept

Gravitational waves emitted from a coalescing compact bi-
nary system, in the frequency domain, can be schematically
written as [53],

INl(f) — ﬂ(f) ei[Zﬂ'_f f(.—¢p[+q)(f)] , (2 l)
where A(f) is the amplitude, ¢, and ¢, are the time of ar-
rival of the GW signal at the detector and the phase of the
signal at that epoch, respectively, and ®O(f) is the PN phas-
ing that has the schematic form shown in Eq. (1.1). In
GR, the PN coefficients that are currently known are ¢, O} =
{¢0, D2, 93, P4, b5, P51, Pe, P61, $7}, up to 3.5PN order. In the
parametrized test of GR, following the parametrization scheme
described in Eq. (1.2), this would constitute to a set of nine
deformation parameters',

0o = (600,602,683, 60u. 5051, 6b6, 6be1, 687).  (2.2)

The GR phasing and amplitude terms already depend on sev-
eral binary parameters that include component masses, spins,
luminosity distance, and the angular parameters describing the
sky location and orientation of the source. For a precessing
binary black hole on quasi-circular orbits, this would count
up to 15 parameters. In general, there are m GR parameters
and n non-GR parameters. In a multiparameter test of GR,
this implies to a Bayesian inference problem with an m+n-
dimensional parameter space,

P({6r, Op) | HOP(d | H, {Gr, Op))

P({fcr, Op} |'H, d) = P

(2.3)
See Appendix A for a quick review of Bayesian inference.
Since we are interested in the deformation parameters, we
marginalize over the GR parameters,

P(lp | H,d) = f P({0cr, O} | H, d) dfgr.  (2.4)

which leaves us with the n-dimensional posteriors of bp.

As mentioned earlier, in general, these parameters are cor-
related. Equivalently, the posterior on 6b has an associated
covariance matrix that is non-diagonal. Our proposal is to use

! The non-logarithmic deformation parameter at 2.5PN, s is not considered
as it can simply be absorbed into a redefinition of ¢, [54, 55].



the PCA technique to perform a rotation of the parameters,
5]3, to an orthogonal basis in which the covariance matrix is
diagonal.

In the subsection below, we detail the steps that are followed
to construct the new deformation parameters. A flowchart of
the same has been shown in Fig. ITC.

B. Construction of new deformation parameters

First, after marginalizing over the GR parameters, we com-
pute the variance-covariance matrix C of the n-dimensional
posterior of the deformation parameters for each event,

Cix = ((66; — (68,)) (6 — (58))) » 25)
where, 6@ and d¢; are the respective marginalized posterior
samples and the symbol (x) refers to the expectation value of
the random variable x. We then diagonalize the marginalized
covariance matrix and compute the corresponding eigenvalues
and eigenvectors

c=USUT, (2.6)
where S is the eigen value matrix which is diagonal and U is a
unitary matrix whose columns are the eigenvectors correspond-
ing to each diagonal entry in S. Algebraically, U represents a
transformation of the basis in which the covariance matrix, C
is non-diagonal, to a new basis in which the covariance matrix
S is diagonal (see Appendix B for more details).

The relative information carried by each of the eigenvectors
can be estimated by looking at the hierarchy of the ratios of the
eigenvalues to the smallest one. In our case, the smallest eigen-
value is synonymous with the most informative eigenvector as
it has the smallest error bar. On the other hand, those with very
large error bars are least informative, and often their posteriors
will resemble the priors themselves and it would be safe to
truncate the parameter space by excluding them. We truncate
the diagonal covariance matrix by excluding those eigenvalues
that are greater than 1000 times the leading eigenvalue®. The
eigenvectors corresponding to the surviving eigenvalues are
the new deformation parameters,

530, = Z a* 5y, 2.7)
k

which will be referred to as the PCA parameters. The index
k is summed over the number of independent deformation
parameters (n) in the original multi-parameter test and the index
i is the number representing the PCA parameter in the order
of their dominance (for instance, i = 1 for the most dominant
one). The coefficients a are the components of the matrix
U. Hence, Eq. (2.7) defines the new deformation parameters
that are linear combinations of all the original PN deformation
parameters and the measurement of each of the new parameters
carries the essence of multi-parameter tests.

2 This is a choice that is suitable for our purposes, this may have to be revisited
in the context of future detectors.

C. Combining information from multiple events

One can usually combine the bounds from multiple events
by multiplying the marginalized likelihoods of every single
event. This implicitly assumes that the true value of the defor-
mation parameters is the same across the events. Despite this
assumption, this approach is possible only for combining the
original deformation parameters, not for the PCA parameters.
This is because, PCA parameters, as defined in Eq. (2.7), are
unique linear combinations for each event with the coefficients
@'/ being functions of the source parameters.

We follow the following approach to overcome this. First,
we compute the n-dimensional marginalized likelihood for the
original deformation parameters, %, for all the events follow-
ing Egs. (2.3) and (2.4). The combined posterior samples are
then obtained by sampling from the product of all the individ-
ual n-dimensional likelihoods. Practically, we achieve this with
the help of Gaussian kernel density estimates constructed for
the n-dimensional likelihoods of each event and taking their
product. The PCA parameters are then computed for the com-
bined n-dimensional posterior by diagonalizing as described in
sec. [I B.

III. RESULTS AND DISCUSSION

Having introduced the method, we now discuss its applica-
tion on GW events, both real events and simulated events. Lim-
ited by the current sensitivity of the GW detectors, we consider
six dimensional multi-parameter test with deformation param-
eters introduced at orders from 1.5PN through 3.5PN. This
implies, Oy = {5@3, B4, 5Bs1, 586, 5b6s, 57} which implicitly
assumes that the leading order PN deformations (6@, 6¢1, )
are consistent with GR. 3 Together with the 15 GR parame-
ters, this leads to a 21-dimensional parameter space. We use
the LALInference package [58] and the IMRPhenomPv2 [59]
waveform model to perform the Bayesian inference described
in Egs. (2.3) and (2.4). The inspiral part of the IMRPhenomPv?2
waveform is deformed as shown in Eq. 1.2 to model the possi-
ble deviations [45].

For every single event, we first obtain the six-dimensional
posterior of §D and then use Egs. (2.5), (2.6) and (2.7) to
compute the posterior samples for the PCA parameters. Fol-
lowing the truncation criterion suggested in sec. II B, we found
that only the leading two PCA parameters survive the crite-
rion. Therefore, we show the results only for the two leading
PCA parameters 6@;2 4 and (543;2& 4> arguing that they are good
enough to reconstruct the likelihood to a good approximation,
for the tolerance set by our truncation criterion.

3 The consistency of lower PN coefficients with GR may be naturally expected
in effective field-theoretic extension of GR where modifications may appear
at relatively higher PN orders [56, 57].
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FIG. 1: Flow chart showing the hierarchy of steps followed to obtain the posterior distribution of PCA parameters, starting from the data, for n

number of events. See the text for more details.

A. Application to selected BBHs detected during O1/02

We first discuss the results obtained by applying the method
on the events detected during the first two observing runs O1
and O2 of the Advanced LIGO and Advanced Virgo detectors.
Specifically, we choose BBH mergers GW150914, GW151226
from O1 and GW 170104, GW170608, GW170814 from O2.
For each of these events, the signal-to-noise ratio in the inspiral
phase is higher than 6 and they are also the events for which the
parameterized tests in Refs. [16, 17] were performed. We have
not performed the analysis on the binary neutron star merger
GW170817 mainly because it is computationally expensive
due to a large number of signal cycles in the sensitivity band
of LIGO and Virgo (see [50] for a detailed discussion in the
case of GW170817).

To understand the results, we first focus on GW151226. The
results are shown in the corner plots in Fig. 2. The top plot
shows the bounds and covariances of the original deformation
parameters {6¢;} while the bottom plot shows the same for the
PCA deformation parameters. As expected, by virtue of PCA,
the widths of the first two dominant linear combinations are

much smaller than those of the original parameters. For the sub-
dominant linear combinations, the widths are as bad or worse
than the original parameters, since most of the information is
already captured by the leading new parameters. The shapes
of the contours underscore the fact that correlations among the
new set of parameters are, as expected, mostly removed by
the PCA thereby bringing the covariance matrix to a diagonal
form. The posteriors of the least dominant linear combinations
show multi-modal features. This is naturally expected as most
of the information in the data goes into the construction of
the leading PCA parameters, making the sub-dominant ones
noise-dominated.

Quantitatively, the two leading PCA parameters are con-
strained as 6(?5;,18 A= 0.00fgé’f and 6¢i,zc) N —0.343:22 where
the numbers shown are the median values and the 90% credible
error-bars. The GR values, i.e., &i;’lC)JA =0.0 and 59;5;2():,« =0.0
are recovered at just 0.030 and 0.340" away from the medians
respectively, where o is the standard deviation of the respective
posterior distributions.

Table I summarizes the results from all the events. Apart

from 6&;2 A and 6&;2& A» for comparison, the table also shows

A
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FIG. 2: Six dimensional corner plots showing the bounds and co-
variances among the different parameters from the multi-parameter
analysis of GW151226 before (top) and after (bottom) performing
PCA. Deformation of the PN phasing starts at 1.5PN order thus six
independent deformation parameters are simultaneously estimated
from the data. The new linear combinations are obtained by the PCA
of the six dimensional posteriors after marginalizing over the GR
parameters. It is evident that the use of PCA dramatically improves
the efficiency of the null test. Eigenvectors corresponding to larger
eigenvalues (subdominant new parameters) show noisy features in
the marginalized 1D posteriors as the dominant parameters contribute
the most to the likelihood, making the subdominant new parameter
posteriors noisier.

the bounds on the deformation parameters at the 1.5PN,
2PN and the logarithmic term at 2.5PN order from the one-
parameter tests as reported in [16]. Their selection for the com-
parison follows from the fact that they are the best-measured
deformation parameters from one-parameter tests starting from
1.5PN. For all the five events, we note that the bounds on 5&5% A
are comparable to the bounds on the 1.5PN deformation pa-
rameter from the one-parameter tests. As can be noted from
Table I, the PCA posteriors of GW 150914 and GW170104 re-

cover GR values slightly outside the 90% credible levels. This
feature has also been observed in the one-parameter tests. As is
evident from the Table I, for both GW150914 and GW170104,
the posteriors of 6¢3, ¢4 and d¢s; recovered GR just outside
their 90% credible error bars. This feature has been studied and
these offsets are very likely due to noise artefacts [5, 7]. For the
other three events, 6&;2 4> as well as the three aforementioned
one-parameter tests, could recover GR with 90% credibility.

B. Combined bounds from O1/02 events

Fig. 3 shows the combined bounds from all the five events,
using the method described in sec. II C. The posterior proba-
bility distributions denoted with solid lines correspond to the
two leading PCA parameters obtained from the combined data
which naturally are the best estimated linear combinations.
These are compared against the combined posterior probability
distributions of 63, ¢4 and 6¢s; from one-parameter tests as
listed in Table I.

The joint bound on the leading PCA parameter (also shown

in the last row of Table I), 6&;2 4 is estimated to —0.02*00%

at 90% credibility and the same for 6¢3, the best-constrained
deformation parameter from among the one-parameter tests,

is estimated to be 0.05’:8:8;. Even though these are quite com-

parable, 5&5;,2 , 18 more consistent with GR in the sense that
the GR value (zero) is recovered just 0.380" away from the
median whereas the 6(]33 recovers GR at 0.96¢, farther away
from the median of the posterior. The sub-leading PCA defor-

mation parameter, 6&;2(; 4 is poorly constrained and peaks away
(1)

from zero as compared to 6¢3PC 4 Which could be an indication
that most of the information has already been captured by the
leading parameter, making the sub-leading one noisier. The
better consistency of the peak of the leading parameter with
the GR value is a salient feature. There could be cases where
one-parameter tests might yield well-constrained posteriors of
deformation parameters, but might peak away from zero indi-
cating a deviation from GR. Besides a genuine GR violation,
noise artifacts can also cause such features. We find, based on
the analyses of a limited number of events, that similar offsets
are seen in the PCA-based parameters as well. The ability of
the PCA-based method to mitigate such artifacts will require a
more detailed study using noisy injections of GR signals which
we reserve for a future publication.

IV. DETECTING GR VIOLATIONS

We have seen the efficiency of the PCA-based method to
constrain possible deviations from GR. In this section, we
explore the capability of this method to detect a deviation from
GR, i.e, how well this method can rule out GR if the true signal
is non-GR.

We perform the analysis on a set of 10 non-GR injections
in the three-detector LIGO-Virgo network with all of them
assumed to be at their respective designed sensitivities. The
masses and spins of the injections were randomly drawn from
the population models inferred from the O1/02 detected GW
events [60]. For each injection, we introduced fractional devia-



PCA deformation parameters TIGER one-parameter deformations
Event 5P PR 56 6¢u s

Median& | GR | Median& | GR | Median& | GR | Median& | GR | Median & | GR

90% errors |value at| 90% errors |value at| 90% errors | value at| 90% errors | value at| 90% errors | value at
GW150914 | -0.22707% | 2.050 | 3.58*% | 1.260 | 0.22*)3 1790 | —=1.92%}7, | 1910 | 07793 | 2010
GW151226 0.0718 | 0.030 | —0.34*133 | 0.340 | =0.01*0)5 | 0.1 | 0.077]%% | 0.08¢c | —0.0370%8 | 0.1c
GW170104 | 0.56*237 | 1.680 | 4.44713% | 0.480- | —0.48*042 | 1430 | 3.7373% | 1470 | 141712 | 1.560
GW170608 | —0.04701% | 0.350 | —0.03*127 | 0.040- | 0.05%012 | 0.630- | —0.26%107 | 0.40 | 0.0970%% | 0.360
GW170814 | —0.1470% | 1.140 | —2.88*21% | 2.170 | 0.07703) | 0.530 | —0.45*17% | 0440 | 01708 | 0.250
Combined | —0.02700% | 0.380 | —0.39*037 | 0.960 | 0.05*)07 | 0960 | —0.36*07; | 0.860 | 0.14702% | 0.950°

TABLE I: The posterior properties of the leading two deformation parameters obtained from PCA. The first five rows show the bounds on the
selected five events from GWTC-1 and the sixth row shows the combined bounds from all the five events.

Probability density

0 = :
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
Deformation parameters

FIG. 3: Marginalized combined posterior probability distributions of
five 01/02 events; GW 150914, GW151226, GW 170104, GW 170608,
and GW170814. The solid lines show the two dominant linear com-
binations obtained from PCA, namely 6(?55,1& 4 and 6(25:,2(; A+ They are
computed from the combined multi-dimensional posteriors, from all
five events. The dashed lines are the combined posteriors on the
TIGER deformation parameters {6553, 6&54 and 6$51 obtained from one-
parameter tests, as reported in [46].

tions from GR at all orders starting from 1.5PN up to 3.5PN by
the same amount. For a given injection, this fractional value is
chosen by randomly drawing from a normal distribution cen-
tered at 0.5 with a standard deviation of 0.1 (See Table II for
details of the injections). These choices of non-GR parameters
are purely arbitrary and the aim here is to assess the ability of
the method to detect a GR violation.

As explained in sec. II B, we first perform the parameter
estimation ( by considering zero-noise realization) on the sim-
ulated non-GR signals with the aforementioned six free PN
deformation parameters. Principal Component Analysis is then
performed on the marginalized 6-dimensional posteriors to de-
duce the dominant linear combinations of the PN deformation
parameters that are best estimated.

Fig. 4 shows the violin plots for the posteriors of the leading
PCA parameter 6(133(% A from the analyses and the quantitative

details from them are presented in Table II. As is evident,
the posteriors are well constrained, with the 90% credible

widths being 0.12 and 0.66, respectively, for the most and
the least constrained injections. As for quantifying the GR
exclusion, for each injection, we compute how many standard
deviations (o) away the GR value (zero) occurs, from the
statistical median of the posterior.

We find that the 5&;2  parameter achieves GR exclusion at
very high confidence for most of the injections. More precisely,
the GR values are excluded at greater than 30 level for most of
them. The inclusion of the true value is also quantified in the
same manner. The true values of 6(;3;,2  are computed using
the same linear combinations that are used to compute the new
posteriors and we find the true values to fall within their 1o

bound for most of the cases.

To understand the features in the Table II, it is important
to recall that the detectability of a GR violation, among other
things, is expected to depend strongly on (a) the strength of the
deviation injected, (b) signal to noise ratio of the event, and
(c) the masses of the binary constituents. We should be able to
detect a GR deviation better when the strength of violation is
greater and the signal is louder. Regarding the effect of mass,
the ability to detect a violation will depend on whether or not
the late-time dynamics of the system occurs in the most sen-
sitive region of the noise PSD, as this will have a pronounced
effect on the parameter estimation.

From Table II, one would notice that the most confident
detections of the GR violations (simulations 1 and 3) are also
accompanied by a precise quantification of the true value of
the injection. Of these, simulation 3 also has the highest SNR
among all the injections, with an optimal network SNR of 54.
However, the second loudest signal, simulation 6, which has
an optimal network SNR of 27, leads to a non-GR detection
only at 3.80, compared to 13.8¢ of simulation 3 and 10.8¢ of
simulation 2. Lastly, it is interesting to note that some of the
lowest non-GR detections are seen to be for the lowest mass
systems (m ~ 10M;) in the simulations, and the highest sig-
nificant detections have relatively higher masses (m ~ 30M;).
This should be due to the aforementioned feature where the
late-time dynamics of a 30M,, should be happening closer to
the sweet spot of the noise PSD compared to a 10M, system. A
careful study would be needed to quantify this more precisely.



Properties of the injections Properties of 69,
Component Spins Oi: k € Network [Median & 90%| GR value True value
Event | Masses (M) | (aligned) | Dy Mpc) | {3.4,51,6,61,7} SNR errors recovered at | recovered at
Sim 1 17.5,14.2 0.2,0.2 801 0.65 18 -0.6570% 10.800 0.550
Sim 2 15.7,12.9 0.4,0.1 1891 0.64 17 -0.657051 2730 0.240
Sim 3 29.0, 28.3 0.3,0.1 706 0.53 54 —0.54+505 13.690 0.230
Sim 4 5.1,5.1 0.3,0.2 847 0.45 14 -0.26792 1.740 1.33c0
Sim 5 5.4,5.1 0.6,0.4 518 0.68 14 -0.5511 6.950 1.040
Sim 6 17.8,13.8 0.4,0.3 1085 0.38 27 0.36*913 3.820 0.48c
Sim 7 12.7,9.4 04,03 1063 0.41 12 0.36*91 3110 0.720
Sim 8 6.2,6.1 0.5,0.3 823 0.46 19 0.32923 2.160 1.220
Sim 9 19.2,14.5 0.3,0.1 1998 0.58 19 0.52:9% 3130 0.590
Sim 10 5.2,5.1 0.4,0.4 675 0.53 21 0.3970.18 3.020 1.090

TABLE II: Demonstrating the ability of PCA to detect deviations from GR. For a set of non-GR injections, the table shows the bounds on

the leading PCA deformation parameter 6¢%, . The GR exclusion by 6

PCA*

(1)
PCA

is shown as how many standard deviations away is the GR value

(zero) from the median of the posterior. The inclusion of the true value is also quantified in the same manner. It is found that the GR values are

(1)

excluded at > 30 for most of them. Similarly, the true values of 6(13PC A

The offsets of the peaks of the violin plots (Fig. 4) from
the injected values are very likely due to the choices of prior
ranges for the original PN deformation parameters. We see
prior railing similar to those in the top panel of Fig. 2 and such
prior railings can translate into the observed offsets. A wider
range of priors should resolve this problem. As our main goal
here is to demonstrate the efficiency of the method to detect
GR violations, which is already achieved in the present violin
plots, a detailed study of this type we postpone for future work.

In summary, the salient feature seen here is that the leading
order PCA deformation parameter can exclude GR, as well as
include the true non-GR value, with a high confidence. This
is a clear demonstration of the ability of PCA to detect any
modifications to GR present in the signal.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We demonstrated that the problem of degeneracies in multi-
parameter tests of GR can be cured by the use of Principal
Component Analysis. Finding eigenvectors that diagonalize
the covariance matrix of the likelihood provides a set of new
parameters to test GR, of which only the most dominant one
or two would suffice for a very accurate representation of the
likelihood. These parameters, by construction, are also the
best-estimated parameters. Using selected events from the
first and second observing runs, we demonstrated the efficacy
of this method and derived bounds on the newly constructed
parameters which are linear combinations of the original post-
Newtonian deformation parameters. Combining the informa-
tion from five binary black hole mergers, we find that the sig-
nificance of a possible deviation from GR is as low as < 0.38¢.
We have also shown that the method based on PCA would also
be very effective in a confident detection of a GR violation.

Application of this method to the binary black hole events

are included within their 1o credible interval for most of the cases.

during the third-observing runs is our next goal. The joint
bounds from the events during O1-O3 would yield stringent
bounds on possible departures from GR. A detailed study of
the Bayes factors between GR and non-GR hypotheses is also
planned. If GR is correct, the multi-parameter tests would yield
a higher Bayes factor in favor of GR due to Occam’s razor,
though posteriors are broader (leading to weak constraints).
As the PCA-based approach essentially captures the spirit of
multi-parameter tests, one would also expect it to share this
feature, but with reasonably well-constrained posteriors. How-
ever, the prior choices play a very important role here which
requires a dedicated study. The robustness of the PCA-based
method to noise artifacts also is an interesting avenue for fu-
ture investigation because if PCA-based parameters are less
prone to noise artefacts, they can be handy to analyze several
of the binary black hole events that have noise artefacts. Lastly,
advanced detectors such as Einstein Telescope, Cosmic ex-
plorer, and Laser Interferometric Space Antenna would permit
independent estimation of two or more of the new PCA-based
parameters thereby facilitating a more stringent test of GR.
This could also be investigated in the future.
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Appendix A: Bayesian inference of GW signals

Let H be our hypothesis that the data d is a sum of Gaussian

noise and a GW signal of the model h(§). Then, according
to Bayes theorem, the posterior probability distribution of the

=4 .
model parameters, 6, can be written as,

PE|H)P|H,b)
Pd|H)

P@|\H,d) = (A1)

where P(J| H) is the prior probability that quantifies the prior
knowledge of g, P(d|H, (7) is the likelihood that quantifies
the probability of d being the measured data when g is the
true value of the parameter under the given signal model. In
the presence of stationary noise, the functional form of the

likelihood in the frequency domain may be written as,

4 d-hld-h

P(d|H,0) < exp [—%} . (A2)

Here, d and / are the data and the waveform model respectively

in the frequency domain, and (@ | b) denotes the noise weighted
inner product defined as,

. hi G(F) B +a(f) B
b) = 2R
@[b) =2Re ff S,

where S ,(f) is the noise power spectral density of the detector
in question, fiow and fyien are the lower and upper frequency
cutoffs, respectively, and they depend on the detector’s sensi-
tive bandwidth. For Advanced LIGO and Advanced Virgo, we
use fiow = 20Hz and fi;g, is the ring-down frequency implied
by the IMRPhenom waveforms that depends on the source
properties. P(d|H) in Eq. (A1) is the Bayesian evidence for
the hypothesis H which is equal to the likelihood marginalized
over all the parameters 6;:

(A3)

daf,

Pd|H) = f P@ | H)P(d|H,)dd. (A4)

Appendix B: Likelihood reconstruction using PCA: Gaussian
case

To demonstrate the process of reconstruction of the likeli-
hood with new parameters obtained via principal component
analysis, we consider a toy example below.

Let us consider a multi-dimensional likelihood, say, a six
dimensional marginalized likelihood corresponding to the de-
formation parameters that we consider here. This multivariate
Gaussian distribution reads

P(O) o exp [-%C}k‘ efak], (B1)



where, both indices j, k are summed over from 1 to 6, &' is any
deformation parameter and the covariance matrix C j encodes
the widths of the resulting marginalized distribution. Such a
Gaussian likelihood is a reasonable assumption in the presence
of stationary Gaussian noise and in the limit of high SNR[69].
The log likelihood reads

In L~ (C™H 66 (B2)
Upon finding the eigenvectors 6", which diagonalize the co-
variance matrix to (C)lfj, one can re-write the log likelihood

as

Nmax
lnL - (C');klﬁ’jG’k — (C/);l (6/1’)2 ~ Z(C/)l—ll (9/1)2, (B3)
i=1

where Npax 1s the maximum number of eigenvectors that are
retained after the PCA, which in our case is 2. In the last
step, we have used the fact that the new covariance matrix is
diagonal.
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