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Abstract

Hate crimes are not a new phenomenon in society; however, social media and other

means of online communication have begun to play an increasing role in hate crimes.

Cyberhate, e.g. offensive or antagonistic language targeted at individuals and social

groups based on their personal characteristics, which sometimes is considered a form

of hate crime, is frequently posted and widely spread via the World Wide Web. The

hateful individuals and groups who post this offensive or antagonistic language have

increasingly been using the Internet to express their ideas and spread their beliefs.

This spread facilitated by the Internet is considered a key risk factor for individual and

societal tension leading to regional instability.

Automated Web-based cyberhate detection is important for observing and understand-

ing community and regional societal tension - especially in online social networks

where posts can be rapidly and widely viewed and disseminated. While previous

work has involved using lexicons, bags-of-words, or probabilistic language parsing ap-

proaches, they often suffer from a similar issue, which is that cyberhate can be subtle

and indirect (or implicit). Thus, depending on the occurrence of individual words or

phrases, the analysis can lead to a significant number of false negatives, providing in-

accurate representation of the trends in cyberhate. This problem was a motivation to

challenge the thinking around the representation of subtle language use, such as ref-

erences to perceived threats from "the other" including immigration or job prosperity

in a hateful context. This thesis does this by proposing a novel "othering" feature set

that utilises language use around the concept of "othering" and intergroup threat the-
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ory to identify these subtleties, implementing a wide range of classification methods

using embedding learning to compute semantic distances between parts of speech con-

sidered to be part of an "othering" narrative. This novel feature resulted in a noticeable

improvement for the classifier performance for both direct and indirect contextual hate.

In addition, understanding the network characteristics of these hateful groups could

help to understand individuals’ exposure to hate and derive intervention strategies to

mitigate the dangers of such networks by disrupting communications. Concerning the

people who post hateful content, this thesis analyses their hateful networks in order to

build extensive knowledge of hateful group communication. This analysis shows that

hateful networks exhibit higher connectivity characteristics when compared to other

"risky" networks, which can be seen as a risk in terms of the likelihood of exposure to,

and propagation of, cyberhate.

This thesis also examines several strategies for disturbing these risky networks. Results

show that removing users with a high degree is most effective in reducing the hateful

followers’ network connectivity (GC, size and density) and, therefore, reducing the

risk of exposure to cyberhate and stemming its propagation. This thesis further reveals

that there are notable performance differences between these strategies and their effect

on the disruption of hateful networks.

The experimental results demonstrated in this thesis contribute to the development of

an integrated framework for the countering of cyberhate by proposing a novel feature

set for detecting implicit cyberhate, analysing hateful networks and examining several

network disrupting strategies.
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Glossary

Cyberhate hate accrued using Internet.

Classification is the process of predicting the class of given data points.

Classifier is any algorithm that sorts data into labelled classes, or categories of in-

formation.

Algorithm a finite sequence of rigorous instructions, typically used to solve a class of

specific problems or to perform a computation.

Precision is the fraction of relevant instances among the retrieved instances.

Recall is the fraction of relevant instances that were retrieved.

F-measure or F-score a measure that combines precision and recall is the harmonic

mean of precision and recall

Dataset is a collection of data.

Social Network he use of internet-based social media platforms to stay connected

with friends, family, or peers.

Graph a mathematical representation of a network and it describes the relationship

between links (lines) and nodes (points).

Directed Network also called a directed graph, is a network in which the edges have

a direction.
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Metric is measures of quantitative assessment commonly used for comparing, and

tracking performance or production.

Node a vertex or node is the fundamental unit of which graphs are formed.

Edge for a directed graph, the edge is an ordered pair of nodes. The terms ’arc,’

’branch,’ ’line,’ and ’link are sometimes used instead of edge.

Bridge a bridge, isthmus, cut-edge, or cut arc is an edge of a graph whose deletion

increases the graph’s number of connected components.

Clique a clique is a subset of vertices such that every two distinct vertices in the clique

are adjacent.

Adjacent in a graph, two vertices are said to be adjacent, if there is an edge between

the two vertices.

Scale Free Network is a network whose degree distribution follows a power law, at

least asymptotically.

One-mode or Generic Network networks with one set of nodes that are similar to

each other.

Two-mode or Bipartite Network a graph whose vertices can be divided into two dis-

joint and independent sets U and V such that every edge connects a vertex in U

to one in V.

Removal Strategy strategy used for finding the most important node which if re-

moved the network lost its connectivity.

Hybrid Removal Strategy removal of the most important nodes based on multiple

removal strategies
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Chapter 1

Introduction

1.1 Introduction

In recent years we have seen a transformation from ’tangible’ societies, where social

interaction is mainly carried out face-to-face, into digital societies in the form of ’social

media’ on the web [330]. The uptake of online social networks for social participation

and social mobilisation is having a huge impact on society. While the benefit of online

social media is enabling distributed societies to be connected, one disadvantage of

the technology is the ability for hateful and antagonistic content, or cyberhate, to be

published and propagated [331].

Hatred is not always expressed openly, but when it is it can take the form of subversive

attempts to denigrate the target, verbal attacks or physical violence. According to

Staub et al. [293], hate includes a negative evaluation of the object of hate: ’A hater

sees the object of his or her hate as profoundly bad, immoral, dangerous, or all of

these. The intense devaluation and the associated feelings make it satisfying to have the

hated other suffer, experience loss, and be harmed’. Its expression can take the form

of obviously, threatening and insulting comments, whether it be by tweet messages,

visual images, Facebook messages or online YouTube videos, all of which can have a

harmful effect on the victims who are targeted, and their families [24].

There are tragic examples of how hate speech online can spill over into the offline

world, with horrific consequences, such as numerous occurrences of suicide attacks
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and the massacre of Muslims in New Zealand in 2019. In 2016 and 2017, the UK’s

decision to leave the European Union, and a string of terror attacks, were followed by

noticeable and unprecedented increases in cyberhate [332], involving the rhetoric of

invasion, threat and otherness [27].

Glaser et al. [133] suggested that racists often express their views more freely on

the internet. Lee et al. [193] found that the implicit messages often used by haters

communicating online were more persuasive to adolescents, who have become the

target of new member recruitment of many hate groups. These adolescents might be

easily influenced to conduct hate crimes.

The hateful content itself is often propagated by hateful groups. These hate groups

have been increasingly using the internet to express their ideas, spread their beliefs, and

recruit new members [193]. Zhou et al. [359] found that one of the major objectives of

these websites was to share their hateful ideology. Some hate websites were associated

with hate groups while others were maintained by individuals [128]. In addition to

hateful websites, evidence shows that more instances of online hate speech occur on

social media [144, 175, 287]. Evidence also suggests that the increase in exposure to

online hate speech can be associated with the nature and impact of certain social events

and conditions, e.g. terrorist events [61]. Since then, initial research interest in online

hate has centred on the detection of hateful content and the characteristics of online

hate groups [66, 107, 128]. This has attracted attention in exploring online hate on

specific social media platforms [63, 224] and/or using computational methodologies

to detect, remove, and understand the dynamics of hateful content distributed through

these tools [229].

However, there are issues related to the methods intended to counter online hate, in

particular relating to the detection of cyberhate and the reduction of the propagation of

the hateful content. The following subsections illustrate these problems clearly.
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1.1.1 Cyberhate Detection

Here, by cyberhate the author means explicit or implicit hateful content that is posted

on the web targeting individuals or groups because of specific or identified character-

istics such as their religion or ethnicity.

For the detection of cyberhate, it is important to recognise that expressing discrimin-

ative opinions, which are considered a form of online hate [309], involves different

language uses. For example, words might be used to convey intense dislike such as

’hate them’; moreover, to encourage violence, an inflammatory verb could be used

such as "kill". While these examples contain directly threatening or offensive words

(kill, hate), some examples include words that, on their own, would not constitute dis-

criminative opinions (e.g., send them home). Although such messages do not contain

explicitly hateful words, they are conveying the desire to distance different groups,

within which there is inherent promotion of discrimination and division within society,

fostering widespread societal tensions1, [334, 167]. The context in which distancing

terms are used is, of course, important here. For instance, if two boxers are fight-

ing and an audience member shouts ’kill them’, then this is a case of distancing and

discrimination, but it is in a non-societal context.

There have been a number of attempts to automatically identify and quantify cyberhate

by using different approaches, such as lexicons [131], syntactic [136] and semantic

[183, 36] features - yet the limitation lies in classifying text that does not contain clear

hateful words and would have an impact on classification accuracy, (e.g. get them out

of our country). This was the motivation to propose a novel feature set that helps the

machine to identify this sort of ’implicit’ hate.

Recent studies have begun to interpret the effective features for machine classification

of abusive language by focusing on how language is used to convey hateful or antagon-

istic sentiment. ’Othering’ - the use of language to express divisive opinions between

1https://www.article19.org/wp-content/uploads/2018/06/UK-hate-speech_March-2018.pdf
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the in-group (’us’) and the out-group (’them’) - has been identified as an effective fea-

ture for cyberhate detection[63].

On this point, this thesis aims to develop a novel method for cyberhate classification

based around (i) the use of two-sided pronouns that combine the in-group and out-

group (e.g. your/our, you/us, they/we), and (ii) the use of pronoun patterns, such as

verb-pronoun combinations, which capture the context in which two-sided pronouns

are used (e.g. send/them, protect/us). The author hypothesised that considering these

linguistic features will provide an additional set of qualitative features that will improve

classification performance. These features are subsequently used in combination with

a paragraph embedding algorithm that infers semantic similarity between features to

create a model that represents ’othering’ language which is used for cyberhate classi-

fication.

1.1.2 Cyberhate Networks Characterisation

The data posted in online social media are not the only signals which may be used

to study hate speech in Online Social Networks (OSN). Characterising hateful groups

provides the benefits of detecting hateful content and presents plenty of opportunit-

ies to explore richer information related to hateful content exposure and propagation.

Seeing other people post prejudiced comments online can lead to the adoption of an

online group’s biases and can influence an individual’s own perceptions and feelings

toward the targeted stigmatised group [152]. In addition, research on cyberhate also

suggests that being exposed to hate speech can lead to an increase in outgroup preju-

dice toward groups targeted by such speech [290]. Thus, the problem of the presence

of hateful groups relates to the exposure to and propagation of the hateful content itself.

Studying the existing literature, it seems there is yet to be a study of multiple hateful

networks with the aim of understanding whether there is evidence of similar ’levels of

friendship’, and therefore a general exposure to hate, or similar levels of propagation

behaviour and therefore a general contagion effect. This research aims to address this
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gap in the knowledge by performing a baseline study that characterises several hateful

networks extensively from multiple perspectives - namely, exposure to cyberhate (in

followers’ networks), and diffusion of cyberhate (in retweets’ networks) by applying

Social Network Analysis (SNA) methods to Twitter hateful networks. SNA is the pro-

cess of investigating social structures through the use of networks and graph theory.

It characterises networked structures in terms of nodes (user accounts) and the ties,

edges, or links (relationships or interactions) that connect them.

1.1.3 Cyberhate Disruption

In addition to characterising hateful groups in terms of the exposure to and the propaga-

tion of their content, this work goes beyond this by experimenting with the disruption

of content exposure and propagation as individuals and groups increasingly use the

Internet to express their ideas, spread their beliefs, and recruit new members [193].

Also, online social media platforms are challenging to regulate [177], and policy-

makers have struggled to suggest practicable ways of reducing cyberhate [7]. This

is because removing certain content from a particular online source cannot guarantee

the unavailability of the same content elsewhere [214]. In addition, it may be con-

sidered to go against freedom of expression. Thus, it is essential to study different

strategies for disturbing the flow of cyberhate and reducing the exposure of others to it

on Twitter.

This insight directly responds to the UK’s Online Harms whitepaper, which focuses

on the need to protect citizens online [339]. Disruption methods could include the

possibility of identifying contagion pathways in hateful networks and evaluating the

reduction in exposure of the network’s users to receiving hateful content, in the same

way as we might expect the spread of a traditional offline virus to be contained. Dis-

ruption methods include a wide variety of themes and approaches used to disrupt a

network. For example, disruption methods may be applied to different network ty-
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pologies or (modes) to better understand their effect. Most networks are defined as

generic (or so-called one-mode) networks with one set of nodes that are similar to each

other. However, several networks are, in fact, two-mode networks (also known as af-

filiation or bipartite networks; [56, 190]. These networks are a particular kind, with

two different sets of nodes and ties existing only between nodes belonging to different

sets. Typical examples include actor-by-event attendance and actor-by-group (or per-

son) membership. In the real world, bipartite network communities have been found

to solve many practical problems. For example, the study of bipartite network mining

provides a new basis for research and a new method for the epidemic model [138]. By

applying the disruption methods to bipartite networks, we can obtain deeper topology,

hidden meaning and different network information, e.g bipartite analysis can detect

groups/event links between nodes; therefore, it is possible that these groupings could

identify collaborating/collusive subnetworks of actors creating and spreading hate.

Our study investigates the disruption strategies on the generic networks (one-mode

network) where a tie connects two nodes (e.g. A follows B or retweet).

Also, we investigate the disruption strategies on the bipartite versions of hateful net-

works where two nodes in a set belong to the same relationship if they are both con-

nected to the same node from the other set (A is connected to B by an affiliation rela-

tionship, e.g. a follow relationship).

Previous studies are yet to propose disrupting methods on multiple Twitter networks,

specifically network node removal strategies, to prevent cyberhate from spreading.

Therefore, this thesis addresses the lack of such a study by examining the disruption

methods for the curtailing and containment of cyberhate (through network pruning). In

particular, it aims to find a set of nodes whose removal from the network results in the

fragmentation of the network into disjointed networks. Understanding how a network

changes in response to node deletion is critical in many empirical networks as it reveals

the most influential haters who have the greatest effect on hateful content propagation.
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This thesis contributes towards the scientific understanding of detecting and managing

cyberhate, advancing the integration of machine intelligence into this problem space.

It does this by focusing on testing novel features for improving the process of detecting

direct and indirect cyberhate. In addition, the study focuses on the analysis of individu-

als’ exposure to online hate and individuals’ role in propagating online hate amongst

groups. Further, through targeted disruption in the flow of hate, this thesis concentrates

on how cyberhate can be disrupted and how to reduce exposure to it.

1.2 Thesis aim and Objectives

This thesis aims to develop an integrated framework for detecting online harms, mod-

elling and disrupting cyberhate networks. In the scope of this work, we have three

interlinked objectives, which together help us understand, model and disrupt the flow

of cyberhate:

• O1: To develop a classification model that takes advantage of the existence of

the othering language in a hateful tweet to detect implicit and explicit cyberhate.

This is discussed in Chapter 4.

• O2: To understand the characteristics of online hateful networks in a non-representative

small sample, and model individuals’ exposure to hate and cyberhate propaga-

tion. This is discussed in Chapter 5.

• O3: To deploy disruption methods, also called node removal strategies [160, 53],

to curtail and contain cyberhate (through network pruning) on Twitter. This is

discussed in Chapter 6.

1.3 Hypotheses and Research Questions

This thesis introduces three main hypotheses relating to these three objectives (O1-3):
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• H1 (relating to O1): linguistic features associated with othering language provide

an additional set of qualitative features that improve the classification perform-

ance.

• H2 (relating to O2): hateful networks are similar in terms of online hate exposure

and online hate propagation, and more connected than âriskâ networks.

• H3 (relating to O3): Applying node removal strategies (disruption strategies),

depending on the node role in the network, reduce network connectivity (expos-

ure reduction) and diffuse the spread of hate (contagion reduction).

In order to develop evidence in support of these hypotheses, the following set of re-

search questions was addressed:

• H1:

RQ1: To what extent can using othering and ITT theories drive the development

of new features for classifying cyberhate and improve the performance of

machine learning for cyberhate detection?

• H2:

RQ2: By studying multiple hateful networks on Twitter, is there evidence of

similar ’levels of friendship’ across multiple hateful networks, and therefore a

general measure of exposure to cyberhate?

RQ3: By studying multiple hateful networks on Twitter, is there evidence of

similar levels of propagation behaviour and, therefore, general contagion

effect?

• H3:
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RQ4: According to the structural characteristics of networks, which node

removal strategies would be most effective at decreasing the propagation of

hateful content?

RQ5: According to the structural characteristics of networks, would a

combination of two (hybrid) node removal strategies be more effective at

decreasing the propagation of hateful content - compared to applying a single

node removal strategy?

RQ6: Would applying the node removal strategies on a bipartite version of the

hateful networks improve the node removal strategies in terms of detecting the

most important users?

1.4 Contributions

• C1: The development of a novel ’othering’ feature set that utilises language

use around the concept of ’othering’ and Intergroup Threat Theory to identify

the subtleties of implicit cyberhate. A wide range of classification methods was

implemented using embedding learning to compute semantic distances between

parts of speech considered to be part of an ’othering’ narrative and improve the

state-of-the-art embedding models in cyberhate detection by 2%-59%. When

tested on unseen data using four different types of cyberhate relating to: reli-

gion; disability; race and sexual orientation, F-measures of 0.81, 0.71, 0.89 and

0.72 were obtained, respectively. Furthermore, the experiments show that dif-

ferent types of hate speech have different language characteristics and the use of

othering terms can be effective for some but not all contexts of hate speech. This

contribution addresses RQ1 and provides support for H1. The novel research has

been published in ACM Transactions on the Web (TWEB) [27]
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• C2: To the best of the author’s knowledge,this is a brand-new investigative study

carried out to understand the connectivity characteristics of two hateful follower

networks. The analysis shows that the level of connectivity of the hateful fol-

lowers’ networks is similar, and therefore there are common levels of users’

exposure to cyberhate. Hateful networks were also compared to another form of

’risky’ network (i.e a suicidal ideation network of similar size) to understand the

general level of the hateful networks’ connectivity. The results showed evidence

of higher connectivity between the hateful users (higher exposure to the hate-

ful content) compared to the suicidal users, which suggests a potential virality

of hateful content. Such users, however, have less reciprocated friendship be-

haviour than suicidal users (less connected around the topic). In addition to the

contribution to knowledge, this study resulted in a fresh friendship datasets in the

field that could be used in further research studies. This contribution addresses

RQ2, and provides support for H2. It has been published in Social Network

Analysis and Mining (SNAM).

• C3: To the best of the author’s knowledge, this is this is a brand-new investiga-

tion carried out to understand the communication characteristics of three hateful

retweets networks. Analysis shows several structural similarities were observed

among the retweets’ networks as were differences between the hateful retweet

network. Also, there was a consistently and significantly greater reach of con-

tent (contagion), and greater degree of co-operation on the spread of the message

(hate) in hateful networks, across all three hateful networks, and less in the com-

parator ’risky’ network - suicidal ideation. Hateful content reaches more users

in fewer hops. This contribution addresses RQ3 and provides additional support

for H2.).

• C4: To the best of the author’s knowledge, this is a novel study to develop

strategies that identify nodes within hateful networks (user accounts) whose re-

moval is empirically shown to reduce connectivity (largest component, density
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and average shortest path) in both the follower and retweet networks. Thirteen

node-removal strategies, including a random-based strategy, based on network

connectivity were tested on three network metrics: giant component size, density

and the average shortest path. These strategies were applied to generic networks

and bipartite networks. The experiments carried out for this study show that the

best node-removal strategy is the degree-based strategy (single node removal)

which has the highest impact on reducing the size of the largest component of the

generic hateful followers’ and retweets’ networks. The rigour of these findings

is demonstrated on two hateful followers’ networks and three hateful retweets’

networks. This contribution addresses RQs 4-6, and supports H3. This novel

research also been published in Social Network Analysis and Mining (SNAM).

1.5 Thesis Structure

The outline for the remainder of this thesis is as follows:

• Chapter 2 - Background and Related Work - provides an overview of the pro-

cesses related to detecting and managing online hate speech in social media. The

chapter begins by analysing existing definitions of online hate speech and goes

on to review the related literature on online hate detection by defining the fun-

damental concepts of the relevant methods for linguistic features, vector space

embedding features, and machine learning. In addition, this chapter explores the

fundamental concepts of Social Network Analysis (SNA) methods and network

disruption strategies. The significant gaps for each concept are also summarised

in this chapter.

• Chapter 3 - The primary purpose of this chapter is to clarifies the research design

and research methodology. A general overview of the approach adopted in this

thesis is given here. In addition, a description of the datasets collected is also

given.
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• Chapter 4 - Hateful Content Detection (RQ1) - introduces a novel method for

cyberhate classification based on (i) the use of two-sided pronouns that combine

the in-group and out-group (e.g., your/our, you/us, they/we) and (ii) the use of

pronoun patterns such as verb-pronoun combinations, which capture the context

in which two-sided pronouns are used (e.g., send/them, protect/us). A wide range

of classification methods were implemented to compare our novel approach that

fuses embedding learning with an ’othering’ narrative to state-of-the-art meth-

ods. The chapter also qualitatively evaluates how the novel feature set can predict

the vector space similarity between different kinds of hateful content. The asso-

ciated chapter (4) makes up the contribution to C1. This contribution has been

published [25].

• Chapter 5 - Networks of Hate (RQs 2 and 3) - provides an overview of a study

related to hateful networks’ structures. Several hateful networks are character-

ised extensively from multiple perspectives, namely: exposure to cyberhate (in

follower networks) and diffusion of cyberhate (in retweet networks). A range of

hateful networks is used to compare and contrast baseline measures of connectiv-

ity and propagation across multiple hateful networks. This associated chapter

makes up the contribution to C2 and C3. This contribution has been published

[26].

• Chapter 6 - Disrupting The Hateful Networks (RQs 4-6) - introduces node re-

moval strategies and the effectiveness of removing nodes on reducing network

connectivity (exposure reduction) and potentially diffusing hate (contagion re-

duction). This associated chapter makes up the contribution to C4. The answer

of RQ4 has been published in [26].

• Chapter 7 - Conclusion and Future Work - concludes the thesis by summarising

the contributions and findings of this research. Also, it introduces thesis implic-

ations and limitations as well as highlighting proposals for future work.
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1.6 Summary

This chapter introduces the problem definition and the motivations that inspired this

thesis. It also provides an overview of the thesis contributions and structure. Before

discussing the main technical contributions of this thesis, the next chapter provides

more detailed background information and positions the thesis in the context of existing

work.
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Chapter 2

Background and Literature Review

2.1 Introduction

To date, research interest in online hate has centred on the detection of hateful content

and the characteristics of online hate groups [66, 107, 128]. Researchers have tended

to concentrate on exploring online hate content on specific social media platforms, e.g.

Twitter [63, 224] and/or using computational methodologies to detect, remove, and un-

derstand the dynamics of hateful content distribution [229]. However, there are issues

remaining that relate to the methods intended to manage online hate speech, and these

are introduced and discussed in this chapter. This chapter provides a comprehensive

overview of research conducted in the field. In each section, general methods are first

described and then works that adapt these methods to the classification of cyber hate,

and the characterisation and disruption of hateful networks. Figure 2.1 gives an over-

view of the topics covered in this chapter.

The chapter begins by reviewing the literature methods and then analysing existing

definitions of online hate speech, and then goes on to review related literature on online

hate detection, propagation and prevention. The purpose of this chapter is twofold:

firstly, to refine our understanding of hate speech; secondly, to provide an insight into

the wider research area, which provides the basis for shaping the contributions of this

thesis (focused on hate speech detection, propagation and prevention methods).

The chapter is divided into five sections. Section 2.2 clarifies the literature review
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Figure 2.1: Road Map of Literature Review

methods. Section 2.3 explores existing approaches to defining online hate speech and

provides a comparison of hate speech with other related concepts. This is followed

by section 2.4, which presents an overview of the evolution of online hate detection

in recent years, including methods of feature extraction and machine classification.

Section 2.5 examines studies relating to the characterisation of the spread of hateful

content on online platforms. Finally, hateful network prevention strategies are explored

in Section 2.6. Within each section, the relevant literature is presented in tables set out
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in an analytical mode for further understanding of the methods related to this study. At

the initial stage of this study, six open research questions are proposed and the answers

to each research question are included, contributing to this thesis.

2.2 Literature Review Methods

For this process we applied which has been adapted by Fortuna et el. [118]. They

presented a comprehensive survey with a critical overview on how the automatic de-

tection of hate speech in text has evolved over the past years. Their method was chosen

for this thesis because they claimed to have conducted a systematic literature review

with the goal of collecting as many documents as possible in the field. The method is

structured in four phases, that are presented and summarised in Figure 2.2. We describe

here the different phases in more detail:

Figure 2.2: Literature Review Collection Methods

• Keyword selection: The first phase conducted was the keywords selection. We

bear in mind that hate speech is a concept that has become more popular recently.

Therefore, some other related concepts could have been used in the past by the

scientific community [119]. The literature search relates to two areas: (i) search-

ing for the general concept of the method used in the field and (ii) reviewing

studies related to detecting, characterising and disrupting online cyberhate. To
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understand hate speech, we considered terms similar to hate speech like ’cyber-

hate’ and ’offensive’, ’implicit cyberhate’ and we also used terms referring to

particular types of hate speech like ’sexism’ and ’racism’. For hate speech de-

tection, we search for general concepts of features (e.g. lexicon meaning) used

and classifiers performance (e.g. F-score meaning). In addition, we considered

terms that refer specifically to the automatic detection of hate like ’cyberhate

detection’, ’hate classification’ and ’hateful classifiers’. For online exposure and

spread characterisation, we searched for general concepts of network character-

isation (e.g. metrics), and we also used combined keywords like ’hateful net-

works’, ’online hate exposure’, ’hate spread’ and ’hate diffusion’ to review the

related studies. For online hate disruption, we used keywords that refer to how to

disrupt the network in general and then hateful networks specifically. Example

keywords for the general concepts are: ’network attack’, ’networks disruption’

and ’networks dismantling’. Example keywords for reviewing studies related to

hateful networks disruption are: ’hate disruption’ and ’terrorist network attacks’.

• Search for documents: We searched in different databases and services (ACM

Digital Library, Scopus, Google Scholar, and DBLP), aiming to gather the largest

possible number of documents in the areas of computer science and engineering.

• Recursive search: This step was to boost the search results. For each document

which we felt was a useful source for our literature, we searched for the docu-

ments mentioned in the literature listed for that document. Also, we used Google

Scholar to get both the references and documents that cited the original work.

Recursively, we repeated the search with the new documents found. The search

stopped at the point at which our work was initially accepted by the journal. As

an example, our article which is related to hate speech detection was accepted

by a TWEB journal at the beginning of 2018; therefore, the literature stopped on

this date. However, we added all the recent studies into the appendix part of this

thesis.
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• Filtering: An initial step of filtering was conducted. Documents that were

not related to computer science and not associated with different hate speech

categories (general hate, cyberbullying, abusive, offensive, sexism, racism, etc.)

studies were excluded. For example, some studies related to social and law were

excluded.

2.3 Understanding Hate Speech

whilst the benefit of online social media platforms is their ability to facilitate connec-

tion between members of their own society and with members of other societies, a

disadvantage of the technology is its ability to facilitate the widespread publication

and propagation of hateful and antagonistic content (hate speech) [331]. This section

explores definitions of hate speech and the nuances of the field’s terminology.

2.3.1 Hate Speech Definition

Hate speech is defined in many ways, so it is important to understand the variety of

definitions to improve the online hate detection process, for example, judging what

is considered as hate (data annotation), forming features for automated hate detection,

etc. There have been a considerable number of attempts to define hate speech as shown

in the following Table 2.1 which illustrates the definitions with references.

Table 2.1: Hate speech definitions

Reference Hate definition

Bansal et al. [38] speech which contains an expression of hatred on the part

of the speaker/author against a person or people based on

their group identity.
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Table 2.1 Continued: Hate speech definitions

ILGA [127] Hate speech are public expressions which spread, incite,

promote or justify hatred, discrimination or hostility to-

ward a specific group. They contribute to a general climate

of intolerance, which in turn makes attacks more probable

against those given groups.

Nockleby et el.

[244]

Hate speech is "usually thought to include communications

of animosity or disparagement of an individual or a group

on account of a group characteristic, such as race, color, na-

tional origin, sex, disability, religion, or sexual orientation.

Code of Conduct

between EU and

companies [10]

All conduct publicly inciting to violence or hatred directed

against a group of persons or a member of such a group

defined by reference to race, colour, religion, descent or na-

tional or ethnic.

Tarasova et al.

[306]

Expression of hostility without any stated explanation for it

Nobata et al.

[243]

Language which attacks or demeans a group based on race,

ethnic origin, religion, disability, gender, age, disability, or

sexual orientation/gender identity

Twitter [4]. Hateful conduct: You may not promote violence against or

directly attack or threaten other people on the basis of race,

ethnicity, national origin, sexual orientation, gender, gender

identity, religious affiliation, age, disability, or disease
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Table 2.1 Continued: Hate speech definitions

YouTube [3] Hate speech refers to content that promotes violence or

hatred against individuals or groups based on certain at-

tributes, such as race or ethnic origin, religion, disability,

gender, age, veteran status and sexual orientation/gender

identity. There is a fine line between what is and what is

not considered to be hate speech. For instance, it is gener-

ally acceptable to criticise a nation-state, but not acceptable

to post malicious hateful comments about a group of people

solely based on their ethnicity

Facebook [5] includes in their definition content that directly attacks

people based on their: race; ethnicity; national origin; re-

ligious affiliation; sexual orientation; sex; gender or gender

identity or serious disabilities or diseases

Mondal et al.

[229].

Content that attacks people based on their actual or per-

ceived race, ethnicity, national origin, religion, sex, gender

or gender identity, sexual orientation, disability or disease

is not allowed. However, clear attempts at humour or satire

that might otherwise be considered a possible threat or at-

tack are allowed. This includes content that many people

may find to be in bad taste

Fortuna et al.

[118]

Hate speech is language that attacks or diminishes, that in-

cites violence or hate against groups, based on specific char-

acteristics such as physical appearance, religion, descent,

national or ethnic origin, sexual orientation, gender iden-

tity or other, and it can occur with different linguistic styles,

even in subtle forms or when humour is used.
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Table 2.1 Continued: Hate speech definitions

The Encyc-

lopaedia of

the American

Constitution

[244]

Hate speech defines it as speech that attacks a person or

group on the basis of attributes such as race, religion, ethnic

origin, national origin, sex, disability, sexual orientation, or

gender identity

Gao et al. [126] Explicit hate speech is easily identifiable by recognising a

clearly hateful word or phrase. In contrast, implicit hate

speech employs circumlocution, metaphor, or stereotypes

to convey hatred of a particular group, in which hatefulness

can be captured by understanding its overall compositional

meanings

Benikova et al.

[43]

expressing a (very) negative opinion against a target, they

define explicit HS as expressing hateful sentiment, and im-

plicit HS as the instances which do not express hateful sen-

timent, but a hateful stance.

De et al. [99] Hate speech is a deliberate attack directed towards a specific

group of people motivated by aspects of the group’s identity.

Johnson et al.

[166]

describe it as a type of speech that takes place online, gen-

erally social media or the internet, with the purpose of at-

tacking a person or a group on the basis of attributes such

as race, religion, ethnic origin, sexual orientation, disability,

or gender.

Table 2.1 shows that there are similarities and differences between hate speech defini-

tions. For example, all the quoted definitions, except [306], indicate that hate speech is

directed at specific targets and it is based on particular characteristics of groups, such

as ethnic origin, religion, or others. Several definitions use slightly different terms to

describe when hate speech occurs. The majority of the definitions point out that hate
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speech is designed to incite violence or hate toward a minority (e.g. ILGA, YouTube,

Twitter). However, expressing hateful or discriminative opinions employs different

language uses. For example, words might be used to convey intense dislike such as

’hate them’; moreover, they may encourage violence; an inflammatory verb could be

used such as ’kill’. While these examples contain directly/explicitly threatening or

offensive words (kill, hate), some examples contain words that, on their own, would

not constitute hateful or discriminative opinions (e.g. send them home), which is con-

sidered as implicit hate [126]. Notably, the explicitness/implicitness of the text is rarely

mentioned in hate speech definitions. Yet, the implicitness of hate within a text is an

important aspect to consider because it contributes to the mission of understanding and

countering hate speech. There is a more nuanced side to hate speech which includes

more implicit language, such as anti-religious, racist and anti-immigration sentiment

[110]. This has an impact on communities and is important to take into account when

detecting online hate. For this reason, the explicitness/implicitness of the text is an

essential aspect and this research seeks to detect both the explicitness/implicitness of

the text’s (direct and indirect) hateful abuse. Table 2.2 shows that only two definitions

mentioned the probability of hate content being directed implicitly or explicitly.

Explicit hatespeech is directed towards a group or individual based on protected char-

acteristics, using a derogatory word or words that are clearly insulting, e.g. ’bastard’

or inciting e.g. ’Kill all Muslims’ [285, 126] or encouraging violence 1. In contrast, im-

plicit hate speech employs circumlocution, metaphor, or stereotypes to convey hatred

of a particular group, in which hatefulness can be captured by understanding its overall

compositional meanings [126]. Implicit hate speech is content that does not contain

a clearly hateful expression, but one which implies hateful emotion toward a group

or individual based on protected characteristics. An example of this content is ’bring

them out’, which, despite not containing any directly hateful words, implies a hateful

emotion towards an expatriate person or group.

1https://dictionary.cambridge.org/us/dictionary/english/hate-speech
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Table 2.2: Analysing the hate speech definition according to the focus of the hate-

ful expression.

Definition reference Explicit
Implicit

(indirect/subtle)
Humour

Bansal et al.[38] X X X

ILGA[127] X X X

Nockleby et el. [244] X X X

Code of Conduct between EU and companies[10] X X X

Tarasova et al.[306] X X X

Nobata et al.[243] X X X

Twitter[4] X X X

YouTube[3] X X X

Facebook [5] X X X

Mondal et al.[229] X X X

Fortuna et al.[118] X X X

Encyclopedia of the American Constitution[244] X X X

Gao et al.[126] X X X

Benikova et al.[43] X X X

De et al.[99] X X X

Johnson et al. [166] X X X

Several related studies frame these sorts of hate speech in their studies; for example,

Waseem et al. [322] proposed a typology that synthesises the sub-tasks involved in

hate speech detection. This includes directed hateful abuse or general abuse and fur-

ther refines this into explicit or implicit hate. Also, Fortuna et al.[118] considers that

all subtle forms of discrimination, even jokes, should be marked as hate speech. This

is argued because this type of joke indicates relations between two groups: the jokers

and those targeted by the jokes, relies on stereotyping and affects race relations [185].

Psychologists have shown that watching comedy which utilises prejudice as a device

to get laughs can change behaviour for the worse. In one study, researchers found male

test subjects were more reluctant to give a charitable donation and more willing to cut
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funding to a women’s organisation after reading and hearing sexist jokes, but not neut-

ral jokes [117]. In other studies, listening to sexist, anti-Muslim and anti-gay jokes

increased acceptance of discrimination against women, Muslims and people of differ-

ent sexual orientation [116]. The conclusion the psychologists came to was not that the

comedy made the test subjects prejudiced, rather that the humour temporarily released

them from having to regulate the prejudiced attitudes they already held, which they

routinely suppressed due to wider societal pressure to appear non-prejudiced. Sexist,

racist and homophobic jokes are a ’releaser’ of prejudice that shapes behaviour [330].

The repetition of such jokes can act to reinforce racist attitudes [184] and, although

they are often considered harmless, they can have a negative psychological effect on

minority communities. The implicit aspect of hateful text is important because it is

damaging to individuals and communities with protected characteristics, but the law

doesn’t include this type of hate as illegal content (unless it grossly offensive or in-

citeful of hatred), so it does not have to be removed. Yet, this implicit aspect needs to

be monitored and observed to increase our understanding/management of the impact

it has on certain communities. In the context of this thesis, we are interested in the

explicit hate and the implicit hate towards people with protected characteristics. In-

deed, all the definitions in Table 2.1 include pieces of valuable information and help

us to understand the meaning of hate speech.Thus, hate speech is hereby understood

to be inflammatory language that explicitly or implicitly targets an individual or group

depending on protected characteristics .

2.3.2 Hate Speech Definition and Related Concepts

A further important aspect of the terminology is the confusion between the term hate

speech and other terms such as ’cyberbullying’, ’prejudice’ and ’terrorism’. A way

to better understand this complex phenomenon is by drawing a comparison with other

related concepts. Focusing on these and understanding the differences and the similar-

ities in the literature and empirical studies can provide an insight into how to select the
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studies which relate to hateful content/network detection. Table 2.3 illustrates the dif-

ferences and the similarities between the definition used in this thesis and these terms.
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Table 2.3: Comparison between hate speech definition and related concepts

Term definition Difference and similarity

with the thesis perspective

Cyberhate Cyberhate is a sort of hate

speech, this term is for those

who prefer to hold their con-

versations in ’cyber space’.

Cyberhate is considered as

hate speech that exists in on-

line media.

Terrorism Any an abhorrent act of

violence perceived as be-

ing directed against society-

whether it involves the activ-

ities of anti-government dis-

sidents, organised crime syn-

dicates, common criminals,

rioting mobs, people en-

gaged in militant protest, in-

dividual psychotics, or lone

extortionists- is often labelled

as terrorism [149]

Hate speech could be con-

sidered as a type of terrorism

[82] and can also follow an

incident or trigger an event of

terrorism.

Prejudice An antipathy based upon a

faulty and inflexible general-

isation

In this study, negative preju-

dice toward people depending

on their identity is considered

a form of hate speech [174].
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Table 2.3 Continued: Comparison between hate speech definition and related con-

cepts

Extremism Ideology associated with ex-

tremists or hate groups, pro-

moting violence, often aim-

ing to segment populations

and reclaiming status, where

outgroups are presented both

as perpetrators or inferior

populations [215]

This study considers the ex-

tremist as a producer of hate

speech.

Radicalisation Online radicalisation is sim-

ilar to the extremism concept

and has been studied within

multiple topics and domains,

such as terrorism, anti-black

communities, or nationalism

[11]

This study considers the pos-

sibility that radical people

may use hate speech to spread

their ideologies.

Abusive lan-

guage

The term abusive language

was used to refer to hurtful

language and includes hate

speech, derogatory language

and also profanity [243]

This study considers hate

speech as a type of abusive

language
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Table 2.3 Continued: Comparison between hate speech definition and related con-

cepts

Cyberbullying Aggressive and intentional

acts carried out by a group

or individual, using electronic

forms of contact, repeatedly

and over time, against a vic-

tim who cannot easily defend

him or herself [79]

Cyberbullying might be con-

sidered as hate speech if it is

expressed in a hateful context

and directed toward an indi-

vidual or group based on the

protected characteristics.

Discrimination Process through which a dif-

ference is identified and then

used as the basis of unfair

treatment [309]

Hate speech is a form of

discrimination through verbal

means. Thus, this study’s

definition considers discrim-

ination as a form of hate

speech.

Flaming Flaming are hostile, profane

and intimidating comments

that can disrupt participation

in a community [137]

Flaming is considered in this

study as hate speech when

someone is being flamed

based on protected character-

istics.

Toxic language Toxic language are rude, dis-

respectful or unreasonable

messages that are likely to

make a person to leave a dis-

cussion [8]

Not all toxic language

contains hate speech or is

directed toward individuals

or groups based on protected

characteristics; however,

some hate speech does

contain toxic language.
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Table 2.3 Continued: Comparison between hate speech definition and related con-

cepts

Offensive Lan-

guage

Offensive language can in-

clude vulgar, pornographic,

and hateful language. Vul-

gar language refers to coarse

and rude expressions, which

includes explicit and offens-

ive reference to sex or bod-

ily functions. Pornographic

language refers to the por-

trayal of explicit sexual sub-

ject matter for the purposes of

sexual arousal and erotic sat-

isfaction. Hateful language

includes any communication

outside the law that dispar-

ages a person or a group on

the basis of certain character-

istics, such as: race; colour;

ethnicity; gender; sexual ori-

entation; nationality and reli-

gion [163].

Offensive language is in-

cluded under the hate speech

umbrella; this study considers

the offensive language tar-

geting individuals or groups

based on protected character-

istics as hate speech.
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Table 2.3 Continued: Comparison between hate speech definition and related con-

cepts

Harassment conduct directed toward a

victim that includes, but is not

limited to, repeated or con-

tinuing unconsented contact

that would cause a reasonable

individual to suffer emotional

distress, causing the victim

to suffer emotional distress

[111].

Harassment is a broad term

and could be used in any

context; however, it could

manifest in online content.

This study considers reli-

gious, race, gender and sexual

orientation harassment as a

sort of hate speech.

Aggressive Overt, angry and often violent

social interaction delivered

via electronic means, with the

intention of inflicting damage

or other unpleasantness upon

another individual or group

of people, who perceive such

acts as derogatory, harmful,

or unwanted[151, 76].

Aggressiveness text is con-

sidered hate speech if related

to protected characteristics.

In this work, both the explicit and implicit forms of online hate speech are referred to

under the broad term cyberhate - which includes more subtle forms of hate. Under-

standing the nuance of hate speech definitions and terminologies helps refine methods

for countering hate speech. The following section explores online hate detection meth-

ods, advantages and limitations.
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2.4 Cyberhate Detection

Just as there is no clear consensus on the definition of hate speech, there is no consensus

with regard to the most effective way to detect it across diverse platforms. As people in-

creasingly communicate through Web-enabled applications, the need for high-accuracy

automated cyberhate detection methods has also increased. Several studies have shown

how individuals with biased or negative views towards a range of minority groups are

taking to the Web to spread hateful messages [195, 263]. Instances of cyberhate and ra-

cist tension on social media have also been shown to be triggered by antecedent events,

such as terrorist acts [65, 331]. This section reviews research carried out on automated

cyberhate detection. In particular, related work aimed at detecting online hate speech,

as well as work focused on sentiment or opinions that are deemed abusive [96]. The

previous section of this work explained that online hate might be written explicitly or,

implicitly, making the process of online hate detection more challenging.

This section is composed of five sub-sections: lexicon-based methods; linguistic fea-

tures for cyberhate detection; the use of an embedding learning feature; cyberhate

classification and exhibiting a psychological theory for the automated hate detection

and othering language narrative surrounding cyberhate.

2.4.1 Lexicon-based Methods

Lexicon methods may involve the use of offensive words and slurs or negative/positive

related words (e.g. emotions and negation words) as features, which might help to

distinguish hate speech from other posts, yet they still have a weakness in terms of

the ability to detect hate stereotypes when the text contains no single hateful words

(implicit hate speech).

Lexicon-based methods also determine the sentiment or polarity of opinion via some

function of opinion words in the document or the sentence [180, 153, 303]. The dif-

ferent techniques for a lexicon-based approach are a dictionary-based approach and
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corpus-based approach [271]. Dictionary-based approaches generally suffer from an

inability to find offensive words with domain and context-specific orientations [96].

This method leads to the low recall problem [352] and poor precision [96] of the

lexicon-based method, which depends entirely on the presence of negative/positive

words to determine the sentiment’s orientation.

Although one could say that these additional expressions can be added to the lexicon,

such expressions change constantly, and new ones regularly appear following current

trends and hateful events[352]. Moreover, this method does not have an effective mech-

anism for dealing with context-dependent opinion words. There are many such words;

for example, the word ’black’ can be a positive or negative word depending on the

context[63]. There is probably no way to know the semantic orientation of a context-

dependent opinion word by looking only at the word without prior knowledge of the

entire context[105].

To overcome the disadvantages of the dictionary-based method, corpus-based approaches

use a domain corpus to capture opinion words with preferred syntactic or co-occurrence

patterns. Using the corpus-based approach alone to identify all opinion words is not

as effective because it is hard to prepare a vast corpus to cover all words [140]. With

this method, a lexicon is populated with words and phrases that are more attuned to the

domain by incorporating contextual features that could possibly change the semantic

orientation of an opinion word. However, features such as negations, like ’no, never,

may’, change the directionality of a lexicon item. For example, Gitari et al. [131] gen-

erated a lexicon of sentiment expressions using semantic and subjectivity features with

an orientation towards hate speech, and then used these features to create a classifier for

cyberhate detection. Similar to the previous study, Warner et al. [321] present a super-

vised approach that categorises hate speech by identifying stereotypes used in the text.

However, their work depends on the existence of direct hate feature co-occurrence to

decide the polarity of a specific tweet which might omit indirect/implicit hate speech.

Ding et al. [105] further explored the idea of intrasentential and inter-sentential sen-
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timent consistency. Instead of finding domain-dependent opinion words, they showed

that the same word might have different orientations in different contexts, even in the

same domain. Silva et al. [287] detected cyberhate using sentence structure - specific-

ally patterns starting with the word ’I’. They assume that the word ’I’ means that the

user is talking about emotions that he or she is feeling. Their work introduces the dir-

ection of the sentence structure rather than depending on specific words to recognise

the sentence polarity. They suffered from a high false positive rate due to the model

classifying sentences such as ‘I hate following people’ as hateful.

Another direction for building lexicons is to follow a sentiment scoring method which

uses emoticons, modifiers, negations and domain-specific words [32]. Despite the scor-

ing method outperforming the baseline methods, it requires a manual scoring of words.

2.4.2 Linguistic Features

In general, while previous studies have addressed the difficulty in defining hateful lan-

guage, their experiments have led to better results when combining a large set of lin-

guistic features. A review of these results follows.

Similar to the use of dictionaries is the bag-of-words (BoW); it is one of the most

basic forms of natural language processing based on the extraction approach [63, 136,

187]. BoW is a method that creates a vocabulary of all the unique words occurring

in all the documents in a training set [252]. BoW has been successfully applied as a

feature extraction method for the automated detection of hate speech, relying largely

on keywords relating to offence and antagonism [252, 326, 62]. In this case, a corpus

is created based on the words that are in the training data, instead of a predefined set of

words, as in the dictionaries. After collecting all the words, the frequency of each one

is used as a feature for training a classifier. The disadvantage of this kind of approach is

that the word sequence is ignored, as is its syntactic and semantic content. Therefore,

it can lead to misclassification if the words are used in different contexts. To overcome
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this limitation, n-grams can be adopted [130, 45].

N-grams are one of the most popular techniques in hate speech detection [36, 63, 96,

136, 243, 323]. The most common n-grams approach consists of combining sequential

words into lists with size N. In this case, the aim is to enumerate all the expressions

of size N and count all the occurrences. This improves classifier performance because

it incorporates, to some degree, the context of each word. Instead of using words, it

is also possible to use n-grams with characters or syllables. This method is not so

susceptible to spelling variations, as when words are used. Character n-gram features

have proved to be more predictive than token n-gram features for the specific problem

of abusive language detection [217]. Use of a character n-gram-based approach out-

performs word n-grams due to character n-gram matrices being far less sparse than the

word n-gram matrices [323], [217]. Character n-grams have been shown to be more ef-

fective if joined with additional linguistic features including gender and location [323].

However, using n-grams also has drawbacks. One disadvantage is that related words

can be a significant distance apart from each other in a sentence [63] and a solution

for this problem, such as increasing the N value, slows down the processing speed

[78]. Also, studies point out that higher N values (5) perform better than lower values

(unigrams and trigrams) [204].

TF-IDF The TF-IDF (term frequency-inverse document frequency) has also been used

in cyberhate classification problems [104, 36]. TF-IDF is a measure of the importance

of a word in a document within a corpus and increases in proportion to the number of

times a word appears in the document. However, it is distinct from a bag of words, or

n-grams, because the frequency of the term is offset by the frequency of the word in

the corpus, which compensates for the fact that some words appear more frequently in

general (e.g. stop words) [269].

Part-of-speech (POS) indicates how the word functions in meaning as well as gram-

matically within the sentence. The part of speech approach makes it possible to im-

prove the importance of context and detect the role of the word in the context of a
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sentence. It operates by detecting the category of the word, for instance, personal

pronoun (PRP), Verb non-3rd person singular present form (VBP), Adjectives (JJ),

Determiners (DT), Verb base forms (VB). Part-of-speech has also been used in hate

speech detection [136]. With these features, it was possible to identify frequent bi-

gram pairs, namely PRPVBP, JJDT and VBPRP, such as ’you are’ [104]. It was also

used to detect sentences such as ’send them home’, ’get them out’ or ’should be hung’

[65]. However, POS caused confusion in the identification of classes when used alone

as features [118].

Dirichlet Allocation (LDA) is a probabilistic topic modelling method. It is mainly

used to give an estimation of the latent topics in a data set and these latent topics are

then used as features instead of words. However, LDA is suitable for unsupervised

and semi-supervised machine learning settings. Xiang et al. [342] claimed that BoW

did not work well for abusive text detection on Twitter. Instead, they included highly

expressive topical features and other lexicon features by using the LDA model. This

approach can be an alternative for supervised methods. In addition [12] showed that

topic modelling linguistic features were used to identify posts belonging to a defined

topic (Race or Religion).

Typed dependencies is an approach that parses a sentence and represents its gram-

matical structure by defining the relationships between ’head’ words, and words that

modify those heads[100]. Typed dependencies have been widely used for extracting

the functional role of context words for sentiment classification [179, 153] and docu-

ment polarity [304].

To understand the types of features that can be obtained with this approach, the Stan-

ford typed dependencies representation provides a description of the grammatical re-

lationships in a sentence that can be used by people without linguistic expertise [100].

This was used to extract Theme-based Grammatical Patterns [131] and also to detect

hate speech and specific othering language [65, 62]. Some studies reported significant

performance improvements in hate speech automatic detection based on this feature
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[63, 131], for instance by reducing the false negative rate by 7%, beyond the use of

BoW and known hateful terms [62, 63]. In many works, n-gram features are com-

bined with other features. For example, Nobata et al.[243] reported that while token

and character n-gram features are the most predictive single features in their experi-

ments, combining them with all the additional features further improves performance.

They also speculated that engineering features based on deeper linguistic representa-

tions (e.g. dependencies and parse tree) may improve classification results for contents

on social media, which was shown by [63].

2.4.3 Text Embedding

A bag-of-words (BoW) representation can be seen as a very high-dimensional vector

representation. An embedding is a translation of a high-dimensional vector into a low-

dimensional space (e.g. 300 dimensions). Unlike in BoW representations, the unique

dimensions in the vector space embedding typically have no specific meaning. Ideally,

an embedding captures some of the semantics of the input by placing semantically

similar inputs close together in the embedding space. Text embedding learning is aimed

at training a model that can automatically transform a sentence/word into a vector

that encodes its semantic meaning. Embedding applications have been shown to be

capable of capturing specific semantic features from complex natural language (e.g.

location [256], entity [286] and images feature [18]). Several models, including neural

net language models (NNLM), global vectors for word representation (GloVe), deep

contextualised word representations (ELMo), FastText, Word2vec and Paragraph2vec,

which are designed to learn word embeddings. It has been shown that embedding

representation is very capable of semantic learning when word vectors are mapped

into a vector space, such that distributed representations of sentences and documents

with semantically similar words have similar vector representations [219] [220].

Based on the distributional representation of the text, several methods of deriving word

representations that are related to cyberhate and offensive language detection are ex-
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plored such as the FastText application[36], GloVe[262], Word2vec [219] and para-

graph2vec [220].

FasText is a library for learning word embeddings and text classification created by

Facebook’s AI Research lab. The model allows an unsupervised learning or supervised

learning algorithm to be created to obtain vector representations for words.

Also, GloVe is an unsupervised learning algorithm developed by Stanford to generate

word embeddings by aggregating the global word-word co-occurrence matrix from a

corpus.

Word2vec model involves word vector representations where conceptually, if two

words are similar, they should have similar values in this projected vector space. Word2vec

has two architectures: skip-gram and CBoW. While skip-gram aims to predict nearby

words from a given word, CBoW predicts a target word from its set of context words.

In the Paragraph2vec model, paragraphs are represented as low-dimensional vec-

tors and are jointly learned with distributed vector representations of tokens using a

distributed memory model [220]. In the literature, paragraph2vec is also called sen-

tences2vec, document2vec [220] and comment2vec [106]. Figure 2.3 show frame-

works for learning word vector (left side) and paragraph vector (right side).
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Figure 2.3: Word Embeddings Machine Learning Frameworks: word2vec and

paragraph2vec.

Learning the paragraph embedding could be achieved using two models: (i) Para-

graph Vector-Distributed Memory (PV-DM) or (ii) Paragraph Vector-Distributed Bag-

of-words (PV-DBoW). The Paragraph Vector-Distributed Memory (PV-DM) model is

similar to the Continuous-Bag-of-Words (CBoW) model in word2vec which attempts

to predict the output (target word) from its neighbouring words (context words) with

the addition of a paragraph ID. On the other hand, the DBoW model is similar to the

skip-gram model of word2vec, which predicts the context words from a target word.

Comparing the GloVe model to the Word2vec model, both models are word embedding

models and they are predictive; the word2vec model only takes into consideration the

local context; hence, it does not capture the global context. Although FastText predicts

the unknown words, breaking words into several sub-words at the training time, it takes

longer to train a FastText model compared to a Word2vec model.

In the existing literature, Schmidt et al. [281] identified that hate speech detection

required sentence-level - rather than word-level - classification. Hence, some au-

thors proposed sentence embeddings or comment/paragraph embeddings to solve this

problem. For example, Djuric et al.[106] and Nobata et al.[243] presented the para-

graph2vec approach to classify language in users’ comments. These authors showed

that using the vector space features, particularly, for a sentence (paragraph) embedding,
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improved the classifier performance compared to not applying vector space features.

Specifically, Djuric et al. [106] implemented an extended version of Word2Vec for

sentences which has been shown to outperform the BoW representation for cyberhate

classification models by around 3% to 4% in F1 score. This suggests that paragraph

vector features can be powerful when combined with standard NLP features [243].

2.4.4 Hate speech classifiers

Machine learning models take samples of labelled text to produce a classifier that is

able to detect hate speech. They are trained using labelled data, annotated by content

reviewers. Various models have been proposed and have proved successful in the past.

A selection of open-sourced systems presented in the recent research follows. The

methods utilised for hate speech detection in terms of classifiers are predominantly su-

pervised learning approaches. As classifiers, the most widely used methods for hate

speech detection were summarised in a survey by Fortuna et al. [118] and Macavaney

et al. [208]. These include Naive Bayes (NB)[178] [11][65][36] Support Vector Ma-

chine (SVM), Logistic Regression (LR) [106][96], Random forest (RF), and Decision

Tree (DT) [36][65][11]. Neural Network (NN) classifiers, e.g. Multilayer Perceptron

(MLP) [119], DNN and CNN [36] were also used but are less popular. These mod-

els are commonly used in text categorisation. Naive Bayes models label probabilities

directly with the assumption that the features do not interact with one another. Sup-

port Vector Machines (SVM) and Logistic Regression are linear classifiers that predict

classes based on a combination of scores for each feature. The Random Forest (RF)

classifier creates decision trees based on data samples, obtains the prediction from each

of them, and finally selects the best solution by means of voting. Random Forest is a

tree-based machine learning algorithm that leverages the power of multiple decision

trees to make decisions[305].

Broadly speaking, Neural Networks (NNs) are inspired by how the human brain works.

NNs are based on a collection of connected nodes called artificial neurons, which
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loosely model the neurons in the brain. Each connection, like the synapses in a brain,

can transmit a signal between neurons. An artificial neuron that receives a signal can

process it and send it to other artificial neurons to which it is connected. Examples of

NN architectures used for classification of hate speech include Multilayer Perceptron

(MLP). MLP is a feed-forward artificial neural network model that maps input datasets

to an appropriate set of outputs. It is characterised by several layers of input nodes

connected as a directed graph between the input and output layers [237]. MLP can

provide competitive results on sentiment classification and factoid question answering

[159].

Other NNs utilised include Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs) - specifically the Long Short-Term Memory network (LSTM)

[83]. They treat the text as a sequence of words, and thus implicitly assume that at least

some aspects of word order are important. In the context of hate speech classification,

intuitively, CNN extracts word or character combinations [125, 36, 257], (e.g. phrases,

n-grams). RNNs analyse a text word by word and store a representation of the already

processed text as a fixed-dimensional vector in a hidden layer [188, 217]. RNN can

learn word or character dependencies (order information) in tweets [36, 101]. Such

methods, including deep neural networks (DNN), can be used to extract word or text

embeddings as features, which are subsequently combined with another classifier (e.g.

SVM) to use such embeddings as features for classification [106, 217].

What follows next is a review of the state-of-the-art features and classifiers used to

detect cyberhate and a discussion of their strengths and limitations. To compare and

contrast the state-of-the-art classifiers, it is necessary to first define how such methods

are typically evaluated, i.e. the classifier’s capability to predict the correct category,

and not its computational complexity [284]. Ordinarily, the evaluation measures in

classification problems are determined from a matrix with the numbers of examples

correctly and incorrectly classified for each class, called a ’confusion matrix’. An

example of a confusion matrix for a binary classification problem (which has only two
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Table 2.4: Confusion matrix for binary classification.
Predicted Class

Actual class Positive Negative

Positive TP FN

Negative FP TN

classes - positive and negative) is presented in Table 2.4.

TP (true positives) is the number of examples that are correctly predicted as belonging

to the positive class. TN (true negatives) is the number of examples that are correctly

predicted as belonging to the negative class. FP (false positives) is the number of

examples that are classified as positive while they are from the negative class and FN

(false negatives) is the number of examples that are classified as negative when their

true class is positive. Common metrics for evaluating classification tasks using these

figures include Accuracy, Precision, Recall, F1-score [227]and Area Under the Curve

(AUC) [157], which are defined below:

Accuracy =
(TP + TN)

TP + FP + TN + FN
(2.1)

Precision =
(TP )

TP + FP
(2.2)

Recall =
(TP )

TP + FN
(2.3)

F1− score = 2 · (Precision ·Recall)
Precision+Recall

(2.4)

AUC =
1

2
·
(
(

TP

TP + FN
) + (

TN

TN + FP
)

)
(2.5)
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Accuracy is the proportion of the correctly classified examples (i.e. true positive and

true negative examples); precision measures the proportion of false positives; recall

measures the proportion of false negatives, whilst the F1-score is the harmonic means

of precision and recall. In addition, AUC provides an aggregate measure of perform-

ance across all possible classification thresholds, ranging from 0 to 1, a model with

predictions that are 100% incorrect has an AUC of 0.0, and one with predictions that

are 100% correct has an AUC of 1.0. Due to the often highly imbalanced number

of positive vs. negative examples in binary classification, the negative class usually

dominates the accuracy of a model, leading to misinterpretation of the results. For ex-

ample, when the positive examples of a class represent only 1% of the test set, a trivial

classifier that makes negative foresight for all examples has an accuracy of 99%. How-

ever, such a system is inefficient. For this purpose, precision, recall and F1-score are

more commonly used instead of accuracy and (AUC) [141] for evaluating unbalanced

classification problems.

Table 2.5 shows studies that relate to online hate classification. For each study, the

table illustrates the classifier/s, the feature/s, the accuracy, the precision, F-score and

the area under the curve (AUC).

Table 2.5: Summary of the studies that related to hateful text classification show-

ing the hate type, year, classifiers used, metrics accuracy, precision, recall, f-

measure and AUC

Study Hate

Type

Year class

ifier

Features Accu-

racy

Precis

ion

Rec-

all

F-

score

AUC

Greevy

et

al.[136]

Racism 2004 SVM BoW,

N-grams,

POS

- 0.90 0.90 0.90 0.90
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Table 2.5 Continued: Summary of the studies that related to hateful text classi-

fication showing the hate type, year, classifiers used, metrics accuracy, precision,

recall, f-measure and AUC

Warner

et

al.[321]

Anti re-

ligious

2012 SVM Template

based

strategies,

word

sense,

disam-

biguation

- 0.68 0.6 0.63 -

Kwok

et

al.[187]

Aggres

sion

2013 Naive

Bayes

N-grams 0.76 - - - -

Burnap

et

al.[65]

Anti re-

ligious

2014 Rand-

om

Forest

De-

cision

Tree,

SVM

N-gram,

typed

depend-

encies

- 0.89 0.69 0.77 -

Liu et

al.[204]

Violence 2014 Naive

Bayes

T-IDF,

N-grams,

topic

simil-

arity,

senti-

ment

analysis

- 0.97 0.82 - -
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Table 2.5 Continued: Summary of the studies that related to hateful text classi-

fication showing the hate type, year, classifiers used, metrics accuracy, precision,

recall, f-measure and AUC

Djuric

et

al.[106]

Hate

speech

2015 Logis-

tic

Re-

gres-

sion

Paragraph

embed-

ding

- - - - 0.8

Gitari

et al.

[131]

Ethnic-

ity, re-

ligion

and

nation-

ality

2015 Non-

super-

vised

Rule-

based

ap-

proach,

senti-

ment

analysis,

typed

depend-

encies

- 0.65 0.64 0.65 -
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Table 2.5 Continued: Summary of the studies that related to hateful text classi-

fication showing the hate type, year, classifiers used, metrics accuracy, precision,

recall, f-measure and AUC

Burnap

et

al.[62]

Anti re-

ligious

2015 Rand-

om

Forest

De-

cision

Tree,

SVM,

Baye-

sian

Lo-

gistic

Re-

gres-

sion,

En-

semble

N-gram,

reduced

typed

depend-

encie-

shateful

terms

- 0.89 0.69 0.77

Nobata

et

al.[243]

Hate

speech,

profan-

ity and

derog-

atory

lan-

guage

2016 Skip-

bigram

Model

N-grams,

length,

punctu-

ation,

POS

0.83 0.83 0.83



2.4 Cyberhate Detection 46

Table 2.5 Continued: Summary of the studies that related to hateful text classi-

fication showing the hate type, year, classifiers used, metrics accuracy, precision,

recall, f-measure and AUC

Waseem

et

al.[323]

Sexism

and

racism

2016 Logis-

tic

Re-

gres-

sion

User fea-

tures

- 0.72 0.77 0.73 -

Burnap

et

al.[63]

Anti

reli-

gious,

racism,

disabil-

ity and

sexual

orient-

ation

2016 SVM,

Ran-

dom

Forest,

De-

cision

Tree

BoW,

dic-

tionary,

typed

depend-

encies

- 0.79 0.59 0.68 -
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Table 2.5 Continued: Summary of the studies that related to hateful text classi-

fication showing the hate type, year, classifiers used, metrics accuracy, precision,

recall, f-measure and AUC

Agarwal

et

al.[11]

Online

radical-

isation

2016 One-

class

Clas-

sifi-

ers,

Ran-

dom

Forest,

Naive

Bayes,

De-

cision

Trees

Topic

mod-

elling,

senti-

ment

analysis,

tone

analysis,

semantic

analysis,

con-

textual

metadata

- 0.73 0.86 - -
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Table 2.5 Continued: Summary of the studies that related to hateful text classi-

fication showing the hate type, year, classifiers used, metrics accuracy, precision,

recall, f-measure and AUC

Fortuna

et

al.[119]

sexism,

body,

origin,

other

Life-

style,

racism,

homo-

phobia,

reli-

gion

and

ideo-

logy

2017 MLP n-grams 0.77 0.78 0.72 0.76 -

Badjat-

iya et

al. [36]

Sexism

and

racism

2017 GBDT DNN

(LSTM)

Para-

graph

embed-

ding

0.93 0.93 0.93 - -
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Table 2.5 Continued: Summary of the studies that related to hateful text classi-

fication showing the hate type, year, classifiers used, metrics accuracy, precision,

recall, f-measure and AUC

David-

son et

al[96]

Hate

speech

and of-

fensive

2017 logistic

re-

gres-

sion

bigram,

unigram,

trigram

each

weighted

by its

TF-IDF,

binary

and

count

indicat-

ors for

hashtags,

men-

tions,

retweets,

and

URLs,

the num-

ber of

char-

acters,

words,

and syl-

lables

in each

tweet.

- 0.90 0.90 0.90 -
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Table 2.5 Continued: Summary of the studies that related to hateful text classi-

fication showing the hate type, year, classifiers used, metrics accuracy, precision,

recall, f-measure and AUC

Del et

al.[101]

Cyber

bullism,

incite-

ment

to self-

harm

prac-

tices

and

sexual

orient-

ation

2017 LSTM POS,

senti-

ment

analysis,

word2vec,

CBoW,

N-grams,

text

features

- 0.833 0.872 0.851 -

Gamb-

ack et

al.[125]

Sexism

and

racism

2017 Word-

2vec

Model

character

4-grams,

word

vectors

- - - 0.78 -

Jha et

al.[165]

Sexism 2017 FastT-

ext

bag of

words

and

bag of

n-grams

- - - 0.87 -
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Table 2.5 Continued: Summary of the studies that related to hateful text classi-

fication showing the hate type, year, classifiers used, metrics accuracy, precision,

recall, f-measure and AUC

Koffer

et

al.[183]

Refugee

crisis

2018 LR BoW,

2-grams,

3-grams,

linguist-

ics, word

embed-

ding,

para-

graph

embed-

ding

extended

2-grams

and ex-

tended

3-grams

0.70 - - 0.70 -

Zhang

et

al.[355]

Religion

and

refugees

2018 CNN

with

gated

recur-

rent

unit

(GRU)

lay-

ers

Word

embed-

ding

- - - 0.71 -
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BoW is used in [62, 136] with SVM and RF classifiers; however, this work suffers

from a high rate of false positives, since the presence of hateful words can lead to the

misclassification of tweets being hateful when they are used in a different context (e.g.

’black’) [136]. In [243, 79, 323], n-grams have been used with SVM and LR clas-

sifiers to improve the performance of hate speech classification by capturing context

within a sentence that is lost in the BoW model. However, the fact that not all con-

tent in a hateful community is hateful (i.e. it is used as a form of in-group affection)

may mean this approach leads to false positives. The use of n-gram in combination

with tf-idf features in [204] with the NB classifier, and combining the n-gram feature

with typed dependencies in [65] using SVM and RF classifiers resulted in low recall.

This is possibly because these types of combinations make no use of semantic simil-

arities between words because they assume that the counts of different words provide

independent evidence of similarity [147]. Using NN classifiers, MLP classifiers in

combination with n-grams in [119] showed less promising results when compared to

combining SVM classifiers with n-grams in [136]; however, Fortuna et al. [119] ob-

served that the MLP classifier achieved better performance in detecting higher hateful

samples compared to SVM, LR and RF when combined with n-gram features.

LSTM and FastText classifiers in combination with BoW and n-grams feature in [101]

and Jha et al. [165] offered an improvement for hate classification compared to the

non-neural network classifiers. In contrast, in a study by Zhang et al. [355], the CNN

classifier was combined with word embedding features and resulted in no improvement

compared to other classifiers. RNN and CNN can be computationally expensive com-

pared to MLP and tend to be challenging to configure and require careful fine-tuning

of hyper-parameters and the learned models are often difficult to interpret [222, 280].

Badjatiya et al. [36] compared the classification accuracy of a combination of differ-

ent baselines and classifiers (Char n-gram, TF-IDF, BoW and LSTM) and found that

learning embedding with gradient-boosted decision trees led to the best classification

performance by 18% over state-of-the-art char/word n-gram methods. For German

language processing, Koffer et al. [183] examined different types of features (BoW,
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2-grams, 3-grams, linguistics, Word2Vec, Paragraph2vec, extended 2-grams and exten-

ded 3-grams) for training logistic regression LR classifiers. The experimental results,

obtained based on a 75/25 split between the training and test data, showed that the best

performing types of features are Word2Vec and Extended 2-grams.

The highest ’overall’ f-score in Table 2.5 was obtained by the study by Davidson et

al.[96], who classified text into racism, sexism or neither. Comparing their study with

studies that used only word vector feature space, Gamback et al.[125] and Zhang et

al. [355] show the advantage that was obtained by applying the paragraph vector space

feature. However, they did not provide details of the detected hateful samples’ f-scores.

Knowing the f-scores of each class label provides an insight into the advantage of the

feature sets. Although current methods have reported promising results, it is apparent

that their evaluations are not generalised on an external dataset. Moreover, in these

studies there is a little focus on classifying text that does not contain clearly hateful

words (implicit hate) and this would have an impact on classification accuracy, (e.g.

get them out).

While previous studies highlight the utility of methods capable of measuring semantic

distances between words, such as embedding learning using individual words [106],

and n-grams [243], the examples of implicit hate require an additional layer of qual-

itative context that sits above combinations of individual words. Recent studies have

begun to interpret the effective features for machine classification of abusive language

by focusing on how language is used to convey hateful or antagonistic sentiment.

Recent studies have suggested that utilising psychological theories for detecting cyber-

hate would contribute to improving the detection process because, ultimately, we are

dealing with human expressions, even if they exist virtually [63]. For example, ’Other-

ing’ - the use of language to express divisive opinions between the in-group (’us’) and

the out-group (’them’) - has been identified as an effective feature [63]. The concept

of ’othering’ offers a potential candidate framework for the aforementioned qualitative

layer capable of capturing the more subtle expressions of cyberhate such as the ’send
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them home’ example. Anti-Hispanic speech might make a reference to border cross-

ing or crime, anti-African American speech often references unemployment or single

parent upbringing, and anti-Semitic language often refers to money, banking and the

media.

The use of stereotypes also means that certain types of language may be regarded as

hateful Even if, when taken in isolation, no single word in the passage is hateful [123].

This raises the question of whether the incorporation of ’othering’ into computational

feature processing could further improve classification performance. The following

section reviews the wider theories of othering and Intergroup Threat Theory (ITT), in

the context of how it may be used for the detection of cyberhate, leading to the formal

definition of a research question for the thesis.

2.4.5 Psychological theory: Othering language and Intergroup Threat

Theory (ITT)

Psychological concepts that relate to defining prejudice, which is one form of hate

speech, could expand our understanding of how to detect it online, particularly in the

context of intergroup conflict and violence. It is beneficial to deliberate hate as a so-

cial as well as an individual phenomenon. There have been several attempts to use

psychological theories to understand hate content online. Intergroup Threat Theory

(ITT) and Otherness are examples of psychological models that incorporate similar-

ity and intergroup conflict and, therefore, could be useful for greater understanding of

cyberhate.

ITT posits that prejudice is a product of perceived realistic and symbolic threats. Real-

istic threats can be conceptualised in economic, physical and political terms[295]. Such

threats refer to competition over material economic group interests, including scarce

resources such as jobs, houses, benefits and healthcare, which may be embedded into

online text containing subtle and implicit hate. Symbolic threats are based on per-
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ceived group differences in values, norms and beliefs. Out-groups that have a different

viewpoint can be seen as threatening the cultural identity of the in-group [296]. Studies

show that perceived threats to in-group values by immigrants and minorities are related

to more negative attitudes towards these groups, unless countered by other in-group

members [233]. For instance, research using ITT has recently focused on the percep-

tion of a threat from Muslims in Europe [89]. This can result in ’othering’ language,

such as ’get them out’, which represents a speech act that aims to protect resources

for the in-group. The core concept is that these resources and values are threatened by

the out-group, leading to anxiety and uncertainty in the in-group [297]. The desire to

protect the in-group is considered the underlying motivation responsible for negative

attitudes and discriminatory behaviour.

Othering is an established construct in rhetorical narrative surrounding hate speech

[216]. Likewise, there are contemporary uses of the concept of ’Otherness’; for in-

stance, Andersson et al.[30] uses the concept in relation to radicalisation processes

that affect first-generation Europeans. Lister et al.[201] defines othering as a ’process

of differentiation and demarcation by which the line is drawn between "us" and "them"

- between the more and the less powerful, and through which social distance is estab-

lished and maintained’. Also, the ’we-they’ dichotomy has previously been identified

in racist discourse [338].

Othering has been used as a framework for analysing racist discourse from a qualit-

ative perspective in previous work. For instance, Wodak et al.[337] argued that while

the ’self’ or the concept of ’us’ is constructed as an in-group identity, the ’other’ or

the concept of ’them’ is constructed as an out-group identity [313]. Therefore, po-

larisation and opposition are created by emphasising the differences between ’us’ and

’them’. This may occur, for example, through the use of language to convey posit-

ive self-representation and negative representation of the ’other’ as an out-group that

is undesirable [336]. Although othering language may not contain explicitly hateful

words, it does convey the desire to distance different groups [63], and within it there
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is an inherent promotion of discrimination and division of societal groups, fostering

widespread societal tensions.

In machine learning research, the principle of othering has been identified by Burnap

et al.[65] as a useful feature for classifying cyberhate based on religious beliefs, spe-

cifically for identifying anti-Muslim sentiment.

In their work, each tweet was computationally transformed into a list of all the indi-

vidual words (tokens) in the tweet. Their interpretation for classifier improvement was

based on the thinking that three-token terms (tri-grams) may represent ’othering’ and

incitements to retributional action, such as ’send them home’ or ’get them out’. Ap-

plying a typed dependency parser to the previously mentioned examples (e.g. ’send

them home’) can indicate relationships that can be classified as othering behaviour,

e.g. (nsubj(home-5, them-2)). This essentially distances ’them’ from ’us’ through the

relational action of removing ’them’ to their ’home’, as perceived by the author of the

tweet. Indeed, they established the idea that othering language may be an important

factor for improving a hateful classifier. However, their approach trained the classi-

fier on the probability of the n-gram of each typed dependency occurring in a hateful

or antagonistic tweet. Their effort involved interpreting certain statistically effective

linguistic features but they did not test these features with machine classification al-

gorithms and state-of-the-art features such as semantic features (that may capture sim-

ilarities between hateful terms).

So far, this discussion has focused on novel methods and data to improve the detection

of hate. Next, the discussion moves on to consider how to manage and disrupt the

propagation of hate.
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2.5 Online Hate Exposure and Spread Characterisa-

tion

Individuals and groups have increasingly used the internet to express their ideas, spread

their beliefs, and recruit new members [193]. Thus, as online social media enables

individuals and groups to spread ideologies and even advocate hate crime, it is essential

to study the online structure, communication and connectivity of online communities

in order to determine users’ exposure to hateful ideologies that could influence their

own views and actions.

The detection of hate online has been widely discussed from the perspective of content

analysis. However, the study of hateful networks on social media has received limited

attention in the literature. A study of such networks could be valuable in the context

of concern about exposure to, and contagion of, online hateful and offensive narratives

in social media. Several studies have applied Social Network Analysis (SNA) meth-

ods to the content of hateful networks communicating on the social media platform

Twitter in order to use connectivity information as an indicator that a user is posting

offensive content [273, 19]. Others have focused on SNA analysis of the retweets net-

work to measure diffusion [278, 273]. However, there is yet to be a study of multiple

hateful networks which aims to understand whether there is evidence of similar of

’levels of friendship’, and therefore general exposure to the hate, nor to similar levels

of propagation behaviour and therefore general contagion effect. On the Twitter plat-

form, the hateful followers’ network represents the user community directly exposed

to hateful content [12]. This network is a subset of users who receive information dir-

ectly from each other. Furthermore, the hateful retweet network is a construct formed

by users who propagate cyberhate to their own followers [301], thereby passing on

hateful narratives from the people they follow - a form of cyberhate contagion.

From a network analysis perspective, hateful content is produced by nodes, the nodes

in the network are the people and groups while the links edges show relationships (e.g.
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follow/friend) or flows between the nodes (e.g. retweets)[212].

For the characterisation of hateful networks, network metrics or ’network measures’

[325, 169] are metrics that allow the quantification of a network as a whole and are

helpful for comparing and classifying a set of networks. Also, they are useful when

one network has undergone some topological changes (e.g. node/edge insertion or re-

moval) [226]. For example, Giant Component (GC), density, degree distribution, clus-

tering coefficient, reciprocity and diameter are among the numerous network measures.

The size of the GC can reveal the maximum number of people who can be (directly

or indirectly) reached by any other node in the same component, while the density is

the ratio between the number of edges in the graph and the total number of possible

edges[360]. The average shortest path is a direct measure of how information travels

throughout the network, while the average degree and degree distribution focus on how

information travels throughout the network [239]. The clustering coefficient measures

how some of the nodes can form dense groups in which each element has strong con-

nections with the others [353], while reciprocity reflects the measure of the likelihood

that nodes in a directed network are mutually linked.

Also, there are many measures of node centrality in a graph to capture the importance

of a node within such a structure. For example, the degree centrality, the between-

ness centrality, and the eigenvalue centrality of a given node [324] or a group of nodes

[112] are frequently used centrality measures. Degree centrality for individual nodes

provides the number of direct links they are involved with and helps identify leaders

which have the (almost) highest number of links within the network [226]. Between-

ness centrality is a measure of accessibility - that is the number of times a node is

crossed by shortest paths in the graph, which is useful for finding the individuals who

influence the flow around a system [226], while eigenvector centrality is important as

a connectivity measure for high information diffusion. Degree centrality measures the

number of connections a node has but disregards the nodes to which these connections

are established. Eigenvector centrality modifies this approach by giving a higher cent-
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rality score to those connections which are made with those nodes that are themselves

central [210].

Table 2.6 presents a summary of previous hate-related network studies according to the

platforms, network metrics or applied metrics, the goal of the study, and the number of

examined networks.

Table 2.6: Summary of the studies that analyse the hateful networks in terms of

hate diffusion, hate exposure and community detection

Study Platform Applied metrices The goal of the

study

number

of ex-

amined

net-

works

Gerstenfeld

et al.[128]

Web Link count Hate exposure 1

Zhou et

al[359]

Web

forum

Link count Hate exposure 6

Chau et

al.[77]

Web

forum

average shortest path length,

clustering coefficient, giant

component degree, between-

ness, and closeness.

Hate exposure 28

Wiil et

al.[327]

Web

forum

Density, average shortest path

length, clustering coefficient,

degree distribution, degree,

betweenness, eigenvalue, and

closeness.

Hate exposure 1

Mathew et

al.[213]

Gab the average path length Hate propagation 1
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Table 2.6 Continued: Summary of the studies that analyse the hateful networks

in terms of hate diffusion, hate exposure and community detection

De et

al.[99]

Twitter Frequency of interact within

their own group, eigenvector,

degree and betweenness

Hate propagation 1

Ting et

al.[310]

Facebook Average shortest path length,

Diameter, density, degree

centrality, closeness central-

ity, betweenness centrality,

clustering coefficient

Communities de-

tection

1

Wadhwa

et al.[317]

Twitter Time interval and cluster

visualisation

Communities de-

tection

1

Ribeiro et

al.[272]

Twitter Degree, betweenness and ei-

genvalue

Hate propagation 1

Xu et

al.[343]

Web

forum of

complex

systems

Average path length, aver-

age clustering, average De-

gree, degree distribution, link

density, assortativity.

Hate propagation 4

Previous research on Twitter networks [317, 273] has been aimed mainly at studying

only the propagation of the hate on one network. However, studying the propagation

of cyberhate on multiple networks allows for a review of the differences and common-

alities among those networks. The commonalities of hateful networks enhance our

understanding of how to detect hateful networks and repress their ideologies. Analys-

ing different networks that belong to different hateful events can provide information

relevant for improving situational awareness and predicting the behaviour of the event

in social networks, thereby providing greater support to the decision-making process

[223]. Despite the fact that Chau et al. [77], Xu et al.[343], Wiil et al.[327] and Ting et

al.[310] applied a wide range of metrics for the purpose of characterising their hateful
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networks, they focused their studies on web fora and Facebook, which are structurally

different from Twitter. Among the many existing social networks, Twitter currently

ranks as one of the leading platforms and is one of the most important data sources

for researchers [173]. It is one of the top five social media platforms used in the UK

[289]. Twitter is different from Facebook, Instagram, Snapchat and LinkedIn in that

it is characterised by its short message limit (now 280 characters) and unfiltered feed

which can be ’retweeted’ (propagated) across a very open network. While Facebook is

largely closed. Twitter’s usage has quickly escalated, especially amid events, with an

average of 500 million tweets posted per day. This feature has led Twitter to evolve into

a popular tool for short and immediate commentary on real-time happenings, including

both personal and news events [171].

Another communication feature of Twitter is the hashtag: a metatag beginning with #

that is designed to help others find a post, which emphasises the importance of widely

communicating information on Twitter [109]. In addition, such a feature provides data

filtering, e.g. retrieving tweets in a specific language or from a certain location. This

flexibility in retrieving data encourages developers to perform research and analysis

using Twitter. Additionally, Twitter data is structured in such a way that all information

regarding a tweet is rolled into one block using e.g. the CSV, Json, etc file format. A

block consists of many fields relating to user information, tweet description and re-

tweet status. This type of structure eases difficulties in mining for specific information

such as tweet content while ignoring other details such as user or re-tweet status.

Furthermore, corpora constructed from social media and websites other than Twitter

are rare, making it difficult for analysis of hate speech to cover the entire landscape

[118]. At the onset of this research project, Twitter was providing its data via a num-

ber of Application Programming Interfaces (API). In contrast, the aftermath of the

Cambridge analytica ’data breach’ has led to certain social media platforms limiting

data provided through their Application Programming Interfaces [17]. In recent years,

social networks (and especially Twitter) have been used to spread hate messages. In
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addition, unlike many of the other platforms, such as news feeds, blogs and emails, it

has an explicit social (i.e. subscription) network [277]. From a researcher perspective,

Twitter is a logical source of data for such analysis given that users of social media are

more likely to express emotional content due to deindividuation (anonymity, lack of

self-awareness in groups, disinhibition) [115] and, therefore, form hateful communit-

ies that propagate their ideologies.

Unfortunately, Twitter has been heavily abused by some who make it their mission

to demonise and preach hatred against other religions [328]. On Twitter, an important

event, e.g. a hateful event, can be expected to trigger more informational tweeting[156].

In support of this, Twitter commentaries have been shown sometimes to quite closely

reflect offline events, such as political deliberations and religious events[311]. Also,

Williams et al. [329] mentioned that there is an increase in online anti-Muslim and

anti-Black speech on Twitter associated with an increase in racially and religiously ag-

gravated violence, criminal damage, and harassment, showing that Twitter is now part

of the formula of hate crime. It is therefore reasonable to conduct an information-flow

analysis of Tweets posted by users.

2.5.1 Cyberhate Management by Twitter

Twitter recognises that if people experience abuse on Twitter, it can jeopardise their

ability to express themselves. It is committed to combating abuse motivated by hatred,

prejudice or intolerance, particularly abuse that seeks to silence the voices of those

who have been historically marginalised. For this reason, Twitter prohibits behaviour

that targets individuals or groups with abuse based on their perceived membership in a

protected category. They review and take action against reports of accounts targeting

an individual or group of people with any of the following behaviour, whether within

Tweets or Direct Messages:

• Prohibit content that makes violent threats against an identifiable target. Violent
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threats are declarative statements of intent to inflict injuries that would result in

serious and lasting bodily harm, where an individual could die or be significantly

injured, e.g., ’I will kill you’.

• Prohibit content that wishes, hopes, promotes, incites, or expresses a desire for

death, serious bodily harm, or serious disease against an entire protected category

and/or individuals who may be members of that category.

• References to mass murder, violent events, or specific means of violence where

protected groups have been the primary targets or victims.

• Prohibit inciting behaviour that targets individuals or groups of people belonging

to protected categories. This includes content intended to (i) incite fear or spread

fearful stereotypes about a protected category, (ii) incite others to harass mem-

bers of a protected category and (iii) incite others to discriminate in the form of

denial of support to the economic enterprise of an individual or group.

• Repeated and/or non-consensual slurs, epithets, racist and sexist tropes, or other

content that degrades someone.

• Twitter considers hateful imagery to include logos, symbols, or images whose

purpose is to promote hostility and malice against others based on their race, re-

ligion, disability, sexual orientation, gender identity or ethnicity/national origin.

Twitter takes action against behaviour that targets individuals or an entire protected

category with hateful conduct, as described above. Targeting can happen in a number

of ways. When determining the penalty for violating this policy, Twitter considers a

number of factors including, but not limited to, the severity of the violation and an

individual’s previous record of rule violations. The following is a list of potential

enforcement options for content that violates this policy:

• Down-ranking tweets in replies, except when the user follows the Tweet author.
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• Making tweets ineligible for amplification in top search results and/or on timelines

for users who don’t follow the tweet’s author.

• Excluding tweets and/or accounts in email or in-product recommendations.

• Requiring tweet removal, e.g. asking someone to remove the violating content

and serving a period of time in read-only mode before they can tweet again.

• Suspending accounts whose primary use it has determined is to engage in hateful

conduct as defined in this policy, or who have shared violent threats.

Social network analysis, particularly on the Twitter platform, has been applied in a

range of studies, e.g. student interaction [294], quantifying influence on Twitter [37],

political community structure and emotions [81, 146].

In terms of online hate on the web forum, Gerstenfeld et al. [128] analysed 157 ex-

tremist sites and found links between most of these websites, and Zhou et al. [359] also

investigated web communication and analysed the content and links of hate groups. In

their research, they found that the main objective of these websites is to spread and

promote ideas, such as those of white supremacists and neo-nazis. Moreover, Chau

et al. [77] used SNA techniques to analyse hate groups on the internet, formulating

hypotheses around the specific features of each site. They showed that the network of

bloggers in hate groups is decentralised. Also, they found that the number of ’hate’

bloggers has increased steadily over a number of years.

Recently Mathew et al.[213] introduced a study that looked into the diffusion dynamics

of posts made by hateful and non-hateful users on Gab. They collected a large dataset

of 341K users with 21M posts and investigated the diffusion of the posts generated by

hateful and non-hateful users. They observed that the content generated by the hateful

users tended to spread faster, farther and reach a much wider audience when compared

to the content generated by non-hateful users. Also, an important finding was that

hateful users were far more densely connected among themselves compared to non-

hateful users. However, unlike Twitter, Gab promotes ’free speech’ and allows users to
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post content that may be hateful in nature without any fear of repercussion. Thus, this

network is not comparable with a Twitter network as the hateful content would spread

on Twitter with restrictions.

On Twitter, previous research has been aimed mainly at detecting hateful, offensive,

abusive and aggressive speech on the platform using information about network activ-

ity. Such studies have analysed user network activity on Twitter to detect cyberhate

by considering specific attributes of online activity using machine learning classifi-

ers. An example is Chatzakou et al. [75] who detected Twitter aggressors and bullies

automatically; equally, Ribeiro et al. [273] detected hateful users and Ting et al.[310]

focused on hate group detection. Burnap et al. [64] specifically looked at retweet vir-

ality following a terror attack - a likely trigger event for hateful responses - and found

that sentiments expressed in tweets were statistically significantly predictive of both

size and survival of information flows of this nature. Wadhwa et al. [317] aimed to

uncover/identify hidden radical groups in online social networks, providing evidence

of the ability to discover subgroups. Ribeiro et al.[272, 273] aimed to define a user-

centric view of hate speech by examining the difference between user activity patterns

and network centrality measurements in the sampled graph. They discovered that hate-

ful users were more central in the retweets network, and therefore identifiable as key

influencers within the network.

2.6 Online Hate Propagation and Disruption

Cyberhate is disseminated by both groups of haters (hateful communities or networks)

and by those acting independently. The main objectives of such groups and individuals

are to recruit and link like-minded people in support of their cause and spread hateful

content [46]. Exposure to cyberhate leads to deteriorating intergroup relations [348].

Previous studies have shown that exposure to online hate content is associated with ser-

iously violent behaviour[347, 245]. To overcome the problem of hate speech exposure
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and the spread of hate speech, we need to observe and manage the content disseminated

by such groups. This chapter now goes on to explore the literature related to limiting

such communities from propagating their content by removing the most effective nodes

that underpin its propagation.

Network node removal is a well-known technique for destabilisation of networks[69].

From a topological perspective, node removal is always more effective in atomising

complex networks causing more damage per elimination than edge removal, since the

deletion of a single node from the network results in the elimination of all the links

attached to it [158, 90].

Classic results focusing on the problem of node removal indicate that many real net-

works show a ’robust yet fragile’ nature, i.e., they are robust to random node removal

but very fragile to attack of the nodes with key connectivity roles in the network. Boldi

et.al. [53] found that there is a clear structural difference between social networks

(such as Twitter) and web graphs, and therefore it is important to test node removal

strategies until a significant fraction of the nodes has been removed.

2.6.1 Single Node Removal Strategies

Yip et al. [351] examined the structural properties of the networks of personal in-

teractions between cybercriminals in carding forums. They found that carding social

networks are not scale-free2, as the degree distributions are log-normal3, which has

important implications for network disruption. It is widely accepted that scale-free

networks are particularly resilient to random node removals, but highly vulnerable to

targeted attacks; this is due to there being only a small fraction of nodes possessing the

2A scale-free network is a network indicating that the vast majority of nodes have very few connec-

tions, while a few important nodes (called Hubs) have a huge number of connections.
3log-normal (or lognormal) distribution is a continuous probability distribution of a random variable

whose logarithm is normally distributed (few nodes of very large degrees and a great many nodes of

small degrees).
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majority of links. In their study, they did not use any node removal strategy; instead,

they used the implication of the degree distributions characteristics. Petersen et al.

[264] examined removing the highest degree nodes based on the distance between the

entire network’s nodes. Their work proposed a node removal algorithm for a criminal

network. As part of their study, they found that removing the high degree nodes had an

impact on enlarging the distance between the criminals. Wiil et al. [327] introduced

a study that analysed the importance of links in terrorist networks. This study showed

that removing nodes destabilised the network, noting that both the importance of nodes

and links should be considered. All this previous work has been examined on web fora,

which are structurally different to that of the Twitter platform [170]. For the Twitter

platform, a node removal strategy was applied on political networks and showed that

SNA metrics could be used to evidence the impact on the network connectivity [168].

An attempt by Xu et al. [343] found that terrorist networks on the web were more

vulnerable to attack on the bridges that connect different communities, than to attacks

on their hubs. They applied two removal strategies on websites’ networks: a hub-based

and a bridge-based strategy.

Deciding which node or group of nodes to remove depends upon what information is

available on the importance of the nodes in the network. Removing nodes to reduce a

network’s connectivity (and, therefore, stem the flow of content) is something that has

been widely addressed in previous research. For example, these strategies are used for

breaking complex networks [95], the spread of computer viruses [241], and spam pre-

vention [87]. Two aspects to consider when applying node removal strategies include:

(i) which node removal strategy to apply, and (ii) the impact measure of the strategy

on the network’s structural properties. When the aim is to break down a network, it

makes much more sense to target certain nodes instead of removing them randomly.

This is the case, for example, when battling against a virus or attempting to dismantle

a criminal network.

Node removal includes several strategies. Table 2.7 summarises the studies that applied
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different node removal strategies to different types of networks. Here, for example, a

widely used strategy is degree centrality. Several measures have been used to eval-

uate the impact of node removal on the robustness of networks [50]. For example,

a strategy can be measured according to how the diameter of the network changes, or

how the largest components’ sizes change over periods of removal [242]. Table 2.7 also

shows the studies that have adopted two widely used indicators, i.e., Giant Component

(GC) and network distance. Identifying and removing important nodes from networks

are great challenges in many real-world applications. For an example, in science co-

authorship networks, determining which node removals produce higher information

spreading reduction may help us to identify the nodes/scientists who are making the

greatest contribution to knowledge and idea spreading [16, 182, 255]. Furthermore, to

destroy criminal networks, it is desirable to break a network into smaller components

or increase the distance between node s[94].

These findings may furnish useful tools for designing policies facilitating the activities

of these haters, who act as ’influential spreaders’ in the network. These analyses can

be useful for finding which criminals play a major role in shaping information delivery

within criminal networks, thus providing knowledge for investigative policies [15, 94].

Studies which specifically aim to reduce connectivity in hateful networks by removing

the nodes are rare, and, as of yet, no study exists that examines such online social net-

works. Such a study is needed to understand the critical nodes that have an effect on

the spread of cyberhate and therefore could be removed from a network to reduce the

flow of hateful information, and subsequently reduce the harm caused by hateful com-

munities on Twitter. Intervention methods could include the possibility of identifying

contagion pathways in hateful networks and evaluating the reduction in exposure of

the network’s users to receiving hateful content, in the same way that we might expect

the spread of a traditional offline virus to be contained.
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Table 2.7: Summary of the studies that use different network prevention strategies

Study Platform Type of net-

work

Applied strategy Test the im-

pact on

Holme

et

al.[150]

Scientific

collab-

orations

and

Internet

traffic

Social Net-

work

Degrees and

betweenness cent-

ralities

Giant Com-

ponent (GC)

and distance

Jahanpo-

ur et

al.[160]

airplane

hijack-

ers’

network

Complex Net-

work

Degrees, eigenvalue

and betweenness

centralities

Giant Com-

ponent (GC),

the shortest

paths, network

reciprocal dis-

tance, Average

node cover-

age, clustering

coefficient

and shortest

distance

homogeneity

Williams

et

al.[335]

Killer

whale

Social Net-

work

Highest degree Giant Com-

ponent (GC)

Vaccine

Network

Epidemics

Network

Out degree central-

ity

Giant Com-

ponent (GC)

Xu et

al.[343]

Web

forum

criminal

networks

hub removal, bridge

removal

path distance
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Table 2.7 Continued: Summary of the studies that use different network preven-

tion strategies

Petersen

et

al.[264]

Web

forum

Criminal Net-

works

degree centrality path distance

Boldi et

al.[53]

web

graphs

- Random, largest-

degree, root nodes,

pagerank, label

propagation and

betweenness/har-

monic centrality

path distribu-

tion

Mourier

et

al[231]

Blacktip

reef

shark

Social Net-

work

Highest degree Giant Com-

ponent (GC)

Colladon

et

al.[87]

Business

emails

and

Twitter

Spam Closeness, de-

gree, betweenness

centrality, average

response times,

activity, contribution

index and nudges

Average

distance,

clustering

coefficient,

average de-

gree.

Jurgens

et

al.[168]

Twitter political com-

munication

Highest degree Centrality en-

tropy(degree

of reachabil-

ity)

Newman

et

al.[241]

Email

network

Network Vir-

uses

Highest degree Outbreak size
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Table 2.7 Continued: Summary of the studies that use different network preven-

tion strategies

Albert

et

al.[23]

Web

forum

metabolic net-

work

Average degree Average

shortest path

Wiil et

al.[327]

web

links

terrorist net-

work

Higher link

betweenness

Efficiency

(sum of the

shortest paths

connecting

each pair

of nodes is

computed.)

2.6.2 Hybrid Node Removal Strategies

Several research studies have applied a combination of two or more node removal

strategies - ’hybrid’ - in order to establish the importance of the nodes in the network.

Bellingeri et. al. [40] combined first-degree and second-neighbour-degree strategies

to find the crucial nodes in real networks. They also examined degree-based and

betweenness-based strategies. They found that the betweenness strategy alone was the

most effective strategy for reducing the size of the biggest component. Additionally,

Wang et al. [318] asserted that the importance of nodes is related to the degree of nodes

and their neighbours, and proposed a new algorithm to rank the importance of network

nodes. Ruan et al. [349] proposed a combined node importance ranking algorithm

which only requires the centrality of the nodes to be obtained and combined with the

neighbourhood information within two hops of the node. The algorithm demonstrated

that the bigger the degree of a node and the fewer connections between neighbouring

nodes, the more important the target node. Indeed, it would be interesting to examine

a combination of two or more (’hybrid’) node removal strategies for hateful Twitter
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networks, whether in relation to followers of networks or retweeters of networks.

2.6.3 Removal Strategies on the Bipartite Networks

Before 2010, researchers mainly studied intervention methods and the robustness of

generic networks or (one-mode networks) [68]. A social network analysis, particularly

in relation to intervention strategies, can also be viewed and applied according to a

user’s graph and their affiliation to other people. In order to capture more information

on the stability of complex systems, scientists suggest multilayer (the simple form is

called multipartite) network modelling [49, 98], e.g. two-mode networks or bipartite

networks [238]. A bipartite graph is a graph with two sets of vertices which are con-

nected to each other, but not within themselves. More formally a bipartite graph G

= (V1, V2, E) consists of a set of vertices V2 a disjoint set of vertices V1 and a set

of edges E ∈ V1 X V2. For a generic network (’a one-mode network’), all the nodes

follow the same degree distribution. The two-mode network has two node sets. There-

fore, the nodes in each node set do not need to follow the same degree distribution.

This means that removal strategies that are applied to a generic network (’one-mode

network’) or bipartite networks (’two-mode network’) have different impacts on a net-

work’s connectivity. Several studies have applied intervention strategies to bipartite

networks [346, 288, 258]; however, this field has attracted limited attention. Xuan et.

al.[344] studied the robustness of bipartite task-oriented social networks, in the absence

of workers (attack). They proposed four attack strategies, including efficiency-based

attacks, centrality-based attacks, diversity-based attacks and influence-based attacks.

They found that their bipartite networks were robust in the case of a centrality-based

attack. As no study has yet applied the node removal strategies to a bipartite hateful

network, it would be interesting to examine the node removal strategies in relation to

bipartite versions of hateful networks.
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2.7 Research Gap Analysis

So far in this chapter, we have reviewed the literature on three related concepts: con-

textual cyberhate classification; characterising hateful networks; and disrupting hateful

networks. Here we will summarise the key gaps identified for each concept.

2.7.1 Hate speech classification

There have been several attempts in the area of cyberhate classification to automatically

identify and quantify cyberhate by using different approaches, such as lexicons, syn-

tactic and semantic features. For lexicons [131, 321, 105, 287], the problem which per-

sists with existing approaches is that they depend on the existence of the co-occurrence

of direct hate features to decide the polarity of a specific tweet, which might mean

that indirect/implicit hate speech cannot be identified. Additionally, they suffer from

a high false-positive rate due to the model which classifies sentences. Syntactic meth-

ods include [136] such as BoW [63, 136, 187], n-grams[36, 63, 96, 136, 243, 323],

TF-IDF[104, 36], Part-of-speech (POS)[104, 136, 62], Latent Dirichlet Allocation

(LDA)[342, 12],Typed Dependencies (TD)[179, 153]; The works which use these

methods have not considered the detection of implicit hate speech. Semantic learn-

ing, such as text embedding, aims to train a model that can automatically transform a

sentence/word into a vector that encodes its semantic meaning. It is an opportunistic

feature which enables the meaning of the text to be extracted. However, studies which

use this feature [183, 36, 106, 243] for hate speech classification have not yet tackled

the classification of text that does not contain clear hateful words and this would have

an impact on classification accuracy (e.g. get them out of our country). So, there is

a gap in terms of utilising previous approaches in order to detect indirect or implicit

online hate. Indeed, examples of implicit hate require an additional layer of qualit-

ative context that sits above combinations of individual words. Thus, there is a need

for a model capable of understanding and detecting implicit hate, perhaps by focus-
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ing on how language conveys hateful or antagonistic sentiments. For example, Burnap

et al. [63] suggested that utilising psychological theories in order to detect cyberhate

would contribute to improving the detection process. They used text parsing to extract

typed dependencies, which represent syntactic and grammatical relationships between

words, and are shown to capture ’othering’ language. They showed that using typed de-

pendency features is consistently improving machine classification for different types

of cyber hate beyond the use of a Bag of Words and known hateful terms. However,

their work focused on post-classification to interpret some of the statistically useful lin-

guistic features. It is yet to be used as a theoretical foundation for feature engineering

and tested with machine classification algorithms and state-of-the-art features such as

semantic features (that may capture the similarity between the hateful terms). As ’oth-

ering’ language is a type of implicit hate speech, we could consider othering language,

and its stereotype, as an extra feature layer that can capture a type of implicit hate. Our

hypothesis here is that: linguistic features associated with othering language provide

an additional set of qualitative features that will improve classification performance.

This leads to the first research question:

RQ1: To what extent can using othering and ITT theories along with embedding

learning drive the development of new features for classifying cyberhate and

improve the performance of machine learning for cyberhate detection?

This research builds on previous studies by developing new evidence that the complex

and nuanced ’us and them’ narrative emerging on social media can be captured to im-

prove cyberhate classification. A suggested solution is to use a syntactic feature such

as TD and POS in order to extract othering language and its patterns. Then, paragraph

embeddings would infer semantic similarity between features to create a model that

represents ’othering’ language, which is used for the purposes of cyberhate classifica-

tion. Djuric et al. [106] presented the paragraph2vec approach to classify language in

users’ comments. They demonstrated that using the vector space features, particularly

sentence (paragraph) embedding, improved the performance of the classifier compared
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to not applying vector space features. Our expectation is that if samples that contain

’othering’ language or its patterns (e.g. verb-pronoun combinations) in a hateful or

antagonistic context are aligned in similar feature ’spaces’, this would increase the

probability of the machine classification method labelling any new samples which ex-

hibit these features as cyberhate.

2.7.2 Hateful networks’ characterisation:

Dealing with cyberhate is not limited to detecting or classifying the hateful context,

but it is also related to those users and their groups who post this content. Indeed, there

has been limited attention given to characterising these groups and how they propag-

ate their content. In fact, some previous research, on Twitter networks [317, 273] was

primarily aimed at studying only the propagation of hate on one network. However,

there is a gap in this approach because studying the propagation of cyberhate on mul-

tiple networks would allow for a review of the differences and commonalities among

those networks. Moreover, there is another gap in that there has been very little at-

tempt to study the networks in terms of propagation (retweet network) and hate speech

exposure (follower networks). It is important to note that people who are exposed to

hateful content will not necessarily spread hate. In addition, it seems there is yet to be a

study of multiple hateful networks with the aim of understanding whether there is evid-

ence of similar ’levels of friendship’, and therefore a broad exposure to hate, or similar

levels of propagation behaviour and therefore a general contagion effect. Moreover,

evaluating the results of network characterisation may benefit from comparison with

another risky network, something which has not been considered in previous studies.

Our expectation of characterising multiple hateful networks is that we may find some

similarities among the hateful networks regarding the friendship exposure level in the

followers’ networks and propagation level in terms of retweet networks. Therefore,

we hypothesise that:hateful networks are similar in terms of online hate exposure and

online hate propagation, and more connected compared to another ’risky’ networks.
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The above limitations and hypotheses led to the formulation of the second and third

research questions of this thesis:

RQ2: By studying multiple hateful networks on Twitter, is there evidence of similar

of ’levels of friendship’ across multiple hateful networks, and therefore a general

measure of exposure to the cyberhate?

RQ3: By studying multiple hateful networks on Twitter, is there evidence of similar

levels of propagation behaviour and therefore a general contagion effect?

Note that a network is labelled as a hateful network if all users belonging to that net-

work have posted tweets that human annotators agree should be classified as containing

evidence of hateful content.

2.7.3 Hateful networks’ disruption:

Classifying hateful content and characterising hateful networks requires an additional

reaction which involves disrupting these networks so their content propagation is dis-

rupted earlier. There are several works which focus on the disruption of criminal net-

works, such as those by Yip et al. [351], Da et al.[94] and Petersen et al. [264].

Additionally, Wiil et al. [327] and Xu et al. [343] introduced a study that analysed

the importance of links in terrorist networks. They found that terrorist networks on the

web were more vulnerable to attacks on the bridges that connect different communities

than to attacks on their hubs. The majority of previous studies have focused on web

networks other than Twitter. Our concern here is that the node-removal strategies may

behave differently for different network topologies. It has been demonstrated by Boldi

et al. [53] that there is a clear structural difference between social networks (such as

Twitter) and web graphs, and therefore it is important to test node removal strategies

until a significant fraction of the node has been removed. So, the limited attention paid

to the disruption of hateful networks on Twitter is an additional gap, though one study
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was conducted by Da et al. [95] which was implemented on the Twitter platform to

research the propagation of hate; however, there is also a need to investigate how to

disrupt exposure to hate among hateful users. Another gap is that researchers generally

examine one network while there is, in fact, a need to examine more than one network

to generalise the results. It is also important to compare and contrast the results of

disrupting networks with another ’risky’ network in order to evaluate the results. Pre-

vious studies have yet to propose disruption methods, specifically removal strategies

for network nodes, to prevent cyberhate exposure and spread based on the examination

of multiple networks from Twitter [31, 29, 230]. Therefore, we hypothesis that: apply-

ing node removal strategies (disruption strategies), depending on the node role in the

network, will reduce network connectivity (exposure reduction) and diffuse the spread

of hate (contagion reduction). This prompted the following question:

RQ4: According to the structural characteristics of networks, which node removal

strategies would be most effective in decreasing the propagation of hateful content?

Additionally, no study has yet been undertaken that examines combined or ’hybrid’

node removal strategies for hateful Twitter networks, whether among followers of net-

works or retweeters of networks, prompting the following question:

RQ5: According to the structural characteristics of networks, is a combination of

two (hybrid) node removal strategies more effective in decreasing the propagation

of hateful content compared to applying only a single node removal strategy?

As part of examining node removal strategies on hateful networks, we need to examine

the node removal strategies for multilayer (the simple form is referred to as bipartite)

hateful network modelling. Since no study has yet applied node removal strategies to

a bipartite hateful network, the sixth research question in this thesis is as follows:
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RQ6: Does applying the node removal strategies to a bipartite version of hateful

networks improve the node removal strategies in terms of detecting the most

important users?

2.8 Conclusion

This chapter has explored the background knowledge relating to detecting and counter-

ing implicit and explicit online hate speech, or cyberhate. To gain a full understanding

of the topic, the existing work related to defining online hate was reviewed, followed

by clarification of what is meant by online hate speech in this thesis. Recent tech-

niques used for detecting online hateful content from a feature extraction perspective

and also from a machine classification perspective were reviewed. This was followed

by paying particular attention to hateful networks’ characterisations. In addition, this

chapter concluded by providing an exploration of studies which have investigated con-

tent propagation on hateful networks. Six research questions were identified, Chapter 4

contributes towards addressing RQ 1: by developing the first contribution C1. Chapter

5 contributes towards addressing RQ 2 and RQ 3 by presenting an extensive analysis

of hateful networks on Twitter and resulted in the second C2 and the third C3 contri-

butions. Chapter 6 contributes towards addressing RQ 4,5 and 6 by introducing the

fourth contribution C4. Finally, This chapter highlights the major knowledge gaps for

each area.

The next chapter provides a general overview of the approach adopted in this thesis

and a description of the dataset collected is also given.
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Chapter 3

Research Design

3.1 Introduction

This chapter provides an overview of the proposed methods for hateful content classi-

fication, hateful network characterisation and hateful network disruption.

The research methodology is presented in Section 3.2, and the research gaps analysis

is in Section 3.3. The proposed framework is presented in Section 3.4. The data used

are described in Section 3.5. Finally, a summary of the chapter is provided in Section

3.6.

3.2 Research Methodology

Research methodology is defined as a systematic way to solve a research problem by

collecting data using various techniques, providing an interpretation of the collected

data, and drawing conclusions about the research data. A research method is funda-

mentally the blueprint of the research or study. Generally there are three kinds of

approaches or research methods namely qualitative, quantitative and mixed. These

methods are used to gather data and resolve issues that emerge during the process of

data gathering [320]. An example of the qualitative method is Design science research

in which the object of study is the design process. Quantitative methodologies include

experiments, observation and structured interviews.
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In this research, to verify the hypothesis, we applied the Design Science Research

Methodology (DSRM) introduced by Peffers et al. [265] as depicted in Figure 3.1.

Each step is described and related to these PhD thesis chapters as follows:

Figure 3.1: Design Science Research Methadology (source: Peffers el al. [265])

• Problem identification and motivation: This phase involves a critical and deep

understanding of hate speech classification, hateful networks characterisation

and disruption - and the related research areas. The first step of this phase in-

volves the identification of gaps in the related literature, as presented in Chapter

Two. In the second step, the research hypothesis statement and the research

questions are identified as presented in Chapter One. The third step requires the

choice of data source and the development tools used to test the hypotheses. The

last step involves a time plan for the research by dividing the main problem into

tasks and identifying the required milestones.

• Objectives of the solution: In this step, the problem definition in the previous

step is used to propose the objectives of the solution. For hate speech classifica-
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tion, this research aims to develop a classification framework that takes advant-

age of the existence of othering language in a hateful tweet to identify implicit

and explicit hate speech. For hateful networks characterisation, this research

aims to understand the characteristics of hateful online social networks in order

to help to understand individuals’ exposure to hate and cyberhate propagation.

Moreover, in terms of hateful network disruption, this research aims to reduce

online hate exposure and propagation.

• Design and development: This step aims to design a solution to the problem and

develop it. In this research, The ’othering feature set’ was proposed to develop

a classification framework that takes advantage of the existence of othering lan-

guage in a hateful tweet. In addition, multiple hateful networks were collected

and built in order to understand the characteristics of hateful online social net-

works in a small non-representative sample in order to help understand individu-

als’ exposure to hate and cyberhate propagation. Also, node removal strategies

were applied to reduce online hate exposure and propagation. This step has been

explained in detail in Chapters Three, Four, Five and Six. The entire design of

the general framework is explained in Chapter Three.

• Demonstration: This step involves using the developed framework in a proper

context. In this thesis, different experiments have been carried out in Chapters

Four, Five and Six using samples of Twitter datasets to demonstrate the effect-

iveness of the proposed framework. The Twitter data are made up of contex-

tual tweets that have been posted by hateful users and the users’ profile inform-

ation needed for building hateful networks, such as a followers list. Chapter

Four introduces a novel feature set for cyberhate classification based on the use

of two-sided pronouns and the use of pronoun patterns such as verb-pronoun

combinations. A wide range of classification methods were implemented to

compare our novel approach that fuses embedding learning with an ’othering’

narrative, to state-of-the-art methods. The chapter also implements a qualit-
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ative analysis to demonstrate how the novel feature set can predict the vector

space similarity between different kinds of hateful content. For Chapter Five,

several hateful networks are characterised extensively, from the exposure to cy-

berhate (in follower networks) perspective to the propagation of cyberhate (in

retweet networks) perspective. A range of network analysis metrics are used to

compare and contrast baseline measures of connectivity and propagation across

multiple hateful networks. Chapter Six develops strategies to identify nodes

within hateful networks (user accounts) whose removal is empirically shown

to reduce connectivity (largest component, density and average shortest path) in

both the follower and retweet networks. Thirteen node-removal strategies, in-

cluding random-based strategy, based on network connectivity, were tested on

three network metrics: giant component size, density and the average shortest

path. These strategies were applied to generic networks and bipartite networks.

• Evaluation: This step involves assessing the effectiveness of the method pro-

posed compared to other methods. In this research, the evaluation experiments

aim to measure the impact of the proposed solutions. For Chapter Four, the eval-

uation experiments aim to measure if the linguistic features associated with oth-

ering language provide an additional set of qualitative features that will improve

performance in terms of classification. A wide range of state of the art classifiers

were trained and evaluated using ten-cross validation, and the best performing

classifiers were tested on an unseen dataset. The effectiveness of the classifi-

ers is measured using recall, precision and F1. For Chapter Five, the evaluation

revolved around comparing and contrasting different hateful networks charac-

teristics and comparing a ’risky’ network - characterised by language related to

suicidal ideation. The evaluation process here examines if hateful networks are

similar in terms of online hate exposure and online hate propagation, and more

connected compared to another ’risky’ network.

For Chapter Six, the evaluation process aims to identify if applying node removal

strategies (disruption strategies), depending on the node role in the network, will
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reduce network connectivity (exposure reduction) and diffuse the spread of hate

(contagion reduction). A comparison between the impact of thirteen node re-

moval strategies was also used to evaluate each strategy’s performance. In ad-

dition, this was compared with a ’risky’ network - characterised by language

related to suicidal ideation.

• Communication: In this final step, researchers publish their contributions to the

audience to elicit their feedback and convey the importance of the problem and

its novelty. This thesis resulted in two publications: two journal papers. The

publications are listed in the list of publications section.

3.3 General Framework
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Figure 3.2: The General Framework

This thesis introduces a new general framework for detecting online harms, as well

as characterising and disrupting cyberhate networks. The general framework is di-

vided into three sub-frameworks: cyberhate classification, cyberhate characterisation

and cyberhate disruption. An outline of the framework is shown in Figure 3.2, and the

different stages are described in more detail in Chapters Four, Five, and Six.
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3.4 Data

3.4.1 Hateful Content Classification

In the context of hate speech automatic detection in this study, an instance is a Twitter

post (Tweet) with a classification label. Regarding the number of instances per dataset,

an appropriate sample size could have a wide range of magnitudes in existing literature.

The majority of papers use between 1,000 and 10,000 instances [118]. For this study,

two datasets were used for experimentation. To develop the othering feature set the

dataset provided by Davidson et al. [96] was used. They collected tweets containing

different types of hate and used crowdsourcing to further divide the sample into three

categories: those containing hate speech, those with only offensive language, and those

with neither. Annotators were asked to think not just about the words appearing in a

given tweet, but also about the context in which they were used. They were instructed

that the presence of a particular word, however offensive, did not necessarily indicate

a tweet was hate speech. Each tweet was coded by three or more annotators. The inter

coder-agreement score was 92%. They used the majority decision for assigning a label

to each tweet. This resulted in a sample of 24,802 labelled tweets, with 21% of the

tweets being coded as hate speech and offensive language (5% hate speech and 16%

as offensive language) by the majority of annotators. This is referred to as our Train-

ing Dataset which contains 3161 non-malicious1 samples and 5323 hateful samples -

which is at the higher end of sample-size in previously published literature which used

embeddings to classify cyberhate (e.g [101] 540 hateful samples, [125] 1037 hateful

samples, [165] 712 hateful samples, [356] 413 hateful samples, [266] 1943 sexism

/3166 racism samples).

To compare this work to the state-of-the-art in cyberhate classification, a second data-

set was used for testing purposes, this was also done in previous work, see for example

1The term ’malicious tweets’ refers to tweets that include any of the inappropriate behaviours out-

lined in Chapter 2 with the intent to hurt others.



3.5 Hateful Networks Characterisation and Disruption 86

[63]. The dataset was collected by [63] from Twitter and the method of data collection

was random to ensure that the produced dataset was free from bias. The dataset was an-

notated using the CrowdFlower human intelligence task service with a single question:

’Is this text antagonistic or hateful based on a protected characteristic?’. The data-

set comprises cyberhate directed at four different protected characteristics, as follows:

sexual orientation - 1803 tweets, with 183 instances of offensive or antagonistic con-

tent (10.15% of the annotated sample); race 1876 tweets, with 73 instances of offensive

or antagonistic content (3.73% of the annotated sample); disability 1914 tweets, with

51 instances of offensive or antagonistic content (2.66% of the annotated sample); and

religion 1901 tweets, with 222 instances of offensive or antagonistic content (11.68%

of the annotated sample). The authors conducted all of the necessary tests so as to

ensure agreement between annotators for the gold-standard samples [63]. The amount

of abusive or hateful instances is small relative to the size of the sample. However,

these are random instances of the full datasets for each event and they are considered

representative of the overall levels of cyberhate within the corpus of tweets [62]. The

relative improvement in classification performance was evaluated using this dataset,

which is referred to as our Testing Dataset.

3.5 Hateful Networks Characterisation and Disruption

When conducting a Social Network Analysis, relational data that reveals some kind of

connection between the individuals or groups in the network is needed.

While Chapter 4 focused on the content of the tweets, this chapter studies the social

network connectivity among users who posted the hateful tweet, and likewise on their

communication. An example of the network connectivity is the user’s followers and

friends, whereas an example of the network communication is retweeting or mention-

ing a tweet. For author h, the followers are people who follow the author h. For

example, h
follow←− x, means that x is a follower of h. There are several ways of com-
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municating on Twitter including: 1) Retweets: sharing another user’s tweet with your

followers; 2) @Replies: directly replying to other user’s tweets, which can grow into

a conversation and 3) Mentions: referencing a specific Twitter user’s username at any

point in your tweet [299]. In this study, the interest lies in the followers and retweet

action. Note that the retweet action is not necessarily performed by a follower; it could

be performed by any users exploring Twitter (unless the tweet is protected or the author

of the tweet blocks the user who want to retweet).

In order to collect and analyse hateful connectivity and communication posted to Twit-

ter, accounts that were demonstrably posting hateful tweets need to be identified. Ap-

plication Programming Interface (APIs) are the protocols that enable platforms, such

as Twitter to give access to a controlled set of data. Twitter’s API permits anyone

with a Twitter account limited access to the recent retweets and followers of any public

account.

These chapters uses data from anti-religious content. According to Prevent Strategy

report by the UK government [9] and Heath et al. [145], anti-religious hate might

have a connection with terrorism, extremism, radicalisation, etc. This suggests that

understanding exposure to, and propagation of, anti-religious hate online may widen

the researchers’ horizons to comprehend groups who pose a risk to societal security.

These chapters uses data from two types of anti-religious content: Anti-Muslim and

Anti-Semitic. These datasets contain religious content but are different from the pre-

vious chapter’s dataset. The previous chapter’s dataset did not contain users’ profiles

information (mainly users’ names) needed for these chapters study to retrieve the links

between the users (e.g.follow, retweet).

For the Anti-Muslim datasets, data was collected from Twitter that centred around two

’trigger’ incidents. The first, which were collected by Burnap et al. [62], was related

to the murder of Lee Rigby, a solider based in Woolwich, London, Data collection

lasted two weeks following the terrorist attack committed on May 23rd, 2013; this

data set was named ’Anti-Muslim 1’. Data were collected via the Twitter streaming
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Application Programming Interface (API), based on a manual inspection of the highest

trending keyword following the event. The result was N=427,330 tweets in this case.

The second incident was the PunishAMuslimDay event that took place on April 3rd

2018. The dataset was collected in the aftermath of a letter inciting others to commit

violent and aggressive acts towards Muslims. This was given the name ’Anti-Muslim

2’. The collection spanned two weeks and resulted in N=919,854 tweets.

For the Anti-Semitic dataset we used a dataset collected by Ozalp et al. [249] who

collected their dataset using the COSMOS platform2. They use a group of keywords

which were agreed with CST 3 and are used for data collection: e.g. jew, jewish,

antisemitic, nazis. These keywords are an collection of generic terms (Jew, Jewish,

anti-Semitic, etc.). The data used for this analysis included tweets posted between

16/10/2015 and 21/10/2016 and were gathered in real time (this ensures that all tweets

are collected). The raw dataset for the complete study period contained 31,282,472

tweets.

Chapter Five also establishes a link between Chapters Four and Five using the model

developed in Chapter Four and applying it to detect cyberhate in the dataset collected

in Chapter Five; the results are compared with human-annotated outcomes. Details of

how the hateful networks were built and other insights are mentioned in Chapters Five

and Six in the method section.

3.6 Summary

The framework is a pipeline that shows a map of how the methods are explained in

each chapter. The general framework is divided into three sub-frameworks: cyberhate

2a free software tool that allows researchers to connect directly to Twitter’s streaming Application

Programming Interface (API) to collect real-time social media posts by specifying keywords
3The Community Security Trust is a British charity which exists to provide safety, security, and

advice to the Jewish community in the UK.
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classification, cyberhate characterisation and cyberhate disruption. The common pro-

cess, namely the data collection, involved in the three frameworks, is then explained.

The proposed framework will be discussed in the following four chapters.
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Chapter 4

Hateful Content Classification

4.1 Introduction

As people increasingly communicate through web−enabled applications, the need

for high−accuracy automated cyberhate detection methods has become much greater.

Chapter 2 provided an insight into the studies related to the classification of cyber-

hate, explaining how recent studies have begun to interpret the effective features for

machine classification of abusive language by focusing on how language is used to

convey hateful or antagonistic sentiment. Several studies have shown how individuals

with biased or negative views towards a range of minority groups are taking to the web

to spread such hateful messages [195, 263]. Instances of cyberhate and expressions

of racist views on social media have also been shown to be triggered by antecedent

events, such as terrorist acts [65, 331]. A hate crime or bias-motivated crime occurs

when the perpetrator of the crime intentionally selects the victim because of his or her

membership of a certain group [300]. Hate speech is hereby understood to be inflam-

matory language that explicitly or implicitly targets an individual or group depending

on protected characteristics.

Expressing discriminative opinions involves different language uses. For example,

words might be used to convey intense dislike, such as ’hate them’; moreover, to en-

courage violence, an inflammatory verb could be used, such as ’kill’.

There have been a number of attempts to automatically identify and quantify cyberhate
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by using different approaches, such as lexicons [131], syntactic [136] and semantic

[183, 36] features, yet the limitation lies in classifying text that does not contain clearly

hateful words which would have an impact on classification accuracy, (e.g. send them

home). While previous studies highlight the utility of methods capable of measuring

semantic distances between words, such as embedding learning using individual words

[106], and n-grams [243], this example requires an additional layer of qualitative con-

text that sits above combinations of individual words.

Recent studies have begun to interpret the effective features for machine classification

of abusive language by focusing on how language is used to convey hateful or antagon-

istic sentiment. ’Othering’ - the use of language to express divisive opinions between

the in-group (’us’) and the out-group (’them’) - has been identified as an effective fea-

ture [63]. The concept of ’othering’ offers a potential candidate framework for the

aforementioned qualitative layer capable of capturing the more subtle expressions of

cyberhate such as the ’send them home’ example. Anti-Hispanic speech might make a

reference to border crossing or crime, anti-African American speech often references

unemployment or single parent upbringing, and anti-Semitic language often refers to

money, banking and the media. The use of stereotypes also means that certain types of

language may be regarded as hateful even if no single word in the passage is hateful by

itself [123].

This chapter illustrates a development created through a study carried out during this

research: a novel method for cyberhate classification based around the use of ’othering

language’.

The hypothesis is that ’linguistic features associated with othering language, as ex-

plained in Chapter 2, section 2.4.5, will provide an additional set of qualitative features

that will improve the classification performance’. Chapter 2, section 2.4.5 demon-

strated that Intergroup Threat Theory (ITT) and Otherness are examples of psycholo-

gical models that incorporate similarity and intergroup conflict and, therefore, could

be useful for increasing our understanding of cyberhate.
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Specifically, this chapter investigates whether the use of pronouns that refer to an in-

group (e.g. we, us) co-occurring with pronouns that refer to an outgroup (e.g. them,

they) in the same post, will be indicative of divisive or antagonistic attitudes and there-

fore will improve machine classification of cyberhate. In this study, the co-occurrence

of ingroup/outgroup pronouns is referred to as a two-sided pronoun. These were used

to build a feature set that is referred to as an ’othering feature set’, which is utilised

to enrich the representation of text examples of cyberhate. These features are sub-

sequently employed in combination with a paragraph embedding algorithm that has

been shown in chapter 2 section 2.4.3 to outperform the BoW representation for cyber-

hate classification models and which has proved to be powerful when combined with

other NLP features. Also, Schmidt et al. [281] identified that hate speech detection re-

quired sentence-level, rather than word-level, classification. Hence, this research chose

the use of paragraph embeddings to classify hate speech.

The paragraph embedding algorithm infers semantic similarity between features to cre-

ate a model that represents ’othering’ language which is used for the purposes of cy-

berhate classification. Paragraph embedding algorithms aim to learn the semantic sim-

ilarity of the proposed contextual features jointly with the rest of the text in the corpus.

Samples that contain two-sided pronouns or pronoun patterns (e.g. verb-pronoun com-

binations) in a hateful or antagonistic context are aligned in similar feature ’spaces’.

This increases the probability of the machine classification method labelling any new

samples exhibiting these features as cyberhate. For example, the following sentence:

(We want to hang them all) contains the verb hang" and pronoun them, as well as the

two-sided pronouns we, them. If the hypothesis is correct, and such features do indeed

improve the context of the automated learning method, the sentence: (We need to get

them out) would be expected to be classified as cyberhate. This is not a sentence that

would immediately flag as hateful by using existing classification methods but is an

example of a sentence that would be identified by human annotators as a threat to in-

dividual groups and communities, and therefore needs to be considered when ’taking

the social mood’ following trigger events.
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To benchmark the approach taken in this work, the results of different models that use

state of the art classification algorithms and feature sets from the existing literature are

presented and compared to the proposed method.

To the best of the author’s knowledge, no study has yet used ITT theories in combin-

ation with the vector space feature to develop a feature set for improving the perform-

ance of machine learning for cyberhate.

The remainder of this chapter is structured as follows; section 4.2 presents the methods

employed and explains the experimental steps. Subsequently, in Section 4.3, the clas-

sification results are presented and discussed. Finally, in Section 4.4, the contributions

of this research are summarised.

4.2 Methods

This section reflects the design and development phase presented in Chapter 3. Ac-

cording to Chapter 3, the design and development phase aims to propose the ’othering

feature set’ to develop a classification framework. In addition, this section reflects the

demonstration phase that has been mentioned in Chapter 3. The demonstration step

aims to explain the methodology utilised for classifying hateful tweets by integrating

the ’othering’ concepts as a feature set, the aim being to develop a classification frame-

work that takes advantage of the existence of the othering language in a hateful tweet.

To achieve this novel othering layer within the machine classification framework, it was

necessary to develop an othering feature set containing three components: (i) a con-

strained subset of dependency relationship labels extracted using probabilistic parse

trees that were hypothesised to be representative of othering, (ii) more general parts of

speech associated with othering including verbs (VB), nouns (NN) and adjectives (JJ)

(e.g. send them home), and (iii) a list of English pronouns. Together, these capture a

significant amount linguistic context to provide a focused set of othering features. This

section details the process used to extract these features and how they were used in the
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automated machine classification approach. In particular, Section 4.2.1 introduces the

datasets that were used in the study described in this chapter, and a statistical analysis

of the use of othering language in these datasets. Sections 4.2.2 and 4.2.3 explain the

extraction and the building of the othering feature set, while Section 4.2.4 explains the

embedding feature extraction. Finally, Section4.2.5 shows the classification process.

4.2.1 Data

Datasets

To remind the reader, Table 4.1 shows the statistics of datasets used for the experiments

in this chapter.

Table 4.1: Samples Numbers of Training And Testing Datasets
Training Dataset Number of Samples

Davidson et al.[96]
5323 (hateful)

3161 (non-hateful)

Testing Datasets Number of Samples

Religion 1901 (222 hateful)

Disability 1914 (53 hateful)

Race 1876 (73 hateful)

Sexual orientation 1803 (183 hateful)

Summary Statistics for Othering Language in the Datasets

To provide an initial justification for the research hypothesis on the use of two-sided

pronouns to improve cyberhate classification, a corpus analysis of the datasets was

conducted; it involved calculating the percentage of tweets from the Testing Dataset

that included at least two pronouns. These features were found to be present in only

0.9% of non-malicious instances within the data and 17.6% of cyberhate instances.
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Figure 4.1 shows the comparative occurrence of two-sided othering terms in both hate-

ful samples and non-hateful samples among different types of cyberhate (test datasets).

Figure 4.1: The use of two-sided othering for each hate speech type in both hateful

and non-hateful samples in the testing dataset.

It can be seen that the Religion dataset contains the most frequent usage of the two-

sided othering language.This follows from the findings of [65] who identified ’other-

ing’ language as a useful feature for classifying cyberhate based on religious beliefs.

Also of note is that the percentage of two-sided othering was higher in the hateful an-

notated samples than non-hateful samples for all other types of hate speech, and to

around the same level. In addition to that, Figure 4.2 illustrates the same compar-

ison based on the results obtained using the Training Dataset which confirms again the

much higher use of two-sided pronouns in the hateful samples.
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Figure 4.2: The use of two-sided othering for each hate speech type in both hateful

and non-hateful samples in the training dataset.

4.2.2 Extracting Othering Terms

The first phase involved using the Training Dataset and analysing only the hateful

samples. It is hypothesised that the use of pronouns that refer to an ingroup (e.g. we,

us) co-occurring with pronouns that refer to an outgroup (e.g. them, they) in the same

post, will be indicative of divisive or antagonistic attitudes and therefore will improve

machine classification of cyberhate. In this chapter, the co-occurrence of ingroup/out-

group pronouns is referred to as a two-sided pronoun. Figure 4.3 presents an overview

of linguistic features that can be used between different groups to distinguish them-

selves (the in group) from others (the out group).
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Figure 4.3: The boundary defined between two groups using the othering terms,

and the space between the boundary shows how the negative text could be defined.

The figure illustrates how pronoun terms from one side (us, we, our, etc.) draw the

boundary between the in group by referring to the out group (we, they etc). Using ’us’

and ’them’ in the same context; these very pronouns highlight the distinction between

the groups, as the first-person plural pronoun, ’us’ places the speaker within a group

with e.g. a shared identity. By contrast, ’them’ is the third person plural, which is used

to refer to people at a distance. All samples where two-sided othering was present

- i.e. where at least two pronouns were used, were identified. An example tweet of

two-sided othering is "send them home we are fed up". Here, the tweet contains two

pronouns that draw boundaries between two different groups. Any samples without

at least two pronouns were discarded, as were the repeated samples. Using this sub-

sample, a Typed Dependency parser was utilised, which was explained in Chapter 2, to

transform the text to provide co-occurring words with a probabilistically derived lin-

guistic label, specifically, the Stanford Typed Dependency Parser. The Stanford Typed

Dependency Parser provides a representation which was designed to provide a simple

description of the grammatical relationships in a sentence that can easily be understood

and effectively used by people without linguistic expertise who want to extract textual
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relations. In particular, rather than the phrase structure representations that have long

dominated in the computational linguistic community, it represents all the sentence re-

lationships uniformly as typed dependency relations [100]. Parsing a text into a Typed

Dependency relation relies on the use of a Dependency Parser. This package is a Java

implementation of a probabilistic natural language parser that requires Java 8+ to be

installed. The parser also requires a reasonable amount of memory1. in order for the

dependencies to use the Linux- Ubuntu command line to train models and to parse text.

See the following Linux- Ubuntu command:

java -mx1g -cp ""*""

edu.stanford.nlp.parser.lexparser.LexicalizedParser

-outputFormat ""typedDependencies"" -sentences

newline -encoding utf-8 -model

stanford/nlp/models/lexparser/englishPCFG.ser.gz

InputFile.txt > OutputFile.txt.out

↪→

↪→

↪→

↪→

↪→

The options used for the command line above are explained in Table 4.2:

Table 4.2: Description of the options that have been used for setting the Typed

Dependency model.
Option Description

-outputFormat
To obtain dependency formatting options for the parse tree, we add typedDependencies

in the -outputFormat option

-sentence Pars the text sentence by sentence Pars the text sentence by sentence

-model Path to a model file. During training our model, we used a lexical parser: englishPCFG.ser.gz model.

-outputFile Specify the output file

The resulting text for parsing the example "send them all home we do’nt want them

in our country" as follow:
1at least 100MB, to run a PCFG parser on sentences up to 40 words in length; typically, around

500MB of memory is needed to parse similarly long typical-of-news wire sentences using the factored

model
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root(ROOT-0, send-1)

iobj(send-1, them-2)

det(home-4, all-3)

obj(send-1, home-4)

nsubj(do-6, we-5)

acl:relcl(home-4, do-6)

advmod(send-1, nt-8)

dep(send-1, want-9)

obj(want-9, them-10)

case(country-13, in-11)

nmod:poss(country-13, our-12)

obl:in(want-9, country-13)

Figure 4.4 shows the linguistic labels associated with each word in a sample sentence.

Word order within a sentence is preserved according to type-dependency and provides

a feature for classification as well as the syntactic relationship between words.

Figure 4.4: The dependencies that display the linguistic labels associated to each

word in an example phrase.

send them all home we do’nt want them in our country .

ROOT

DOBJ

ADVMOD DOBJ

NSUBJ XCOMP

DEP

DOBJ

CASE

NMOD:POSS

NMOD:IN

The Stanford Parser returns 51 different linguistic labels 2. The dependencies are all

binary relations: a grammatical relation holds between a governor (also known as a

regent or a head) and a dependent. In the previous example, the parser produced seven

dependency relationships, distributed over ten instances. To provide a specific focus on

2https://nlp.stanford.edu/software/dependencies_manual.pdf
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othering language, only six types of dependency relationships were retained: nsubj,

dobj, nmod, det, advmod and compound. The remaining dependency modifiers were

discarded. The rationale for preserving these modifiers is as follows. The nsubj la-

bel captures the syntactic subject or proto agent in a sentence (i.e. the active agent).

Examples include ’Muslims caused’ and ’they inflicted’. dobj concerns the direct ob-

ject of a verb phrase and has a high probabilistic likelihood of capturing relationships

between verbs and nouns, pronouns and determiners in the same phrase (e.g. send and

them). nmod is likely to identify nominal modifiers for nouns, for instance ‘all gays’

or ‘womens place’. The det captures the relationship between nominals and their de-

terminer (e.g. ‘these terrorists’). advmod captures adverb modifiers (e.g. where we see

‘home’ we may also see ‘send’). The compound will identify compound verb phrases

including verb and adjective compounds such as ‘send back’ or ‘kill black’.

As a worked example of how this method is expected to capture othering, the trans-

lation of the text in Figure 4.4 becomes nsubj(want-7, we-5), dobj(send-1, them-2)

det(home-3, all-4), nmod:poss(country-11, our-10) and the remaining relationships

would be discarded. We are now capturing distinctive othering features that co-occur

in the same sentence. Despite none of these words being clearly antagonistic or of-

fensive on their own, together they provide a greater contextual feature for machine

classification to detect these unseen samples using similar phrasing.

4.2.3 Building the Othering Feature Set

To complement the dependency relationship features, part-of-speech (POS) tagging

to the hateful samples that included at least two pronouns was also applied. Part-

Of-Speech was defined in Chapter 2 as the process of marking up a word in a text

(corpus) as corresponding to a particular part of speech, based on both its definition

and its context. Once again, the set of labels was refined to include those most likely to

represent othering and retained only words tagged as nouns (NN), adjectives (JJ), verbs

(VB) and adverbs (RB). POS also requires Java 8+ to be installed and uses the Java
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package for implementation. POS was obtained using the following Linux-Ubuntu

command line:

java -cp ""*""

edu.stanford.nlp.tagger.maxent.MaxentTagger

-sentenceDelimiter newline -model

stanford/nlp/models/pos-tagger/

↪→

↪→

↪→

english-left3words/english-left3words-distsim.tagger

InputFile.txt -outputFile OutputFile.txt↪→

The options used for the command line above are explained in Table 4.3:

Table 4.3: Description of the options that have been used for setting the POS

model.
Option Description

-sentenceDelimiter
Only applicable for testing with -textFile. If provided, assume that the given textFile has

already been sentence-split, and that sentences are separated by this delimiter.

-model l@ Path to a model file. During training our model, we used english-left3words-distsim.tagger model.

-outputFile Specify the output file

The resulting text for the example send them all home we do’nt want them in our

country as follow:

send/VB them/PRP all/DT home/NN we/PRP do/VBP’/”nt/RB want/VB them/PRPin/IN

our/PRP country/NN

The POS labels themselves were removed to leave only words. These POS words, the

dependency relationship features and a list of all English pronouns were then concaten-

ated into a triple that formed the basis of an othering feature set - a novel concatenation

of a range of grammatical and linguistic features extracted from a human annotated

data set of hateful and antagonistic texts. To reduce noise, all the tweets that contained

a single word were removed. This process resulted in a dataset of 975 rows. As the

othering feature set was built using annotated hateful samples, it was expected that all

the entries could contribute to the learning process. Figure 4.5 shows the process of
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extracting the ‘othering feature’ from each tweet containing two-sided pronouns. Al-

gorithm 4.1 illustrates the steps of building the othering vectors feature set. Figure 4.6

shows the process of training the model and Figure 4.7 illustrates the testing phase.

Figure 4.5: Othering Feature Extraction

Three types of training datasets were examined: the first training dataset contains all the

non-hateful and hateful instances that contain two-sided pronouns in an unprocessed

form - i.e. raw text - named Unprocessed Training Dataset. The second training

dataset contains all the non-hateful instances transformed into Typed Dependency rep-

resentation, plus the othering feature set to represent hateful instances. This is named

Proposed Feature Set 1. The third training dataset merged the first training dataset

and the second dataset which is named Proposed Feature Set 2. Examples of each

input are as follows: (1) ‘Send them all home we don’t want them in our country’; (2)

‘Row0: [(them,we,our) + nsubj(want-7, we-5), dobj(send-1, them-2) det(home-3, all-

4), nmod:poss(country-11, our-10) + send,want,home]’. These features then become

the input for the Paragraph2Vec algorithm.
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Algorithm 4.1 Othering feature set

INPUT:Annotated Training Dataset

OUTPUT: Othering Feature set

1: procedure Generation of the othering feature set

2: for each samples in Training Dataset do

3: Identify tweets containing two sided pronoun

4: for each sample containing two sided pronoun do

5: Extract all the pronoun (P )

6: Extract Typed Dependency (TD)

7: Extract POS (POS)

8: Append (P ,TD,POS)

9: end for

10: end for

11: Generate the othering feature set

12: End procedure



4.2 Methods 104

Figure 4.6: Model Training Workflow

Figure 4.7: Model Testing Workflow
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4.2.4 Embedding Feature Extraction

At this stage, it was necessary to identify a suitable method for utilising the features ex-

tracted through the othering feature set; these could have been used as raw features for

classification, but to provide further refinement, embedding learning was employed to

capture the relative ‘distance’ between these features in a cyberhate context. Learning

vector representations allow each feature to be plotted in such a way that the numeric

distances between features based on their use in a context can be calculated. A com-

mon example of this is that the distances between ‘man’ and ‘king’ would be similar

to that of ‘woman’ and ‘queen’. Therefore, relationships between words (i.e. ‘man’

and ‘king’), and context (i.e. ‘king’ is to ‘queen’ as ‘man’ is to ‘woman’) can be iden-

tified. With two-sided pronouns, it is assumed that the method would benefit from this

approach to extract the semantic ‘meaning’ of othering features and learn these jointly

across the hateful and non-hateful texts to provide context for term use - ultimately

with the aim of these features being better able to support the machine classification of

both.

Various methods have been proposed to learn vector embedding representations. As

mentioned in Chapter 2, Word2Vec and Paragraph2vec have been proposed for build-

ing word/paragraph representations in low-dimensional vector space [219]. In the

Word2Vec model, words are represented in continuous space where semantically sim-

ilar words have a high similarity measure in that space. In the Paragraph2vec model,

each sentence is mapped to a unique vector, and every word included in the sentence is

also mapped to a unique vector.

In the Paragraph Vector-Distributed Memory component (PV-DM), the sentence acts

as a memory that remembers the missed word in the current context of the sentence.

The paragraph vector and word vectors are averaged or concatenated to predict the

next word in a context [192]. The previous method considers the concatenation of

the paragraph vector with the word vectors to predict the next word in a text win-
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dow. In (PV-DBOW), The paragraph vector can be further simplified when we use no

local context in the prediction task. Model Learning the embedding using Paragraph

Vector-Distributed Bag-of-words (PV-DBOW) ignores the context words in the input

but forces the model to predict words randomly sampled from the paragraph in the

output.

In the context of this study, this means each tweet is fed into the embedding learning

methods as if it were a sentence, and each feature of the tweet derived in the othering

feature extraction phase becomes a part of the sentence embedding.

Both datasets 1 and 2 were transformed into paragraph embeddings using Paragraph2Vec

for training and testing purposes. Note, Word2Vec was also implemented for sentence

classification, which resulted in poor classification results; therefore, the decision was

made to discard the use of Word2Vec and use only Paragraph2Vec.

Distributed Memory (PV-DM) vectors were learned using the Gensim3 implementation

of distributed representations of the sentence (tweet) [192]. According to Mikolov et

al. [220], the distributed memory model is consistently better than the Distributed Bag

of Words (PV-DBOW). To find the best implementation for the data, experiments with

both were carried out. The results showed that distributed memory performed better

in learning feature vectors for the dataset. The Gensim package using the Python

language runs on a Linux- Ubuntu Operating System. An example code of model

build and training as follow:

model = Doc2Vec ( min_count =0 , window =2 , s i z e =600 , worke r s

=8 ,dm=0)

model . b u i l d _ v o c a b ( s e n t e n c e s . t o _ a r r a y ( ) )

model . t r a i n ( s e n t e n c e s . s e n t e n c e s _ p e r m ( ) , t o t a l _ e x a m p l e s =

model . c o r p u s _ c o u n t , epochs =model . i t e r )

3https://radimrehurek.com/gensim/models/Doc2Vec.html
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Table 4.4: Definitions of the parameters that have been used for setting the Para-

grap2vec model.
Parameter Definition

dm
Defines the training algorithm. If dm=1 then’distributed memory’ (PV-DM) is used. Otherwise, distributed bag of words

(PV-DBOW) is employed.

Windows_Size The maximum distance between the current and predicted word within a sentence.

Vector_Size Dimensionality of the feature vectors.

The parameters used here are summarised in Table 4.4.

Small window sizes were used because, according to Levy et al. [200], a window of

size 5 is commonly used to capture broad topical contents, whereas smaller windows

(e.g. k=2 windows) contain more focused information regarding the target word.

For example, for k = 2, the context around the target word w comprises w- 2, w- 1,

w+1, w+2. These become the features used for learning distances between the target

word and its surrounding context. The larger the window, the broader the context. The

final output is a vectorised dataset that is used as a feature set for feeding into a machine

classification approach. As the othering layer was expected to assist in improving the

performance of machine classification of cyberhate, a more focused approach seemed

logical, given it would be these nuanced othering terms in a smaller window that would

likely lead to improvements in classification. Various window sizes including 100,

300, 600, 800 and 1000 dimensions and k = 2, 3, 5, 6 and 10 were experimented

with. The performance of each was recorded and the best performing configuration was

reported on - which was 600 dimensions and windows = 2. Fixed embedding was used

because the datasets are not associated with time, which would require grouping the

data into time bins and training the embeddings separately on these bins [181]. Once

the vector representations had been learned, the vector was joined with its original

human-assigned label, assigning the label 0 to non-hateful samples and 1 to hateful

samples, and then, these were used to test the machine classifier.
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4.2.5 Machine Classification

Machine learning models take samples of labelled text to produce a classifier that is

able to detect hate speech based on labels annotated by content reviewers. To identify

or classify user-generated content, text features indicating hate must be extracted. The

usefulness of a novel classifier will be determined by comparing it with state-of-the-art

classifiers.

Comparing the ’Othering’ Classifier to Baselines

Several classification approaches were examined, drawing on state-of-the-art related

cyberhate research to determine the overall improvement when using the novel othering

feature set. The candidate methods included:

• (Baseline 1) - Support Vector Machines (SVM) and Random Forests (RF) com-

bined with Bag of Words (BoW), n-gram, and Typed Dependency features, as

used in [62, 63]. The SVM parameters were set to normalise data, use a gamma

of 0.1 and C of 1.0 and we employed radial basis function (RBF) kernel and the

Random Forest (RF) iteratively to select a random sub-sample of features in the

training stage and train multiple decision trees before predicting the outputs and

averaging the results which maximise the reduction in classification error [58].

The Random Forest algorithm was trained with 100 trees.

• (Baseline 2) used a Logistic Regression (LR) classifier with Paragraph2Vec fea-

ture extraction for joint modelling of comments and words, as used in [106].

They used the CBOW model as a component of paragraph2vec [220], which

tries to predict the central word based on the surrounding words, as well as the

user comment the words belong to.

• (Baseline 3) used Vowpal Wabbit’s regression model and different NLP features

with Paragraph2Vec and Word2Vec used for feature extraction, as applied by
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Nobata et al. [243]. Their features can be divided into four classes: N-grams,

Linguistic (e.g. length of comment in tokens, average length of word and num-

ber of punctuation items), Syntactic (e.g. POS) and Distributional Semantics

(e.g.Paragraph2Vec and Word2Vec).

• (Baseline 4) included a CNN model in combination with Word2Vec embedding.

Training was performed in batches of size 128 for CNN as introduced in [125]

and the ’adam’ optimiser for CNN was used. The model was configured with

three max-pooling layers, as introduced in [125]. A max-pooling layer captures

the most important latent semantic factors from the tweets. The output layer

used softmax to calculate the class probability distributions for each tweet and

assigned each tweet the class that obtains the maximum probability value.

• (Baseline 5) used Gradient Boosted Decision Trees (GBDTs) in combination

with Long Short-Term Memory (LSTMs) feature extraction (not as a classifier),

and random embeddings, as published by Badjatiya et al. [36]. They used the

LSTM model to capture sequence-based features. The LSTM model has a single

layer of LSTM units and all of the words in the corpora were initialised with

random values. The output dimension size of the LSTM layer was 100. A sig-

moid layer was built on the top of the LSTM layer to generate predictions. The

input dropout rate and recurrent state dropout rate were both set to 0.2. In each

iteration of the bootstrapping process, the training of the features and classifier

runs for 15 epochs.

• (Baseline 6) was a modified CNN classifier with a Gated Recurrent Units (GRU)

layer which was applied to learned Word2Vec embeddings as introduced by

Zhang et al. [354]. They integrated a GRU layer with a CNN classifier to cap-

ture long range dependencies in tweets, which may play a role in hate speech

detection. A GRU layer takes input from the max pooling layer. This treats the

features as time steps and outputs 100 hidden units per time step. Compared to

LSTM, the key difference in a GRU is that it has two gates (reset and update
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gates) whereas an LSTM has three gates (namely input, output and forget gates).

Thus, GRU is a simpler structure with fewer parameters to train. In theory, this

makes it faster to train and better for generalising on small data, while empiric-

ally it is shown to achieve comparable results to LSTM [83].

• (Baseline 7) used an LSTM classifier with random embedding which was intro-

duced in [36] but did not produce an improvement on the use of GBDTs in their

results. However, in this study, the aim was to reveal the effectiveness of using an

LSTM model as a standalone classifier on the proposed feature set, and the para-

meters were set in the same way as for [36]. For CNN, LSTM and CNN+GRU

models, the feature extraction phase all resulted in paragraph level vectors being

extracted for each sentence (tweet). This means that all of the baselines (except

baseline 1) have a vectors space feature for classifier inputs, which makes them

comparable to Paragraph2Vec as used in the othering feature set.

In addition to the state-of-the-art classification methods, the use of our othering feature

set (pre-processed with Paragraph2Vec) along with a Multilayer Perceptron (MLP)

classifier [341] is proposed. Multilayer feed-forward networks can provide competitive

results for sentiment classification and factoid question answering [159]. As mentioned

in Chapter2, MLP is a feed-forward artificial neural network model which maps input

datasets on an appropriate set of outputs. MLP consists of multiple layers of nodes in

a directed graph, with each layer being fully connected to the next layer [129]. This

thesis chooses to examine the MLP classifier as it a classical form of the neural network

(NN) classifiers which showed an improvement in detecting cyberhate compared to

non-neural network classifiers. Fortuna et al. [119] reported that the MLP classifier

achieved better performance in detecting higher hateful samples than SVM, LR and

RF. Also, the MLP classifier has not been used combined with embedding features

in previous studies. To set an MLP classifier, various parameters should be set to

configure the classifier network, Table 4.5 defines these parameters.

MLP parameters were set experimentally by setting the initial number of the hidden
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Table 4.5: MLP parameters
Parameter Definition

Node (units)
node, also called a neuron or Perceptron, is a computational unit that has one or more weighted input connections,

a transfer function that combines the inputs in some way, and an output connection.

Layer Nodes are then organised into layers to comprise a network

Iteration
Maximum number of iterations this determines the number of epochs

(how many times each data point will be used).

layers to 1 and increasing the number of the hidden layers to improve performance

through trial and error [148]. In this case, two hidden layers with five hidden con-

nected units achieved the best performance for the vectors with 200 iterations. The

implementation of the MLP classifier was achieved using the SKlearn package in the

Python language:

from s k l e a r n . n e u r a l _ n e t w o r k i m p o r t M L P C l a s s i f i e r

c l a s s i f i e r = M L P C l a s s i f i e r ( )

All these approaches were implemented on the unprocessed training dataset, on the

proposed feature set 1, and on the proposed feature Set 2. Then, to determine the ef-

fectiveness of each individual model in classifying cyberhate, they were cross-validated

on an individual basis across all the input feature sets. For each cross-validation fold,

the paragraph embeddings were re-trained. Throughout the results section, correct

classifications of non-hateful samples are referred to as ’true negatives’, and correct

classifications of hateful samples as ’true positives’. Therefore, a misclassification of

non-hate classified as hate is a false positive (FP), and a misclassification of hate clas-

sified as non-hate is a false negative (FN).

Testing the Othering Classifier

This experiment refers to testing the model’s ability to correctly classify new, unseen

data, drawn from the same distribution as that used to create the model. At this step, the
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best performing classifiers would be tested on four subsets within the Testing Dataset

as described earlier: (i) Religion, (ii) Disability, (iii) Race and (iv) Sexual orientation.

The aim of this step was to examine the generality of the ’Othering’ concept across

different types of cyberhate. The generalised cyberhate classifier should maintain good

performance when applied to new data. The following section shows the results of the

above experiment and the related discussion.

4.3 Results and Discussion

The evaluation phase of the Data Science Research Methodology (DSRM) outlined in

Chapter 3 is reflected in this section. During this phase, the evaluation experiments

aim to measure if the linguistic features associated with othering language provide an

additional set of qualitative features that will improve performance in terms of classi-

fication.

4.3.1 Quantitative Results

The first set of experiments included applying a wide range of models from previ-

ous studies, which were summarised as baselines in the previous section. This allows

for a comparison of the best performing models for cyberhate classification with the

proposed ’othering’ feature set. The second set of experiments involved testing the

best performing models from the first phase on completely unseen data to test model

generality over four types of hate speech.

Testing against the state of the art
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Table 4.6: Machine classification performance for the cyberhate classifiers based

on training dataset .
Unprocessed Training Dataset

(The raw dataset)

Proposed Feature set 1

(Othering Feature set)

Proposed Feature set 2

(The raw dataset + othering feature set)

Classifiers cl sample P R F AUC P R F AUC P R F AUC

Baseline model 1: n-Gram words (1-5) with 2,000 features

+n-Gram typed dependencies +hateful term [63]

SVM+

RF

Hateful
0.48

FN=407

0.58

FP=610
0.52

0.67

0.30

FN=311

0.68

FP=1560
0.41

0.56

0.28

FN=209

0.78

FP=1891
0.42

0.57

Neutral 0.80 0.86 0.83 0.50 0.83 0.63 0.40 0.85 0.54

Baseline model 2: Comment

Embedding [106]
LR

Hateful
0.93

FN=118

0.88

FP=61
0.91

0.94

0.87

FN=253

0.74

FP=110
0.78

0.89

0.96

FN=10

0.98

FP=40
0.97

0.97

Neutral 0.98 0.96 0.97 0.95 0.92 0.94 0.98 0.99 0.99

Baseline model 3: N-grams+ linguistic+ syntactic+

word and comment Embedding [243]
VR

Hateful
0.93

FN=54

0.94

FP=66
0.92

0.95

0.98

FN=24

0.97

FP=9
0.98

0.99

0.99

FN=4

0.98

FP=9
0.99

0.99

Neutral 0.97 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00

Baseline Model 4: Word2vec

[125])
CNN

Hateful
0.88

FN=27

0.97

FP=131
0.92

0.93

0.83

FN=15

0.98

FP=196
0.90

0.91

0.90

FN=11

0.98

FP=101
0.94

0.95

Neutral 0.95 0.99 0.97 0.93 0.99 0.90 0.96 0.99 0.98

Baseline Model 5: Word2vec

+LSTM [36]
GBDT

Hateful
0.77

FN=258

0.73

FP=215
0.75

0.84

0.89

FN=17

0.98

FP=102
0.94

0.95

0.95

FN=34

0.96

FP=47
0.97

0.97

Neutral 0.93 0.91 0.92 0.96 0.99 0.98 0.98 0.99 0.98

Baseline Model 6: Word2vec

[355]

CNN+

GRU

Hateful
0.87

FN=75

0.92

FP=133
0.90

0.92

0.92

FN=25

0.97

FP=30
0.95

0.98

0.89

FN=10

0.99

FP=115
0.94

0.94

Neutral 0.95 0.97 0.96 0.99 0.99 0.99 0.96 0.99 0.97

Baseline 7:Word2vec [83] LSTM
Hateful

0.00

FN=975

0.00

FP=3161
0.00

0.00

0.36

FN=365

0.59

FP=1003
0.45

0.60

0.45

FN=158

0.83

FP=974
0.59

0.69

Neutral 1.00 0.76 0.86 0.68 0.84 0.75 0.69 0.93 0.79

Paragraph2vec MLP
Hateful

0.95

FN=21

0.98

FP=51
0.96

0.97

0.99

FN=5

0.99

FP=3
1.00

0.99

.99

FN=7

0 0.99

FP=5
0.99

0.99

Neutral 0.98 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00

The results are shown in Table 4.6, in which the first column represents a summary

of the baseline models ([63], [106], [243], [36], [125], [354] and [83]). The last row

in the table contains the results of the novel approach taken in this research. In this

phase, all methods were evaluated using ten-fold cross validation. This method has

previously been used for experimentally testing machine classifiers for short text [308]

[63]. It functions by iteratively training the classifier on feature vectors from 90 percent

of the annotated dataset and classifying the remaining 10 percent as ’unseen’ data,

based on the features evident in the cases it has encountered in the training data. It

then determines the accuracy of the classification process and moves on to the next

iteration, finally calculating the overall accuracy. In the training phase, the F-measure

was used as the main comparison metric, given it controls for false positives and false

negatives and a lack of balance in the dataset. Also, AUC was used for error analysis.

AUC provides an aggregate measure of performance across all possible classification

thresholds, ranging from 0 to 1; a model with predictions that are 100% incorrect has

an AUC of 0.0, and one with predictions that are 100% correct has an AUC of 1.0.
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The results presented in Tables 4.6 and 4.7 are for the cyberhate class only, as the main

interest here is in the improvement of cyberhate classification.

As mentioned previously in section 4.2.3, the experiments were conducted on three

input datasets: (i) unprocessed training dataset which was just the raw text and re-

flected the (actual) implementation of the applied models; (ii) proposed feature set 1;

and (iii) proposed feature set 2 which was a combination of the unprocessed training

dataset and proposed feature set 1. This follows the method proposed in Sections 3.5.1

to 3.5.3.

From Table 4.6 we firstly notice that from baseline 1 to baseline 2 there was a large

reduction of FPs and FNs among the three feature sets. We suggest this is likely due

to the use of semantic learning for features extraction. This also confirms that there is

no bias in the proposed datasets as noticed by [42]. From baseline 2 to baseline 3, the

reduction of FNs (but not necessarily FPs) is clear. We suggest this is likely a result of

using n-grams, linguistic (e.g. length of tokens) and syntactic (e.g. POS) features. The

combination of baseline 3 with the third feature set produced the lowest number of FPs,

detecting 99% of the cyberhate samples. This suggests that the extra features (n-gram

and linguistics), which were applied by the baseline 3 model, improved the process of

hate speech classification, compared with the baseline models, which already use the

semantic features.

However, applying the neural network models proposed in baseline 4 [125], baseline

5 [36], baseline 6 [355] and baseline 7 [83] did not result in a significant increase in

the detection of cyberhate within the three datasets compared to baseline 3. The CNN

[125] and LSTM models [36] were unable to improve on this using the unprocessed

feature set (the raw feature set) or the proposed feature sets. This is likely due to the

length and sparsity of short texts. Furthermore, RNN models including LSTM features

extraction, which resulted in the best performance in [36] and the GRU layer, which

was added to the CNN model to achieve best performance by [356] showed weak

performance compared to the other classifiers. Another possible explanation for this is
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their use of Word2Vec feature extraction which, empirically, has not produced better

semantic learning than Paragraph2Vec for the datasets in this thesis (see Section 4.2.3).

The last row in Table 4.6 shows the results of training the proposed feature sets using

the Paragraph2Vec model for feature extraction and the MLP classifier. Despite the

two proposed feature sets producing higher FN than baseline 3 on the proposed feature

set 2 in this research by 1 and 3 extra FN samples, they show a reduction of FP by 6

and 4 non-hateful samples. The ’othering language’ features here are working on a par

with baseline 3 that uses a range of text pre-processing methods.

Overall, the experiments show that the ’othering language’ features alone (proposed

feature 1) are valuable for enhancing the detection of the hateful instances for the

majority of (but not all) baselines’ classifiers. For all the baselines’ classifiers (except

baseline 1), including the raw dataset with the ’othering language’ feature set (proposed

feature 2) led to the best overall performance (best f-measure) improvement by 2%-

59%. However, for the approach taken in this study, using the ’othering language’

features alone (proposed feature 1) produced the best performance - slightly better

than (proposed feature 2).

This shows the ability of the ’othering’ narrative to be an essential part of hate speech

detection, suggesting that using the embedding representation of the ’othering feature

set’ would provide better context for the classifier beyond using BOW, n-grams, lin-

guistic and syntactic features.

To evaluate the generality of the best performing models (the proposed model and

baseline 3) - and to stress-test the range of linguistic features used in baseline 3, as

well as the othering method - they were tested using unseen datasets. The three best

performing classifiers (shown in bold font in Table 4.6) were the candidate models for

further testing because they resulted in the highest F-measure and AUC >= 0.99 (also

the lowest number of both FPs and FNs ranging between 0 and 10). The three best

models were referred to as the ’Comprehensive-classifier’, ’Othering-classifier’, and

’Othering+raw-classifier’, respectively. The term Comprehensive-classifier refers to
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applying the baseline 3 model to the proposed feature set 2, referred to as ’compre-

hensive’ because a wide range of features was applied. The Othering-classifier refers

to the proposed application of Paragraph2Vec feature extraction and the MLP classifier

to the proposed feature set 1 (othering feature set), and Othering+raw-classifier refers

to the proposed application of Paragraph2Vec feature extraction and the MLP classifier

to the proposed feature set 2 (othering feature set and raw data set).

Testing the Othering Classifier

The second set of experiments carried out in this research involved testing the pro-

posed model on unseen datasets. The training phase (the previous experiment) pro-

duced evidence to suggest that including othering language features in predictive mod-

els for cyberhate speech (in short informal text, such as Twitter posts) would improve

the classification performance. The second phase aimed to determine the possibility

of developing a more generalised model for cyberhate detection. A key finding from

previous research is that, compared with using hateful terms alone, the inclusion of fea-

tures capable of detecting othering language in the classification of religious cyberhate

reduced false negatives by 7%. Additionally, Nobata et al. [243] found that computing

feature embeddings when combined with the standard NLP features showed the effect-

iveness of improving the performance of cyberhate classification. The utility of the

learned vectors in the classification of cyberhate was validated by reporting precision

(P), recall (R), F-measures (F) and, the area under the curve (AUC).

The results of the experiments show how the use of othering features alongside em-

beddings to train the classifier enables a new level of hate speech detection, in the

form of othering-level feature embeddings. The best three classifiers from previous

experiments were tested on four unseen cyberhate datasets.

• Religious hate: as shown in Table 4.7, for religion, the Othering+raw-classifier

resulted in the highest recall (R)=0.99. This means it is the best at detecting hate.
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Table 4.7: Machine classification performance for cyberhate classifiers based on

unseen testing datasets .
Test Data Sets

Religion Disability Race Sexual-orientation

Trained Models P R F AUC P R F AUC P R F AUC P R F AUC

Baseline Model 3 +

Proposed Feature set 2

(Comprehensive-classifier)

0.71

FN=12

0.95

FP=84
0.81 0.94

0.74

FN=16

0.68

FP=12
0.71 0.86

0.30

FN=8

0.89

FP=163
0.43 0.64

0.31

FN=3

0.98

FP=398
0.47 0.65

Paragraph2vec+

Proposed Feature set 1

(Othering-classifier)

0.44

FN=12

0.95

FP=260
0.60 0.71

0.94

FN=35

0.31

FP=1
0.47 0.96

0.79

FN=4

0.95

FP=18
0.86 0.89

0.46

FN=40

0.78

FP=168
0.58 0.71

Paragraph2vec+

Proposed Feature set 2

(Othering+raw-classifier)

0.54

FN=2

0.99

FP=187
0.69 0.76

1.00

FN=23

0.55

FP=0
0.71 0.99

0.84

FN=3

0.95

FP=13
0.89 0.92

0.61

FN=24

0.86

FP=99
0.72 0.80

It resulted in the lowest FNs (lack of detection of the hateful samples). However,

it also had poorer results than the comprehensive classifier in terms of precision

(P)=0.54 and F-measure (F)=0.69.

The lowest FPs (non-hate classified as hate) was achieved by the Comprehensive-

classifier, which resulted in Precision (P)=0.71, Recall (R)=0.95 and F-measure

(F)=0.81. Therefore, this model is considered to be a more balanced classi-

fier. We can see evidence for this in that the Comprehensive-classifier achieved a

higher AUC (0.94) compared to Othering+raw-classifier. For religious hate, hav-

ing the additional features in the comprehensive classifier (n-grams, linguistics,

etc) helps balance the classifier - but not having them (i.e. in the othering+raw

classifier - where we do not use n-grams and the linguistic features) actually

helps detect more hate.

• Disability hate: for the disability dataset, the Comprehensive-classifier again

resulted in the best overall performance with the following scores: precision

(P)=0.74, Recall (R)=0.68 and F-measure (F)=0.71. It detected 68% of the hate-

ful samples, which was the highest among the three classifiers, whereas the

Othering+ raw-classifier, which resulted in precision(P)=1.00, Recall(R)=0.55

and F-measure(F)= 0.71, detected all the non-hateful samples but approximately

half of the hateful samples were missed. This could be interpreted as ’other-

ing language’ being ineffective enough for detecting disability hate speech. In
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addition, this shows the usefulness of the (n-gram and the linguistic features)

features for detecting the disability hate as the disability context was enriched

by additional information obtained from the linguistic features and the differ-

ent k words sequences (n-grams features), which perhaps, appears to capture

the aspect of disability hate. The Comprehensive-classifier showed a lower

AUC score=0.86 compared to the Othering+raw-classifier which had an AUC

score=0.99, despite their F-measures being equal. However, a high AUC for the

Othering+raw-classifier was expected because the classifier detected all the true

negative samples (’perfect’ recall)[6].

• Racism hate: for the race dataset, the Othering+raw-classifier resulted in pre-

cision(P)=0.84, Recall(R)=0.95 and F-measure(F)=0.92 which improved the de-

tection of hateful and non-hateful instances compared to the Comprehensive-

classifier and the Othering-classifier by 6% and 1%, respectively. Perhaps the

low FNs obtained by the othering+raw-classifier means that the othering lan-

guage is used more in the hate samples than the non-hateful samples in the same

data. As a consequence, this made the othering+raw-classifier able to distinguish

the hate from the non-hate. This suggests that the use of ’othering’ features is

more important than additional n-grams or linguistics features as the use of n-

grams and linguistic features did not, therefore, positively contribute to the de-

tection of racial hate speech. Also, the AUC score = 0.92 is the highest for the

Othering+raw-classifier compared to the other classifiers. As mentioned previ-

ously, high AUC and high F-measures indicate that the classifier performs well

at all thresholds [205].

• Sexual orientation hate: for the sexual orientation dataset, the Comprehensive-

classifier detected the highest number of hateful instances (three were missed),

with Recall(R)=0.98, suggesting that this classifier is the best at detecting hate

based on sexual orientation. However, it also had the highest FPs (false detection

for non-hateful instances) with Precision(P)=0.31 and F-measure(F)=0.47. The
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Othering+raw-classifier missed 13% of the hateful samples, with Recall(R)=0.86,

Precision(P)=0.61 and F-measure(F)=0.72, which is considered to be a more bal-

anced classifier for the sexual-orientation dataset.

For homosexual hate, the ’othering’ features alone helps balance the classifier,

but having the extra features in the comprehensive classifier (n-grams and the

linguistics features) actually helps detect more hate. This means that the other-

ing feature alone is not highly effective for detecting the sexual orientation hate

speech.

In summary, the Othering+raw-classifier detected the highest number of hateful samples

for religion and racism while the Comprehensive-classifier performed best at detecting

hateful samples in the disability and sexual orientation datasets.

This suggests that the use of ’othering language’ features is more important than ad-

ditional n-grams or linguistics features for detecting online anti-religion content and

racism, while ’othering language’ would appear to be less effective for detecting dis-

ability and sexual orientation hate. This means that different types of hate speech have

various language characteristics, and the use of othering terms can be sufficient for

some but not all contexts of hate speech.

4.3.2 Qualitative Results

Given the resultant improvements over the state-of-the-art using the othering feature,

a qualitative analysis was conducted to identify any insights into the features captured

using feature embedding on the othering features, i.e. the two-sided pronouns. Given

the improvement, it can be assumed that the embedding method did effectively as-

sign othering features to similar vector spaces in such a way as to better distinguish

hateful from non-hateful content using the Paragraph2Vec embedding algorithm. Two

datasets were visualised - the unprocessed Training Dataset using embeddings only

(see Fig 4.8), and the othering feature set 2 with the embedding model (see Fig 4.9)
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- which reflected the representation of the ‘us and them’ narrative that produced the

third experiment in the last row of Table 4.6).

Figure 4.8: Embedding visualisation on original training data set

The model was visualised using TensorBoard which has a built-in visualiser (we per-

formed 2D principal component analysis (PCA)), called the Embedding Projector, for

interactive visualisation and analysis of high-dimensional data like embeddings 4. The

distances between words are relative based on their computed similarity to other words

in the hateful sample.

The two graphs are focused and enlarged to show the 300 most similar words. The

colours indicate the distances from the key word ‘us’; the purple dots indicate the

smallest distances (0.008-0.09), next smallest are the pink dots (0.093-0.2), then orange
4https://www.tensorflow.org/versions/r0.12/howtos/embeddingviz/
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Figure 4.9: Embedding visualisation on the proposed Othering feature set 2

dots (0.21-0.39), then dark yellow dots (0.4-0.55), and finally the light yellow dots

are furthest from ‘us’ (0.56-1). In distance functions, smaller values imply greater

similarity between words [13].

Ideally, we want the classifier to be able to use these small distances to make effective

use of them as features for distinguishing hate from non-hate.

It can be seen in Figure 4.9 that the words with the smallest relative distance from ‘us’

(the purple, pink dots) include pronouns from the ingroup (e.g. we), pronouns from the

outgroup (these, them etc.), the most overt linguistic markers of alliance and distance.

In actual linguistic terms, ’expressions that are most revealing of the boundaries sep-

arating Self and Other are inclusive and exclusive pronouns and possessives such as
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we and they, us and them, and ours and theirs’ [139]. These linguistic items became

semantically similar because they were used in the same context when the writers were

trying to distance themselves from the other. In addition, different action verbs ( send,

go etc.) appear, which capture their co-occurrence in more nuanced othering aspects

of cyberhate language. From an Integrated Threat Theory perspective, we can also see

symbolic and realistic anxiety present (e.g. the words ‘attack’, ‘state’, ‘jihadist’, ‘an-

imals’) and intergroup anxiety when there are feelings of discomfort that people may

experience when engaging with members from a group other than their own, which can

also be referred to as the ’anxiety that people experience in interactions with members

of another group’ [47] (e.g. ’Arab’, ’Israel’).

Furthermore, we can see symbolic threats which are concerned with a group’s values,

traditions, ideology, morals, and these are expected to be more prominent when an in-

group believes that their cultural values and traits (e.g. appearance) are different from

those of an out-group (e.g. Muslims, Jews, Arab, Pakistani, Africano, American).

We can also see the obvious derogatory terms in the same Figure (e.g. suck, fuck,

discuggg, niger, niggero, savages). Thus, this model is picking up both the obvious

and non-obvious cyberhate using the proposed othering features.

Meanwhile, in Figure 4.8 none of the words are particularly close to ‘us’ in terms of

distance, meaning the classifier is unable to make effective use of the othering narrative.

Thus, the classifier based on these features will become more dependent on the hateful

words and miss the less obvious narrative. We posit that this work demonstrates that

the ability to capture the more nuanced text is the core reason behind the successful

improvement over the state-of-the-art examples from previous research. In Table 4.8,

the visualisation is summarised by showing the top 10 similar words through the two

models: embedding based on the unprocessed dataset (raw training dataset) only, and

the othering feature embedding. The similarity was measured by using the cosine

similarity function. Cosine similarity is a metric used to measure how similar the

documents are irrespective of their size. Mathematically, it measures the cosine of the
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angle between two vectors projected in a multi-dimensional space [154]. The similarity

table shows the most similar words to the word ‘us’ using the model which reflects the

definition of different groups (e.g. ’Muslims, Jews, jihadist’) while the word ’us’ in the

raw embedding refers to concepts (e.g.’fans, safe, devil, wife’). The othering feature

set succeeds in defining different groups and different attitudes which are important

aspects in the field of hate speech recognition.
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Table 4.8: Target words and their 10 most similar words as induced by unpro-

cessed dataset (raw training data set) embedding and the proposed ’othering fea-

ture set 2’ embedding.
Target

word
Raw training Data Set Embedding Othering Feature Set Embedding

us
fans, safe, devil, wife, gisuz, whips

main, they, tinge, armi

ni**as, we, Arab, those, iran

group, Jews, Muslim, send, headiest,animals

them
sort, stop, close, ask, differ, speak

busi, tweeting, ni**ers, we

these, Jew, those, pakistanian

someon hang, Muslims, rednecks, country,

p**s, niggu

arab
shit, hot, like, bleiv, thing

hat, went, thing, die, lol

iraq, we, ni**a, fu**er, israel, getout

nig******as, outta, chop, animals

Muslim
smh, office, appear, backlash, nonmuslim

dye, agenda, rasicm, christian, asian

us, nonmuslim, iraq, lable, Jews, racism

high, arab, yellow, doe, country

send
only, what, neireian, fu**ing, I

bet, saying, realy, reason, pick

Israel, suck, Africano, ni**er, getout, home, these

paki, ni**o, kill, burn

out
have, try, see, never, some, home

bastards, fail, wrong, give

gotta, outta, Islam, America,

chop, attack, mosque, send

home, manchest, blacks, these

scum

hear, speak, dumb,

edltrobinson, exact,

sort, breedingwoolwich,

seem, kind, threaten

savages,islamic, yell, muslims,

beat, pi**, tuesday

wogs, against, burn, qouet, leage

shoot
divis, behind, pub, bloodi, scence

hospital, condemen, plane

fu**ing, shot, nobody, ni**o, disable

nutter, muslims, burn, nonmuslim,

condemen

kill
stabb, death, pari, involve, year

between, brutal, cheldren, charge, three

stabb, live, them, innocent, pakistanian

soldir, who, place, krazi, suspect

burn
local, critic, swedish, bbcnews, islamabad

faggots, saudi, antiterror, bangladish, letter

church, non-whites,

chop, mosques, themfu**ing,shoot

chop, ni**as, commit, nigeria
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4.4 Conclusion

This chapter has shown how this research aimed to improve the machine classification

performance for different types of hateful and antagonistic language posted on Twitter

- known as cyberhate. This study was inspired by the concepts presented by Integrated

Threat Theory (ITT) and ‘othering’ theory.

The hypothesis was that the use of an ’othering feature set’ would provide better con-

text for the classifier beyond using words alone. Vector embedding and the Para-

graph2Vec algorithm were used to cluster these features, thereby re-framing the lin-

guistic features from individual terms and phrases to numeric distances representing a

form of semantic similarity of these terms - learned in the context of hateful or non-

hateful texts. Then, machine classification methods were experimented with to determ-

ine the improvement of the novel ‘othering feature’ over the state-of-the-art research,

and the most effective machine classifier to use with the embedding-transformed fea-

ture set.

Generally, the results show the effectiveness of including the proposed feature set for

classifier training over the baselines model and improved the rate of the performance

of the baselines’ classifiers in the cyberhate literature by 2-59%, showing the ability

of the ’othering’ narrative to be an important part of hate speech detection. When

tested on completely different datasets using four different types of cyberhate, namely

religion, disability, race and sexual orientation, F-measures of 0.81, 0.71, 0.89 and 0.72

respectively were obtained across two models; however, the models perform well on

some but not all categories of the unseen data (types of hate speech).

This indicates that different types of hate speech have different language character-

istics and the use of othering terms can be effective for some but not all contexts of

hate speech. The experiments suggest that othering language can indeed be a valuable

feature for identifying anti-religious and racial content while it is less valuable as a

standalone feature for disability and sexual orientation hate.



4.4 Conclusion 126

Naturally, the approach taken in this work involves some limitations; first, a dataset

with a considerably small sample size was used for training and testing this thesis

classifier. It is preferable to implement embedding learning on a large amount of text

data to ensure that valuable embeddings are learned. This limitation was due to the

limited number of relevant datasets that are publicly shared and also the high price of

human annotation. Second, by testing the proposed model, it was assumed that tweets

which contain two-sided othering language (othering pattern) are more likely to be

hateful. However, this is not necessarily the case. For example, the tweet (e.g. "send

them") may imply hate if it appears in relation to a hateful event, but neutral when

it appears in relation to a marketing-related tweet. The point here is that the implicit

cyberhate needs more studies to investigate its patterns.

In the end, the contextual hate, discussed in this chapter, that interested the author is

posted by individuals and groups who have several audiences - these may include the

victimised target group of the hate communication, ideological friends and potentially

interested groups of persons that may be recruited, as well as a more general audience.

The question here is who are these groups, how are they connected and how do they

communicate? The next chapter discusses the investigation of a study of social dy-

namics in online social networks in terms of (i) individuals’ exposure to online hate,

and (ii) individuals’ roles in propagating online hate among groups - more specific-

ally, developing insights through Social Network Analysis (SNA) into multiple hateful

networks with the aim of characterising and understanding these networks.



127

Chapter 5

Networks of Hate

5.1 Introduction

The previous chapter focused on detecting cyberhate automatically, a method which

offers the ability to create representations of how online hate is composed and com-

municated. As online social media enables individuals and groups to spread ideologies

and even advocate hate crime, it is essential to study the online structure, connectiv-

ity and communication of online communities in order to determine users’ exposure

to and the propagation of hateful ideologies that could influence their own views and

actions.

Individuals and groups have increasingly used the internet to express their ideas, spread

their beliefs, and recruit new members [193]. As with offline hate crime, cyberhate

posted on social media has become a growing social problem. In 2016 and 2017, the

UK’s decision to leave the European Union and a string of terror attacks were followed

by noticeable and unprecedented increases in cyberhate [332]; the rhetoric was that

of invasion, threat and otherness [27]. Some research suggests that the perpetrators

of cyberhate have similar motivations to those who resort to violence offline [332,

33, 72, 34]. Social psychologists have suggested that the perpetrators of hate crime

may be influenced by their perception that certain groups pose a threat to them [298],

and Glaser et al. [133] suggests that racists often express their views more freely

on the internet than elsewhere. Research reveals that exposure may be correlated with
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detrimental effects on a societal level, as exposure is potentially linked to an increase in

hate crimes offline, a lack of social trust, tougher discrimination, and prejudice against

the targets[175, 236]. This includes spreading extremist and violent ideology[120,

312]. Twitter, which has become an essential source of up-to-the-minute information,

offers a unique opportunity to study social dynamics in online social networks in terms

of (i) individuals’ exposure to online hate, and (ii) the role of individuals in propagating

online hate among groups.

The detection of hate online has been widely discussed from the perspective of content

analysis. Furthermore, the previous chapter has shown an improvement in automating

the detection of hateful content. However, the study of hateful networks on social

media has received limited attention in the literature. Given we can now detect hate

online automatically using machine learning methods, a study of such networks could

be valuable in the context of concern about the connectivity among hateful users and

therefore the exposure to, and contagion of, online hateful and offensive narratives on

social media. On the Twitter platform, the hateful followers’ network represents the

hateful user community directly exposed to hateful content. This network is a subset

of users who directly receive information from each other. Furthermore, the hateful

retweets’ network is a construct formed by users who propagate cyberhate to their own

followers, thereby passing on hateful narratives from the people they follow - a form

of cyberhate contagion.

It is important to note that people who are exposed to hateful content won’t necessarily

spread hate. However, the exposure to hateful content among the hateful users refers

to the existence of communities interested in this topic which potentially increases the

risk of more people adopting hateful ideologies.

Several studies have applied Social Network Analysis (SNA) to Twitter hateful net-

works in order to use connectivity information as an indicator that a user is posting of-

fensive content [273, 19]. Others have focused SNA analysis on the retweets network

to measure diffusion [278, 273]. However, there is yet to be a study of multiple hateful
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networks with the aim of understanding whether there is evidence of similar ’levels of

friendship’ among hateful users and therefore a general connectivity and exposure to

the hate, or similar levels of propagation behaviour among hateful users and therefore

a general contagion effect. The lack of such a study on Twitter motivated the author of

this research to undertake a baseline study that characterises several hateful networks

extensively from multiple perspectives, namely: exposure to cyberhate (in followers’

networks) and propagation of the cyberhate (in retweets’ networks). Investigating such

characteristics is a basis for a comprehensive understanding of online hateful networks,

which could help decision-makers to mitigate the danger of these networks. Note that

a network is labelled as a hateful network if all users belonging to that network have

posted tweets that human annotators agree should be classified as containing evidence

of hateful content.

The remainder of the chapter is organised as follows. Section 5.2 describes the methods

of the present research, including data collection. Section 5.3 reports the results and

the discussion and Section 5.4 presents the conclusions .

5.2 Methods

This section is a reflection of the design and development phase mentioned in Chapter

3 by designing multiple hateful networks in order to understand the characteristics of

hateful online social networks in a small non-representative sample. Also, this section

reflects the demonstration phase that has been mentioned in Chapter 3 by applying a

range of network analysis metrics for characterising several hateful networks.

5.2.1 Datasets Build

Figure 5.1 illustrates the steps for collecting and building Anti-Muslim 1 and Anti-

Muslim 2 datasets for this study.
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Figure 5.1: Data collection and build steps for the hateful followers’ and retweets’

networks.

To remind the reader, the collection for Anti-Muslim 1 and Anti-Muslim 2 resulted

in 427,330 tweets and 919,854 tweets, respectively. Initially, to identify hateful in-

stances in these datasets, we applied the ’Othering+raw classifier’ from the previous

chapter to classify a sub-sample of the datasets. To validate the outcomes, we sent the

hateful cases for human annotation. We chose the ’Othering+raw classifier’ because

it resulted in detecting the highest number of anti-religious instances (see Chapter 4,

Table4.7). However, implementing the ’Othering+raw classifier’ requires the extrac-
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tion of Typed Dependency features for the tested dataset (see Figure 4.7 - Chapter 4).

Extracting Typed Dependency features for a large text corpus required more computing

resources than were available to the author, which forced the author to skip this par-

ticular pre-processing step. Therefore, a reduced feature-set was implemented for the

’Othering+raw classifier’. While this may reduce performance (i.e. miss some hateful

instances and provide less hateful content for this study), a human annotation step was

included to ensure the outcomes labelled hateful by the classifier were accurate (i.e.

were actually hateful).

Due to the available resources, this classifier was applied to two subsets each contain-

ing 40,000 tweets, taken from each 10 tweets of each initial dataset. This resulted

in 16531 (41%) and 12032 (30%) being classified as hateful for Anti-Muslim 1 and

Anti-Muslim 2, respectively. Two subsets, each of 4000 tweets taken from each 10

tweets of the resulting dataset, were chosen for a human annotation process. Human

annotators were asked to label the offensive tweets using the crowd-sourced online ser-

vice Crowdflower. Annotators were provided with each tweet, and asked ’Is this text

offensive or antagonistic in terms of race, ethnicity or religion?’ They were presen-

ted with a ternary set of classes: yes, no, undecided. The results from coders could

then either be accepted or rejected on the basis of the level of agreement with other

coders. The requirement was that at least four human annotations per tweet and only

the annotated tweets for which at least three human annotators (75%) had agreed on

the appropriate class were retained, as per related work [308, 60]. Annotators were

hired with no special background knowledge, who were aged 18 and above. Crowd-

Flower makes it possible to require workers to come from English-speaking countries,

a feature that other platforms like Amazon Mechanical Turk do not offer transparently.

It has a built-in quality control mechanism, using interspersed test items, ensuring that

workers maintain a certain level of accuracy throughout the entire job. The annotation

process took about 5 to 9 days to complete. 1.

1An ethical approval for the data collection has been included in the Appendix D. The wording of

the research question has been revised slightly as the thesis has evolved and been through peer review,
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The results of the annotation exercise produced ’gold standard’ datasets with 973 of

4000 and 1053 of 4000 instances of offensive or antagonistic content tweets for the

Anti-Muslim 1 and Anti-Muslim 2 datasets respectively.

The interest in these data was to flag the Twitter accounts of users posting hateful

content. The initial datasets, which were collected by Twitter API at the stage of the

data collection, were searched to uncover any duplicates of the annotated hateful tweets

(tweets with the same text posted by other users). This boosted the collection of hateful

tweets to 2621 and 2097 tweets for Anti-Muslim 1 and Anti-Muslim 2, respectively.

Finally, we extracted the accounts of those who retweeted the content, creating a list

of 3502 and 8602 user accounts that were involved in creating or propagating hateful

content for Anti-Muslim 1 and Anti-Muslim 2 respectively. Note that we collected

all accounts that posted hateful content, whether the tweet was the original post, a

duplicate or retweet. The retweets were extracted using a pattern recognition technique

to extract any post matching the following format: ’RT ’+ space + ’@screenname’ +

space + ’:’ + ’Tweet text’ [88]. The pattern shows that the collected retweets do not

contain a ’tweet quote’. This step was taken because the hateful retweeters may ’quote

retweeted’ the tweet ironically or to express the rejection of the tweet’s content.

From each dataset (Anti-Muslim 1 and Anti-Muslim 2 datasets), it was necessary to ex-

tract the hateful followers’ dataset (hateful users who follow each other) and a retweet

dataset (users who retweet each other). For the followers’ datasets, for each of the

authors of the 3502 and 8602 tweets classified as containing evidence of possible hate-

ful speech, a list of followers was retrieved for these accounts so that the measures of

connectivity between these users could be identified. This collection resulted in two

sets of 2,018,950 and 3,855,37 followers for lists of 3502 and 8602 authors, respect-

ively. Note that the users in these sets (2,018,950 and 3,855,37) were not necessarily

expected to be hateful users.

but they are substantively the same in principle as when they were captured in the ethics paperwork, and

the use of data has not changed in purpose since approval
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Next, Python tools2, Panda package were used to generate two types of networks of

followers and retweets - (see also Section 5.2.3). The followers’ network was built

using the followers’ dataset. This is a directed graph network in which each node has

a follower h
follow←− x relationship.

Algorithm 5.1 explains the steps for building a hateful followers’ network. It shows

that any follower relationship of users who had not been shown to post hateful con-

tent was discarded, so that we could identify measures of connectivity between only

hateful users. Overall, 1004 users and their 2644 followers were extracted from the

Anti-Muslim 1 dataset, and 1073 and their 2895 followers were extracted from the

Anti-Muslim 2 dataset. This led to two datasets of followers that contained the ori-

ginal users and their followers (those exposed to cyberhate and those who had also

posted cyberhate) - one for Anti-Muslim 1 followers and the other for Anti-Muslim 2

followers.
2https://www.python.org/
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Algorithm 5.1 Building the hateful Follower Network

INPUT: H = h1, h2, .., hnusers accounts who post hateful content

OUTPUT: hateful Follower Network Hfollowers

1: for each hi ∈ H do {do until the end of the list H}

2: Collect follower network hfo

3: for each follow relation hi
follow←− xi ∈ hfo do

4: if xi ∈ H then

5: Return adjacency list Hfollowers[hi,xi]

6: else

7: discard the relation hi
follow←− xi

8: end if

9: end for

10: end for

11: Return adjacency list Hfollowers

For the retweets datasets, two retweets’ networks were built: Anti-Muslim 1 with 1229

nodes and 2571 edges, and Anti-Muslim 2 with 5581 nodes and 16338 edges. Each of

these is a directed network having a i and j ∈ retweets’ dataset for each node edged

from i to j, indicating that j is a retweeter of a tweet posted by i. Algorithm 5.2

explains the steps taken to build a hateful retweet network. It shows that we created the

retweets’ networks from the 3502 and 8602 user accounts that were involved in creating

or propagating hateful content for Anti-Muslim 1 and Anti-Muslim 2, respectively.

Note that not all hateful accounts are retweeters.



5.2 Methods 135

Algorithm 5.2 Building the hateful retweet Network

INPUT: H = h1, h2, .., hn users accounts who posted hateful content

OUTPUT: hateful retweets’network Hretweet

1: for each hi, hj ∈ H do {do until the end of the list H}

2: if hj retweeted hi then

3: Return adjacency list Hretweeters[hi,hj]

4: else

5: Return null

6: end if

7: end for

8: Return adjacency list Hretweeters

Figures 5.2 shows a sample visualisation of the retweet network for the Anti-Muslim

1 dataset.
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Figure 5.2: Example of a graph representation of the retweets graph of Anti-

Muslim 1 users.

5.2.2 Human Annotation vs. machine classification performance

This section evaluates the quality of ’Othering+raw classifier’, which performed the

best in terms of detecting hateful religious tweets and ’Comprehensive-classifier’, which

produced a more balanced classification (but higher FNs than ’Othering+raw classi-

fier’). The evaluation compares the outcomes of the human annotation with the clas-

sifier results. Table 5.1 shows the results of applying our classifier to the annotated

datasets: Anti-Muslim 1 with ( 973 hateful instances and 4000-973= 3027 non-hateful

instances) and Anti-Muslim 2 with (1053 hateful instances and 4000-1053=2947 non-

hateful instances).

This indicates that the ’Othering+raw classifier’ detected 78% and 74% of the hateful

samples for Anti-Muslim 1 and Anti-Muslim 2, respectively. Additionally, Comprehensive-

classifier detected 69% and 71% of the hateful samples for Anti-Muslim 1 and Anti-
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Table 5.1: Machine classification performance for ’Othering+raw classifier’and

Comprehensive-classifier based on unseen testing datasets: Anti-Muslim 1 and

Anti-Muslim 2 .
Anti-Muslim 1 Anti-Muslim 2

Precision Recall F-score Precision Recall F-score

Othering+raw classifier 0.91 FN=207 0.71 FP=748 0.82 0.90 FN=211 0.69 FP=899 0.78

Comprehensive-classifier 0.89 FN=297 0.83 FP=494 0.86 0.88 FN=302 0.82 FP=528 0.85

Muslim 2, respectively. This suggests that our model is less accurate at detecting reli-

gious hate than the human annotation by 29-31%; this is a ’solid’ performance (percent-

age of detection is about 70% or above)[279]. Interestingly, the two classifiers showed

similar behaviour to their performance on the religious datasets in Chapter 4, when

the ’Othering+raw classifier’ achieved lower FNs while Comprehensive-classifier ap-

peared to be a more balanced classifier but involved a higher risk of missing hateful

comments (FNs). The similarity of the models’ behaviours on different unseen data-

sets may lead to the assumption that the test datasets represent the distribution of future

cases of anti-religious content. In addition, the ’solid’ performances, of 69%-86%, in-

dicate the usefulness of the ’othering feature set’ for detecting the hateful content,

perhaps the implicit hateful content which is one of the main obstacles to detecting

online hate [350]. However, we still have high FPs (high neutral tweets classified in-

correctly as hateful tweets), which means that our feature sets need more work in order

to make the classifier more balanced. This also suggests that our classifier could be

used to improve the annotated dataset results. By way of example, the human annota-

tion for Anti-Muslim 1 resulted in 973 hateful instances out of 4,000 instances, which

is only 24% of the annotated instances. This is one reason for the scarcity of datasets

in this field. The annotation is expensive, and the results achieved for annotated hateful

samples usually appear small in size. This may be because of the method for choosing

sample tweets to send to the annotators. The aim here is thus to increase this percent-

age. It may be possible to achieve this by applying our classifier first to the whole

original dataset and then gathering a sample of tweets classified as hateful and sending
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those to human annotators. In fact, this suggestion requires further experimentation

regarding text analysis and classification. For this research, we depended on the results

of human annotation that was undertaken first (resulting in 24% and 26% of hateful

instances for Anti-Muslim 1 and Anti-Muslim 2, respectively).

Anti-Semitic Dataset

As with the Anti-Muslim data, the annotated Anti-Semitic dataset was extended by

adding duplicates and retweets of the original tweets from the larger data collection.

This boosted the annotated dataset to 3874 tweets. For the Anti-Semitism dataset, a

followers’ network was not extracted because Twitter API did not recognise all the

relevant users’ IDs. However, the retweet network for Anti-Semitism, which consisted

of 2748 nodes and 5091 edges was built.

Dataset Implications

The above datasets were collected at different time and in different circumstances.

While the anti-Muslim datasets were collected in two weeks, the antisemitism dataset

was collected over one year. Furthermore, the Anti-Muslim 1 dataset was collected

from Twitter for a period immediately following the Woolwich trigger event, contain-

ing particular characteristics in terms of religion and race. This reflects the emotion

following large scale, disruptive, and emotive events such as terrorist attacks in near

real-time. Anti-Muslim 2 is broader than Anti-Muslim 1 as it was collected in the

period of publication of a letter that promoted hate toward a specific social group,

reflecting more general responses and expressions in term of religion toward a spe-

cific social group. The antisemitism dataset was collected using antisemitic keywords

without any trigger event, which is expected to contain broader hate toward a specific

social group than Anti-Muslim 1 and Anti-Muslim 2. Based on the differences, we ar-

gue these factors suggest that any similarities between these datasets (networks) might

be considered common characteristics of hateful groups.
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Comparative "Risky" Network Dataset

Although Twitter networks of a different size and nature inevitably show different char-

acteristics, the larger the number of common properties (metrics), the more likely it is

that the two networks are similar[267, 225]. In this work, the term ’risky networks’

was defined as those that might include dangerous/unsafe content. Comparing a non-

hateful (but risky) network with hateful networks may help to understand the level

of the similarity and the differences among the hateful networks themselves. For ex-

ample, networks A and B with sizes 1 and 2 may not be similar. However, comparing

networks A and B with another network C with size 6 shows that networks A and B

are slightly similar and different from network C. In addition, we assume that if the

hateful networks’ connectivity level is higher than another risky network, they exhibit

more dangerous consequences (e.g. propagation), increasing the exposure to at-risk

users. Thus, for the purposes of comparison between networks in this study (e.g. do

hateful networks exhibit different characteristics to other risky networks?), a similar

size network from another ’risky’ category was selected - one in which users in online

social networks risk exposure to ideology and where there is concern about the con-

tagion of content. It was found that the suicidal network by Colombo et al. [88] was

similar to our networks in terms of three factors: (1) comparable size, (2) similar data

collection process (Twitter API) and network build, and (3) likely to spread content of

concerning ideology, i.e. a ’risky network’. Table 5.2 summarises the number of nodes

and edges for each network.
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Table 5.2: Numbers of the nodes and the edges of the hateful networks
Followers’ networks

Network Nodes Edges

Anti-Muslim 1 1004 2644

Anti-Muslim 2 1073 2895

Suicidal 987 2410

Retweets’ networks

Network Nodes Edges

Anti-Muslim 1 1229 2571

Anti-Muslim 2 5581 16338

Anti-Semitic 2748 5091

Suicidal 3209 2211

As with the hateful datasets, the suicidal network has two sub networks - the followers

and retweet networks. Both networks are of a similar size to the networks examined in

this study. The suicidal content was also labelled by human annotators in the original

paper. For the suicidal network, the followers’ network contains 987 nodes and 2410

edges, whereas the retweet network contains 3209 nodes and 2211 edges.

5.2.3 Metrics Selection

Social network analysis relies heavily on quantitative features to numerically define

various attributes of the network. These featuresare also referred to as social network

metrics. Value of various SNA metrics discussed below can be used to answer ques-

tions that help to understand the structure of a network, the flow of information in the

network and important individuals in the network. In Chapter 2, the meaning of social

network analysis is explained. A graph is composed of two fundamental units: vertices

(also called nodes) and edges. Every edge is defined by a pair of nodes. In this chapter,

nodes represent the hateful author and, in turn, an edge is a line that connects two nodes

and, analogously, represents either a ’follow’ or ’retweet’ relationship. Edges may be
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directed or undirected; in this study, all edges are directed. In a directed graph G, with

a total number of edgesE(G)| = m, the maximum number of edgesmmax = n(n−1).

Social networks graphs were built using the followers and retweets datasets. Then,

the metrics were extracted and compared. As discussed in [267, 225], the larger the

number of common properties (metrics), the more likely it is that the two networks are

similar. For the implementation of the graphs’ metrics, we used NetworkX. NetworkX

is a package for the Python programming language. The implementation of NetworkX

is advantageous due to its speed of implementation. Gephi was also partially used.

Gephi is an open-source network analysis and visualisation software package written in

Java on the NetBeans platform. We used Gephi for file exporter (File > Export > Graph

file...) to save the hateful network into a file that could be imported by NetworkX.

Additionally, Gephi was used for network visualisation. The metrics used in this study

were selected and implemented as follows:

• Giant component: The Giant Component (GC) is a connected component of

a given graph that contains a finite fraction of the entire graph’s nodes, e.g.,

a significant proportion of the nodes are connected in one GC. The GC of the

networks was extracted using a Depth-first Search and Linear graph algorithms

[307]. Formally, let s(n) be the size of a connected component GC in a network

of size N, then GC is a giant component if:

lim
n→∞

s(n)

N
= N > 0 (5.1)

where n is the number of nodes. This limit would go to zero for all other non-

giant components. From a hate spread perspective, the size of the GC is essential

in that it reveals the maximum number of people who can be (directly or indir-

ectly) reached by any other node in the same component. A large GC indicates

high reachability because every node is reachable from almost every other. Net-

workx implementation of the GC is as follow:

import ne tworkx as nx
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g i a n t = max ( nx . c o n n e c t e d _ c o m p o n e n t _ s u b g r a p h s (G) , key=

l e n )

• Density: The ratio between the number of edges in the graph and the total num-

ber of possible edges, as defined in Equation 4.1.

Density =
m(G)

mmax(G)
, 0 < density < 1 (5.2)

where m(G ) is the number of edges in the network and mmax (G) denotes the

number of possible edges, which is n(n - 1) Density measures how close the net-

work is to completion. A complete graph has all possible edges and density equal

to 1. The opposite, a graph with only a few edges, is a sparse graph [360]. High

density indicates intimate, tightly knit networks, and ties between individuals in

a denser network are more likely to be strong. Networkx implementation of the

networks density is as follows:

d e n s i t y =nx . d e n s i t y ( g )

• Average degree metrics: are direct measures of how information travels through-

out the network [239]. Average graph degree for a node is calculated as the num-

ber of links that end in that node. Also, the maximum value of the degree of the

nodes over all the graph nodes was calculated, as defined in Equation 4.2.

AverageDegree =
TotalEdges

TotalNode
(5.3)

Essentially, this metric is a measure of graph connectivity in terms of links/rela-

tions between nodes. This, in terms of followers’ degrees, means that users can

directly consume (see, read) the content posted by other users. The spread of

nodes’ degrees over a network is characterised by a distribution function, which

is the probability that a randomly selected node has exactly k edges. The degree

distribution has been calculated for the followers and retweet networks.
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In this study, the research interest lies in the out-degree, which represents the

number of users that someone follows (e.g. if A has an out-degree of 5, it means

A follows five people). Also, the in-degree distribution is calculated, which rep-

resents the number of followers that someone has (e.g. if A has an in-degree of 5,

it means there are five people that follow A). Higher out-degree values means a

wider exposure to different sources of hate propagators. Higher in-degree value

refers to influential users (content creation hubs or conversational hubs) who can

be responsible for hate creation and propagation.

For the retweet network, out-degree represents the number of retweets (e.g. if

A has an out-degree of 5, it means they retweeted five tweets posted by five

different users). Also, we are interested in the in-degree distribution that shows

the number of retweets that someone gained (e.g. if A has an in-degree of 5,

it means five users retweeted A’s tweet). A high in-degree indicates high hate

propagation, while a high out-degree indicates a the level of diversity in the

propagated content. Networkx implementation of the networks’ average degree

as follow:

AverageDegree = nx . a v e r a g e _ d e g r e e (G)

• Average clustering coefficient: Firstly we calculate the clustering coefficient

for each node as the probability that two randomly chosen distinct neighbours

of the given node are connected; this is also referred to as the local clustering

coefficient for a node. This coefficient is, therefore, given by the fraction of

pairs of nodes, which are neighbours of a given node that are connected to each

other by edges. See the following equation:

ci =
2 |ejk|

ki(ki − 1)
: vj, vk ∈ Ni, ejk ∈ E (5.4)

where Ni is the neighbourhood of node vi , ejk represents the edge that connects

node vj to node vk , ki is the degree of node vi , and |ejk | indicates the proportion
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of links between the nodes within the neighbourhood of node vi. Then these

values are averaged, all local values ci over all the network nodes. The average

clustering coefficient (C) was calculated using the Matthieu Latapy algorithm

[189]. See the following equation.

C =
1

n
∑

i

ci (5.5)

The clustering coefficient measures how some of the nodes can form dense

groups in which each element has strong connections with the others. As a

consequence, each piece of information posted by one of these nodes can rapidly

spread within the groups but disseminates outside the group with more difficulty.

Networkx implementation of the CC is as follow:

A v e r a g e C l u s t e r i n g C o e f f e c i e n t = nx . a v e r a g e _ c l u s t e r i n g (G

)

• Reciprocity: Reciprocity r is a specific quantity for directed networks that meas-

ures the likelihood of nodes in a directed network being mutually linked. See the

following equation:

r =
#mut

#mut+#asym
, 0 < r < 1 (5.6)

where mut denotes the number of mutual dyads and asym the number of asym-

metric dyads (an asymmetric dyad is a pair of nodes that has an arc going in the

direction of one node or the other, but not both directions). For two nodes i and j

in a given graphG and the related adjacency metricA, if the relationshipsA(i, j)

and A(j, i) exist, then this is considered a reciprocated relationship. In the case

of a follower network, if i
follow←− j and j

follow←− i, then they have a reciprocated

follow relationship. For the retweet network, if i retweet←− j and j retweet←− i, then

they have a reciprocated retweet relationship. A higher value indicates many

nodes have two-way links, reflecting high connectivity (a high level of friend-

ship) in the followers’ network and high cooperation for hate dissemination in
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retweet networks. Networkx implementation of the networks reciprocities is as

follow:

R e c i p r o c i t y = nx . o v e r a l l _ r e c i p r o c i t y (G)

• The average shortest path and diameter: is the average graph-distance between

all the pairs of nodes. See the following equation:

Avg =
1

1
2
n(n− 1)

∑
i≥j

d(i, j) (5.7)

where d(i , j ) is the geodesic distance between nodes i and j , and 1/2 n(n-1) is

the number of possible edges in a network comprising n nodes. This metric gives

an idea of how far apart nodes will be on average. The diameter is the longest

graph distance between any two nodes in the network [22]. The Faster Algorithm

for closeness centrality was used to extract the average shortest paths and the

diameters [57]. These metrics were chosen because they are direct measures

of how information travels throughout the network. Followers’ paths represent

links between a node and its neighbours, between them and their own networks,

and so on. The shorter the length of the shortest path from a node to all others

in the graph (and so their average), the easier the information can travel from a

given node and spread over the network[88]. Networkx implementation of the

ASP is as follow:

G= nx . p a t h _ g r a p h ( 5 )

p r i n t ( nx . a v e r a g e _ s h o r t e s t _ p a t h _ l e n g t h (G) )

5.3 Results and Discussion

This section is reflecting the evaluation step of the Data Science Research Methodology

(DSRM) motioned in Chapter 3. The evaluation step revolved around comparing and
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contrasting different hateful networks characteristics and comparing a ’risky’ network

- characterised by language related to suicidal ideation. The evaluation process here

examines if hateful networks are similar in terms of online hate exposure and online

hate propagation, and more connected compared to another ’risky’ network. Tables

5.3 and 5.4 show the graph metrics for the hateful followers’ networks (Anti-Muslim

1 and Anti-Muslim 2), the hateful retweets networks (Anti-Muslim 1, Anti-Muslim 2

and Anti-Semitic), and the comparator suicidal network.

Table 5.3: Graph metrics for the followers networks
Networks ‖Nodes‖ ‖Edges‖ Giant Component Density Avg. Deg. Max. Deg. Avg Clust. Avg. sh. Diameter reciprocity

Anti-Muslim 1 1004 2644 60.7% (edges=66%) 0.0026 (GC=0.0047) 2.6 100 0.062 5.4 16 33.4%

Anti-Muslim 2 1073 2895 66% (edges=83%) 0.0025 (GC=0.0048) 2.7 143 0.065 5.6 17 26.7%

Suicidal 987 2410 50% (edges=45%) 0.0024(GC=0.0044) 2.53 100 0.064 5.6 17 61%

Table 5.4: Graph metrics for the retweet networks
Networks ‖Nodes‖ ‖Edges‖ Giant Component Density Avg. Deg. Max. Deg. Avg Clust. Avg. sh. Diameter reciprocity

Anti-Muslim 1 1229 2571 69.2% (edges=71%) 0.0017 (GC=0.002) 2.09 304 0.0097 5.2 21 18.89%

Anti-Muslim 2 5581 16338 81.3% (edges=72%) 0.00054 (GC=0.00064) 2.3 1034 0.15 5.9 16 15.61%

Anti-Semitic 2748 5091 72.1% (edges=68%) 0.00067 (GC=0.00072) 1.9 522 0.029 6.3 14 12%

Suicidal 3209 2211 31.3%(edges=24%) 0.00021 (GC=0.0005) 1.4 44 9.4E-03 5.05 13 0.9%

5.3.1 Follower Graph: measure of hateful content exposure

• Giant Component:

Table 5.3 shows that the hateful followers’ networks have a similar sized GC

(60.7% and 66%); the size of the giant component represents over half of the

entire networks’ nodes, while the suicidal network with a similar number of

nodes and edges is smaller at 50%. The size of the GC is the maximum number

of people who can be exposed to/propagate hateful content. This suggests, in

this small sample, that the users in hateful networks are at similar levels of risk

to exposure, with suicide networks as a comparator risky network around 10%

lower. Further research with much larger representative samples of networks is

required to identify if this pattern is generalisable beyond this study.
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• Hate Density:

Table 5.3 shows that hateful networks, in this sample, have a similar and slightly

higher density than the suicidal network by 0.0001. Also, the table shows that

the GCs of the hateful followers’ networks are similar and also slightly denser

than the suicidal followers’ network by 0.0002. Despite the seemingly small

numerical difference, this has an impact on the rate of information flow within

the network. This is because, given that hateful networks have more nodes in

the GC (higher number of users) than the suicidal one, it would be expected that

they would have smaller density, as in networks representing real systems (e.g.

Twitter networks), the density of a network is inversely proportional to the size

of that network [114][161]. Actually, they show slightly higher density values,

suggesting that users in the hateful network are slightly more interconnected and

closer to each other than users in the suicidal network. Highly interconnected

users in a followers’ network means increased potential for content exposure,

which in turn increases the risk of potential content propagation. This suggests

that lowering the density of the hateful community would solve the problem of

hate exposure. However, additional research with much larger representative

samples of networks is required to identify if this pattern is generalisable beyond

this study.

• Average Degree:

Table 5.3 shows that the hateful followers’ networks exhibited 2.6 and 2.7 av-

erage degrees respectively. The hateful networks have a slightly higher average

degree than the suicidal network, which is of a comparable size, while the max

degree was slightly higher for the Anti-Muslim 2 network. Generally, the expec-

ted average degree of a social network such as Twitter is around 3 [73], which is

similar to hateful followers’ networks. It does not appear that hateful followers’

networks are significantly more connected than the comparator risky network

or Twitter networks on average. The overall degree of in-degree and out-degree
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distributions is illustrated in Figures 5.3, 5.4 and 5.5, showing long-tail character-

istics where the majority of users follow a few numbers of the hateful accounts,

from 1-10 (out-degree); and have very few followers, from 1-10 (in-degree).

Figure 5.3: Degree distributions for the followers networks
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Figure 5.4: In-degree distributions for the followers networks

Figure 5.5: Out-degree distributions for the followers networks
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This observation indicates the existence of hubs, i.e. a few nodes that are highly

connected to other nodes, in hateful and suicidal networks. Hubs are nodes with

a number of links that greatly exceed the average. These hubs have a power in

terms of information spread and exposure. The presence of large hubs results

in degree, in-degree and out-degree distributions with long tails. In a followers’

network, hubs (highly connected nodes) are either an important influence or (can

be influenced by) over network.

The distribution of the hateful followers’ networks, in Figure 5.4, shows consist-

ently similar in-degree distribution. Also, Figure 5.5 shows similar out-degree

distribution for the hateful followers’ networks. This could be further evidence

of the structural similarity among the hateful followers’ networks in these net-

works’ samples.

Figure 5.4 shows a higher percentage of nodes in the far end of the in-degree tail

for the suicidal network than hate networks. Conversely, Figure 5.5 shows more

nodes in the far end of the out-degree tail for hateful networks, compared to the

suicidal network. This suggests both hateful networks have fewer ’influencers’

(people with lots of followers), and more ’super-consumers’ (people who follow

a lot of hateful posters). This could be interpreted as meaning that the hateful

followers network tends to be more vulnerable to hate exposure [199] than the

suicidal follower network, due to more nodes falling into the ’consumer’ cat-

egory and following a larger number of people creating risky content.

• Average Clustering Coefficient: The average clustering coefficients of the Anti-

Muslim 1 and Anti-Muslim 2 followers’ networks were 0.062 and 0.065, re-

spectively. Clustering coefficient values for the hateful followers’ networks were

similar to the suicidal followers’ network. Even though the average clustering

coefficient of the hateful networks is similar to that of the suicidal network, their

distribution showed that there are some differences. Empirically, nodes with

higher degree(di) have a lower local clustering coefficient on average; thus, the
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local clustering coefficient (ci) decreases with increasing degree [234]. The met-

ric quantifies how close the neighbours are to being a complete graph (a clique).

The distribution of clustering coefficients for the hateful followers’ networks and

the comparator network is shown in Figure 5.6.

Figure 5.6: The distribution of the local clustering coefficient per degree for the

followers’ networks.

For the hateful followers’ networks, several nodes with (di) ≥ 30 have (ci)

greater than 0.2, while for the suicidal followers’ network, all (ci) of nodes that
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have (di) ≥ 30 do not exceed 0.15. The probability of a node’s neighbours

also being connected (densely connected neighbours) is consistently higher for

the hateful network than the suicidal network. Whether these nodes are ’hate-

consumers’ (out-degree edges) or ’hate-influencers’ (in-degree edges), both cases

exhibited densely connected neighbours. This behaviour was slightly lower in

the suicidal followers’ network, providing further evidence of tight connectivity

between the hateful users, which means there is an increased risk of the hateful

content exposure.

• Reciprocity:

Table 5.3 shows that around 33% and 26% of the Anti-Muslim 1 and Anti-

Muslim 2 followers’ edges were reciprocal. These percentages are significantly

lower than those recorded for the suicidal network, which was 62%. The pres-

ence of reciprocity in the followers’ networks means that people with common

interests, known as ’homophily’, are exposed to each other’s content [283, 270,

260]. Thus, about a third of the hateful accounts are exposed to each other’s

content, while more than 60% of the suicidal users do so. This suggests that

the suicidal users form a more cohesive community based around reciprocal fol-

lower relationships [261, 268]. However, research has shown that reciprocity

has a connection with ’emotional distress’ which is significantly associated with

suicidal users [232]. Thus, a study that investigates the incentive for reciprocal

behaviour for different ’risky’ followers’ networks is required for clearly under-

standing that behaviour.

• Diameter:

Table 5.3 shows that Anti-Muslim 1 and Anti-Muslim 2 recorded similar diamet-

ers (16 and 17) and average shortest paths (5.4 and 5.6). The maximum diameter

is susceptible to outliers [253] and the average shortest path is a more rational

measurement than the diameter because the diameter decreases when edges are

added, while the latter may remain unchanged. Thus, the focus was on the av-
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erage shortest path for characterising the hateful network. The average shortest

paths are for the largest connected component (Giant Component) [196]. For ex-

ample, in Anti-Muslim 1, between 5 and 6 steps are needed (5.4 avg. sh. path) to

reach up to 60% of people who belong to the Anti-Muslim 1 followers’ network

(Giant Component). The bigger both metrics are, the easier the content will flow

through the network. The metrics are similar for all three networks, though for

suicide the Giant Component is smaller so fewer people are reached. Although

the average path length should actually decrease with small sized networks [198],

the average shortest path for the hateful followers’ networks runs in line with that

reported in a public retweets Konect dataset (5.45), which depicts a much more

extensive Twitter network of online communications, with three million nodes

and over ten million edges [186]. This provides some evidence that the hateful

followers’ networks exhibit data flow properties resembling large-scale commu-

nication followers’ networks, albeit in a very small-scale network.

5.3.2 Retweets Graphs: measure of the hateful content contagion

• Giant Component: Table 5.4 shows that more than 69%, 81% and 72% of the

nodes in the hateful retweets networks exist in the largest (giant) component.

While some fluctuations exist between the hateful networks, the percentage in

the comparator suicidal retweet network measures only 31.3%, which is signi-

ficantly lower. These percentages reflect the percentage of users who are part

of a connected community. The reason behind the large GC is the presence of

the weak links which represent more tenuous acquaintance connections bringing

together different groups of individuals. The ’weak link hypothesis’, by Gran-

ovetter et al. [135], describes a specific social network structure in which strong

links are associated with dense neighbourhoods (communities or groups), while

weaker links act as bridges between them; the greater the number of weak ties,

the greater the number of connected subgroups that make a bigger group. The
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results suggest that there is a consistently and significantly greater reach of con-

tent (contagion) in the hateful networks. Granovetter et al. [135] argues that

contacts maintained through weak links play the important role of holding to-

gether groups, thus providing access to novel information. In that study, the

seminal idea emerged of using node connectivity as an indicator of social net-

work information spreading, an insight that is formalised in the GC notion [22].

In other words, GC connectivity, supporting the overall information spreading

in social systems, would be most threatened by the removal of the node that is

directly connected to the weak links [135]. Further research with much larger

representative samples of networks is required to identify whether or not this

pattern is generalisable beyond this study.

• Density:

Table 5.4 shows that the densities of all the hateful retweets’ networks in Table

5.4 are higher than 0.0005. Moreover, the densities of all the hateful retweet net-

works are higher (by 0.00033) than the suicidal network. Although Anti-Muslim

2 recorded the lowest density of all the hateful retweet networks, its density is

higher than that of the suicidal retweet network. According to the sizes of the

GC of the hateful networks, it is expected that the suicidal network will record

a higher density than the hateful networks; this is because the density of the real

systems network (e.g. Twitter networks) is inversely proportional to the size of

that network or GC in this case [114]. However, Table 5.4 shows that the density

of the suicidal’s GC is also smaller than the ones recorded for the hateful net-

works. This means that the GC of the suicidal network has a smaller number

of node connections than the hateful networks. Broadly speaking, the density

measurements suggest higher connectivity among the hateful users compared to

the suicidal retweets’ network, which is interpreted as higher levels of informa-

tion propagation. However, further research with larger representative samples

of networks is needed to identify whether or not this pattern is generalisable

beyond this study.
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• Average Degree:

Table 5.4 shows the average degree of the anti-Muslim networks (2.09, 2.3)

is slightly higher than the antisemitic network (1.9), with all hateful networks

higher than the comparison suicide network (1.4). The consistently higher av-

erage degree indicates more nodes were reachable on average and increased the

propagation of hateful content through the network. The maximum degree of

hateful content is higher than that of the suicide network for all three hateful

retweet networks. The overall degree, in-degree and out-degree distributions are

illustrated in Figures 5.7, 5.8 and 5.9 show a property of scale-free networks with

the existence of fewer nodes in the network with higher levels of retweets, and

many other nodes with fewer retweets.

Figure 5.7: Degree distributions of the retweet networks
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Figure 5.8: In-degree distributions of the retweet networks

Figure 5.9: Out-degree distributions of the retweet networks
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Moreover, all the hateful retweets’ networks in this study show higher in-degree

distribution than out-degree distribution for degrees larger than 10. This suggests

that popular users (high in-degree), in this sample, are responsible for creating

information cascades as they are highly retweeted by other hateful users in the

hateful retweets’ networks. This behaviour has also been seen in the suicidal

retweets’ network. Moreover, the suicidal retweets’ network, in this sample,

shows an absence of nodes with a high out-degree, compared to the number of

out-degree edges in the hateful retweets’ networks. Out-degree suggests a con-

siderable number of the hateful users engaged significantly with hateful conver-

sations by retweeting other users’ hateful messages as ’super-retweeter’, while

the suicidal retweets’ network does not indicate this behaviour. This suggests

more co-operation in terms of the spread of the message (hate) in hateful net-

works, across all three hateful networks, and less in the suicide network would

be seen.

Table 5.4 shows that the average clustering coefficient is low for all networks,

suggesting a lack of coherent sub-groups within the overall networks. In addi-

tion, it is not feasible to show here the degree distribution of the local clustering

coefficient as not all the networks exhibit a similar average clustering coefficient.

• Reciprocity:

Table 5.4 shows that the reciprocity among the hate networks ( 12-18%) is higher

than the comparator suicide network (0.9%) and fairly consistent. While the

density and average clustering coefficients do not suggest significant smaller ’or-

ganised’ subgroups exist (where users all retweet each other), there is clearly a

consistent level of reciprocal retweeting in the context of hateful content that

would appear to be higher than a comparator network. Although the relationship

between these retweeters is not necessarily a friendship link, there is a noticeable

level of co-operation.

• Diameter:
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Table 5.4 shows there is a consistent level of information flow among the retweet

networks, with the anti-Muslim network exhibiting a slightly higher diameter,

but the antisemitic network having a slightly higher average shortest path. How-

ever, we should consider the size of the GC as the average shortest path is calcu-

lated for this largest sub-graph and not for the entire network. Table 5.4 shows

that the hateful networks have a consistently sized ( 69%-81%) and significantly

larger GC than the suicidal network (31.3%). This means while the same num-

ber of steps are needed to reach the largest cluster, the hateful content reach is

consistently much larger than the suicide content - with between 37.9 and 50%

more users reached by retweeting.

5.4 Conclusion

This chapter includes an analysis of the graph characteristics of three Twitter datasets

of users who have posted tweets that human annotators agreed should be classified as

containing evidence of hateful content. For the purposes of the research, these net-

works are referred to as hateful networks. Social network analysis (SNA) was conduc-

ted by investigating the social graphs of the followers and retweets of hateful users.

Six metrics were applied on the hateful networks to examine the similarity and the

differences between them, and results were compared with another "risky" network -

suicidal ideation language.

For the hateful followers’ networks, it was found that users were at similar levels in

terms of risk of exposure to hateful content, with suicide networks as a comparator

risky network at least 10% lower. This means that hateful followers’ networks, in this

sample, consistently tend to be more vulnerable to hate exposure [199] than the suicidal

followers’ network, which suggests a potential virality of hateful content.

For the hateful retweets networks, several structural similarities were observed in the

sample, as were differences between the hateful retweet network in terms of social net-
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work metrics. Also, there was a consistently and significantly greater reach of content

(contagion), and greater degree of co-operation on the spread of the message (hate) in

hateful networks, across all three hateful networks, and less in the comparator ’risky’

network - suicidal ideation. Hateful content reaches more users in fewer hops.

In the end, the aim of this study was to understand the characteristics of hateful on-

line social networks in a non-representative small sample to help understand individu-

als’ exposure to hate and cyberhate propagation. The findings provide some evidence

that shows consistent metrics between hateful follower and retweet networks, many of

which show higher risk of content exposure and contagion than a comparator ’risky’

network of a similar size and connectivity. An expansion of this study using a much

larger representative sample of networks could help the researcher and decision-makers

understand and predict these networks’ behaviour and suggest related solutions.

Naturally, our approach presents a limitation. It was conducted on a limited size set of

annotated posts. Thus, it is still likely to represent a sub-section of the entire sample of

hateful networks and hateful users engaged in posting hateful tweets, suggesting that

our findings may be applicable to a small sample. However, because real-world net-

works such as social networks and the Internet are huge, obtaining the entire network

structure is difficult, and typically only part of the network structure is available from

network [132, 211, 218]. Also, even if the investigation started from a relatively large

dataset, the users who post tweets classified as containing hate may face a suspension,

which is a problem that has been faced in this study. When an account that posts hate

speech is suspended, it is not possible to download the user’s profile to collect their

followers.

Research often refers to cyberhate as a virus that spreads like an infectious disease in

our societies, affecting the most vulnerable people [120, 86]. One way to mitigate a

specific virus’s pandemic is to isolate the virus to prevent it from spreading. Similarly,

cyberhate could possibly be managed by disrupting its propagation. One way to do

this could be by removing/blocking users who post hateful ideologies to reduce the
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propagation of their content. This brings us to the question of which nodes could be

most usefully removed to reduce the connectivity of a hateful network and decrease

the propagation of hateful content. The next chapter considers different strategies for

removing hateful users to reduce hateful networks’ connectivity.
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Chapter 6

Disrupting Hateful Networks

6.1 Introduction

The previous chapter focused on the characterisation of hateful networks to better un-

derstand their connectivity on Twitter. It showed that hateful followers’ networks, in

a sample at hand, exhibit connectivity characteristics consistent across them all and

higher connectivity than the comparator risky network, suggesting a higher exposure

to, and potential virality of, hateful content. Furthermore, it provided evidence that

hateful retweeters in the sample display similar characteristics regarding some aspects,

whilst they are different in other aspects. Additionally, they exhibit consistently high

levels of information propagation behaviour, with a greater reach of content contagion

in the hateful retweet networks than the comparator ’risky’ network.

Over the past few years, the incidence of cyberhate reports has been increasing [2],

suggesting an unsettling direction for the well-being and safety of our society. Fur-

thermore, exposure to and engagement with online hate on social media has been sug-

gested to promote offline aggression, with some perpetrators of violent hate crimes

reported to have engaged with such content [102]. Online social media platforms have

enabled social groups to reach much further into society than ever before. Online so-

cial networking sites have made it possible to spread different types of material, even

transnationally, thereby providing additional avenues for encouraging hate and radic-

alism and allowing various hate groups to flourish online [245]. In addition, online
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hate groups and other individuals disseminating hateful ideologies can recruit young

members to join or support their actions [193]; they may also directly incite extreme

violence [51, 176]. Previous studies of youth exposure to online hate material show

that visiting hate sites is associated with violent behaviour [348].

Online social media platforms are challenging to regulate [177], and policymakers

have struggled to suggest practical ways of reducing cyberhate [7]. Efforts to ban and

remove hate-related content have proved ineffective [1]. This is because removing

certain content from a particular online source cannot guarantee the unavailability of

the same content elsewhere [214]. Also, regulating hateful content may be considered

to be against freedom of expression, e.g. cyber-libertarians argue against the regu-

lation and censorship of internet content which could obstruct the free flow of ideas

and information. Thus, we need to control or disrupt the connectivity and the flow of

cyberhate and reduce exposure to and the propagation of hateful content through tar-

geted intervention in the flow of hate. The aim of this chapter is to simulate disruption

methods, also called node removal strategies [160, 53], prevention strategies [259] or

intervention strategies [343], in order to curtail and contain cyberhate (through network

pruning) on Twitter. Disruption methods aim to decrease or manage the connections

or ties between the actors in a network. It is through these connections that actors

can possess strategic positions, exchanging and sharing resources with other actors in

the network. Disruption methods could include the possibility of identifying contagion

pathways in hateful networks and evaluating the reduction in exposure of the network’s

users, also called the network’s nodes (see Chapter 2, Section 2.6) to receiving hateful

content, in the same way we might expect the spread of a traditional offline virus to be

contained.

This study addresses the question of whether removing a proportion of nodes, de-

pending on a specific role of that node in the hateful network, may affect network

connectivity. Note that the followers’ networks are conceptually different from the

retweets networks, in that the former indicate exposure to hateful content, while the
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latter indicates the spread of content (contagion).

Examples of a specific role of a node in a hateful network are ’influencers’, ’super-

consumers’ and ’super-retweeters’ as shown in the previous chapter. The previous

chapter demonstrated that the hateful followers’ networks have fewer ’influencers’

and more ’super-consumers’ (people who follow a lot of hateful posters). In contrast,

the hateful retweets’ networks have more ’influencers’ and fewer ’super-retweeters’

(people who retweet a lot of hateful posts). Accordingly, this assumes that removing

the ’super-consumers’ may reduce the cyberhate exposure in the followers’ networks,

while removing the ’influential’ users may decrease the content propagation of the

hateful retweets’ networks - a practical application of this assumption would be useful

to show the effect of these users on the network.

Thus, the assumptions, in general, are that (i) removing the crucial nodes (or high

centrality nodes) from the followers’ networks would reduce the exposure to hateful

content for other users; and (ii) removing the strategically positioned nodes (or high

centrality nodes) from the retweets’ network would decrease the level of information

propagation and contagion. These assumptions are applied to the generic (also called

simple or one-mode) networks when the networks have one set of nodes that are similar

to each other. Also, they are applied to the bipartite (also called affiliation or two-mode)

version of the hateful networks which have two different sets of nodes and ties existing

only between nodes belonging to different sets. Changes to the network connectivity

(whether the structure of the network has significantly changed or ’disconnected’) can

be measured using the common network connectivity metrics that were discussed in

the previous chapter.

To the best of the author’s knowledge, it appears that no such study has applied dis-

ruption strategies to Twitter hateful networks to reduce network connectivity (exposure

reduction) and potentially diffuse hate (contagion reduction).

The remainder of the chapter is organised as follows. Section 6.2 describes the methods

of the present research. Section 6.3 reports the results, and the discussion and Section
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6.5 concludes.

6.2 Methods

This section is reflecting the design and development/demonstration phases of the Data

Science Research Methodology (DSRM) that have been mentioned in Chapter 3. Ac-

cordance to 3, this section aims to develop strategies (using the same datasets designed

in Chapter 4) to identify nodes within hateful networks (user accounts) whose removal

is empirically shown to reduce connectivity (largest component, density and average

shortest path) in both the follower and retweet networks.

6.2.1 Data

To directly evaluate the effectiveness of disruptive strategies, the author used the same

datasets used in the previous chapter. Two followers’ networks: Anti-Muslim 1 and

Anti-Muslim 2, and three retweets’ networks: Anti-Muslim 1, Anti-Muslim 2, and an

antisemitism network, in addition to the comparator risky networks: suicidal followers’

networks and suicidal retweets’ networks (see Chapter 5, Section 5.2.1). To remind the

reader, Table 6.1 summarises the number of nodes and edges for each network.
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Table 6.1: Numbers of the nodes and the edges of the hateful networks
Followers’ networks

Network Nodes Edges

Anti-Muslim 1 1004 2644

Anti-Muslim 2 1073 2895

Suicidal 987 2410

Retweets’ networks

Network Nodes Edges

Anti-Muslim 1 1229 2571

Anti-Muslim 2 5581 16338

Anti-Semitic 2748 5091

Suicidal 3209 2211

6.2.2 Centrality Metrics

To understand the importance of the network’s nodes being studied, it is normal to start

with an evaluation of their location relative to all other nodes in the network [206]. In

graph theory and network analysis, indicators of centrality identify the most important

nodes within a graph. One node (or a set of nodes) is considered to be important if its

removal would largely reduce the network’s stability or robustness or make the network

more vulnerable [53, 251].

There are many measures of node centrality that capture the importance of nodes within

a network. This research is interested in five centrality metrics: the degree centrality

and the separate measures of degree centrality, namely in-degree and out-degree; the

betweenness centrality, and the eigenvalue centrality of a given node [324, 70] or a

group of nodes. The measures are selected because they are frequently used centrality

measures for removal strategies [112] (see also Table 2.7, Chapter 2).

• Degree centrality: The degree centrality for a node is simply its degree. Recall
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that a node’s degree is simply a count of how many social connections (i.e.,

edges) it has. A node with 10 social connections (edges) would have a degree

centrality of 10. A node with 1 edge would have a degree centrality of 1. For

a graph G with n nodes and edges e, the degree centrality for a node v ∈ G is

d(v):

d(v) =
degree(v)

n− 1
(6.1)

The degree can be interpreted in terms of the immediate risk of a node catching

whatever is flowing through the network (such as a virus, or some information).

Thus, nodes with high degree are considered important in network exposure and

propagation. In a theoretical study, Golub et al. [134] found that the efficient

diffusion of influence through a network is limited by the presence of highly

influential, high degree nodes. In the case of a directed network (where ties

have direction, e.g. followers’ and retweets’ networks), we usually define two

separate measures of degree centrality, namely in-degree and out-degree [292].

Accordingly, in-degree is a count of the number of ties directed to the node,

whereas out-degree is the number of ties that the node directs to others.

In terms of follower networks, out-degree means that users can directly consume

(see, read) the content posted by other users. In this case, the research interest

lies in the out-degree, which represents the number of users that someone fol-

lows (e.g. if A has an out-degree of 5, it means A follows five people). Higher

out-degree values mean a wider exposure to different sources of information

propagators (more information coming from a number of other sources). Also,

the research interest lies in the in-degree, which represents the number of follow-

ers that follow a user (e.g. if A has an in-degree of 5, it means five people follow

A). Higher in-degree value refers to influential users (content creation hubs or

conversational hubs) who can be responsible for hate creation and propagation.

For the retweet network, in-degree for each node is how many other users retweeted

the tweet of the user (e.g. if A has an in-degree of 5, it means they have been

retweeted by five different users). Out-degree represents the number of retweets



6.2 Methods 167

a user tweet from other users (e.g. if A has an out-degree of 5, it means they

retweeted five tweets posted by five different users). High in-degree indicates

high hate propagation as more users are retweeting the specific member’s tweets;

hence, this member has more influence on others [162]. On the other hand, high

out-degree indicates a high level of diversity of the retweeted content as a user

is retweeting a large number of accounts. They may only consume informa-

tion and not be creating it or influencing others in a significant way [21]. Their

importance is also because they can interact with many others [142]- e.g. in col-

laboration networks, this measure helps indicate how collaborative each author

is [340]. According to Roland et al. [275], in retweet networks, in- and out-

degree centrality metrics capture the users’ engagement with other users and the

content of their posts; and they also form vital bridges. These metrics indicate

the actual attention given to content and the action that users took to disseminate

information. So, both in-degree and out-degree nodes could play an essential

role in the networks that are examined here.

• Betweenness centrality: This metric is a measure of accessibility that is the

number of times a node is crossed by shortest paths in the graph. It represents

the degree to which nodes stand between each other. In other words, the more

people depend on a user to make connections with other people, the higher that

user’s betweenness centrality becomes. For example, in a telecommunications

network1, a node with higher betweenness centrality would have more control

over the network, because more information will pass through that node. This is

useful for finding the individuals who influence the flow around a system. For a

graph G, the betweenness centrality for a node v ∈ G is b(v):

b(v) =
∑

s 6=t6=v)

σst(v)

σst
(6.2)

where σst denotes the number of shortest paths between nodes s and t (usually

1A telecommunications network is a group of nodes interconnected by links that are used to ex-

change messages between the nodes, e.g. computer networks and the Internet



6.2 Methods 168

σst = 1) and σst (v ) expresses the number of shortest paths passing through node

v .

• Eigenvalue centrality: A node with a high eigenvalue is important as a con-

nector for high information diffusion. Degree centrality measures the number of

connections a node has but disregards the position of the nodes to which they are

connected. Eigenvalue centrality modifies this approach by giving a higher cent-

rality score to nodes with connections to other nodes that are themselves central.

In other words, it can be said that the centrality of a given node v is proportional

to the sum of the centralities of v ’s neighbours. This is the assumption behind

the eigenvalue centrality formula, which is for a graph G and let let A = (av,j)

be the adjacency matrix2, the eigenvalue centrality for a node v ∈ G is e(v):

e(v) = xv 1
λ

n∑
j=1

avjxj (6.3)

where xv , xj denotes the centrality of node v, j and n denotes the number of the

graph nodes. λ denotes the largest eigenvalue of G and avj represents an entry

of the adjacency matrix A(av, aj) = 1 if nodes v and j are connected by an edge

and (av, aj ) = 0 otherwise.

The closeness and betweenness centralities embody closely related ideas [206]. The

closeness centralities measure the inverse of the sum of all shortest paths to other nodes.

However, the closeness centrality metric was excluded because it measures the close-

ness of a node in the biggest component rather than in an entire network. If the biggest

component is highly connected, all the nodes would be shown with a similar score,

meaning that all the nodes would have a high closeness.

2In graph theory, an adjacency matrix is a square matrix used to represent a finite graph. The

elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.
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6.2.3 Node Removal Strategies

The previous section explored several centrality methods used to detect the importance

of a node in a network. The challenge here is to identify nodes within the hateful

networks, whose removal would decrease the connectivity and reduce the flow of hate-

ful content. The followers’ networks indicate exposure to hateful content, while the

retweets’ networks indicate the spread of content (contagion). Therefore, the assump-

tions are that: (i) removing the important nodes (high central nodes) from the follow-

ers’ networks would reduce the exposure to hateful content for other users (remove key

content providers); and (ii) removing the important nodes (high central nodes) from the

retweets’ network would decrease the level of information propagation and contagion.

To efficiently identify nodes v whose removal reduces exposure and contagion within

the network most, 13 structured heuristic node removal strategies were designed using

different node centrality metrics explained below:

Single Node Removal Strategies

• Degree-based strategy: This strategy uses a degree centrality metric to select

the nodes with the highest degree maxdeg(v) and remove them. The steps of the

degree-based strategy are simply explained in Algorithm 6.1.
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Algorithm 6.1 Degree-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate degree centrality

3: if v =maxdeg then

4: Remove v

5: if (1% OFH) nodes are removed then

6: Return GC(H), d(H), l(H)

7: Recalculate degree centrality

8: else

9: Remove v

10: end if

11: else

12: Return null

13: end if

14: end for

• Indegree-based and Outdegree-based strategies:

These strategies select the nodes with the highest in-degreemaxindeg(v) or highest

out-degreemaxoutdeg(v) and remove them. The equation used to calculate the in-

degree and out-degree centrality is the same as the equation for degree centrality,

but it considers out-degree or in-degree instead of degree.

Algorithm 6.2 explains the in-degree-based strategy and; Algorithm 6.3 explains

the out-degree-based strategy.
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Algorithm 6.2 Indegree-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate indegree centrality

3: if v =maxindeg then

4: Remove v

5: if (1% OFH) nodes are removed then

6: Return GC(H), d(H), l(H)

7: Recalculate indegree centrality

8: else

9: Remove v

10: end if

11: else

12: Return null

13: end if

14: end for
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Algorithm 6.3 Outdegree-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate outdegree centrality

3: if v =maxoutdeg then

4: Remove v

5: if (1% OFH) nodes are removed then

6: Return GC(H), d(H), l(H)

7: Recalculate outdegree centrality

8: else

9: Remove v

10: end if

11: else

12: Return null

13: end if

14: end for

• Betweenness-based strategy: This strategy selects the nodes with the highest

betweenness maxbet(v) and removes them - see Algorithm 6.4.
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Algorithm 6.4 Betweenness-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate betweenness centrality

3: if v =maxbtw then

4: Remove v

5: if (1% OFH) nodes are removed then

6: Return GC(H), d(H), l(H)

7: Recalculate betweenness centrality

8: else

9: Remove v

10: end if

11: else

12: Return null

13: end if

14: end for

• Eigenvalue-based strategy:

This strategy selects the nodes with the highest eigenvalue maxeig(v) and re-

moves them -see Algorithm 6.5.
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Algorithm 6.5 Eigenvalue-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate eigenvalue centrality

3: if v =maxegv then

4: Remove v

5: if (1% OFH) nodes are removed then

6: Return GC(H), d(H), l(H)

7: Recalculate eigenvalue centrality

8: else

9: Remove v

10: end if

11: else

12: Return null

13: end if

14: end for

• Random-based strategy: Random node removal strategy was used as a baseline

to examine the performance of the five structured node removal strategies. This

strategy selects the nodes randomly and removes them. It is also important to

investigate if the hateful networks are robust against random node removal or if

they show different behaviour to scale-free networks [23, 22, 209, 91].

The fundamental differences between the degree-based, the betweenness-based and the

eigenvalue-based strategies are that the degree-based method concentrates on reducing

the total number of edges in the network as fast as possible, whereas the betweenness-

based approach concentrates on removing as many edges as possible in the shortest

path [150]. Holme et al. [150] showed that the degree-based procedure removes
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edges connecting nodes with high degrees very fast; as a consequence, the original

network maybe split into many subgraphs of nodes with low (but not zero) degrees.

The betweenness-based strategy, on the other hand, concentrates on nodes of high

betweenness, and thus the nodes that passed by more shortest paths are first lost. Con-

sequently, it may elongate the average shortest path but not necessarily disconnect a

network; thus, it indicates the potential of a node in controlling communications in a

network. The eigenvalue-based strategy aims to deconstruct the bridges between the

highest impact nodes. A node with a large eigenvector centrality is important because

it is connected to nodes with more connections. Eigenvalue centrality was also used to

measure the popularity and importance of a node in (non-hateful) social networks by

Newman et al. [240] and Bonacich et al. [55].

Implementation was undertaken using the Python language, NetworkX package. As

an example of a degree-based strategy, the degrees of the graph table were calculated

and sorted in descending order. The first 1% of the node was removed then the GC was

recalculated. The following code was used:

nx . d e g r e e (G)

s o r t = s o r t e d (G. degree , key=lambda x : x [ 1 ] , r e v e r s e =True )

L = nx . l i n e _ g r a p h (G)

c o u n t = ( 1 / L )

remove = [ node f o r node , d e g r e e i n

d i c t (G. d e g r e e ( ) ) . i t e m s ( ) i f s o r t > c o u n t ]

G. remove_nodes_from ( remove )

l a r g e s t _ c c = max ( nx . connec t ed_componen t s (G) )

Hybrid Node Removal

The hybrid node removal strategy in this study was a combination of two strategies ap-

plied to the network as one strategy. The objective of applying these strategies was to
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provide further insight into node removal strategies in cyberhate networks. Seven hy-

brid strategies were examined: DegreeBetweenness-based, DegreeEigenvalue-based,

IndegreeBetweenness-based, IndegreeEigenvalue-based, OutdegreeBetweenness-based,

OutdegreeEigenvalue-based and BetweennessEigenvalue-based strategies. To avoid

any bias that may occur in the combined (hybrid) node removal strategy’s results, we

decided to delete equal numbers of the highest centrality nodes of each strategy of the

combined strategy. For more clarification, the node deletion for a DegreeBetweenness-

based strategy is given below:

• (a):Calculate the degree and betweenness centrality of the network’s nodes.

• (b):Search for the maximum degree nodes, arrange them in descending order and

then delete 0.5% of H nodes.

• (c): Search for the maximum betweenness nodes, arrange them in descending

order and then delete 0.5% of H nodes.

• (d): Now the overall deleted nodes is 1% of the H nodes.

• (e): Calculate the (GC), density and the average shortest path.

• DO this until 10% of nodes are deleted.

Seven hybrid node removal strategies are defined below:

• DegreeBetweenness-based strategy: This strategy selects nodes with the highest

degree and highest betweenness and removes them. Algorithm 6.6
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Algorithm 6.6 DegreeBetweenness-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate degree and betweenness centrality

3: if v =maxdeg then

4: Remove v DO until (0.5% OF H) nodes are removed

5: if v =maxbtw then

6: Remove v

7: if (1% OF H) nodes are removed then

8: Return GC(H), d(H), l(H)

9: Recalculate degree centrality and betweenness centrality

10: else

11: Remove v

12: end if

13: else

14: Return null

15: end if

16: end for

• IndegreeBetweenness-based strategy: This strategy selects nodes with the highest

indegree and highest betweenness and removes them. Algorithm 6.7 explains

IndegreeBetweenness-based strategy as follow:
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Algorithm 6.7 IndegreeBetweenness-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate degree and betweenness centrality

3: if v =maxindeg then

4: Remove v DO until (0.5% OF H) nodes are removed

5: if v =maxbtw then

6: Remove v

7: if (1% OF H) nodes are removed then

8: Return GC(H), d(H), l(H)

9: Recalculate indegree centrality and betweenness centrality

10: else

11: Remove v

12: end if

13: else

14: Return null

15: end if

16: end for

•

• OutdegreeBetweenness-based strategy: This strategy selects nodes with the

highest outdegree and highest betweenness and removes them. Algorithm 6.8

explains OutdegreeBetweenness-based strategy as follow:
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Algorithm 6.8 OutdegreeBetweenness-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate outdegree and betweenness centrality

3: if v =maxoutdeg then

4: Remove v DO until (0.5% OF H) nodes are removed

5: if v =maxbtw then

6: Remove v

7: if (1% OF H) nodes are removed then

8: Return GC(H), d(H), l(H)

9: Recalculate outdegree centrality and betweenness centrality

10: else

11: Remove v

12: end if

13: else

14: Return null

15: end if

16: end for

• BetweennessEigenvalue-based strategy: This strategy selects nodes with the

highest betweenness and highest eigenvalue and removes them. Algorithm 6.9

explains BetweennessEigenvalue-based strategy as follow:
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Algorithm 6.9 BetweennessEigenvalue-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate betweenness and eigenvalue centrality

3: if v =maxbtw then

4: Remove v DO until (0.5% OF H) nodes are removed

5: if v =maxegv then

6: Remove v

7: if (1% OF H) nodes are removed then

8: Return GC(H), d(H), l(H)

9: Recalculate betweenness centrality and eigenvalue centrality

10: else

11: Remove v

12: end if

13: else

14: Return null

15: end if

16: end for

• DegreeEigenvalue-based strategy: This strategy selects nodes with the highest

degree and highest eigenvalue and removes them. Algorithm 6.10 explains DegreeEigenvalue-

based strategy as follow:
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Algorithm 6.10 DegreeEigenvalue-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate degree and eigenvalue centrality

3: if v =maxdeg then

4: Remove v DO until (0.5% OF H) nodes are removed

5: if v =maxegv then

6: Remove v

7: if (1% OF H) nodes are removed then

8: Return GC(H), d(H), l(H)

9: Recalculate degree centrality and eigenvalue centrality

10: else

11: Remove v

12: end if

13: else

14: Return null

15: end if

16: end for

• IndegreeEigenvalue-based strategy: This strategy selects nodes with the highest

indegree and highest eigenvalue nodes and removes them. Algorithm 6.11 ex-

plains IndegreeEigenvalue-based strategy as follow:
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Algorithm 6.11 IndegreeEigenvalue-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate indegree and eigenvalue centrality

3: if v =maxindeg then

4: Remove v DO until (0.5% OF H) nodes are removed

5: if v =maxegv then

6: Remove v

7: if (1% OF H) nodes are removed then

8: Return GC(H), d(H), l(H)

9: Recalculate indegree centrality and eigenvalue centrality

10: else

11: Remove v

12: end if

13: else

14: Return null

15: end if

16: end for

• OutdegreeEigenvalue-based strategy: This strategy selects nodes with the highest

outdegree and highest eigenvalue and removes them. Algorithm 6.12 explains

OutdegreeEigenvalue-based strategy as follow:
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Algorithm 6.12 OutdegreeEigenvalue-based Node Removal

INPUT: H=v1, v2, .., vh

OUTPUT: Giant component (GC), density (d) and average shortest path (l) of H

1: repeat until remove (10% OFH)

2: for each vi ∈ H do calculate outdegree and eigenvalue centrality

3: if v =maxoutdeg then

4: Remove v DO until (0.5% OF H) nodes are removed

5: if v =maxegv then

6: Remove v

7: if (1% OF H) nodes are removed then

8: Return GC(H), d(H), l(H)

9: Recalculate outdegree centrality and eigenvalue centrality

10: else

11: Remove v

12: end if

13: else

14: Return null

15: end if

16: end for

Networkx package of the Python language was used for implementation. The

code is similar to the code applied to the single node-removal strategy; however,

it calculates two centralities (e.g. degree and betweenness) for each node. After

that deletion is implemented on 0.5% of the highest degree nodes and then on

0.5% of the highest betweenness nodes. Ultimately, the percentage of deleted

nodes is 1% of H for the first stage of deletion. Then we calculate the networks’

performance.

Only the first 10% of the highest central nodes were removed, and the results of the
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metrics were recorded gradually for each 1% removed. Previous research results show

that highly influential nodes are rare in social networks [357], which is the reason we

chose to only remove 10% in descending order of the centrality of the nodes. For

instance, Otsuka et al. [248], Gallos et al. [124], Xu et al. [343] and Duijn et al.[108]

considered removing 4%-8%-10%. The results of the removal strategies approximate

the effects of different strategies that reflect the role of the node within the network.

In each round of node removal, the centrality metrics had to be recalculated because,

according to Nie et al. [242], Bellingeri et al. [40], Cohen et al. [84]and Iyer et al.

[158], this provides more efficient deletion than the non-recalculated method. Node

removal strategies were applied to the hateful networks (followers’ and retweets’ net-

works), and also applied to the suicidal networks to show the similarities and differ-

ences in the role of the nodes within non-hateful networks.

Network performance metrics

It is expected that the hateful network will be restructured after removing a portion of

specific nodes. The impact of different node removal strategies was measured through

changes in the networks’ GC, the density, and the average shortest path metric of the

different networks, see Chapter 5, Section 5.2.3. We selected these metrics because

network GC and network average shortest path have been widely used as an indicator

of network changes/failure/distribution [343, 264, 52, 168] - also see Table 2.7, Chapter

2. GC represents the maximum number of nodes connected among the network and

is the simplest and most widely applied indicator of network functioning - adopted

to evaluate the connected-ness of internet routers [23], the vulnerability of power grids

[345] or as a measure of the epidemic spreading, in terms of finding the best vaccination

strategies [80, 282]. Reducing the GC to a small, connected component is a positive

sign of the effectiveness of the node removal strategy.

In contrast, the increase of the average shortest path is a positive sign of the node

removal strategy as it indicates the removal of vital bridges (fundamental hubs) that
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’shorten’ the distance between the nodes. Figure 6.1 shows a simple network contain-

ing numbered nodes as an example of a network being restructured after removing a

node. The shortest path between node0 and node2 is 2, passing through node3. When

node3 is removed, the shortest path between node0 and node2 will become 4, as the

content needs to be passed via 3 nodes - node4 then node5, and then node1 to reach its

destination.

Figure 6.1: Example graph that shows removing node3 will increase the shortest

path between node0 and node2 .

Also used is the density metric; this is because a previous study by Luarn et al. [207]

showed that network density is positively related to transmitter activity on social net-

work sites. Moreover, on Twitter, the rate at which information is spread through a

network was found to depend on its density [197]. The clustering coefficient metric

has been excluded because not all the hateful retweets’ networks exhibit a similar av-

erage clustering coefficient. Also, the reciprocity metric has been excluded as it is very

tiny for the suicidal retweets’ network compared to the hateful retweets’ network.
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6.2.4 Removal Strategies on the Bipartite Networks

Most social networks are conceived of as relationships among a set of nodes; an ex-

ample of this is our generic hateful followers and retweet networks previewed in Sec-

tion 6.2.1 (also called one-mode as they are represented as a 1-mode matrix). However,

bipartite network (also referred to as two-mode) data are also common in social net-

work contexts. Bellingeri et. al.[40] found that the efficiency of removal strategies

(fraction of nodes to be deleted for a given reduction of GC size) depends on the topo-

logy of the network. Applying bipartite networks, we can obtain different topology that

may show different nodes’ roles in a network- we need to detect different nodes’ roles

for finding the best way for disrupting the hateful networks. In generic networks (one-

mode), user one is connected with user two by a tie that represents the relationship,

(follow/followed) or (retweet/retweeted). In a bipartite network, user one is connected

to user two by an affiliation relationship, e.g. user A and user B are both following the

same user.

To make this clearer, we refer the reader to Figure 6.2 below:

Figure 6.2: A bipartite network (left) and the generic network (right). Notice that

the link is obtained twice since B and C have two neighbours in common in the

bipartite network. .

Figure 6.2 shows a bipartite network (left) and the same network in a generic mode

(right). It demonstrates that each top vertex induces a clique (complete subgraph)

between the bottom nodes to which it is linked. Consider that B and C users follow the

blue, but B and C may not know each other; they belong to the same affiliation Blue

(they belong to the same clique). Tables 6.2 show the adjacency matrix of the generic
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network and the bipartite network.

Table 6.2: One-mode matrix for the generic network (left) and Two-mode matrix

for the Bipartite network (right).
A B C D E

A 2 1 1 0 0

B 1 3 1 1 0

C 1 1 3 1 1

D 0 1 1 3 0

E 0 0 1 0 0

Blue Red Green Purple

A 1 0 0 0

B 1 1 0 0

C 1 1 1 0

D 0 1 0 1

E 0 0 1 0

The two tables are an examples of the simple (generic) network in Table 6.2(left) and

the bipartite version of these networks (right). Table 6.2 (left) shows that the:

• The rows and column are the same set.

• The numbers refer to how many groups (cliques) the one user shares with others,

in terms of the follower’s network, A share with B a follow/retweet relationship.

• The numbers mean that some ties are stronger than others. For example, A and

E are not sharing the following relationship meaning that they may or may not

be connected via a weak tie. The same goes for the retweet networks.

For the bipartite network, Table 6.2 (right) shows that the:

• The rows and the column are not the same set.

• The 0,1 numbers refer to whether the users in the column are affiliated with (or

belong) to the group (clique) in the rows. In terms of the followers’ network, A

belongs to Blue group (clique) but not to Red group.

• The third row indicates that C belongs to the three relationship groups. The same

goes for the retweet networks.
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The two-mode or the bipartite network adds an extra layer for the formation of rela-

tionships among the network’s users. This means that the important role of the users in

the network may become slightly different in a bipartite network. For example, when

applying an intended attack or (node removal) to a generic network, Figure 6.2 (right),

we are targeting the nodes themselves, while for an intended attack on the bipartite

network, Figure 6.2 (left), we consider the removal of the nodes in the bottom set an-

d/or the group’s node in the above set. However, there are differences between the

values obtained from the bipartite models and real-world networks. In bipartite net-

works, many top nodes have a large neighbourhood intersection. In other words, the

overlap between cliques is significant, and more precisely, if two cliques have one node

in common, then they certainly have many[191]. So does this means that removing a

common node may affect the overlapping cliques or will they still be connected by the

other common nodes? This is the motivation behind applying the chosen node removal

strategies to bipartite hateful networks. Bipartite networks may be extracted from a

directed network or indirected network. Above we explained the bipartite network in

general. In this study, we are interested in the directed bipartite, which is extracted

from a directed network; thus, we first need to convert the directed networks into a

directed bipartite version, similar to [358] and [41]. This is shown in Figure 6.3.

Figure 6.3: Constructing a bipartite graph from a directed one. Left: directed

graph. Right: bipartite graph.
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In Figure 6.3 (right) users of numbers 2, 3 and 4 are followed or retweeted by users

of numbers 1, 3, 5 and 6. Users of number 1 and 3 follow/retweet the same users,

meaning that they belong to the same affiliation relationship. Notice that user number

3 exists in both sets; however, it is considered as two users. When number 3 is removed

from one set, it will not be removed from the other set.

Figure 6.4 shows the steps needed to apply node removal strategies to a bipartite net-

work.

Figure 6.4: Steps of the node removal strategies on the bipartite networks

Figure 6.4 illustrates that we first converted the edgelist of our network using Panda

package3 Data frame into two-mode matrix , as follows:

d f = pd . get_dummies ( O u r E d g e l i s t . s e t _ i n d e x ( ' Ta rge t ' )

[ ' Source ' ] ) . max ( l e v e l =0)

3Pandas is a software library written for the Python programming language for data manipulation

and analysis. In particular, it offers data structures and operations to allow the user to manipulate nu-

merical tables and time series.
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Then build the bipartite network using the Networkx package.

from networkx . a l g o r i t h m s i m p o r t b i p a r t i t e

B = nx . Graph ( )

# Add nodes wi th t h e node a t t r i b u t e " b i p a r t i t e "

B . add_nodes_f rom ( df . Ta rge t , b i p a r t i t e =0)

B . add_nodes_f rom ( df . Source , b i p a r t i t e =1)

# Add edges on ly between nodes o f o p p o s i t e node s e t s

G = B . add_edges_f rom ( d f )

After that we calculated the node centrality for all the nodes on B. Then the node

removal strategies were applied: ’single’, hybrid and random node removal strategies;

the codes are similar to those mentioned previously for the single and hybrid node-

removal strategies. In order to compare the performance of the node removal strategies

on the bipartite (two-mode) networks with the performance of the same strategies on

the generic networks (one-mode), we converted the bipartite network after the removal

of the nodes into a one-mode network using projection. Directed networks are allowed

as input for the projection. The output will also then be a directed network with edges

if there is a directed path between the nodes in the bipartite networks. The projection

has been implemented using the NetworkX package as follows:

Im po r t Networkx as nx

from networkX . a l g o r i t h m s i m p o r t b i p a r t i t e

G=nx . p r o j e c t e d _ g r a p h (B , T a r g e t )

The reason for converting the bipartite network into a one-mode network in this step

is because bipartite networks (two-mode networks) tend to have more and larger GCs

than generic networks (one-mode networks)[324]. These are produced when three or

more nodes are connected to a common node in the two-mode network. The perform-

ance of the node removal strategies was measured on only the largest component (GC),
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because its value is near to the largest component of the generic hateful networks and

projected hateful networks. The density and the average shortest path were excluded

due to their measurement differences between the generic and the projected networks

(both one-mode networks). For example, the average shortest path for the Anti-Muslim

1 follower network was 5.4, while it was 5.9 for the projected network.

6.3 Results and Discussion

This part reflects the Data Science Research Methodology (DSRM) evaluation stage

that was described in Chapter3. According to Chapter 3, this section aims to identify

if applying node removal strategies (disruption strategies), depending on the node role

in the network, will reduce network connectivity (exposure reduction) and diffuse the

spread of hate (contagion reduction).

6.3.1 Single Node Removal Strategies

Followers Networks

Figures 6.5, 6.6 and 6.7 show the six removal strategies that were applied to the follow-

ers’ networks. Of the six removal strategies tested, the random removal strategies were

the least effective. This is in line with Jahanpour et al. [160], Crucitti et al. [90] and

Wang et al. [319], who found that small-world networks have strong resilience against

a random-based node removal strategy. In general, targeting 10% of the highest degree

nodes resulted in the greatest decrease of the size of the largest component (GC) for all

the hateful followers’ networks; see Figure 6.5.
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Figure 6.5: Impact of different removal strategies on the level of the Giant Com-

ponent size of the hateful and suicidal followers’ network.

For both hateful followers’ networks, 75-83% of the largest component (GC) was

disconnected, and this is also true for the suicidal network. In contrast, using other

strategies, saw a reduction of only a 55-75% in GC size. From a network analysis per-

spective, the high degree nodes are usually connected to ’local bridges’ [143]. Local

bridges are edges between two nodes in a community that are the shortest route by

which information might travel from those connected to others in the same community

[14]. In social networks, high-degree nodes also have a higher ’bridgeness’ value as

they have a higher chance of connecting to a ’global bridge’ [164]. Global bridges

are edges between two nodes in two communities that are the shortest route by which

information might travel from one community to another community [164]; in other

words, the global bridge connects two different communities 4. This suggests that the

4Note that local bridges differ from global bridges in that the endpoints of the local bridge once the
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highest degree nodes in the hateful followers’ networks have a ’bridgeness’ character-

istic (are more likely to be connected to global bridges). Thus, when these nodes were

removed, the connected edges are also removed or changed consequently. Practically,

the removal of users who are highly followed by others (influential) or who follow a

lot of others (super-consumers), disconnects a community into two communities.

Moreover, it was observed that node removal based on out-degree (people who fol-

low a lot of others) was more effective in terms of reducing the GC than in-degree

for the hateful followers’ networks. This is expected as the previous chapter sugges-

ted that both hateful followers’ networks have fewer people with lots of followers, or

’influencers’ (in-degree) and more people who follow a lot of hateful posters, or ’super-

consumers’ (out-degree). Here, we can see that those users who follow a lot of hateful

posters are effective in connecting/disconnecting the hateful community compared to

the influencers. This means that being influential in a hateful followers’ network is not

necessarily correlated with serving a crucial role for network connectivity - while the

opposite was expected. This is a valuable finding for guiding policymakers not only to

focus on targeting the influential and ignoring other ’effective’ users.

Apart from the random-based strategy, the eigenvalue-based strategy was the least ef-

fective strategy for reducing the size of the GC for all the hateful networks, mean-

ing that they are more robust in terms of removing those nodes which are connected

with influential (high in-degree) or ’super-consumer’ nodes (high out-degree). The

eigenvalue-based strategy reduced the GC of Anti-Muslim 1 and 2 followers’ networks

by 63% and 57% which is less than the reduction achieved by a degree-based strategy.

It is possible that the explanation for this is that nodes with high eigenvalues are more

likely to be connected to important nodes (high degree nodes) by the local bridges

rather than to the global bridges [155]. Granovetter et al. [135] stated that when the

nodes connected to the local bridge are removed, the nodes on either side of the bridge

become reachable only via very long paths. Thus, the eigenvalue-based strategy had

bridge has been deleted cannot have an edge directly between them and should not share any common

neighbours.
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less impact on reducing the size of the largest component because it resulted in a sparse

largest component rather than disconnected components.

The degree-based and outdegree-based strategies also reduced the density of the hateful

networks by 47-76% for Anti-Muslim 1 and 2, respectively, whereas other strategies

recorded reduction not more than 43%, shown in Figure 6.6.

Figure 6.6: Impact of different removal strategies on the level of the density of the

hateful and suicidal followers’ network.

This is because removing the highly linked nodes (high degree nodes) reduces the

number of connected edges in the network [206, 48]. Reducing the graph edge (links)

means reducing the density, as the density is the ratio between the number of edges in

the graph and the total number of possible edges. Less positive impact on the dens-

ity reduction was observed when the betweenness-based strategy was applied to the

hateful networks, compared to the degree-based strategy, despite the finding that the
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betweenness-based strategy was the most effective strategy for reducing the scale-free

network connectivity in [40, 160]. This means that people who potentially allow hate-

ful content to pass from one part of the network to the other are contributing less to the

connectivity between the followers’ networks users compared to high degree nodes.

Figure 6.7 illustrates that applying node removal strategies to the followers’ networks

shows fluctuating decreases and increases in average shortest path as nodes are gradu-

ally removed.

Figure 6.7: Impact of different removal strategies on the level of the average

shortest path of the hateful and suicidal followers’ network .

Noticeably, the eigenvalue-based strategy elongated the average shortest path of the

Anti-Muslim 1 followers’ network from 5.4 to 8, Anti-Muslim 2 from 5.6 to 13.8 and

also from 5.05 to 9.5 for the suicidal network after removing 10% of the nodes. While

the eigenvalue-based strategy had less impact on reducing the size of the largest com-
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ponent, it is possible that this strategy has resulted in a sparse largest component (not

disconnected) and has therefore elongated the average shortest path. Elongating the

average shortest path means that the average number of steps that are needed to de-

liver content to all the users in the biggest connected community is increased. In other

studies, they refer to this effect as the efficiency measure. The efficiency measure is

based on the shortest paths between two nodes, i.e. the minimum number of links used

to travel from one node to another[121]. Efficiency decreases with an increase in the

nodes’ shortest paths; thus, more efficient networks have a small average shortest path.

For example, in the Anti-Muslim 2 follower network, a hateful tweet would poten-

tially reach all the nodes in the largest community (GC) within 5.6 steps. By removing

10% of nodes that are connected to highly linked nodes (high eigenvalue nodes), an

increase was seen in the number the steps needed to reach the majority of the nodes in

the largest community to 13 steps - essentially obstructing the information flow and, in

other words, decreasing the network efficiency. This is also true for the Anti-Muslim

1 and suicidal networks. Users who are connected to highly linked nodes (high eigen-

value nodes) are not necessarily influencers (high degree users) but they may appear

to be important for the gradual reduction of hateful flow (but not for disconnecting a

network).

However, generally, the fluctuation of the increase and decrease of the average shortest

path metric that has been noticed for the majority of the removal strategies has been

also found in previous studies [40, 39] suggesting that the average shortest path metric

might not be considered optimal for consistently measuring the connectivity perform-

ance of hateful followers’ networks. Indeed, the average shortest path metric is widely

used as an indicator for node removal efficiency in previous studies [168, 170, 327,

343]. This metric was also examined in the previous chapter in order to characterise

hateful followers’ and retweets’ networks. It led to interesting results regarding the

networks’ connectivity for both followers’ and retweets’ networks, which motivated

the author to consider it an indicator of the efficiency of removal strategies. Neverthe-

less, the author here suggests that this measure is not useful when networks have been
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significantly disconnected, which is in line with the finding of these studies [54, 53].

6.3.2 Retweet Networks

Figures 6.8, 6.9 and 6.10 show the six removal strategies that were applied to the

retweets networks. It was observed that of the six removal strategies tested, the ran-

dom removal strategy showed the least impact on reducing the size of GC, the density,

and the average shortest path. In general, targeting the highest degree nodes resulted

in the greatest decrease in the size of the largest component (GC) and the density for

all the hateful retweets networks. Figure 6.8 shows that the degree-based strategy re-

duced the size of GC by 94%, 85% and 75% for Anti-Muslim 1, the antisemitic dataset

and Anti-Muslim 2, respectively, while for the same percentage of nodes removed,

other strategies led to a reduction of between 60 and 70% in GC size. It appears that

the nodes with a high degree in the hateful retweets’ networks also have ’bridgeness’

characteristics, as explained previously in Section 6.3.1 when the removal of these

nodes disconnect a community into two communities. In reality, this means that users

with a high degree play a crucial role in hateful content propagation in the retweets’

networks, suggesting targeting these users may separate the network into smaller com-

munities and therefore decrease the network’s connectivity. Targeting the highest out-

degree users, ’super-retweeters’, appears a more effective strategy for reducing the GC

of two hateful retweets’ networks (Anti-Muslim 1 and Anti-Semitic) compared to tar-

geting the highest in-degree users, ’influential’, meaning that the highest out-degree

nodes may also have higher ’bridgeness’ characteristics compared to in-degree nodes,

This suggests that users who are retweeting other users are slightly more important in

terms of disconnecting the hateful retweets’ networks compared to users who are be-

ing retweeted a lot, ’influential’. According to the previous chapter’s results in Section

5.3.2, the distribution of users showed that the hateful retweets’ networks had more

’influencers’ compared to ’super-retweeters’. Thus, it was expected that removing in-

fluential nodes (with high in-degree) would be more effective in terms of reducing
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the spread of hate; however, the findings suggest that removing the ’super-retweeters’

is actually more effective, indicating that targeting such people (e.g. by suspending

them) would more likely reduce the spread of hate. This may guide policymakers not

only to focus on targeting the influential and ignoring other ’effective’ users, who are

spreading the hate - possibly via counter speech.

Figure 6.8: Impact of different removal strategies on the level of the Giant Com-

ponent size of the hateful and suicidal retweets networks .

Moreover, Figure 6.9 shows that the degree-based strategy reduced the densities of the

hateful networks by 65, 83 and 80% for Anti-Muslim 1, the antisemitic dataset and

Anti-Muslim 2, respectively. This is also true for the suicidal network (indegree-based

strategy is slightly more effective).
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Figure 6.9: Impact of different removal strategies on the level of the density of the

hateful and suicidal retweets networks .

In contrast, other strategies recorded performances lower than the degree-based strategy

by approximately 20%. This is in line with the results of previous studies showing that

the most connected people (hubs) are the key players, being responsible for the greatest

part of the spreading process [23][85]. Practically, removing the highly linked nodes

(high degree nodes) reduces the number of connected edges in the network [206, 48].

Reducing the graph links decreases density as the density of real network systems (e.g.

Twitter) is the ratio between the number of edges in the graph and the total number

of possible edges. This suggests that in a propagation network, like retweets’ net-

works, removing the highly linked users plays a key role in network vulnerability. The

indegree-based strategy (removing influential users) appears slightly more effective in

reducing the densities of hateful retweets’ networks than the outdegree-based strategy

(’super-retweeters’), while the latter has been shown in Figure 6.8 to be more effective

in reducing the GC size than an indegree-based strategy. Reducing the density, using
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an indegree-based strategy, means decreasing the hateful users’ links but not necessar-

ily disconnecting the network’s clusters (i.e reducing the GC size). This means that by

removing the ’influential’ (or high in-degree) users, the hateful links may be reduced;

however, the GC may still be connected (the content is still able to flow among the

clusters).

For the hateful retweets’ networks, however, there is no single strategy that has a sig-

nificant impact on increasing the average shortest path. Figure 6.10 shows a very fluc-

tuated flow in the average shortest paths.

Figure 6.10: Impact of different removal strategies on the level of the average

shortest path of the hateful and suicidal retweets networks .

Similar to the hateful followers’ networks, it was also observed for the hateful retweets’

networks that there is a fluctuation in the increase and decrease of the average shortest

path metric among the majority of the removal strategies. This also suggests that this

measure is not valuable when networks are significantly disconnected, which is in line
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with the finding of these studies [54, 53]. Next, we previewed the results of applying

the hybrid node removal strategies (a combination of two different removal strategies)

and investigated whether this combination would further increase the performance of

the strategy and therefore decrease the network’s connectivity.

6.3.3 Hybrid Node Removal Strategies

Followers Networks

Figures 6.11, 6.12 and 6.13 show seven hybrid removal strategies that were applied to

followers’ networks. In general, among the hybrid node-removal strategies, we noticed

that the best removal strategies were the DegreeBetweenness and OutdegreeBetween-

ness strategies. However, Figure 6.5 shows that about 75-83% of the largest com-

ponent (GC) was disconnected by the degree-based strategy while a lower percentage

was obtained by the combined strategies, about 63-72% of the largest component (GC)

was disconnected by the DegreeBetweenness-based and OutdegreeBetweenness-based

strategies, respectively. However, the ’single’ degree-based removal strategy in Figure

6.5 seems to be more effective in reducing the size of the largest component (GC)

compared to the combined DegreeBetweenness/DegreeEigenvalue-based strategies in

Figure 6.11. This means that removing nodes with the highest connection is the most

efficient way to deconstruct the hateful networks; combining other strategies may re-

duce this effect. As mentioned previously, nodes with the highest connections have

the characteristics of bridgeness, which is important for connecting the GC. There-

fore, concentrating on this characteristic, by applying the degree-based strategy alone,

is better than reducing its effect by combining it with another strategy; here the ex-

periments ensure that.In addition, some ’single’ node removal strategies performed

better when combined with another strategy, and some are not (however, no com-

bined strategy exceeded the performance of the ’single’ degree-based strategy). For

example, in the Anti-Muslim 1 followers’ network, we noticed that combining the
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outdegree-based strategy with the betweenness-based strategy led to better perform-

ance than when applying the betweenness-based strategy alone but poorer perform-

ance than when applying the outdegree-based strategy alone. This suggests that the

hybrid node-removal strategy may be advantageous when a targeted attack ought to fo-

cus on specific users (e.g. high betweenness users), so combining the outdegree-based

strategy would strengthen the performance of the betweenness-based strategy.

Figure 6.11: Impact of different hybrid removal strategies on the level of the Giant

Component size of the hateful and suicidal followers’ network..

Also, we noticed that the hybrid node removal strategies have less effect on reducing

the density in Figure 6.12 and the average shortest path in Figure 6.13 compared to

the ’single’ node removal strategies. For density, the ’single’ degree-based strategy

removes the highly linked nodes (high degree nodes), which reduces the number of

connected edges in the network and then reduces the density [206, 48]. The effect-

iveness of this was reduced when the single degree-based strategy was combined with
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another strategy. This suggests that the highly linked nodes (nodes with high degrees)

are the node responsible for reducing the hateful networks links and therefore redu-

cing the density as the density is the ratio between the number of edges in the graph

and the total number of possible edges. For the average shortest path, the eigenvalue-

based strategy lost its effectiveness on the gradual increase of the average shortest path

when combined with other strategies. Additionally, we still observe a fluctuation in the

increase and decrease in the average shortest path in Figure 6.13 which provides fur-

ther evidence that the average shortest path metric might not be considered optimal for

consistently measuring the connectivity performance of hateful followers’ networks.

Figure 6.12: Impact of different hybrid removal strategies on the level of the dens-

ity of the hateful and suicidal followers’ network.
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Figure 6.13: Impact of different hybrid removal strategies on the level of the av-

erage shortest path of the hateful and suicidal followers’ network.

Retweets Networks

Figures 6.14, 6.15 and 6.16 illustrate the seven hybrid removal strategies that were

applied to the retweets’ networks. Similarly to what has been observed for the hate-

ful followers’ networks, all the hybrid removal strategies have less effect on reducing

the size of the largest component (GC) and the density than the ’single’ degree-based

strategy. While the size of the largest component (GC) was reduced by 94%, 85% and

75% for Anti-Muslim 1, the antisemitic dataset and Anti-Muslim 2, respectively when

applying the degree-based strategy alone, it was reduced by 86%, 63% and 69% by

combining the degree-based strategy with other strategies. This is similar to what has

been observed for the followers’ networks, that combining another strategy with the

degree-based strategy seems to reduce the advantage of the reduction in links obtained
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by applying that strategy alone as previously was shown in Figure 6.8. Here, we should

emphasise the bridgeness characteristics for deconstructing the hateful networks.

Figure 6.14: Impact of different hybrid removal strategies on the level of the Giant

Component size of the hateful and suicidal retweets networks.

Moreover, for the density 6.15 we noticed that the combined strategies resulted in

poorer performance compared to the ’single’ degree-based node-removal strategy in

Figure 6.9. This suggests that the effectiveness of the degree-based strategy was re-

duced by combining other strategies with the degree-based strategy. Some ’single’

node removal strategies performed better when combined with another strategy, and

some did not; however, no combined strategy exceeded the performance of the ’single’

degree-based strategy. Moreover, the fluctuation in the increase and decrease in the

average shortest path in Figure 6.16 still exists, considering the average shortest path

metric is not preferred for consistently measuring the connectivity performance of hate-

ful retweets’ networks. This is also the case for the suicidal retweets’ network.



6.3 Results and Discussion 206

Figure 6.15: Impact of different hybrid removal strategies on the level of the dens-

ity of the hateful and suicidal retweets networks.
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Figure 6.16: Impact of different hybrid removal strategies on the level of the av-

erage shortest path of the hateful and suicidal retweets networks.
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So in general, the hybrid strategies seem to be less effective than the single strategies

in this sample of the network. For example, it was expected that combining the degree-

based strategy with the eigenvalue-based strategy would improve the results in terms

of reducing the networks’ connectivity (improve the results of the single degree-based

and the eigenvalue-based strategies, separately). This is because the degree-based

strategy was effective for reducing the largest component (GC), see Figure 6.5 and the

eigenvalue-based strategy resulted in a gradual increase in the average shortest path

among people in the followers’ networks, see Section 6.3.1. Surprisingly, a combin-

ation of the degree-based strategy and the eigenvalue-based strategy did not decrease

the networks’ largest size nor did it increase the average shortest path compared to the

effect obtained by the single degree-based strategy. This is in line with Bellingeri et

al.[40] who showed that applying a combined attack strategy was the most efficient

strategy for decreasing the largest component size (GC) in a scale-free network in the

early stages of deletion (when deleting one or two critical hubs). Later in the attack

sequence, the combined strategy was less efficient than the single strategy for attacking

scale-free networks. This result has important implications for applied network science

and deserves further investigation.

6.4 Removal Strategies on the Bipartite Networks

Figures 6.17 and 6.18 demonstrate the results of applying node removal strategies to

bipartite hateful networks (followers and retweets ).
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Figure 6.17: Impact of different node removal strategies on the level of the Giant

Component size of the bipartite hateful and suicidal followers’ network.
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Figure 6.18: Impact of different removal strategies on the level of the Giant Com-

ponent size of the Bipartite hateful and suicidal retweets networks.
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First, we notice that no single or hybrid node removal strategy outperforms the single

degree-based strategy on the generic network. The best performing strategy on the bi-

partite hateful followers’ network is the outdegree-based strategy. However, it reduced

the largest component by only 57-66%, significantly lower than the percentage ob-

tained by applying the degree-based strategy to the generic hateful follower networks.

Moreover, the best-performing strategy for the bipartite hateful retweets network is the

degree-based strategy; however, its performance in terms of disconnecting the largest

component is lower than its performance on the generic hateful retweets’ networks.

The degree-based strategy deconstructs 60%, 62% and 64% of the largest component

for the Anti-Muslim 1, antisemitic dataset and Anti-Muslim 2 retweets bipartite net-

works, respectively. Meanwhile, the degree-based strategy reduced the size of GC by

94%, 85% and 75% for the generic Anti-Muslim 1, antisemitic and Anti-Muslim 2

generic networks, respectively.

Second, we observe that there is no significant difference among the node removal

strategies themselves for the bipartite followers and retweets networks. This may be

because the bipartite (two-mode) degree-measure has a higher correlation with eigen-

value and betweenness than the generic (one-mode) degree-measure [239].

There is no advantage in applying the node removal strategies of the bipartite networks

to the generic networks which may give an indication of why those removal strategies

that are applied to the generic network (’one-mode network’) had a different impact

on network connectivity compared to applying the same strategies to the bipartite net-

works [315, 122, 239]. Perhaps this is because of some differences in these networks’

characteristics. First, the generic networks have one-degree distribution while the bi-

partite networks have two different degree distributions (top set/bottom set) [97]. So,

instead of removing the highest degree nodes directly in the generic networks, in the bi-

partite networks, we remove the nodes by swapping between the bottom nodes, which

represent the users and the top nodes which represent their affiliation (cliques). It has

previously been mentioned that the overlap between cliques in the top nodes set is sig-
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nificant in the bipartite network, meaning that if two cliques have one node in common,

then they certainly have many nodes in common [191]. This means that it is hard to dis-

connect two cliques because they are connected to each other by many nodes. Perhaps

the bipartite version of the hateful networks in this sample contain a lot of overlapped

cliques that maintain the node’s connectivity. As a strategy for cutting off the networks

that spread hatred, it could be beneficial in future to concentrate on how to target the

overlapped cliques of the bipartite version of the hateful networks. Delete a node, for

instance, along with its first, second, and so on neighbours. But it’s important to keep

in mind that the study’s hateful networks are not inherently bipartite. Therefore, it may

be fundamentally necessary to evaluate the significance of overlapping groups in this

datasets’ study.

Moreover, the projection of the bipartite network (converting the two-mode network

into a one-mode network to compare the GC of the bipartite network with the generic

networks) may have resulted in many highly connected nodes [353], as the remain-

ing nodes with high degree induce large cliques compared to the generic version of

the network. Also, the projected bipartite network resulted in high clustering coeffi-

cients (high clustering coefficients in a projection may be seen as a consequence of

the underlying bipartite projection rather than a specific property of the network [190])

and likewise, the projection may lead to very dense networks compared to the gen-

eric version, even if the bipartite version is not dense. This phenomenon is illustrated

particularly in [190, 246]. These observations may confuse the results.

Therefore, when performing SNA one must be aware of the characteristics of the pro-

jected network to avoid bias when comparing it to the generic version of that network.

To conclude, it is clear that we were effectively able to deconstruct the most significant

component of the hateful followers and retweets networks by targeting the highest

degree users of the generic networks (one-mode networks). However, the efficiency

of node-removal strategies depends on the topology of the network [40], meaning that

further investigation of different hateful networks is required. Table 6.3 summarises
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the results of the node removal strategies.

Table 6.3: Summary of the node removal strategies on the normal (one-mode)

networks and bipartite (two-mode) networks.
Node removal strategies

Single Hybrid

Normal (one-mode)

1- Degree-based strategy.

2- 75-83% of (GC) was disconnected

in the hateful followers’ network.

3- 94%, 85% and 75% of (GC)

was disconnected in the hateful retweets’ network.

1- OutdegreeBetwenness-based and

DegreeBetweenness-based

2- 63-72% of (GC) was disconnected in

the hateful followers’ network.

3- 86%, 63% and 69% of (GC) was

disconnected in the hateful retweets’ network.

Bipartite(two-mode)

1- Outdegree-based strategy.

2- 57-66% of (GC) was disconnected in

the hateful followers’ network.

3- 60%, 62% and 64%of (GC) was

disconnected by Degree-based strategy in

the hateful retweets’ network.

DegreeBetweenness-based strategy

and OutdegreeBetweenness strategy performed

the best among the hybrid strategies. 57%-66% of (GC) was connected.

However, not better than ’single’

Degree-based strategy where 75%-94% of (GC) was connected. .

Table 6.3 demonstrates that the best-performing strategy in terms of reducing the (GC)

size is removing the users with the highest degree of centrality on the generic followers

and retweets networks. Combining two node removal strategies reduces the effective-

ness of the ’single’ node removal strategy. In addition, the bipartite networks have not

shown much promise in terms of detecting the most central users compared to generic

networks. However, we may still need to examine the node removal strategies for net-

works with more than two-modes, e.g. tripartite. These are referred to as N-partite

networks or multipartite networks. An N-partite graph is a graph whose nodes are

or can be partitioned into n different independent sets - forming such a partition that

no two nodes belonging to the same subset are adjacent. The overlap among the net-

work cliques becomes greater in a multipartite network [191]. Despite the fact that the

overlap among the cliques of the bipartite networks has not improved the performance

of the node-removal strategies in our experiments, it would be interesting to examine

the node removal strategy on networks with a higher intersection among the cliques

(multipartite).
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6.5 Conclusion

This chapter investigated strategies for disrupting hateful networks. For this investiga-

tion, a range of node-removal strategies targeting users depending on their role in the

network was developed. A simulation of 13 node-removal strategies was applied to

generic networks and a bipartite version of the generic networks indicated that target-

ing nodes with the highest degree in the generic hateful networks is the most effective

way of reducing the largest number of hateful followers’ and retweets’ networks com-

pared to the other strategies, thus limiting the exposure and transmission of hateful

content.

Targeting nodes that highly follow or retweet other hateful users (outdegree-based

strategy) also had a significant effect on reducing the largest component and essen-

tially obstructing the hateful information flow (except for the Anti-Muslim 2 retweet

network), suggesting that nodes with higher out-degree - the ’super-consumers’ and

’super-retweeters’ of the hateful content - constitute indispensable bridges responsible

for connecting different clusters in a network. It could be assumed that removing influ-

ential nodes (with high in-degree), would be more effective in terms of reducing hate

exposure and spread. In fact, it seems that being influential in a hateful network is

not necessarily correlated with serving a crucial role for network connectivity. How-

ever, the findings suggest that removing the ’super-consumers/super-retweeters’ (high

out-degree) is actually more effective, indicating that targeting such people (e.g. by

engaging them either by suspension or counter speech) would more likely reduce the

spread of hate. This is a valuable finding for guiding policymakers not only to focus

on targeting the influential and ignoring other ’effective’ users.

The experiment also showed that the combination of two node-removal strategies (hy-

brid) has not provided any further effect on reducing networks’ connectivity compared

to applying the ’single’ degree-based strategy. Moreover, we noticed that there is no

advantage in applying the node-removal strategies on the bipartite networks compared

to the generic networks. The small sample size in this study may have an impact on
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this finding, which indicates a potential and/or hurdles to generalising such findings.

As far as the author knows, there aren’t enough research that specifically examine the

relationship between dataset size and node removal tactics. Regarding the impact of

the dataset size on the node removal strategies, more research is required.

Broadly speaking, social networks are resistant to node removal, and the results of the

strategies were not inevitable. In addition, it is notable that some strategies are effect-

ive on specific metrics, and some are not. By way of an example, the degree-based

strategy was the most effective strategy for disconnecting the hateful networks, while

the eigenvalue-based strategy may be effective for gradual elongation of the average

shortest path of a hateful network. This suggests, for a future work, that combining dif-

ferent node removal strategies might have a significant impact on reducing the entire

network’s connectivity and flow.

In the end, we should note that the findings of this study only relate to the sample at

hand, and may not be generalisable beyond this study.This is a limitation that was also

recognised in the previous chapter, that the data examined for this work are still likely

to represent a sub-section of the entire hateful networks and hateful users engaged

in posting hateful tweets, suggesting that these findings may be applicable to a small

sample for a hateful network. However, obtaining the entire network structure is dif-

ficult as real-world networks such as social networks and the Internet are massive and

typically only part of the network structure is available from network [132, 211, 218].
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Chapter 7

Conclusion

7.1 Introduction

This final chapter provides a summary of the research conducted in the thesis. After

summarising the main contributions of the thesis, it describes the key observations re-

lated to the research questions and contributions to the field. Then follows a discussion

of the implications and limitations of the thesis. Finally, it highlights some possible

directions for future work.

7.2 Thesis Summary

Researchers have concentrated on exploring online hate content on specific social me-

dia platforms, e.g. Twitter [63, 224] and/or using computational methodologies to de-

tect, understand, manage and remove hateful content [229]. However, there are issues

remaining that require attention that relate to the methods of online hate detection and

management. The motivation of this thesis was to contribute to the growing literature

in terms of measuring online hate, focusing particularly on detecting, characterising

and managing the phenomenon.

Specifically, the main aims of this thesis were as follow: (i) to improve contextual

cyberhate classification; (ii) to characterise multiple hateful networks in terms of ex-

posure to and the propagation of cyberhate; and (iii) to demonstrate how to disrupt or
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manage cyberhate propagation on Twitter. Together, these form a cohesive proposition

for the management of cyberhate - and are the core contributions of this thesis as a

whole.

Chapter 2 introduced comprehensive knowledge relating to the definition of cyberhate,

and summarised the literature related to the thesis work.

Chapter 3, provides an overview of the proposed methods for hateful content classific-

ation, hateful networks characterisation and hateful networks disruption.

In order to improve the contextual cyberhate classification, Chapter 4 presented work

on the classification of text that does not contain clearly hateful words which would

have an impact on classification accuracy. It proposed a novel combination of semantic

learning and psychological theory for improving machine learning for automated cy-

berhate detection.

Regarding the characterisation of hateful networks, Chapter 5 aimed to understand

hateful networks’ connectivity in terms of the exposure to and the propagation of cy-

berhate. This baseline study characterises multiple hateful networks extensively. In-

vestigating such characteristics is required in order to better understand hateful net-

works, which is considered an important step prior to controlling, detecting or disrupt-

ing propagation.

As a consequence, Chapter 6 aimed to find the best strategies for disrupting hate ex-

posure and propagation by applying a wide range of node removal strategies and then,

measuring the changes in network connectivity post node removal to assess whether the

structure of the network significantly changed and subsequently ’disconnected’ users.

Overall, the research conducted for this thesis, mainly Chapters 4, 5 and 6, has made

significant advances in the field of measuring, understanding, and disrupting the propaga-

tion of cyberhate on Twitter.
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7.2.1 Thesis contributions and key observations

Chapter 2, refined our understanding of hate speech and provided an insight into the

wider research area, which provides the basis for shaping the contributions of this

thesis (surrounding hate speech classification, propagation and disruption methods),

and highlighted the limitations. Moreover, the discussion on the existing literature and

on identifying research gaps led to open research questions. The research questions

identified in Chapter 2, helped shape the structure of the thesis. In the next section,

each research question is repeated, and the relevant contribution discussed, including

any related analysis and new knowledge that has been acquired.

Cyberhate Classification

There have been numerous attempts to automatically classify, identify, and quantify cy-

berhate. This has included lexicon [131, 180, 153], syntactic [136, 243] and semantic

[183, 36, 106] features. However, these approaches are limited as their classification

of text does not include words which have clear hatefully antagonistic content (for

example ’send them home’), which would have an effect on overall classification ac-

curacy. Chapter 4 presented a unique method for classifying cyberhate based on the use

of ’othering language’, and drew upon Intergroup Threat Theory (ITT). In particular, it

determined whether using pronouns referring to an ingroup (i.e. ’we’, ’us’) coincided

with pronouns referring to an outgroup (i.e. ’them’, ’they’). This process indicated the

use of divisive or antagonistic language and can subsequently improve machine classi-

fication of cyberhate. This addressed the following question:

RQ 1: To what extent can using othering and ITT theories to drive the development

of new features for classifying cyberhate improve the performance of machine learn-

ing for cyberhate detection?.
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This was used to build a feature set that is referred to as an ’othering feature set’, which

is utilised to enrich the representation of text examples of cyberhate. These features

are subsequently employed in combination with a paragraph embedding algorithm that

infers semantic similarity between features to create a model that represents ’othering’

language which is used for the purposes of cyberhate classification. The experimental

results in Chapter 4 showed the efficacy of including the feature set for classifier train-

ing over the baselines model, and when trained using 10-fold cross validation produces

a 0.99 F-measure for all three models. The results are an improvement upon previous

findings in the cyberhate literature, which provides evidence that the othering narrative

could play a significant role in detecting hate speech.

The three models which were determined to be the best performing were then tested

on different unseen datasets using four different variations of cyberhate. These models

were:

• The comprehensive classifier. This was an implementation of the work of Nobata

et al. [243] combined with our novel othering feature set, and the raw dataset. It

was termed comprehensive as a broad range of features were applied, including

n-grams, linguistics, syntactic words and comment embedding.

• The othering + raw classifier. This was based on the implementation of Para-

graph2Vec feature extraction and an MLP classifier, using our novel othering

feature set and raw dataset.

• The othering classifier. This refers to the proposed application of Paragraph2Vec

feature extraction and the MLP classifier on the proposed othering feature set

(without raw text).

For the four dataset types - religion, disability, race and sexual orientation - F-measures

of 0.81, 0.71, 0.89 and 0.72 respectively were obtained on unseen data. However, these

’optimum’ results were not obtained by a single model. Different models resulted in
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different performances for various types of hate. The othering + raw classifier ex-

hibited the lowest FNs (missed instances of hateful samples) for religious and racial

hate, which suggests that the othering language features could be used to detect cy-

berhate towards religious and racial groups. The comprehensive classifier includes the

additional n-gram features in addition to the othering language, which performed most

effectively in the detection of disability and sexual orientation hate. Solely using oth-

ering language features subsequently exhibited less effectiveness in the detection of

hostility towards these groups. The additional text features, such as n-grams and lin-

guistics, were better at capturing the hate features directed at these groups, indicating

that different types of hate speech have different language characteristics. The take

away finding is that, although using othering terms is effective for some contexts of

hate speech, it is not effective for all. The experiments revealed that othering language

was a valuable feature in the identification of anti-religious and racial content, although

it had less value in the context of disability and sexual-orientation hate.

The implementation of the novel hate speech classification process generated the first

contribution of the thesis:

C1:The development of a novel ’othering’ feature set that utilises language use around

the concept of ’othering’ and Intergroup Threat Theory to identify the subtleties of

implicit cyberhate. A wide range of classification methods was implemented using em-

bedding learning to compute semantic distances between parts of speech considered to

be part of an ’othering’ narrative and improve the state-of-the-art embedding models in

cyberhate detection by 2%-59%. When tested on unseen data using four different types

of cyberhate, namely: religion; disability; race and sexual orientation, F-measures of

0.81, 0.71, 0.89 and 0.72 were obtained, respectively. Furthermore, the experiments

show that different types of hate speech have different language characteristics and the

use of othering terms can be effective for some but not all contexts of hate speech.
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In fact, previous studies had very little focus on classifying text that did not contain

hateful words (implicit hate) which would have an impact on classification accuracy,

(e.g. get them out). Burnap et. al. [63] suggested that utilising psychological theories

for detecting cyberhate would contribute to improving the detection process. Indeed,

this researcher’s method was to interpret certain statistically effective linguistic features

though they did not test these features with machine classification algorithms and state-

of-the-art features such as semantic features (that may capture the similarity between

hateful terms). Building on that work, our first contribution uses the ’othering’ lan-

guage for detecting one sort of implicit hate speech - the language that distances other

groups. Although implicit language is not limited to ’othering’ language, identifying it

contributes to detecting some implicit hate, improving the classifier performance. This

is achieved by reducing the reliance on lexical features, which helps alleviate over-

fitting to the training dataset. Also, domain knowledge such as linguistic patterns and

underlying sentiment of hate speech can inform model design, feature extraction or

preprocessing. In addition, despite the fact that the previous methods reported prom-

ising results, it is apparent that their evaluations were not generalised on an external

dataset. Our experiments were tested on four unseen datasets relating to four types of

hate speech. This sort of testing can be a valuable tool for measuring generalisability;

we need generalisability in the real world.

However, our approach presents some limitations; first, we used a considerably small

sample size dataset for training and testing our classifier, while it is preferable to im-

plement the embedding learning on a large amount of text data to ensure that valuable

embeddings are learned. This is due to the limited number of relevant datasets that are

publicly shared and also the high cost of human annotation. Second, by testing our

model, we assumed that tweets which contain two-sided othering language (othering

pattern) are more likely to be hateful. However, this is not necessarily the case. For

example, a tweet like ’send them’ may imply hate if it appears in relation a hateful

event, but neutral when it appears in a marketing-related tweet. The point here is that

implicit cyberhate needs more studies to investigate its patterns.
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Cyberhate Network Characterisation

Social media allows individuals and groups to disseminate ideologies, which at times

can be detrimental to societal cohesion and individual well-being, for instance, online

hate. It has consequently become important to examine the online structure, commu-

nication, and connectivity of online communities to ascertain the exposure of users

to hateful ideologies which may influence their own actions and opinions, or lead to

online harms. Detecting online hate speech has been extensively examined from a con-

tent analysis perspective (including the previous contribution in this thesis). However,

research into characterising hateful networks on social media is not well examined in

the literature.

Some research has applied social network analysis (SNA) to Twitter in order to use con-

nectivity information to indicate when a user has posted offensive content [273, 19].

Other studies have focused SNA analysis on retweets to measure diffusion [278, 273].

However, no research has yet examined multiple networks to ascertain if there is evid-

ence of similar levels of friendship and therefore a general exposure to the hate, or

similar levels of propagation behaviour and therefore a general contagion effect. The

lack of a Twitter study led to the following research questions:

RQ2: By studying multiple hateful networks on Twitter, is there evidence of similar

of ’levels of friendship’ across multiple hateful networks, and therefore a general

measure of exposure to cyberhate?

RQ3: By studying multiple hateful networks on Twitter, is there evidence of sim-

ilar levels of propagation behaviour and therefore a general contagion effect?
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Chapter 5 described a baseline study extensively characterising a number of hateful

networks from different perspectives in order to expose cyberhate (in the follower net-

works) and propagate cyberhate (in the retweets network). The values of various SNA

metrics were utilised to answer questions that increased the understanding of the con-

nectivity of the hateful networks.

With regard to exposure to hateful content, Chapter 5 described the collection and ana-

lysis of two anti-Muslim followers’ networks. The objective was to discover if there

were any similarities between these networks and compare them with another ’risky’

network with similar characteristics, i.e. a suicidal follower network. The findings re-

vealed that users within the hateful follower networks were at a similar level of expos-

ure to hateful content; by comparison, users within suicide networks were less likely

to be exposed to risky content, by around 10%. The size of the largest component and

density was marginally higher for both hateful follower networks than the suicide net-

work by over 10%, and 0.0002 for the largest component and density, respectively. This

indicates a higher exposure to, and potential virality of, hateful content in the sample.

It was also found that both hateful networks had fewer ’influencers’ (people with many

followers), and more ’super-consumers’ (those following many hateful posters), while

the suicidal follower network displayed a slightly higher volume of influencers, and

less nodes following a large number of similar users. We interpreted this as indicating

that hateful follower networks in the sample had a tendency to be more vulnerable to

content exposure [199].

In addition, the clustering coefficient metric showed that the probability of neighbour-

ing nodes which are also connected (densely connected neighbours) was consistently

higher for the hateful networks than the suicidal network. Both cases had densely

connected neighbours, irrespective of whether the nodes were hate ’super-consumers’

(out-degree edges) or hate ’influencers’ (in-degree edges). The behaviour was slightly

lower in the suicidal follower network, indicating greater connectivity between the

hateful users, and therefore increasing the risk of hateful content exposure.
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A comparison of the average shortest path of the follower networks with the relative

largest component size indicates that the hateful follower networks had greater con-

nectivity than the suicidal follower network. Five steps were required to reach over

60% of the users of the hateful followers networks, whilst five steps were only able to

reach half of the suicidal users. Moreover, the average shortest path of the hateful net-

works was similar to a more extensive Twitter network, which indicated that the hateful

follower networks exhibited data flow properties which resemble larger scale commu-

nication follower networks, although in a very small-scale network. Yet, they had less

reciprocated friendship behaviour than the suicidal users (less connected around the

topic). These experiments and associated observations gave rise to the second contri-

bution of the thesis:

C2: To the best of the author’s knowledge this is the first study carried out to under-

stand the connectivity characteristics of two hateful follower networks. The analysis

shows that the level of connectivity of the hateful followers’ networks is similar, and

therefore results in common levels of users’ exposure to cyberhate. Hateful networks

were also compared to another form of ’risky’ network (i.e a suicidal ideation network

of similar size) to understand the general level of the hateful networks’ connectivity.

The results showed evidence of higher connectivity between the hateful users (higher

exposure to hateful content) compared to the suicidal users, which suggests a potential

virality of hateful content. They, however, have less reciprocated friendship behaviour

than suicidal users (they are less connected around the topic). In addition to the con-

tribution of the knowledge, this study resulted in the first friendship datasets in the field

that could be used in further research studies.

With regard to the propagation of hateful content, Chapter 5 also collected and analysed

three anti-religious retweets’ networks with the objective of discovering any similar-

ities that exist between these networks, and subsequently comparing them to another



7.2 Thesis Summary 225

’risky’ network on suicidal retweets. Several structural similarities were found, includ-

ing differences between the hateful retweet network in terms of social network metrics.

The largest component of hateful retweet networks was greater than 69%, with densit-

ies greater than 0.0005, and reciprocities greater than 12%. Every metric is higher than

those recorded for the suicidal retweets network. This shows that the hateful retweeters

in the sample exhibited consistently high levels of information propagation behaviour,

with increased content contagion in the hateful retweet networks compared to those in

the ’risky’ network.

Moreover, the degree distribution of the hateful retweets’ networks showed that popu-

lar users (high in-degree) are responsible for creating information cascades as they are

highly retweeted by other hateful users. Moreover, there was a considerable number

of hateful users (high out-degree) engaged significantly with hateful conversation by

retweeting other users’ hateful messages (but less than high in-degree), while the sui-

cidal network did not exhibit this behaviour. This suggests that more co-operation on

the spread of the message (hate) in hateful networks, across all three hateful networks,

and less in the suicide network would be seen.

Moreover, comparing the average shortest path value with the largest component in-

dicates that the hateful retweet networks required from 5-6 steps to reach 70-80% of

the users, while 5 steps only reached 30% of the suicidal users. This shows high reach-

ability (contagion) of the propagated messages amongst the hateful users, meaning

that while an identical number of steps are required to reach the largest cluster in the

sample, the hateful content reach is consistently greater than the suicide content - with

37.9-50% more users reached by retweeting.

With regard to reciprocity, the hateful retweets networks exhibited significantly higher

reciprocity than the suicidal retweets network, indicating that greater co-operation on

spreading messages in hateful networks can consistently be found across all three hate-

ful networks in the sample, and less in the suicide network [291]. However, there

should be a wariness around this finding, as the high reciprocity level amongst hateful
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retweets networks may assist with building a collaborative network which ultimately

increases the co-operative levels of hate propagation. The density and average clus-

tering coefficients were not indicative of significant smaller ’organised’ subgroup exits

(where users all retweet each other). However, there was consistent reciprocal retweet-

ing with regard to hateful content which seemed to be higher than a comparator net-

work. These analyses and related observations lead to the third contribution:

C3: To the best of the author’s knowledge this is the first study carried out to un-

derstand the communication characteristics of three hateful retweets networks. Ana-

lysis shows several structural similarities were observed among the retweets’ networks

as were differences between the hateful retweet network. Also, there was a consist-

ently and significantly greater reach of content (contagion), and greater degree of co-

operation on the spread of the message (hate) in hateful networks, across all three

hateful networks, and less in the comparator ’risky’ network - suicidal ideation. Hate-

ful content reaches more users in fewer hops.

The current literature on characterising hateful Twitter networks has focused on the

propagation of tweets (retweets), not on the tweets’ exposure (followers). Moreover,

the characterisation process in the literature was implemented on one network while

we implemented our characterisation on multiple networks in order to be able to gen-

eralise the results. Table 2.6 in Chapter 2, demonstrated that there are three studies re-

lated to characterising hateful networks on Twitter; however, they characterise only the

propagation (tweet networks) of a single hateful network while this thesis touched on

hateful network exposure follower networks). In addition, the followers’ networks are

the first in this field. These networks are not straightforward collections. It was time-

consuming to collect and build them containing only the hateful users. The publication

of these networks will contribute to updating the literature as no similar networks have

been built and published. However, generalising these results needs further research
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with more extensive networks. Indeed, this study was conducted on a limited-sized set

of annotated posts. Thus, it is still likely to represent a sub-section of the entire sample

of hateful networks and hateful users engaged in posting hateful tweets, suggesting

that our findings may be applicable to a small sample. However, because real-world

networks, such as social networks and the Internet, are huge, obtaining the entire net-

work structure is difficult, and typically only part of the network structure is available

from a network [132, 211, 218].

Cyberhate Disruption

It has been indicated that exposure to and engagement with cyberhate is linked (al-

though possibly not causally) to online hate production and even offline aggression, as

some perpetrators of violent hate crimes are known to have engaged with such content

[102]. Regulation of social media platforms is a challenge [177], and policymakers

have had difficulty determining practical ways to reduce cyberhate [7]. Attempts to

ban and remove hate-related content have not proven to be effective [1] because of

concerns about limiting freedom of expression. Therefore, controlling or disrupting

the flow of cyberhate is required, in addition to reducing the propagation of, and ex-

posure to, hateful content by removing specific users (nodes) and therefore disrupting

the flow of hate. At the time of writing the literature, it appeared there was no research

which had applied disruption strategies to Twitter hateful networks in an attempt to re-

duce network connectivity (exposure reduction) and therefore diffuse hate (contagion

reduction). Chapter 6 attempted to provide an answer to the question:

RQ4: According to the networks’ structural characteristics, which node removal

strategies would be most effective at decreasing the potential exposure to or the

propagation of hateful content?

In Chapter 6, we experimented with various disruption methods - or node-removal
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strategies - to reduce the propagation of cyberhate on Twitter through network pruning.

Thus, various node-removal strategies were developed to target users depending on

their characteristics. A simulation of six node-removal strategies showed that it is

more effective to target nodes with the highest degree, and that this strategy can more

effectively reduce the largest component of hateful followers’ and retweets’ networks

compared to the other strategies, which limit the exposure and transmission of hateful

content. For both hateful followers’ networks and the suicide network, 75%-83% of

the largest component (GC) was disconnected. Conversely, other strategies resulted in

a reduction of only 55%-75%. For the retweets’ networks, the degree-based strategy

reduced GC size by 94%, 85% and 75% for Anti-Muslim 1, the antisemitic dataset, and

Anti-Muslim 2, respectively; while the same fractions of nodes led to a reduction of

60%-70% in GC size. In addition, the degree-based strategy reduced hateful network

density by 65%, 83% and 80%, respectively. Other strategies recorded performances

approximately 20% lower than the degree-based strategy.

More specifically, it was also found that targeting nodes which retweet other hateful

users, or follow them to a high degree, also significantly reduced the largest com-

ponent and obstructed the flow of hateful information (except for the Anti-Muslim 2

retweets’ network). This suggested that nodes with higher out-degree - the ’super-

consumers’ and ’super-retweeters’ of the hateful content - bridge the connection of

different clusters in a network. There may be an assumption that removing ’influen-

tial’ nodes (with high in-degree), would more effectively reduce the spread; however,

the findings indicated that removal of the ’super-consumer’ and ’super-retweeters’ was

actually more effective, suggesting that targeting these people (e.g. by suspending

them) would potentially reduce the spread of hate.

Users who are connected to highly linked nodes (high eigenvalue nodes) are not ne-

cessarily influencers but removing them may be vital for the gradual increase of the

average shortest path (but not for disconnecting a network) among the users in the

hateful followers’ networks and therefore, reduce of the hateful connectivity and ex-



7.2 Thesis Summary 229

posure. However, due to the fluctuation of the increase and decrease of the average

shortest path metric among the majority of the removal strategies for the followers’

and retweets’ networks, the author suggests that the average shortest path metric is an

unsatisfactory measure for hateful networks’ connectivity and flow when networks be-

come significantly disconnected. This is congruent with the findings of other studies

[54, 53].

Chapter 6 also attempted to provide an answer to the question:

RQ5: According to the structural characteristics of networks, would a combination

of two (hybrid) node removal strategies be more effective at decreasing the propaga-

tion of hateful content - compared to applying a single node removal strategy?

A simulation of seven hybrid node-removal strategies demonstrated that the single

node-removal strategies were more effective at reducing the largest component (GC)

of hateful followers and retweets networks. This emphasises that hateful networks

are effectively fragmented by removing the highest degree users (influential and su-

per consumer/retweeters), more so than if any other roles in a network are removed.

This means that removing nodes with the highest connection is the most efficient way

to deconstruct such networks and combining other node roles may reduce this effect.

This is in line with Bellingeri et. al.[40] who demonstrate that applying a combined

attack strategy was the most efficient strategy to decrease the largest component size

(GC) when deleting one or two important hubs. Nevertheless, the combined strategy

was less efficient than the single strategy to deconstruct a network. However, the effi-

ciency of node-removal strategies depends on the topology of the network [40], mean-

ing that further investigation is required on different hateful networks. Chapter 6 also

introduced further investigation around the disruption of hateful networks by applying

all the previous node-removal strategies to bipartite hateful networks, attempting to

provide an answer to the question:

RQ6: Would applying the node removal strategies to a bipartite version of hateful
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networks improve the node removal strategies in terms of detecting the most

important users?

To answer this question, the generic hateful followers/retweets networks were trans-

formed into two-mode networks (bipartite networks). The experiments indicated that

there was no advantage from applying 13 (single, hybrid and random) node-removal

strategies to the bipartite networks compared to the results obtained by applying the

single node-removal strategy to the generic networks. Perhaps this is because of some

differences in these networks’ characteristics. First, the overlap between cliques in the

top nodes set is significant in the bipartite network, meaning that if two cliques have

one node in common, then they certainly have many nodes in common[191]. This

may be interpreted as indicating that it is hard to disconnect two cliques because they

are connected to each other by many nodes. Moreover, the projection of the bipartite

network (converting the two-mode into one-mode network to compare the GC of the

bipartite network with the generic networks) may have resulted in many highly connec-

ted nodes [353], resulting in high clustering coefficients (high clustering coefficients

in a projection may be seen as a consequence of the underlying bipartite projection

rather than a specific property of the network [190]) and likewise, the projection may

lead to very dense networks compared to the generic version, even if the bipartite ver-

sion is not dense [190, 246]; these observations may confuse the results. Therefore,

when performing social network analysis, one must be aware of the characteristics of

the projected network to avoid the confusion of information obtained by the projected

bipartite networks when compared to the generic version of that network. The experi-

mental results led to the following contribution:

C4: To the best of the author’s knowledge, this is the first study to develop strategies

that identify nodes within hateful networks (user accounts) whose removal is empiric-

ally shown to reduce the connectivity (largest component, density and average shortest

path) in both follower and retweet networks. Thirteen node-removal strategies, in-
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cluding a random-based strategy based on network connectivity, were tested on three

network metrics: giant component size, density and the average shortest path. These

strategies were applied to generic networks and bipartite networks. The experiments

carried out for this study demonstrate that the best node-removal strategy is the degree-

based strategy (single node removal) which has the highest impact on reducing the size

of the largest component of the generic hateful followers’ and retweets’ networks. The

rigour of these findings is demonstrated for two hateful followers’ networks and three

hateful retweets’ networks.

This study was based on the fact that no study yet exists that examines node removal

strategies for multiple hateful Twitter networks, in terms of hate speech exposure (fol-

lowers of networks) or hate speech propagation (retweeters of networks). Table 2.7,

Chapter 2 demonstrated that the node removal strategies had been applied only on a

political Twitter network while the hateful networks that have been disrupted are web

forum networks (terrorist and criminal). These networks are topologically different

from the hateful networks on Twitter. In addition, the table indicated that limited node

removal strategies have been applied to hateful networks on the web while we applied

a wide range of node-removal strategies (13 strategies).

7.2.2 The sufficiency and representativeness of the datasets:

The experimental results in Chapter 4 produced evidence to suggest that othering lan-

guage can be a valuable feature for identifying cyberhate. However, would this finding

generalise to a new dataset produced by, for example, a future anti-religious event?

An experiment has been implemented (in Chapter 5) that showed some evidence that

our models have had similar behaviour on unseen anti-religious datasets (Anti-Muslim

1/2). But in future, we have to accept the langauge use and therefore distribution of fu-

ture cases of anti-religious content may vary. Training on new datasets in future might

produce more generalisable models, but there is currently not enough consistency to
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determine which datasets or what properties of a dataset lead to more generalisable

models [350]. Moreover, choosing the training dataset is as important as the choice of

model. This because there is an assumption that the training data represent the distribu-

tion of future cases. It has been reported by [302, 172] that training the proposed model

on Davidson’s dataset (used for the dataset used for building the ’othering’ feature set

and training the classifier) leads to better generalisation for dissimilar datasets because

of the large proportion of abusive posts (including those that are hateful and offensive).

This is encouraging, yet more synthesis across different studies is needed for the recent

dataset. For studies in Chapters 5 and 6, we tried to generalise the results by applying

the experiments to multiple datasets. The experiments and the results referenced initial

ideas about how hateful networks behave and the best solution for disrupting these net-

works. However, these experiments were conducted using a small sample of datasets.

We should keep in mind that these datasets only cover current representative hateful

networks, but one can expect that the diversity of network properties increases beyond

this small sample.

7.3 Thesis Implications

Currently, there is neither a global definition of hate speech or online hate crimes, nor

is there agreement on how to treat hateful online content [123]. As a result, there is

much variation in how online social platforms police the problem, including an overall

reluctance to remove hateful content [20]. Global understanding of (online) hate could

therefore guide online social platforms on what content is considered hate and thus

needs to be removed. Therefore, Chapter 2 is advantageous for the researcher and

policymakers as it introduced extensive literature regarding the definition of cyberhate

from different perspectives.

Concerning online hate classification, much research has been developed for detecting

cyberhate using machine learning tools; however, what is needed is an improvement in
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the machine understanding of ’indirect hate’ rather than only detecting the occurrence

of ’direct hate’. The study described in Chapter 4 sheds light on detecting hate speech

using features that may not appear to be hateful out of context, using the concept of

’othering’ [62] which is a part of psychological theory.

The findings may widen researchers’ horizons to combine other psychological theories

and state-of-the-art models, e.g. semantic learning, to improve machine learning to be

closer to human judgement. This combination of machine learning automation and so-

cial theories may also be considered promising in the wider Artificial Intelligence (AI)

field - developing feature sets integrating a range of psychological theories, e.g. Social

Identity theory, Belonging theory, etc. Indeed, no research guarantees 100 percent ac-

curacy in hate detection; this is because humans themselves might disagree on what is

considered hate. Thus, developing cyberhate detection should continue and consider

all hate stereotypes as features for classifying cyberhate. Direct hate provokes a reac-

tion from online social platforms, e.g. account suspension. The concern remains that

indirect hate that feeds people with hateful ideologies and discriminative ideas may

still be left unmanaged.

In addition, understanding online connectivity in terms of exposure to and spreading

hate is as important as detecting hateful content itself. On the Twitter platform, there is

a lack of studies that help decision-makers respond to the spread of dangerous online

content. The findings of Chapter 5 focused on identifying hateful networks’ connectiv-

ity and, therefore, may enable decision-makers to understand the risk of being exposed

to online hate. Characterising hateful networks’ connectivity is a fundamental study

that may motivate researchers to think of suitable management approaches. For ex-

ample, the results of all the chapters combined may be beneficial for detecting, classi-

fying or deconstructing hateful networks. Chapter 6 encouraged us to consider disrupt-

ing their connectivity and recorded changes in network connectivity. It can be argued

that disrupting cyberhate propagation can mitigate hate consequences [228].

As these experiments were performed on hateful Twitter networks for the first time,
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it has opened the door for decision-makers to strengthen their disruption methods and

prevent individuals from being influenced by hate groups at an earlier stage of devel-

oping such views. For example, it could benefit governments (e.g. KSA and the UK)

and a range of organisations (e.g. charities and ISPs) in developing and implementing

counter-hate/prevention strategies. Besides, it could aid the government in the imple-

mentation of the Prevent duty. For example, in the UK, the Prevent Strategy includes

responding to the ideological challenge of terrorism, preventing people from being

drawn into terrorism and working with a wide range of sectors and institutions (e.g.

education) where there are risks of radicalisation which need to be addressed1 [145].

For instance, we showed how engaging with users exhibiting high out-degree (those

retweeting hate) could potentially lead to a reduction in hateful network size.

However, these strategies do not take the entire aspect of preventing expressions of

online hate into account, as they do not address or explain the risks of hateful content

to online users. Nevertheless, the importance of prevention has been acknowledged,

both academically and politically. For example, Moghaddam et al. [228] argued that

prevention is a long-term solution to terrorism.

Future research into the prevention of online hate may consider the role of all these

insights for mitigating direct/indirect hate propagation. It should take the relationship

between hate expression behaviour (direct/indirect) and its network, e.g. does the indir-

ect hate expressed through othering language lead to detecting an anti-religious online

network?
1https://www.lbhf.gov.uk/crime/prevent-strategy-overview-and-contact-details
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7.4 Thesis General Limitations

7.4.1 Datasets’ scarcity

Automated hate speech detection and analysing propagation depends on access to an-

notated content that humans agree to be hateful. In the field of cyberhate detection

using Machine Learning (ML), datasets are used to evaluate or compare ML methods’

performance on a particular task. It is used by researchers to test how their new ideas

perform against existing ones [71] and to objectively measure progress on a particu-

lar problem. The dataset is usually the only necessary consistent/constant aspect of a

study. The point here is that appropriate dataset collection methods are essential.

In the hate speech detection field, researchers tend to start by collecting and annotating

new messages, and often these datasets remain unshared [118]. In the majority of

papers focusing on ’algorithms for hate speech’ new different data are collected and

annotated.

Figure 7.1, by Fortuna et al. [118], showed that only in a few studies are data made

available for other researchers (label ’own, available’), and only in one case is an

already published dataset used (’published dataset’).

The limited number of datasets that are publicly shared is a relevant aspect in the area

of hate speech classification. This makes it difficult to compare results from differ-

ent studies. This is largely due to the fact that while social media platforms facilitate

discussions, including those about hate speech, many have strict data usage and distri-

bution policies. This results in a relatively small number of datasets being available to

the public to study.
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Figure 7.1: Dataset availability in the documents with algorithms about hate

speech .

7.4.2 Text Annotation

In order to perform text classification experiments on hate speech detection, having

access to labelled corpora is essential. Since there is no commonly accepted benchmark

corpus for the task, authors usually collect and label their own data.

The reliability of human annotations is crucial, both to ensure that the algorithm can

accurately learn the characteristics of hate speech, and as an upper bound on the ex-

pected performance [323]. A study performed by Ross et al. [276] on hateful content

clarified that the agreement of the annotators was very low because they revealed that

there is considerable ambiguity in existing definitions. A given statement may be con-

sidered hate speech or not depending on people’s cultural background and personal

sensibilities. This clarifies the problem of annotation when supervised learning is ad-

opted. Nobata et al. [243] compared crowd-sourced annotations achieved using AMT

with annotations created by expert annotators and found large differences in terms of

agreement rate.

In addition to reliability problems, human annotation is costly when the research aims
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to examine big datasets. Furthermore, sometimes people, including those involved

in our research, tend to annotate a number of samples (e.g. 2000) but the annotation

results become imbalanced (e.g. 1800 for the benign and 200 for the hateful). Also, the

status of hate speech is variable, which means that hateful instances may be considered

non-hateful later on.

Collecting data from Twitter is affected by several factors. For example, several studies

collected data by performing an initial manual search of common slurs and terms used

pertaining to religious, sexual, gender, and ethnic minorities for the crowd-sourcing

process. In the results, the collected data might contain tweets that were annotated

differently.

To solve this, several studies (e.g.Waseem et al. [323]) provided a list of criteria foun-

ded in critical race theory, and used them to annotate a publicly available corpus. While

this increases the proportion of hateful posts for resulting datasets, it focuses the res-

ulting dataset on specific topics and certain sub types of hate speech (e.g. hate speech

targeting Muslims). Furthermore, human annotation suffers from the problem of dis-

agreement even though the criteria can be specified. This is because each person seems

to intuitively sense what hate speech is, but rarely are two peoples’ understandings the

same [276]. For example, the tweet text ’Allah Akbar’ would be annotated differently

by different annotators from different cultures. ’Allah Akbar’ is a common Islamic Ar-

abic expression, used in various contexts by Muslims, usually informal pray ’Salah’.

However, this expression existed in a lexicon used for detecting hate speech by [96].

This causes the issue of small and imbalanced samples of hateful text and non-hateful

text within a dataset.

Another problem is the size of the annotated dataset. In general, the size of a collec-

ted corpus varies depending on specific works on hate speech detection, ranging from

around 100 labelled comments [103, 106], to several thousand comments used in other

work, such as [323].
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7.4.3 Twitter Data

There are often specific challenges with using social media data in academic research,

and in particular Twitter data. Below is a list of some of the challenges that have been

faced when using Twitter as a data source in this research.

• Sharing of tweets is prohibited under Twitter’s API Terms of Service, though

researchers can share tweet identification numbers, associated with each tweet,

which can be used by other researchers to obtain Twitter datasets. See Twitter’s

API Terms of Service [4]. However, Curini et al. [93] showed two problems

related to using tweet identification numbers. First, recovering tweets by their

identification number needs programming skill that not all researchers are famil-

iar with. Second, if a user deleted the tweet or the Twitter account, the tweet will

no longer be available and recoverable.

• There are ethical issues if a researcher decides to reproduce tweets in an aca-

demic publication, especially tweets related to sensitive topics. Researchers

should gain informed consent from the user posting the tweet, which is diffi-

cult to obtain simply due to the volume of tweets retrieved. See Williams et al.

[333] and Beninger’s et al.[44] reports on users’ views of research using social

media. This limits this type of research in terms of more detailed textual analysis

of hateful tweets.

• With regard to Chapters 5 and 6, it was noticed that the annotated hateful tweets

produced a number of suspended accounts (which violated Twitter’s policy and

were reported by other users). According to Twitter’s suspension policy, users

may not use the platform for the purposes of spamming, yet there are different

reasons for account suspension that include: 1- account security at risk, e.g. an

account has been hacked or compromised; 2- abusive tweets or behaviour, e.g.

sending threats to others or impersonating other accounts [316]. Twitter provides

an option for people to report an account that results in violence and they were
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asked to provide several tweets from that account to better understand the con-

text. In the collection under study here, a number of suspended accounts were

discarded because their profiles could not be collected, e.g. followers collection,

which was a basic step for building the hateful followers’ networks.

7.5 Future Work

7.5.1 Develop Larger Datasets

In future, larger datasets could be developed on which to test the ’othering’ classifiers

and could be used to study rising and falling cyberhate levels on a range of online so-

cial media platforms, with the intention of collecting the ’othering’ narratives to better

understand the topics and touchpoints being discussed in this context at an aggregate

level during times of civil unrest or following trigger events. Also, for the network

characteristics, more extensive hateful datasets could be constructed and compared to

the baseline study used in this work, to establish consistency of findings across a larger

range of hateful networks and to study differences over time. Where possible, this may

also include other online social networks with open APIs and it may include a compar-

ison with different ’risky’ networks (e.g. harassment and cyberbullying). Furthermore,

the cost of human annotation limits the size of the annotated posts.

In the future, we may see the use of machine classifiers for detecting cyberhate applied

to larger datasets, with sub-sampling to validate performance. Current approaches are

continually improving in performance up to 96% accuracy [25, 202, 203].

7.5.2 Improving Feature Sets:

The feature set is an individual measurable property or characteristic of a phenomenon

being observed, e.g. in Chapter 4 ’the othering feature set’. Choosing informative,
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discriminating and independent features is a crucial step for effective algorithms in

classification. Thoughts for future work relate to network node characteristics as an ad-

ditional feature that could be combined with the ’othering feature’ for detecting hateful

content and also hateful users. For example, a future research question could be - do

people who post hateful content have similar network metrics? If the answer to that

question is ’yes’, this means that the hateful users’ position in a hateful network could

be a feature utilised for training a classifier to detect hateful content or users. Previ-

ous studies used network characteristics for detecting hateful users [75, 273, 310] but

no study has yet exploited these characteristics as a feature in combination with the

feature in this work; see Chapter 4, for the detection of hateful content itself.

7.5.3 Implicit content and their networks

In the future, the propagation of hateful networks should be compared and contrasted

based on two sorts of users: (i) users who have posted implicit hate (e.g. ’othering’

content) and (ii) users who have posted explicit hate (e.g. dirty ni***a). These two

networks are sub-networks of the main hateful network. The importance of this in-

vestigation would be to measure the level of similarities among these networks and the

differences based on the following questions: (i) which sort of users’ network is denser,

that of users who propagate implicit hate or explicit hate? (ii) which sort of network has

a smaller average shortest path? (this will clarify which sort of hateful speech propag-

ates faster) and (iii) which sub-network has higher reciprocity behaviour? Do users

who publish the implicit hate retweet each other, or are users who publish the explicit

hate more cooperative in terms of retweeting? In addition, it is possible to measure the

correlation between the implicit sub-network and the explicit sub-network. If the cor-

relation is low, this means that we are facing two groups of haters: haters who prefer

to publish only implicit hate and users who prefer to publish only explicit hate.
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7.5.4 Disrupting Multipartite Networks

A multipartite network is a network whose nodes are or can be partitioned into dif-

ferent independent sets, forming a partition such that no two nodes belonging to the

same subset are adjacent. Despite the fact that bipartite networks have not previously

offered promising results in terms of identifying the important node, in the future, we

will apply the node removal strategies to our hateful networks transformed into multi-

partite networks. In addition, we will apply edge-removal strategies and compare and

contrast the results with the node-removal strategies. A matrix of the networks’ mode

(column) and the node/edge-removal strategies (row) will be helpful for the literature

as a source that measures the performance of the node/edge removal strategies in terms

of disconnecting hateful networks.

7.5.5 Hidden networks: The propagation of hash-tagged tweets

Future work could investigate the inclusion of hashtags in tweets in the context of

studying hate speech propagation on the web, in particular, a comparison of hate

propagation with hash-tagged tweets versus non-hash-tagged tweets. This is motiv-

ated by the observation that the inclusion of hashtags can increase the chance of tweet

propagation [92, 194]. Future research could ask - does the inclusion of the hashtags

contribute positively to the propagation of hateful content? This is important informa-

tion to clarify because the use of hashtags in tweets might well build a ’hidden’ network

of hateful users that targets their ideologies to specific groups and topics.

7.6 Summary

In this thesis, it has been demonstrated that exploiting the use of pronouns in discrimin-

ating content as a feature improves the training results of the state-of-the-art machine

classifiers and also detecting hate in unseen datasets. Also, extensive analysis was
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conducted to reveal the similarities between hateful networks and strategies for the

disruption of hate propagation.
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Appendix

Appendix A: Recent Literature Review

Since hate speech and the abusive language have recently become subjects of general

concern, detecting hate speech has grown to be a major topic by the community of

natural language processing (NLP), as demonstrated by the creation of datasets in a

variety of languages [250]. Therefore, there are a considerable numbers of hate speech

detection and classification have been published after our contribution, the period from

2019 to 2021. The table below is a continue of Table 2.5 in Chapter 2.

Table A1: Summary of the studies that related to hateful text classification show-

ing the hate type, year, classifiers used, metrics accuracy, precision, recall, f-

measure and AUC

Study Hate

Type

Year class

ifier

Features Accu-

racy

Precis

ion

Rec-

all

F-

score

AUC

Fatahill

ah et

al.[113]

Hate

speech

2019 Multin

omial

Lo-

gistic

Re-

gres-

sion

TF-IDF 0.87 0.80 0.82 - -
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Table A1 Continued: Summary of the studies that related to hateful text classi-

fication showing the hate type, year, classifiers used, metrics accuracy, precision,

recall, f-measure and AUC

Van et

al.[314]

2019 Bi-

GRU-

CNN

and

BiGRU-

LSTM-

CNN

TextCNN - - - 0.70 -

Pamun-

gkaset

al.[254]

2019 LSVC,

LSTM

and

HurtLex

Word

embed-

ding

- 0.60 0.79 0.68 -

Rodrigu

ez et

al.[274]

Hate

speech

2019 K-

means

VADER

and

JAM-

MIN,

TF-IDF

0.74 - - - -

Liuet

al.[202]

Hate

speech

2019 Fuzzy

clas-

sifier

Embedding

features

- - - 0.93 -

Briliani

et

al.[59]

hate

speech

2020 K-

Nearest

Neigh-

bour

TF-IDF 0.97 0.93 0.94 0.93 -
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Table A1 Continued: Summary of the studies that related to hateful text classi-

fication showing the hate type, year, classifiers used, metrics accuracy, precision,

recall, f-measure and AUC

Oriolaet

al.[247]

Offensi

ve and

hate

speech

2020 Optim

ized

Gradi-

ent

Boost-

ing

n-gram TF-

IDF

0.93 - - -

Alsafari

et

al.[28]

2020 CNN

and

mBert

CNN - 0.78 0.76 0.81 -

Chatter

jee et

al.[74]

Cyberbu

llies

2020 Fuzzy

clas-

sifier

Bandpower

(Bp)

0.90 - - - -

Ayo et

al.[35]

Hate

speech

2021 Fussy

clas-

sifier

TF-IDF - - - 0.92 0.96

Mioket

al.[221]

Offesns

ive lan-

guage

2021 BERT

and

Monte

Carlo

dro-

pout

(MCD)

BERT 0.91 - - 0.90 -

In 2019, Fatahillah et al. [113] collected the data from Twitter and employed Case

Folding, Tokenizing, Filtering, and Stemming methods in preprocessing phase. After

Pre-processing, the TF-IDF technique is used for vectorization. After Feature engin-
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eering, the Logistic regression algorithm has been applied, and they have found 87%

of accuracy. Axel Rodriguez et al. [274] proposed an approach to detect hate speech

content using sentiment analysis on Facebook. They used Graph API to extract the

post and comments from Facebook. To remove the unrelated texts VADER and JAM-

MIN were used. In preprocessing phase, they filtered out all unnecessary stopwords or

symbols. Preprocessed documents converted into the vector using TFIDF. The result-

ing matrix is passed to the k-means clustering algorithm as an input matrix. The most

negative articles and responses were collected using sentiment and emotion analysis.

Tin Van Huynh et al. [314] proposed an approach to detect hate speech using Bi-GRU-

CNN-LSTM Model. In this paper, they collected data from Twitter and categorized

their data into three labels (OFFENSIVE, HATE, and CLEAN). After cleaning the

data, they implemented three neural network models such as BiGRU-LSTM-CNN, Bi-

GRU-CNN, and TextCNN to identify hate speech. They achieved a 70.57% of F1 score

as a result.

Viviana Patti et al. [254] proposed a Hybrid based approach to detect hate speech [31].

In this paper, they employed two models. In their first model, they implemented a linear

support vector classifier (LSVC), and in the second model, they employed a long short-

term memory (LSTM) neural model with word embedding. They concatenated 17

categories, such as HurtLex, with two types, namely LSVC and LSTM. Joint learning

with a multilingual word embedding model, including HurtLex, performed best with

68.7% of F1-score.

Nanduri et. al.[235] created a method for classifying the multi-class instances using

the fuzzy methodologies. They attempted for designing an updated fuzzy that includes

two stages of training for the classification of cyberhate conversation into 4 forms,

race, disability, sexual orientation, and religion. By performing several experiments

on the present process the experimental and theoretical estimation has validated the

characteristics through ML approaches such as the words that combined for future

methods Bow (bag-of-words) and extraction, which also differentiate cyberhate and



248

normal conversation very appropriately.

Another study by Chatterjee et. al.[74] suggests a method for identifying and classify-

ing cyberbullying acts as harassment, flaming, terrorism, and racism. The author uses a

fuzzy classification rule; therefore, the results are inferior in terms of accuracy (around

40%), but using a set of rules, improved the classifier efficiency by up to 90%.

Liu et. al. [202] introduced a novel formulation of the hate speech type identification

problem in the setting of multi-task learning through our proposed fuzzy ensemble ap-

proach. In this setting, single-labelled data can be used for semi-supervised multi-label

learning and two new metrics (detection rate and irrelevance rate) are thus proposed to

measure more effectively the performance for this kind of learning tasks. They reported

an experimental study on identification of four types of hate speech, namely: religion,

race, disability and sexual orientation. The experimental results show that our pro-

posed fuzzy ensemble approach outperforms other popular probabilistic approaches,

with an overall detection rate of 0.93.

In 2020, Oluwafemi Oriola et al. [247] proposed an approach to detect offensive speech

on tweeter. The author collected the data set using Twitter API and annotated those data

set into two sections, free speech âFSâ and hate speech âHT.â In preprocessing phase,

they removed special characters, emojis, punctuations, symbols, hashtags, stopwords

to clean the data. In the feature engineering phase, they employed the TF-IDF tech-

nique to transform the text into feature vectors. After applying an optimized support

vector machine with n-gram, they have found 89.4% of accuracy.

Annisa Briliani et al. [59] proposed an approach to identify hate speech on Instagram

using the k-nearest neighbour classifier. They collected the data set using Instagram

API from Instagram and annotated those data set manually. They divided the dataset

into 2 labels, namely zero and one. In preprocessing phase, they cleaned the data and

employed the TF-IDF technique in the feature engineering phase. After then, they

applied the k-nearest neighbor algorithm and found 98.13% of accuracy.
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Alsafari et al. [28] proposed a Hate speech detection model for Arabic social media.

In this paper, they collected the data set using Twitter search API, and the data set

is categorized into four classes (Religious, Nationality, Gender, and Ethnicity). They

cleaned the data set in preprocessing phase by removing unnecessary words such as

URLs, punctuations, symbols, tags, and stopwords. They implemented a three-class

classification with CNN and Bert to achieve 75.51% of the F1-score.frequent valid-

ation or on demand validation - both can generate considerable, often unnecessary,

network traffic and the latter reduces much of the latency gains offered by caching.

The viable alternative in such circumstances is resource-driven invalidation where the

server invokes a callback on the cache to inform it whenever an update has

In 2021, Ayo et. al.[35] suggested a probabilistic clustering model for hate speech

classification in twitter which tackle the problem of emotions overlap between posit-

ive or negative class. Features representation was done with Term Frequency- Inverse

Document Frequency (TF-IDF) model and enhanced with topics inferred by a Bayes

classifier. A rule-based clustering method was used to automatically classify real-time

tweets into the correct topic clusters. Fuzzy logic was then used for hate speech classi-

fication using semantic fuzzy rules and a score computation module. From the evalu-

ation results, it was observed that the developed model performed better in hate speech

detection with F1-sore of 0.9256 using a 5-fold cross validation.

Calderon [67] Used unsupervised topic modeling to characterize hate speech against

immigrants on Twitter in Spain around the appearance of the far-right party Vox. They

concluded that the hate speech against immigrants produced around Vox, and not ne-

cessarily by Vox, followed the general patterns of this type of speech detected in pre-

vious works, including Islamophobia, offensive language more often than violent lan-

guage, and the refusal to offer public assistance to these collectives.

Miok et. al. [221] proposed a Bayesian method using Monte Carlo dropout features

within the attention layers of the transformer models to provide well-calibrated reli-

ability estimates. Their experiments show that Monte Carlo dropout provides a viable
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mechanism for reliability estimation in transformer networks. Used within the BERT

model, it offers state-of-the-art classification with performance of 0.91 accuracy and

0.90 F-score and can detect less trusted predictions.
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Appendix B:Further analysis for hate

speech definitions
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Appendix C: Examples of hate speech

features
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Table A3: The most similar words to the othering terms based on four hate speech

types. .
Trained Data Set Test Data Sets

words Othering Feature Set Religion Race Disability Sexual-oreintation

us

ni**as, we,

Arab, those,

iran, group,

Jews, Muslim,

send, headiest,

these, nig**s,

they, African,

Arab, them,

you, blacklist,

violence

UK, state,

canada, they,

me, Germany,

Iraq, them,

out of

wife, gurentee,

bought, final,

Poland, stew,

we, he

did, make,

we, you,

get, athelet,

nig**a, brave

them

these, Jew,

those, pakistanian

someon hang,

Muslims, rednecks,

country,

p**s, niggu

these, you,

p**s, send,

those, kick,

fuck, muslims,

Arab

their, us,

these, those,

many, themselves,

stop, country,

ni**aas

short, bald,

though, smash,

yourself, never,

powel, retain

they, cunt,

fu**, Fu***ng,

their, these,

idiot, chrestian

Muslim

us, nonmuslim,

iraq, lable,

Jews, racism

high, arab,

yellow, doe,

country

crime, Jews,

Pakistani, blacklash,

socity, christian,

white, nonmuslim

Islamic, Arab,

Sunni, Jews,

us, Iraq,

christian, hindu

minority, religious

Not exist Not exist

out

gotta, outta,

Islam, America,

chop, attack,

mosque, send

home, manchest,

blacks, these

nazzi, carri,

move, lot,

matter,them,

asian, gang,

send, black

down, back,

their, them,

these, wrong,

fight, blacks,

US, building

juturna, they,

primlyst, reason,

miss, mild,

fatty,you, smash

announce, these,

ni**o, active,

black, community,

move

burn

church, non-whites,

chop, mosques,

themfu**ing,

shoot, chop,

ni**as, commit,

nigeria

church, story,

mosques, Saudi,

action, distance,

fu**ing,

nig**ro

kill, destroy,

fu**, explosion,

shoot, strick,

obama, nigeria

voting

Not exist Not exist
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Examples of the whole typed dependency sentences from anti-religious dataset:

1- nig*****isss bare peopl say one of the peopl that kill the man in woolwich live

behind

root(ROOT-0, Nig*****isss-1)

amod(people-3, bare-2)

nsubj(NiggaGenesisss-1, people-3)

nsubj(killed-10, people-3)

acl(people-3, saying-4)

dobj(saying-4, one-5)

case(people-8, of-6)

det(people-8, the-7)

nmod:of(one-5, people-8)

ref(people-3, that-9)

acl:relcl(people-3, killed-10)

det(man-12, the-11)

dobj(killed-10, man-12)

case(lives-15, in-13)

amod(lives-15, woolwich-14)

nmod:in(killed-10, lives-15)

case(u-17, behind-16)

nmod:behind(killed-10, u-17)

2- told me Gary want the per that shot of them dirti black cunt that kill that lad in

woo

compound(Gary-4, brentthomas-1)

compound(Gary-4, BigJoeLew-2)
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compound(Gary-4, garryt-3)

nsubj(told-5, Gary-4)

root(ROOT-0, told-5)

nsubj(cunts-17, me-6)

advmod(cunts-17, u-7)

cop(cunts-17, was-8)

det(cunts-17, the-9)

amod(cunts-17, per-10)

det(shot-12, that-11)

dep(per-10, shot-12)

case(them-14, of-13)

nmod:of(shot-12, them-14)

amod(cunts-17, dirty-15)

amod(cunts-17, black-16)

ccomp(told-5, cunts-17)

nsubj(killed-19, cunts-17)

ref(cunts-17, that-18) acl:relcl(cunts-17, killed-19)

det(lad-21, that-20) dobj(killed-19, lad-21)

case(woo-23, in-22) nmod:in(killed-19, woo-23)

3- fuckfem I wa told that woolwich thing wa a pakistani too loool go back to your

countri pal or jump off a cliff either is g

root(ROOT-0, fuckfems-1)

dobj(fuckfems-1, I-2)

compound(Told-4, Was-3)

nsubj(fuckfems-1, Told-4)

mark(LOOOL-12, That-5)

compound(Thing-7, Woolwich-6)

nsubjpass(LOOOL-12, Thing-7)
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auxpass(LOOOL-12, was-8)

det(pakistani-10, a-9)

nmod:npmod(too-11, pakistani-10)

advmod(LOOOL-12, too-11)

dep(fuckfems-1, LOOOL-12)

ccomp(LOOOL-12, go-13)

compound:prt(go-13, back-14)

case(pal-18, to-15)

nmod:poss(pal-18, your-16)

compound(pal-18, country-17)

nmod:to(go-13, pal-18)

cc(go-13, or-19)

ccomp(LOOOL-12, jump-20)

conj:or(go-13, jump-20)

compound:prt(jump-20, off-21)

det(cliff-23, a-22)

dobj(jump-20, cliff-23)

dep(LOOOL-12, either-24)

cop(g-26, is-25)

conj(LOOOL-12, g-26)
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GNU Free Documentation License

Version 1.2, November 2002

Copyright © 2000, 2001, 2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. Preamble

The purpose of this License is to make a manual, textbook, or other functional and use-
ful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. Applicability and Definitions

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of
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this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revis-
ing the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing ed-
itor, and that is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LATEX input format, SGML or XML using a publicly available
DTD, and standard-conforming simple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that can be read and edited only by pro-
prietary word processors, SGML or XML for which the DTD and/or processing tools
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are not generally available, and the machine-generated HTML, PostScript or PDF pro-
duced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may pub-
licly display copies.

3. Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
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back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. Modifications

you may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under pre-
cisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.
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C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the pub-
lic permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Doc-
ument, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the “History” section. You may omit a network location for a work that was pub-
lished at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.
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If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties — for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. Combining Documents

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”
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6. Collections of Documents

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s
Cover Texts may be placed on covers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

8. Translation

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.
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If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

10. Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your docu-
ments

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distrib-
ute and/or modify this document under the terms of the GNU Free Docu-
mentation License, Version 1.2 or any later version published by the Free

http://www.gnu.org/copyleft/
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Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.
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