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Abstract

Recently, topological photonics has been proven to be an attractive frame-
work for manipulating the light in an extraordinary way. For instance, pho-
tonic topological insulators can exhibit modes that are robust against some
defects such as fabrication imperfections, deformations and sharp bendings
in waveguides. This thesis extends previous works on topological lasers by
proposing new topological lasing modes, analysing the dynamic behaviours of
those modes and adopting new topological classification methods with the aim
to realise high-performance laser devices. In particular, I will cover some of my
recent contributions in the research field, especially on topological edge modes
in kagome photonic crystals, semiconductor topological laser cavities, and non-
Hermitian topological bulk modes, as well as on a proposed data-driven ap-
proach for topological classification in topological insulator lasers. I will start
with an all-dielectric reciprocal topological insulator based on the geometry of
a kagome lattice, where I demonstrated broadband and highly efficient unidi-
rectional photonic edge mode propagation for sharp bendings conserving the
local symmetry. These topological edge modes working at telecommunication
wavelengths will be used to construct semiconductor laser cavities insensitive
to defects. In the topological cavity, I will show that two different regimes
coexist where additional Fabry-Pérot modes are present in addition to the
topological lasing modes. Finally, I will show how non-Hermiticity can give
rise to new topological states. In particular, I will look at so-called topo-
logical bulk modes that arise from asymmetric couplings. In contrast to the
topological edge modes, they are delocalised over the bulk while still being
topologically protected. The topological bulk modes have been achieved in a
two-dimensional kagome lattice, with rhombus geometry, by introducing an
imaginary gauge field. I will show the possibility to achieve temporally stable,
phase-locked broad area topological lasers in two-dimensional lattices. Fur-
ther, I will propose a data-driven method in order to find new topological
phases via reverse engineering.
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Introduction

The control of the flow of light has been one of the main goals in photonics

in the last decades. Photonic crystals (PhCs) have been a fundamental step

toward this goal [1]. Because a PhC consists of periodic dielectric materials,

the electromagnetic fields can be written in the Bloch form and one can define

photonic band structures and photonic bandgaps, which tell us whether an

incident wave can couple to a bulk mode or decays exponentially inside the

PhCs. Thanks to crystal symmetry, one only needs to look at the first Brillouin

zone to gain all the relevant information. PhCs are used for many applications

ranging from simple filters to complex cavity structures for the integration of

single-photon emitters on a chip [1]. However, inherent in every optical device

and waveguide are the problem of back-reflection of the light propagation

because of bendings, fabrication defects or environmental variations.

Pioneered by the seminal work by Raghu and Haldane [2], photonic topo-

logical insulators (PTIs) extend the notion of topological insulators (TIs) from

condensed matter physics to photonic systems. One of the remarkable fea-

tures of (photonic) topological insulators is the existence of robust topological

edge modes at the interface between two topologically inequivalent (photonic)

crystals. This is known as the bulk-edge correspondence. The robustness of

the topological edge modes can be seen, for example, as an edge mode that

propagates only in one direction without being back-reflected in presence of

bendings or defects preserving the symmetries of the system [3, 4]. Photonic

systems are topologically distinct if they are characterised by different topo-

logical invariants. Depending on the symmetry of the system, the “ten-fold

way” classifies the topological insulators and gives access to a periodic table

of topological invariants [5]. For example, such topological invariants are the
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winding number and the Chern number which are mainly calculated from the

Bloch eigenstates and the band structure.

A natural platform for PTIs is PhCs because of the possible extension

of topological band theory to photonic band structures. Implementations of

PTIs vary considerably and several schemes have been developed. For exam-

ple, the photonic analogue of a quantum Hall topological insulator was first

achieved in the microwave regime using gyromagnetic materials with a strong

magnetic field applied to break the time-reversal symmetry [6]. Later, sev-

eral proposals have been put forward to realise photonic topological transport

free of external magnetic fields by temporal modulation of photonic crystals

to mimic time-reversal-symmetry breaking [7–10]. A subwavelength-scale PTI

approach via pseudo-time-reversal symmetry in all-dielectric photonic crystals

was recently proposed [11] and experimentally verified from visible wavelengths

to microwave regime [12–16]. Another elegant subwavelength-scale nontrivial

topology strategy has been introduced by exploiting the optical valley Hall

effect to break spatial-inversion symmetry to access the opposite Berry cur-

vature near Brillouin zone corners [17–26]. This opens avenues to on-chip

photonic devices for robust topologically protected light manipulation.

Extension of PTIs to non-Hermitian systems, especially to active systems,

has recently gained attention due to the inherent loss of photonic systems,

but also because of its promise to enhance laser device performances. Because

of the non-Hermiticity of the system, the bulk-edge correspondence breaks

down in some cases [27]. Therefore one needs to extend the ten-fold way

to capture the non-Hermiticity and construct new topological invariants [28–

30]. The first topological laser was realised experimentally using magneto-

optical photonic crystals with an applied static magnetic field to break time-

reversal symmetry [31]. The non-Hermitian, parity-time (PT ) symmetric,

one-dimensional (1D) Su-Schrieffer-Heeger (SSH) model [32] has been studied

to generate edge states and topological lasing devices [33–35]. A cavity made of

topological distinct PTIs has been proposed to enhance the lasing efficiency by

using the unidirectional topologically protected edge-mode lasing [31, 36, 37].

Moreover, a topological laser has been proposed by using extended topological

modes to achieve broad-area emission in a two-dimensional (2D) hexagonal
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cavity [38] based solely on the parity symmetry of the mode at the Γ-point

or by using an imaginary gauge field in a 1D PT -symmetric SSH lattice to

delocalise the zero-energy boundary mode over the 1D-bulk [39].

However, the focus has been mainly on addressing the question of the

spatial stability of those topologically protected modes, i.e. on the existence

of topologically protected modes coming from (active) non-Hermitian PTIs.

Non-linearity being intrinsic in active systems, studying the non-linear dynam-

ics of active non-Hermitian PTIs seems to be a more natural framework and

may lead to the discovery of richer physics [40, 41]. More than just a natural

framework, temporal stability is an important characteristic since non-linear

effect may give unstable or chaotic behaviours of the topologically protected

modes [42] even though its frequency analysis may guarantee its spatial stabil-

ity, i.e. no back-scattering at sharp edges and robustness against disorder. To

fully understand the stability of topological modes, both spatial and temporal

stabilities are required based on a frequency analysis and non-linear dynamic

analysis. Nevertheless, standard linear stability analysis can be quite challeng-

ing [42] because of the high-dimensional phase and parameter space.

On the other hand, machine learning (ML) has been a fruitful tool in

attacking complex problem directly. ML is a data-driven approach and has

been proven successful for classification, or dimensionality reduction tasks of

large sets of high-dimensional data. For example, the data-driven method has

been used to draw topological phase diagrams [43], calculate topological in-

variants [44], or explore topological band structures [45]. In the field of PTIs,

ML may be useful in attacking complex systems with a huge parameter space

when analytical computation becomes difficult to handle. In particular, this

can be used to study spatio-temporal dynamics and can provide new insight

into the fundamental physics.

This thesis aims at designing topological insulator lasers which present

clear advantages for lasing application compared to standard lasers. We ex-

plore the idea of using active materials on passive photonic topological insu-

lators to have topological insulator lasers. The focus is made on designs that

are simple enough to fabricate and compatible with current semiconductor
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photonic integrated circuit technologies for an easy integration into other pas-

sive or active photonic devices. Moreover, the effect of non-Hermiticty in the

system is also explored in order to take advantage of unique behaviours that

do not exist in Hermitian systems.

To this end, we demonstrate in Chap. 2 the presence of topologically pro-

tected modes in waveguides made of opposite geometrically perturbed kagome

lattices. These valley-dependent edge states, that emulate the optical valley

Hall effect, exhibit broadband suppressed reflection in the presence of sharp

corners and further show negligible vertical losses. In contrast to proposed PTI

designs that require complicated structures or very strong magnetic fields, the

proposed kagome lattice offers a simple all-dielectric nanophotonic strategy

to achieve topological edge modes. Using conventional semiconductor device

examples, we propose a realistic device composed of an InGaAsP free-standing

photonic crystal working at telecommunication wavelengths. In Chap.3, we

employ the topological waveguide obtained in Chap.2 to design an all-dielectric

topological insulator laser working in the telecommunication region based on

semiconductor cavities formed by topologically distinct kagome photonic crys-

tals. The simplicity of the proposed PTI laser and the low vertical loss of the

edge mode utilised for lasing present clear advantages compared to PTI lasers

proposed in the literature. An interesting feature of the kagome lattice is that

it supports two different types of valley Hall edge modes, which enables the

coexistence of topological ring-resonator modes and trivial Fabry–Pérot res-

onator modes in the proposed topological cavities. The pumping and lasing

dynamics of the topological cavities are studied by means of a four-level two-

electron model and demonstrate that this model offers a powerful platform to

investigate topological laser cavities with arbitrary geometry. On the other

hand, Chapter 4 reports exciting results about a novel topological phase in

non-Hermitian photonic topological insulator lasers. Here we propose a pro-

cedure to realise topologically protected modes extended over a d-dimensional

bulk by introducing an imaginary gauge field. This generalises the idea of

zero-energy extended modes in the one-dimensional SSH lattice into higher

dimensional lattices allowing a d-dimensional bulk mode that is topologically

protected. Furthermore, we numerically demonstrate, using an optical gain
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modelled by a two-level model, that the topological bulk lasing mode can fa-

cilitate high temporal stability superior to topological edge mode lasers. Using

an exemplified topological extended mode in the kagome lattice made of active

ring resonators, we show that large regions of stability exist in its parameter

space. Finally, we propose in Chap. 5 a data-driven method to draw the phase

diagram in topological insulator lasers. The classification is based on the tem-

poral behaviour of the topological mode obtained via numerical integration of

the rate equation. A semi-supervised learning method is used and an adaptive

library is constructed in order to distinguish the different topological modes

present in the generated parameter space. The proposed method has been

proven successful in distinguishing the different topological phases in the SSH

lattice with saturable gain and is promising for consideration of more compli-

cated laser models or systems. This demonstrates the possibility to classify the

topological phases without the need for expert knowledge of the system and

may give some insight into the fundamental physics of topological insulator

lasers via reverse engineering.
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Chapter 1

Theoretical background

At the core of (photonic) topological insulators are the bulk-boundary corre-

spondence and the calculation of topological invariants [5,46–49]. This guaran-

tees the spatial stability of the obtained topologically protected modes, namely

its robustness against a certain class of defects. However, the temporal sta-

bility of those topologically protected modes may not be guaranteed in active

non-Hermitian topological insulators. Non-linearity being intrinsic to active

systems, this can give rise to temporal instabilities [42] but also to novel topo-

logical phases [40,41].

This preliminary chapter will be dedicated to introducing the main con-

cepts used throughout the thesis while focusing on the aspects that are relevant

to the content of the thesis. We will start with a brief introduction to what a

topological insulator is, focusing mainly on gapped topological insulators. As

a toy model, we will study the SSH lattice in order to familiarise us with the

main concepts used in the thesis. This includes the calculation of a topological

invariant that does not change under continuous deformations as long as the

gap remains open, and the bulk-boundary correspondence which accompanies

a change of topological invariant across some interface. In the next section,

we will look at how non-Hermiticity, in particular gain, can be introduced

into the Hermitian SSH lattice and consider a gain and loss distribution that

satisfies the well-known PT symmetry. The active system is then studied in

the frequency domain in order to see the change of spectrum and thus pos-

sible topological phase change, as well as in the time domain to explore the

1



2 Chap. 1. Theoretical background

Figure 1.1: Example of continuous (top) and discontinuous (bottom) defor-
mation for the example of a two-band model.

dynamics of the topological mode in the active system.

1.1 Topological insulator: The SSH lattice

TIs have attracted a lot of attention due to their remarkable feature of hav-

ing topologically protected edge states that are robust against symmetry-

preserving disorder. This remarkable feature of TIs relies on topological invari-

ants which are quantities that do not change under continuous deformations.

Physically, a continuous deformation can be seen as a parametrisation of, say,

a two-band model that deforms the bands without closing the present gap as

illustrated in Fig. 1.1(top). On the other hand, a discontinuous deformation

is shown in Fig. 1.1(bottom) and is characterised by a gap closing in the de-

formation process. Systems having different topological invariants are said to

belong to different topological phases. An interesting aspect of TIs appears

when we have a system composed of two topologically distinct phases that are

interfacing with each other. The topological invariant must therefore change

at the interface between the topologically distinct systems via some band gap

closing and gives rise to the presence of edge states that are topologically pro-

tected. This is known as the bulk-edge (or bulk-boundary) correspondence:

one can infer information at the edge of a sample from solely the bulk in-

formation via the calculation of topological invariants. Importantly, these

topological modes feature robust behaviour for local perturbation disorders at
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......
t1 t2 t2t1

A AB B A B
t1

(a)

(e)(d)

(c)(b)

Figure 1.2: (a) Schematic of the SSH lattice with intra- and inter-unit cell
couplings t1 and t2, respectively. The unit cell is composed of two sites A and
B, and is represented by the blue dotted box. (b) Band structure of the SSH
lattice with different couplings strength ratio: ν < 1, ν = 1 and ν > 1. (c)
Projected band structure against the coupling strength ratio ν. (d) Evolution
of q(k) in the complex plane, with respect to the wave vector k, for ν < 1,
ν = 1 and ν > 1. (e) Winding number W against the coupling ratio ν. The
coupling parameters are t1 = 0.02 for all the panels, and ν = 0.7, 1, 1.5 in
(a),(c).

the interface since the origin of these modes comes from the bulk of the system.

As a first example of TI, we will consider the SSH lattice in order to illus-

trate the notion of topological invariants and the bulk-edge correspondence.

1.1.1 Bulk analysis

The SSH lattice is characterised by a one-dimensional lattice with two sites

per unit cell, A and B, and with intra- and inter-unit cell coupling t1 and t2

respectively, as depicted in Fig. 1.2(a).

Using a tight-binding formalism with the nearest neighbour approximation,
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the evolution of the state ψ of the SSH lattice is governed by:

i
dψ

dt
= HSSHψ (1.1)

where HSSH is the Hamiltonian that describes the couplings between the sites

in the tight binding formalism. Explicitly, we have ψ = (. . . , an, bn, . . .)
T and

the coupled-mode equations [Eq. 1.1] read:

i
dan
dt

= EAan + t1bn + t2bn−1, (1.2)

i
dbn
dt

= EBbn + t1an + t2an+1, (1.3)

where an and bn are the amplitudes of the sites A and B, respectively, on the

n-th unit cell, and Eσ the on-site energy on the site σ. Thanks to translation

symmetry, the Bloch Hamiltonian in momentum space can be obtained, from

the Fourier transform of Eqs. 1.2 and 1.3:

HSSH(k) =

 EA t1 + t2e
−ik

t1 + t2e
ik EB

 . (1.4)

Provided EA = EB = 0, the eigenvalues of HSSH(k) are given by E(k) =

±|q(k)|, where q(k) := t1 + t2e
−ik. Depending on the coupling strength ratio

ν := t2/t1, the spectrum of the SSH lattice is either gapped or gapless and

thus is in an insulating or metallic phase, respectively. Figure 1.2(b) shows

the bandstructure E(k) obtained for three different coupling strengths: ν < 1,

ν = 1 and ν > 1. Interestingly, by sweeping the coupling strength ratio, the

gap closes at the particular point ν = 1 (t2 = t1)
1 , whereas the spectrum

is gapped whenever ν ̸= 1 (t2 ̸= t1) as plotted in Fig. 1.2(c). The degener-

ate configuration ν = 1 is the critical configuration where a topological phase

transition can occur, i.e. where the topological invariants can change as we

will see in the next section.

Topological band theory allows us to classify the bands according to their

1For simplicity, only positive couplings are considered in this example. Otherwise, the
spectrum is gapless (gapped) whenever |ν| = 1 (|ν| ≠ 1).
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corresponding topological invariant [5, 46–49]. Which topological invariant to

use depends on the symmetry of the system [5]. Here we are interested in the

case where EA = EB = 0 in which chiral symmetry is satisfied, CH(k)C =

−H(k) with C = σz, and from which the winding number can be used as a

topological invariant.

Intuitively, the winding number W can be found by looking at the evolu-

tion of q(k) with respect to the wave vector k in the first Brillouin zone (BZ).

Figure 1.2(d) shows the evolution of q(k) in the complex plane for three con-

figurations: ν < 1, ν = 1 and ν > 1 as in Fig. 1.2(b). In the complex plane,

the origin |q| = 0 corresponds to the degenerate point. We observe that q(k)

does not encircle the origin for ν < 1, whereas q(k) winds around the origin

once for ν > 1. The winding number W is then the number of times q(k)

winds around the origin. The topological origin of this winding number can

be demonstrated via homotopy theory where, for example, a loop that winds

around the origin once cannot be deformed from the configuration ν > 1 to

ν < 1 without closing the bandgap at ν = 1.

Rigorously, the winding number W can be calculated directly from the

bulk Hamiltonian. In the basis of the chiral symmetry operator, HSSH(k) is

off-diagonal:

HSSH(k) =

 0 q(k)

q∗(k) 0

 (1.5)

and the winding number W is given by:

W =
1

2πi

∫ π

−π
dk

d

dk
ln(q(k)). (1.6)

We can see in Fig. 1.2(e) that the winding number is W = 0 for ν < 1 and

W = 1 for ν > 1. Therefore we can say the SSH lattices with ν < 1 and ν > 1

are topologically distinct. Consistent with the explanation given above, the

winding number changes only when a gap closes. This is an example showing

the topological invariant remains unchanged as long as there is no gap closing.
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t1 t2 t2t1 t1
A AB B B BA AA

t2 t1t2

(a)

(e)

(c)

(d)

(b)

Figure 1.3: (a) Schematic of the lattice with a domain wall composed of SSH
lattices . On the left (right) side of the domain wall, we have ν < 1 (ν > 1).
(b) Spectrum of the lattice in (a). (c) Field profile of the zero-energy mode in
(b). (d),(e) Spectrum of the lattice and field profile of the zero-energy mode in
presence of perturbations in coupling strength. The couplings are perturbed
by a random uniform distribution δti ∈ [−0.005, 0.005]. The lattice is made of
Ns = 21 sites. The coupling parameters for the left (right) side of the interface
are t1 = 0.06 and ν = 1/3 (t1 = 0.02 and ν = 3).

1.1.2 Boundary analysis

So far in this section, we have analysed the SSH lattice with periodic boundary

conditions (PBCs). It turns out that interesting physics happens once bound-

aries are considered on the lattice.

In particular, one can consider the boundary between two topologically

distinct SSH lattices, i.e. between an SSH lattice with ν < 1 on one side, and

ν > 1 on the other side as illustrated in Fig. 1.3(a). This lattice configuration,

therefore, creates a domain wall between topologically distinct SSH lattices.

Knowing that the SSH lattice with ν < 1 and ν > 1 have different topological
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invariants, it is expected, from the bulk-edge correspondence, to have topolog-

ical edge states that arise at the interface between the two lattices. Because

of chiral symmetry, there is necessarily a zero-energy mode when considering

an odd number of sites2 . This zero-energy mode corresponds to the topolog-

ical edge mode. Figures 1.3(b) and 1.3(c) indeed show the zero-energy mode

present in the spectrum of the lattice and the field profile of the topological

zero-energy mode that is exponentially decaying away from the boundary in-

terface. This edge mode is topologically protected, namely, it is robust against

perturbations as long as the perturbations do not break chiral symmetry or

close the bandgap. This is demonstrated in Figs. 1.3(d) and 1.3(e) where the

spectrum of the lattice with perturbations in the couplings is plotted, as well

as the field profile of the corresponding zero-energy mode of the lattice. The

zero-energy mode and the topological mode remain present even though we

have perturbations in the couplings.

An alternative analysis to study topological insulators can be realised from

the study of the continuum Dirac Hamiltonian of the system. The interface

states are efficiently captured by the Hamiltonian of a single gapped Dirac

cone with mass M on one side of the interface, and mass −M on the other

side. The Dirac Hamiltonian of the SSH lattice can be obtained by Taylor

expanding the Bloch Hamiltonian around its band extrema, here k0 = π:

H(k0 + δk) ≈Mσx − t2δkσy (1.7)

where |δk| ≪ 2π is assumed to be small, and M = t1 − t2 is the mass term

that opens a bandgap. The system with a domain wall is given by a mass

term that changes signs over the interface. For example, we can consider the

following interface:

M(x) =

 M0 if x ≥ 0

−M0 if x < 0
, (1.8)

where M0 = t1 − t2 for fixed t1 and t2. Therefore the interface between

2When an odd number of sites is considered, chiral symmetry constrains the eigen-energies
to come in pairs, i.e. to have energies E and −E. Therefore for an odd number of sites, the
zero-energy mode E = 0 is necessarily present. On the other hand, for an even number of
sites, the zero-energy mode split into two energy modes exponentially close to E = 0.
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two topologically distinct phases happens, here, at x = 0. The continuum

Hamiltonian is then obtained by replacing the wave vector δk with −i∂x since

there is no translation symmetry along the x-direction anymore. The localised

state φ(x) with energy E at the interface is obtained by solving:

Hcontinuumφ(x) = Eφ(x) (1.9)

Starting with the ansatz of the boundary state on the left and right side of

the interface written as:

φ(x) =

 ai

bi

 e±κx (1.10)

where κ is the penetration depth, we can show that the solution to Eq. 1.9 is

given by E = 0 with ai = 0, bi = 1 and κ = M0/t2. More generally, one can

show that an edge state with energy E = 0 exists as long as the mass term

changes sign at the interface, independently of the interface details M(x), and

is given by:

φ(x) =

 0

1

Ce
− 1

t2

∫ x
0 dx′M(x′)

, (1.11)

where C is a constant scalar.

As another type of boundary in the lattice, it is also interesting to look

at the finite-size SSH lattice with an odd number of sites as illustrated in

Fig. 1.4(a). This finite size system corresponds to the system with open

boundary conditions (OBCs). We find the presence of a single zero-energy

mode and that a change in the bulk topological invariant is accompanied by

a change in the localisation of the zero-energy mode: this is another example

of the bulk-edge correspondence. This topological transition point is again

characterised by a bulk band touching. Figure 1.4(b) shows the spectrum of

the SSH lattice with an odd number of sites and demonstrates the presence

of the zero-energy mode. A similar spectrum can be obtained whether ν < 1

or ν > 1. However, as expected from the Bloch Hamiltonian, we observe in

Fig. 1.4(c) that the gap closes when ν = 1 and remains open as long as ν ̸= 1.
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(a)

(e)(d)

(c)(b)

t1 t2 t2t1
A AB B A

Figure 1.4: (a) Schematic of a finite-size SSH lattice with broken unit cell.
Here the lattice starts and ends with an A site. (b) Spectrum of the lattice
in (a). (c) Projected energy spectrum against the coupling ratio ν. (d),(e)
Field profile of the zero-energy mode of a finite-size SSH lattice with ν > 1
and ν < 1, respectively. The lattice is made of Ns = 19 sites in (a),d),(e)
and Ns = 67 sites in (c). The coupling parameters for panel (d) and (e) are
t1 = 0.02 with ν = 3 and t1 = 0.06 with ν = 1/3, respectively.

As shown in the previous section, the topological transition at ν = 1 is accom-

panied by a change in the winding number defined for the bulk (with PBCs).

Along with the change of the winding number, Figs. 1.4(d) and 1.4(e) show

that the topological mode is localised either on the left for W = 0 (ν < 1) or

on the right for W = 1 (ν < 1) of the lattice.

1.2 Topological insulator laser: The PT -symmetric SSH

lattice

Extension of TIs to non-Hermitian and non-linear systems has been studied

recently due to its possibility to have richer physics and new topological phases

that have no counterpart in the Hermitian setting [28, 40, 41]. In particular,

for PTIs, a lot of attention has been drawn to introducing gain and loss into
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the system in order to have topological insulator lasers that show better laser

performances [31,36,37].

In this section, we will introduce gain and loss into the previous finite-size

Hermitian SSH lattice [Fig. 1.4], with ν > 1 as the coupling configuration. We

will especially focus on using the topologically protected mode obtained in the

Hermitian setting to have a topologically lasing mode. As a physical system

for the active material, we here consider an array of active ring resonators

coupled through their overlapping evanescent fields [50–52].

For a mode to lase, one would favour a strong overlap of the mode with

the gain. By looking at the field profile of the zero-energy mode of the Her-

mitian SSH lattice, we can see in Fig. 1.4(d) that the mode has non-vanishing

amplitudes only on the A sites. One would therefore expect this mode to lase

if we put gain on the A sites, and loss on the B sites so that the remaining

modes will vanish over time. This configuration of gain and loss is known

as the PT -symmetry configuration. In the following, we will study the PT -

symmetric SSH lattice3. In particular, we will tackle the problem using both

a frequency-domain approach and a time-domain approach.

1.2.1 Frequency-domain analysis

The gain and loss can be modelled in the tight-binding formalism by means

of an imaginary on-site energy, namely by setting Eσ = igσ where gσ is the

gain (loss) term in the site σ if gσ > 0 (gσ < 0). Therefore, the coupled-mode

equations read:

i
dan
dt

= igAan + t1bn + t2bn−1, (1.12)

i
dbn
dt

= igBbn + t1an + t2an+1. (1.13)

3Although it is not rigorously correct, the wording “PT -symmetric” will be used in the
remainder of this chapter to describe this particular gain/loss configuration on the A/B sites.
In fact, PT -symmetry is only realised in the infinite lattice, for example in the SSH lattice
with PBCs.
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g -g

t1 t2 t2t1
A AB B A

(a)

(e)(d)

(c)(b)

Figure 1.5: (a) Schematic of an active finite-size SSH lattice with broken unit
cell in the PT -symmetric configuration. Here the lattice starts and ends with
an A site. (b),(c) Real and imaginary parts of the projected energy spectrum
of the lattice in (a) against g/t1, respectively. (d) Real and imaginary parts
of the spectrum of the lattice presented in (a) for g/t1 = 1. (e) Field profile
of the zero-energy mode from the spectrum in (d). The lattice is made of
Ns = 115 sites in(b),(c) and Ns = 19 sites in (d),(e). The coupling parameters
are t1 = 0.02 and ν = 3.

Adding gain and loss in a PT -symmetric way can be realised if

gA = g, (1.14)

gB = −g, (1.15)

where g is the linear gain [Fig. 1.5(a)]. The spectrum obtained from the PT -

symmetric SSH lattice with g/t1 = 1 is plotted in Fig. 1.5(d). The plot reveals

that only the zero-energy mode has a non-zero positive imaginary part, while

the real part of the spectrum did not change. This demonstrates that the topo-

logical zero-energy mode survives after the introduction of non-Hermiticity,

here gain and loss: this is the topological lasing mode. In this ring resonator

system, the zero-energy E = 0 corresponds to the resonant frequency of the
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t1 t2 t2t1 t2
A AB B B BAA

t1 t1

tb

g -g

(b) (c)

(a)

Figure 1.6: (a) Schematic of a finite-size SSH lattice with a non-broken unit
cell with periodic boundary conditions and with the inter-unit cell boundary
coupling tb that couples the left and right edge of the lattice. (b),(c) Evolution
of the real and imaginary parts of the projected energy spectrum of the lattice
in (a) from periodic (tb = t2) to open (tb = 0) boundary conditions. The
lattice is made of Ns = 24 sites. The coupling parameters are t1 = 0.02, ν = 3
and g/t1 = 3.

individual ring resonators.

However, one needs to be careful in calculating the topological invariant in

the non-Hermitian systems [27]. Indeed, if we look at the system with PBCs

and gradually switch off the boundary coupling tb to end up with a lattice with

OBCs as illustrated in Fig. 1.6(a), then we can see in Figs. 1.6(b) and 1.6(c)

that the gap closes along the way from PBCs to OBCs. This gap closing is a

typical feature in non-Hermitian systems: when going from periodic to open

boundary conditions, several exceptional points must be passed through and

the topology of the bands has been changed [27].

It is therefore advantageous to work directly in the open boundary condi-

tions in non-Hermitian systems. Indeed, for a finite-size SSH lattice starting

and terminating in site A, we observe in Figs. 1.5(b) and 1.5(c) that if we

start from the passive system (g = 0) and gradually increase the gain and

loss, then the spectrum does not have a bandgap closing in the process, at

least up to the gain chosen in Figs. 1.5(d) and 1.5(e) (g = t1). Therefore, the

topological protection of the zero-energy mode remains. Interestingly is that

several gap closing occurs when increasing further the gain and loss strength,
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(a)

(c) (d)

(b)

Figure 1.7: Time evolution of the first A site |a1(t)| where the gain is modelled
using: (a) a linear gain (g/t1 = 1) (b) a saturable gain (g/t1 = 1, γA = 0.01)
(c) the laser rate equation with τs/τp = 0.2 (class-A) (d) the laser rate equation
with τs/τp = 100 (class-B) The lattice is made of Ns = 19 sites. The coupling
parameters are t1 = 0.02 and ν = 3. The parameters for the linear and
saturable gain are g/t1 = 1 and γA = 0.01. The gain parameters for the laser
rate equation are αH = 3, gB = 0.02, pA/t1 = 1, τp = 40ps, and τs/τp = 0.2
and τs/τp = 100 for the class-A and class-B laser, respectively.

and thus some topological changes happen. Figures 1.5(b) and 1.5(c) show

that from low to high gain and loss strength g, the spectrum undergoes sev-

eral gap closings via exceptional points. The system undergoes several mode

splitting from the imaginary part of the spectrum: the extended (bulky) mode

starts to acquire an imaginary on-site frequency until all of them have a non-

zero imaginary part in energy, i.e. until all the of the modes start to lase.

This is consistent with Ref. [34], from which the first gap closing happens at

g/t1 = ν − 1, and the gap closings continue until g/t1 = ν + 1.

1.2.2 Time-domain analysis

The previous section focused on the frequency analysis. However, for lasing

applications, it is also important to look at the temporal behaviour of the

topological mode, especially when non-linear terms are considered.

Considering linear gain as in the previous section, Fig. 1.7(a) plots the time
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evolution of the absolute value of the amplitude of the first A site, |a1(t)|.

As one would expect, this demonstrates the gain in the A sites makes the

amplitude of the modes grow exponentially over time to reach an extremely

high value. This is not physical and requires a finer description of the gain.

A common model for gain is to include a saturable term so that the mode

does not grow exponentially. This reads as:

gA(an) =
g

1 + 2|an|2
− γA, (1.16)

gB = −g, (1.17)

where g is the linear gain or loss strength, γA is the linear loss on the A sites.

For simplicity, we have changed the linear gain on the A sites to a saturable

gain, while keeping the linear loss on the B sites. The gain is now a local

quantity and depends on the intensity in each A sites, |an|2. Figure 1.7(b)

shows the time evolution of |a1(t)| when using a saturable gain. The lasing

mode is now converging and it reaches, for the parameter chosen, a steady-state

corresponding to the topological lasing mode. Importantly, here the dynamics

may have completely different behaviour depending on the parameter chosen

for the system, as studied in Ref. [40,41].

Finally, the laser rate equation can also be considered by modelling the gain

using a two-level system. This includes the dynamics of the carrier densities

in the semiconductor laser as well as the dynamics of the induced polarisation

given by the dipole moment in the two-level system. The introduction of the

carrier and polarisation dynamics into the rate equation can be realised within

the semi-classical laser theory [53], where the medium response is governed by

the induced polarisation of the optical field. However, in most semiconductor

lasers the dynamics of the polarisation can be neglected and thus be adiabat-

ically removed from the equations. Recalling that our system is made of an

array of coupled active ring resonators, the evolution of the mode amplitudes

(an, bn) in the rings and the population (Zn) in the gain ring in the A sites is

governed by:

i
dan
dt

= i
1

2

(
g(Zn)−

1

τp

)
(1− iαH)an + t1bn + t2bn−1, (1.18)
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i
dbn
dt

= −igBbn + t1an + t2an−1, (1.19)

dZn

dt
= pA − Zn

τs
− g(Zn)|an|2, (1.20)

where g(Zn) is the carrier-density-dependent dynamical gain, τp and τs are

the photon and carrier lifetime, respectively, pA is pump rate and αH is the

linewidth-enhancement factor in semiconductor lasers that takes into account

the dependence of the refractive index on the carrier density [54]. Again,

for simplicity, the carrier dynamics are only considered on the gain sites (A

sites). In the absence of couplings, each ring resonator operates in a single

longitudinal and transverse mode, and is assumed to be the same for all the

rings. The convention4 used here for the electric field an, bn of the guided

modes in the ring resonators is taken as an ∝ e−iωt, where ω is the oscillating

(angular) frequency of the modes, and is equivalent to the eigen-energies of

the tight-binding Hamiltonian. For laser operations not too far from the lasing

threshold in the individual rings, we have:

g(Zn) = g(Zth) + σ(Zn − Zth) (1.21)

where σ = ∂g/∂Z is the differential gain, g(Zth) = 1/τp and Zth is the carrier

density at the laser threshold.

It is convenient to normalise the above equations into dimensionless forms

which read:

i
dãn
dt

= i
1

τp
(1− iαH)Z̃nãn + t1b̃n + t2b̃n−1, (1.22)

i
db̃n
dt

= −igB b̃n + t1ãn + t2ãn−1, (1.23)

τs
dZ̃n

dt
= p̃A − Z̃n − (1 + 2Z̃n)|ãn|2, (1.24)

where the •̃ quantities are normalised according to:

ãi =

√
1

2
στsai, (1.25)

4If the convention used is an ∝ e+iωt, then the factor term (1− iαH) in Eq. 1.18 must be
replaced by (1 + iαH).
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b̃i =

√
1

2
στsbi, (1.26)

Zi =
1

2
στpZth

(
Z

Zth
− 1

)
, (1.27)

p̃A =
1

2
στpZth

(
pAτs
Zth

− 1

)
(1.28)

For simplicity of notation, the tilde •̃ is later dropped and the parameters for

the time dynamics are chosen to be consistent with the linear and saturable

gain.

The carrier dynamics’ time-scale τs with respect to the photon dynamics’

time-scale τp is important in the dynamical behaviour of the laser system. In

the linearised regime, the linear gain is given by pump normalised intensity

gA = g = pA/τp. In so-called class-B lasers, the carrier dynamics are taken

into account in the laser rate equation. On the other hand, in so-called class-A

lasers, the carrier dynamics are adiabatically removed and the saturable gain

[Eq. 1.16] is retrieved. As an example, Figs. 1.7(c) and 1.7(d) plot the time

evolution of the amplitude of the first A site |a1(t)| in the class-A and the class-

B laser regime, respectively, for specific parameters. This clearly shows that

different dynamics happen when the carrier dynamics are taken into account.

Besides, by comparing the class-A laser and saturable gain model, we can

already see the effect of the carrier densities via the Henry factor αH which

shifts the frequency away from the zero-energy (resonant frequency). This,

therefore, demonstrates the importance of studying the temporal dynamics in

active non-Hermitian and non-linear topological insulators.



Chapter 2

Gapless unidirectional photonic

transport using all-dielectric

kagome lattices

2.1 Introduction

When propagating in a (structured) material or waveguide, not all of the light

travels in the initial direction but parts of it experience back-reflection due

to bending, fabrication defects or environmental variations. For most applica-

tions, back-propagation should be avoided and it is thus not surprising that

the unique properties of PTIs [4, 55] have attracted widespread attention due

to their promise to prohibit back-reflections. The basis of such back-reflection-

free one-way waveguides lies at the interface of two topologically inequivalent

PhCs which exhibit topological edge modes that propagate only in one di-

rection and are at the same time robust against a certain type of perturba-

tions. This is guaranteed by the bulk-boundary correspondence [56]. Not

surprisingly, a plethora of possible topologically non-trivial photonic designs

has been put forward, involving non-reciprocal systems [2], complex metama-

terials [57], the Floquet topological insulator principle [7], and an artificial

magnetic gauge [58,59]. However, the aforementioned PTIs need strong mag-

netic fields, are complicated to fabricate, and/or are difficult if not impossible

to scale to optical frequencies.

17
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As an alternative, a deformed honeycomb-based topological PhC [11] which

emulates the quantum spin Hall effect (QSHE) [11, 13, 60, 61] has recently

gained interest, not least due to its simple fabrication as compared to other

PTIs. Two-dimensional hexagonal symmetries, such as the honeycomb-based

topological PhC, generally lead to linear degeneracy, called Dirac point, at the

K and K′ points of the BZ. With a geometrical perturbation, it is possible to

lift the point-like degeneracies in order to obtain a non-trivial topological and

complete photonic bandgap [62] which leads to topological protection defined

within the parameter space of a certain type of a deterministic geometrical

perturbation. Nevertheless, there is an inherent problem. The pseudo-time-

reversal anti-unitary operator T 2= − 1, introduced to have well-defined or-

thogonal spin up/down channels, is constructed based on the six-fold rotation

(C6) operator of the crystal. However, the C6 symmetry of the crystal is

broken in any finite, truncated, configuration and the spin up and spin down

channels couple to each other. Consequently, while edge modes are guaranteed

at the interface between the two topologically distinct deformed honeycomb

PhCs, for most frequencies within the bandgap, there is an anti-crossing in

their dispersion and they eventually do suffer from intrinsic back-reflection.

Yet, starting from a C6v symmetry with symmetry protected Dirac cones, it

can be shown that there are two routes towards breaking the symmetry to

open a topological bandgap without breaking optical reciprocity [62]: one re-

lated to the aforementioned QSHE [60], and the other to the quantum valley

Hall effect (QVHE) [63]. The QVHE has been widely studied in photonic

and mechanical systems with staggered honeycomb [18, 19, 25, 64–67] lattice,

triangular rods [17,23,24] or multi-pod [20,68,69] structure.

In this chapter, we introduce an all-dielectric PTI based on a kagome lat-

tice [70] that naturally lends itself to QVHE symmetry breaking [62] while

being composed of monodisperse rods of a single dielectric material. The

topology of the proposed kagome lattice is studied and the presence of robust

topological edge modes is demonstrated at the interface between topologically

distinct kagome lattices. In the last section, we present and model the pre-

dicted behaviour for an on-chip platform that can be readily fabricated with
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Figure 2.1: (a) Schematic of a kagome lattice. The solid line is a guide to the
eye for the hexagonal symmetry. (b) Perturbations are considered by putting
the rods further away (left) or closer (right) to each other, represented by the
arrows. (c) Band structure of the kagome lattice for the unperturbed (solid red
line) and perturbed (solid blue line) cases. The inset shows the first Brillouin
zone.

state-of-the-art semiconductor growth techniques [71].

2.2 The 2D kagome lattice

The kagome lattice, named after a traditional Japanese basketweave pat-

tern [70], has lattice sites at the midpoints of the edges in the regular hexagonal

wallpaper tiling {6, 3}, as illustrated in Fig. 2.1(a). The unit cell is here com-

posed of three rods and the perturbation to lift the degeneracy can be intro-

duced such that these rods get closer (negative perturbation δ < 0) or further

away (positive perturbation δ > 0) from their shared corner of the hexagons

[Fig. 2.1(b)]: r 7→ r′=(1± δ)r where r is a vector taken from the corner of a

hexagon to the adjacent rod.

Importantly, the perturbation opens a bandgap by lifting the linear degen-

eracy at the K and K′ points which is symmetry-induced in the unperturbed

case. This generic behaviour manifests itself in the photonic bandstructure

for the Ez out-of-plane transverse magnetic (TM) polarisation [Fig. 2.1(c)]

obtained with the open-source software MIT Photonic Bands (MPB) [72] for

the unperturbed δ=0 and perturbed δ=± 0.15 case. The kagome photonic

crystal, with lattice constant a, is composed of rods with diameter d=0.2a

and permittivity ε=12 within a vacuum (ε=1) background. In contrast to
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Figure 2.2: Schematic of two hexagonal lattice designs with broken C6v symme-
try. (a) QSHE honeycomb structure with sites at the corners of the hexagons.
The design is perturbed by shrinking/expanding every third hexagon labelled
A. (b) QVHE kagome structure with sites at the centre of the edges of the
hexagons. The design is perturbed by moving the rods along the edges.

the perturbed honeycomb PhC [11], the translation symmetry is conserved af-

ter the perturbation as illustrated in Fig. 2.2, i.e. the primitive lattice vectors

(albeit not unique) are themselves preserved. As a consequence, the reciprocal

lattice vectors remain the same and therefore the K and K′ points remain dis-

tinct and do not map to the Γ point as in the case of the perturbed honeycomb

lattice [11].

To describe the bandgap opening more rigorously, we adopt a perturbation-

based group theoretical approach detailed in Ref. [62] to the hexagonal wallpa-

per group p6mm (17). Then, an effective Hamiltonian is derived for a (small)

geometrical perturbation, δ̃, and close to K, δk=(δkx, δky), in the canonical

basis of the induced K irreducible representation (irrep) from the 2D little

group irrep of p6mm [73]:

Hkagome = δkxγ1 − δkyγ2 + δ̃γ5 =

 WK 0

0 WK′

 (2.1)

where γ1 :=σ3⊗σ3, γ2 :=σ3⊗σ1, γ3 :=σ1⊗12, γ4 :=σ2⊗12, γ5 :=σ3⊗σ2

are matrices satisfying a Clifford algebra generated by the vector field spanned

by the γi, with the associated anti-commutation relation {γi, γj}=2δij14.
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K K'-π

+π

arg(Ez)

Figure 2.3: Phases of the z-component of the electric field Ez for the first band
in Fig. 2.1 at K and K ′ points.

WK/K′ = ± h · σ represent Weyl Hamiltonians of opposite chirality in the

vicinity of K/K′ with h=(−δky, δ̃, δkx) and σ=(σ1, σ2, σ3) the Pauli matrix

vector. In Eq. 2.1, δ̃ models the geometrical perturbation and therefore is

proportional to the displacement of the rods δ away from the original ones in

the unperturbed lattice. The eigenvalues E of the Weyl Hamiltonian at the

K/K′ point are E=±
√
δk2x + δk2y + δ̃2 confirming that we obtain a linear de-

generacy (Dirac point) in the 2D BZ for δ̃=0, i.e. for the unperturbed kagome

lattice, and have a bandgap for δ̃ ̸=0. The proposed geometrical perturbations

essentially break the inversion symmetry and introduce a mass term δ̃ to the

Weyl Hamiltonians WK/K′ .

Additionally, from Eq. 2.1 it is clear that the effective Hamiltonian Hkagome

is necessarily block-diagonalised [73] in its canonical basis as in the case with

the QSHE Kane-Mele Hamiltonian [60] because translation symmetry is not

broken with the perturbation. It does not mix the K/K′ irrep of the invari-

ant translation group. The K/K′ points thus play the role of two orthogonal

pseudo-spin channels, known as the valley degree of freedom, with the gener-

ating unitary pseudo-time-reversal operator T̃ =σ3⊗12 with [T̃ ,Hkagome] = 0,

invariant under rotational symmetry breaking. This valley degree of freedom

can be seen in Fig. 2.3 showing the phase of the z-component of the electric

field (Ez) going clockwise or anti-clockwise, around the original C6v points, at

the K and K ′ points for the first band.

One should note that the results obtained above rely only on the symmetry

of the system and similar results are obtained for Hz out-of-plane transverse

electric (TE) polarisation.
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(a) (b)

uki,j uki+1,j

uki+1,j+1
uki,j+1

γi,j
Γ

γi,j

Figure 2.4: (a) Sketch of a closed path inside the (discretised) primitive unit
cell in the reciprocal space. Γ is the origin of the BZ: k=(0, 0). γi,j is the
Berry phase defined along the drawn loop and the yellow shaded area is the
surface S generated by this latter closed contour. (b) Zoom-in on the closed
path. |uki,j

⟩ are the eigenvectors at point ki,j in the reciprocal space.

2.3 Topological characterisation

In valley Hall systems, the topological characterisation is different from other

2D topological phases such as the quantum Hall phase or QSHE phase [60,74,

75]. To show how the proposed kagome design emulates the QVHE emerging

from the non-trivial Dirac points in the 2D BZ, one can use the valley Chern

number defined at the K and K′ points [17–20,23–25,64–66,68,69]:

CK/K′ =
1

2π

∫
SK/K′

F(k) d2k, (2.2)

where the integrand is the Berry curvature [76] F(k)=∇× i⟨uk|∇kuk⟩, and

the integration is performed near the two valley domains SK/K′ ,

Numerically, calculating the Chern number, or more generally the Berry

curvature, is complicated if we do not have an easy closed-form analytical

expression of the corresponding Hermitian operator. Indeed, for each k point,

the eigenvectors carry a random phase eiϕ(k)|uk⟩ which is a numerical problem

because of the derivative with respect to k appearing in the Berry curvature

F(k)=∇k × i⟨uk|∇kuk⟩.

One solution is to start with the Berry phase γi,j over a loop defined as in

Fig. 2.4(a). Assuming the Berry connection is behaving well enough, one can
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apply Stokes’ theorem which yields:

γi,j =

∫
S
F(k) · d2k = Fi,j S (2.3)

where S is the surface generated by the closed path and Fi,j is the Berry

curvature defined at the ki,j point [Fig. 2.4(b)] and assumed to be constant

in the surface S. Therefore, the Berry curvature can be seen as a Berry phase

per unit area:

Fi,j =
γi,j
S
. (2.4)

The problem is then reduced to calculating the Berry phase instead of the

Berry curvature. By definition, the Berry phase is the geometric phase that

the eigenvector acquires after doing a loop in the parameter space. The phase

difference ∆ϕk between two eigenvectors |uk⟩ and |uk′⟩ is:

∆ϕk = Im
[
ln(ei∆ϕk)

]
(2.5)

with

ei∆ϕk =
⟨uk|uk′⟩∣∣∣⟨uk|uk′⟩

∣∣∣ . (2.6)

This means that, in this case [Fig. 2.4(b)]:

γi,j = Im
[
ln
(
⟨uki,j

|uki+1,j
⟩⟨uki+1,j

|uki+1,j+1
⟩⟨uki+1,j+1

|uki,j+1
⟩⟨uki,j+1

|uki,j
⟩
)]

(2.7)

where the inner product1 for the electric field is defined as [1]:

⟨uk|uk′⟩ =
∫

u∗k(r) · ϵ(r)uk′(r) dr (2.8)

such that the photonic operator for the eigenvalue problem is Hermitian [1].

One can note that the expression for the Berry curvature Fi,j [Eqs. 2.4 and

2.7] is now gauge-independent since the randomly k-dependent phases cancel

each other in the |uk⟩⟨uk| term. Moreover, Fi,j converges to the continuous

form when the spacing between neighbouring k-points approaches zero.

Figure 2.5 shows the Berry curvatures calculated for a positively (δ=+0.15)

1The inner product for the magnetic field is given by ⟨uk|uk′⟩ =
∫
u∗

k(r) · uk′(r) dr.
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δ = −0.15(b)δ = +0.15(a)

Figure 2.5: Calculated Berry curvatures in the reciprocal primitive unit cell
for (a) positively and (b) negatively perturbed kagome lattices. The dashed
line represents the limit of the reciprocal primitive unit cell and the dotted
black line defines the boundary for the regions of integration SK/K′ .

and negatively (δ=− 0.15) deformed kagome lattice, for k-points in the recip-

rocal primitive unit cell. The electric field distribution of the Bloch states has

been obtained from the calculation of the band structure using MPB. Because

of inversion symmetry breaking, the Berry curvature need not vanish every-

where in the BZ. In fact, the Berry curvature has a non-zero and opposite sign

around the two valleys (given perturbation configuration).

The valley Chern number CK/K′ is obtained by summing the Berry cur-

vature Fi,j at the ki,j point over the desired surface SK/K′ . The integration

is performed over the two valley domains SK/K′ defined in Fig. 2.5 as the

two triangles which together form the dual of the standard hexagonal BZ tes-

sellation of reciprocal space The valley Chern number obtained for positive

(negative) perturbation δ = 0.15 (δ = −0.15) by integrating around the K/K′

are CK/K′ =± 0.18 (CK/K′ =∓ 0.18).

However, CK/K′ is not a quantised topological invariant because SK/K′ is

not a closed surface. We further show that the valley Chern number CK/K′

depends on the perturbation strength and explain why CK/K′ =± 0.5 [17–20,

23–25,64–66,68,69] is only achieved for infinitesimal perturbation.

Recall the Weyl Hamiltonian in the vicinity of the K point takes the fol-
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lowing form:

W = h · σ (2.9)

where h=(hx, hy, hz)= (−δky, δ̃, δkx) is a vector in a three-dimensional (3D)

parameter space, δki= ki − kK,i , i = x, y [Eq. 2.1]. This gives the following

Berry curvature, for the lower band [76]:

F(h) = −1

2

h

|h|3
(2.10)

with |h|=
√
δk2x + δk2y + δ̃2=

√
δk2 + δ̃2. By integrating over a loop around

K, γK, the valley Chern number is:

CK =
1

2π

∫
SK

F(h) d2k =
1

2π

∫
SK

1

2

δ̃

|h|3
dkxdky (2.11)

where d2k= dkx∧dky, SK is the surface generated by the closed path γK. This

gives CK=− sign(δ̃)12 .

However, CK=−CK′ because of time-reversal symmetry, hence we need to

take this opposite Weyl charge into account in the practical calculation: the

information from the positive and negative Weyl charges cannot be separated

numerically. Indeed, for numerical calculation, the loop is chosen, for simplic-

ity, to be half the BZ, as depicted in Fig. 2.6(a). Therefore, when calculating

the Berry curvatures, the Berry flux coming from the positive and negative

charges cancel each other for high enough perturbation δ̃. Thus the valley

Chern number becomes:

C̃K =
1

2π

∫
SK

F̃(h) d2k (2.12)

where, here, the tilde on C̃K and F̃(h) stands for the practical value, numer-

ically calculated, of the valley Chern number and Berry curvature, with:

F̃(δk, δ̃) = F̃K(δk, δ̃) + F̃K′(δk, δ̃). (2.13)

The positive and negative Weyl charges contribution at K and K′ are given by
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(a) (b)

Figure 2.6: (a) Berry curvatures calculated using Eq. 2.13 with perturbation
δ̃=0.5. The dotted line shows the limit of one reciprocal primitive unit cell.
The solid line represents the contour γK used to calculate the K-valley Chern
number. The horizontal dashed line represents the path followed in order to
plot (b). (b) Plot of the absolute value of the Berry curvature for different
perturbations: δ̃=10−3 (green circles), δ̃=0.1 (purple circles), δ̃=0.5 (orange
circles) and δ̃=1 (grey circles). The open and closed correspond to F̃K(δk, δ̃)
and F̃K′(δk, δ̃) respectively. The vertical dashed line represents the boundary
of the contour integration.

F̃K(δk, δ̃) and F̃K′(δk, δ̃) respectively:

F̃K(δk, δ̃) =
δ̃

2

∑
(m,n)∈Z2

[
(δkm,n)

2 + δ̃2
]−3/2

, (2.14)

F̃K′(δk, δ̃) = − δ̃
2

∑
(m,n)∈Z2

[
(δk1/2+m,1/2+n)

2 + δ̃2
]−3/2

(2.15)

where δkm,n = k +mb1 + nb2 − kK, with the reciprocal lattice vectors bi.

Figure 2.6(a) shows the calculated Berry curvature using Eq. 2.13 with

perturbation δ̃=0.5. The dotted lines correspond to one reciprocal primitive

unit cell and the solid lines represent the contour integral γK performed to

calculate the K-valley Chern number. The horizontal dashed line represents

the path followed to plot the absolute of the Berry curvatures F̃K(δk, δ̃) and

F̃K′(δk, δ̃) in Fig. 2.6 in open and closed circles, respectively. In Fig. 2.6(b),

the Berry curvature is plotted for δ̃=10−3 (green circles), δ̃=0.1 (purple cir-

cles), δ̃=0.5 (orange circles) and δ̃=1 (grey circles). The vertical dashed line

represents the boundary of the contour integration. This illustrates that for

infinitesimal small perturbation, the “leakage” of the Berry flux can be negli-

gible compared to its high value at the K/K′ points and one gets C̃K =0.5. In
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contrast, when the perturbation is relatively high, i.e. not infinitesimal, the

Berry flux associated with Weyl charges are leaking out of the more or less

arbitrarily defined valley domain γK/K′ respectively, and are cancelling with

the Berry flux of opposite Weyl charges. For γK/K′ defined as in Fig. 2.6, this

results in lower valley Chern number than expected: C̃K =0.47 for δ̃=0.1,

C̃K =0.36 for δ̃=0.5 and C̃K =0.25 for δ̃=1. The same analysis is mirrored

for the K′ point and its corresponding valley Chern number C̃K′ . This shows

that the valley Chern number is not a proper topological invariant since the

sign of the perturbations is the same, i.e. the gap remains open, but the valley

Chern number calculated changes for different perturbations.

The angular distribution of the Berry curvature obtained here is different

from the one obtained with MPB. The difference is rooted in the fact that the

Weyl Hamiltonian [Eq. 2.9] is only a first-order approximation of perturbations

in any direction, i.e. not valid for finite geometrical perturbation. Of course,

that does not change the valley Chern number for any surface enclosing only

one Weyl monopole, i.e. the integrated Berry flux stays the same, but the an-

gular distribution of the Berry flux will generally be altered. The cancellation

of Berry flux associated with opposite Weyl charges will therefore be different.

However, as we will see in the following, only the sign matters in determining

the topology and possible topological edge modes.

Although the valley Chern number is not a topological invariant, a strong

bulk-boundary correspondence similar to Ref. [56] exists in the extended pa-

rameter space (−δky, δ̃, δkx) where Weyl charges of opposite chirality lead to

guaranteed edge modes in the K/K′ valleys, respectively [62]. These Weyl

charges can be correlated one-to-one to the sign of the valley Chern numbers,

which can thus be interpreted as a topological integer with associated bulk-

boundary correspondence. In contrast to Ref. [56], however, the existence of

the strong correspondence in the extended parameter space only fixes crystal

termination and is only valid for inclinations for which the K and K′ points

are not projected to the same point in the edge BZ [cf. BZ insets in Fig. 2.7].

The bulk-boundary correspondence thus reduces to the weaker form which is

rigorously valid only for specific well-defined boundaries.
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Alternatively, the existence of the topological edge states can be seen as

a consequence of a non-zero Berry curvature around the two valleys in a low-

energy continuum model. These edge states with linear dispersion can be

found as a solution of a domain wall type Dirac equation where the mass term

changes sign across the interface [akin to Chap. 1].

From the expression of the effective Hamiltonian Hkagome, it is evident

that a non-trivial Weyl charge is located at the K and K′ points which have

opposite signs because WK=−WK′ and which has opposite signs for opposite

perturbation strength as well. The Weyl Hamiltonian near the K point is given

by:

WK = −δkyσx + δ̃σy + δkxσz. (2.16)

At the domain wall between topologically distinct phases, δ̃ changes sign:

δ̃(x) =

 δ̃0 x > 0

−δ̃0 x < 0
(2.17)

The continuum Hamiltonian Hcontinuum is then obtained by replacing the wave

vector δkx with −i∂x since translation along the a1-direction is here broken.

The edge states φ(x, y) with energy E at the interface need to satisfy:

Hcontinuumφ(x, y) = Eφ(x, y). (2.18)

With the following ansatz of the localised state on the left and right side of

the interface:

φ(x, y) =

 ai

bi

 eiδkyye±κx, (2.19)

one can show, from the continuity of the state at the interface, that E = qy,

κ = δ̃0 with ai = 1, bi = −1:

φ(x, y) =

 1

−1

 eiδkyye±κx. (2.20)

More generally, one can show that an edge state with linear dispersion E = qy
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Figure 2.7: Supercell band structure at the interface between two topologically
distinct kagome photonic crystals along different inclination directions: (a)
Γ−K, (b) Γ−M. The front and back interfaces are represented by solid lines
with different colours on both the sketch and the band structure in (a). In
(b), the interfaces and the edge mode dispersions are represented by the same
colour because the two interfaces are equivalent. The insets show the k∥ sweep
direction. The solid black line represents the light lines. The vertical dashed
lines mark the position of K/K′. The parameters are the same as in Fig. 2.1
and with perturbation strength δ=± 0.15.

exists along the interface of two systems characterised by opposite mass terms:

φ(x, y) =

 1

−1

Ceiδkyye−
∫ x
0 dx′δ̃(x′), (2.21)

with C a constant scalar.

Similar results can be obtained at the K′ point, except that the dispersion

will have an opposite slope. Therefore, at the interface between Hkagome where

the mass term changes, the bulk-edge correspondence manifests as gapless

valley-dependent edge states at the interface. As a consequence, the interface

between two systems characterised by different signs in the valley Chern num-

bers or different signatures in the Berry curvature leads to counter-propagating

topological edge modes locked to their valley degree of freedom, given no valley

mixing.

2.4 Topological protected mode

Based on the Berry curvature plots in Fig. 2.5, starting with an unperturbed

lattice and then perturbing positively on one side of a chosen interface and neg-
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atively on the other side could potentially lead at most frequencies to counter-

propagating topological edge modes locked to their valley degree of freedom.

Figure 2.7 shows the corresponding supercell band structure for δ=± 0.15

and for different interface inclinations. The solid blue lines correspond to

the bulk modes and the solid coloured lines correspond to topological edge

modes inside the bulk bandgap. This figure shows that an anti-crossing arises

when the K/K′ points are projected onto the same k∥ points [Γ−M inclina-

tion, Fig. 2.7(b)] while a crossing arises for Γ−K inclination, [Fig. 2.7(a)]. In

the Γ−K inclination case [Fig. 2.7(a)], each interface supports two counter-

propagating edge modes corresponding to the well-defined pseudo-spin up

(down) edge modes of the K (K′) valleys. These result from the opposite

Weyl charges at the K (or K′) point for two sides of the interface [56, 62]. In

the Γ−M inclination case [Fig. 2.7(b)], however, the pseudo-spin separation

breaks down and the edge modes suffer from back-scattering, similarly to the

honeycomb PhC [11].

From the counter-propagating modes locked to their valley degree of free-

dom at a given frequency, the left or right mover can be excited using a cir-

cularly polarised source [11, 77] and located at a specific spatial position of

the source. If the source chosen is left-polarised S+=Hx + iHy, only one

pseudo-spin unidirectional edge mode can be excited by locating the source

at a certain position. The information is given by means of a wave-vector

k∥-dependent chirality map [78]. Figure 2.8(a) shows the interface considered:

it corresponds to the red interface in Fig. 2.7 with perturbation δ=± 0.15.

Therefore we will be looking at only the edge modes represented by the red

dispersion line in the following.

TM modes (non-zero Ez, Hx, Hy) are considered here but the concept of

chirality of the edge modes can be similarly applied to TE modes (non-zero

Hz, Ex, Ey). From the magnetic field components (Hx, Hy) of the edge modes,

the chirality of the mode is calculated using the Stokes parameters:

S1 = |Hx|2 − |Hy|2, (2.22)

S2 = 2Re(HxH
∗
y ), (2.23)
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Figure 2.8: (a) Sketch of the interface considered between two opposite kagome
lattice. (b) Chirality map calculated at the k∥=0.4 (2π/a) point. (c) Zoom
in of (c) with different positions of the source considered represented by the
stars. (d)-(e) Snapshot of the total power of the edge mode for the different
positions of the source with polarised source S+=Hx + iHy.

S3 = −2Im(HxH
∗
y ). (2.24)

On the Poincaré sphere defined by (S1, S2, S3), the chirality is then defined as

tan(χ) where:

χ =
1

2
arctan

(
S3√

S2
1 + S2

2

)
. (2.25)

Using the Bloch states of the bandstructure obtained from MPB, Fig. 2.8(b)

shows the calculated chirality at the corresponding k∥=0.4 (2π/a) point. It

is interesting to see that the chirality map has a region between the two dif-

ferent PTIs with almost the same sign of values [close to +1 (−1), shown in
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red (blue) in Fig. 2.8(b)]. This implies that different circular polarisations

are needed to excite edge modes propagating in the same direction at the two

positions [e.g. points denoted by “1” and “6” in Fig. 2.8(c)]. Alternatively, the

same circularly polarised dipoles at the two positions would excite edge modes

propagating in the opposite direction. This is demonstrated in Figs. 2.8(d)

and 2.8(e) using the full-wave dynamics of the 2D system via the open-source

software MIT Electromagnetic Equation Propagation (MEEP) [79]. The total

power (E∗ ·D +H∗ ·B)/2 is plotted for different source positions “1” to “6”

[Fig. 2.8(c)], with polarisation S+=Hx+iHy. Starting with the source located

at the position “1”, i.e. in the negative chirality, the excited topological edge

mode corresponds to the one propagating to the right. Moving the location of

the source to position “6”with positive chirality will predominantly excite the

mode propagating to the left. Therefore the position of the source is crucial

for the excitation of unidirectional topological edge modes, as in other sys-

tems [14,77,80,81] with the main difference being the robustness to bendings.

We here demonstrate broadband back-reflection-immunity numerically in

Fig. 2.9 for finite perturbations, going beyond what has been shown rigorously

for infinitesimal perturbation strengths with our generic theory based on sym-

metry only. The unidirectional propagation with negligible inter-valley cou-

pling is demonstrated by studying the transmission through waveguides with

bendings of different inclinations. Because the simulations are in 2D, there is

no out-of-plane loss and any energy that is not transmitted is back-reflected.

The unidirectional edge mode has been excited using a rotating magnetic point

dipole source and the spatial position of the source has been determined using

the chirality map obtained above [Fig. 2.8]. Figures 2.9(a) and 2.9(b) show

two examples of waveguides oriented in a Γ−K inclination direction in which

a bending is introduced such that the projected wavevectors of K and K′ onto

the k∥ line are distinct in a Z-shaped design [Fig. 2.9(a), inset Fig. 2.7(a)],

or fall onto the same point along the vertical interface in a staircase-shaped

design [Fig. 2.9(b), inset Fig. 2.7(b)]. In the case of the Z-shaped waveguide,

we focus on the red interface highlighted in Fig. 2.7(a) (which is not equivalent

to the green interface). Figure 2.9(c) shows the normalised transmitted flux at
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Figure 2.9: (a)-(b) Waveguides where the bending has a: (a) Z-shape or (b)
staircase-shape where the bright (dark) rods are the positively (negatively)
perturbed kagome lattice. Insets are the zoom-in on the interface at the dashed
square region. (c) Transmission spectra for a waveguide without any bending
(solid black line), Z-shaped (solid red line) or staircase-shaped (solid blue
line) bending. The shaded area is a guide for the bandgap frequency range.
The parameters are kept the same as in Fig. 2.7. (d) Power of the edge modes
excited at the Z-shaped bending structure. The 2D full-wave simulations have
perfect matching layer (PML) boundary conditions in the x- and y-directions.

the end of the waveguides. This has been obtained from 2D simulations of the

waveguides in MEEP where the flux monitors are positioned after the bendings

and far enough from boundary of the simulation cell. The transmission spectra

of the bent waveguide are then normalised with respect to the transmission of

a straight waveguide with the same geometrical parameters. At high frequen-

cies, around the upper edge of the photonic bulk bandgap, large oscillations

are observed due to the presence of additional modes that couple with the two

valley channels [see Fig. 2.7]. Additional oscillations around the normalised

transmission of 1 are also present because of numerical artefacts created by the

source being directly inside the waveguide. The transmission for the Z-shaped

waveguide (solid red line) is of the same order of magnitude as for a straight
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waveguide (solid black line) for most of the frequencies inside the bandgap

(represented by the grey shaded region). In contrast, the staircase-shaped

bending (solid blue line) leads to substantial back-reflection resulting in lower

transmission because of the non-negligible inter-valley couplings on the Γ−M

inclination interface. This Γ−M inclination bending additionally introduces

a bandgap in the dispersion where the edge mode cannot propagate. Broad-

band robust transmission is therefore achieved for the Γ−K inclination and

in practice the orthogonality of two pseudo-spin channels at the wavevectors

away from K/K′ is as good as at K/K′. Figure 2.9(d) shows a snapshot of

the power profile for a mode propagating, with negligible back-reflection along

the interface with bendings, excited by circular polarised source at frequency

ω=0.37 (2πc/a).

2.5 Topological waveguide at telecommunication wavelengths

From a practical point of view, for the case of a Γ−K interface inclination,

edge modes lie close to or below the light line, thus improving vertical mode

confinement without the need of sandwiching the waveguides with mirrors [11].

To make use of the better confinement, we propose a design composed of an

InGaAsP free-standing PhC slab (n = 3.3 [71]) of 170 nm thickness. Fabrica-

tion of this structure can be carried out using a III−V semiconductor wafer

consisting of an InGaAsP substrate. The pattern of the air-holes can be de-

fined by standard electron-beam lithography and inductively coupled plasma

reactive-ion etching. Importantly, the proposed structure can be designed to

work at telecommunication wavelengths, from 1.2 µm to 1.8 µm, as demon-

strated in Fig. 2.10(a). The supercell band structure for TE-like modes (even-

symmetric electric fields) is calculated with Lumerical [82], a finite-difference

time-domain (FDTD) solver, for a lattice constant a=0.5 µm, air-holes with

diameter d=0.3a=150 nm and perturbation δ=± 0.15. The bandgap ranges

from 1.48 µm to 1.58 µm corresponding to a mid-gap at 1.53 µm. Since the

materials are assumed to be lossless in our simulations, any temporal decay,

quantified by γ in E(t) ∝ ei(ω+iγ)t, is due to the leakiness of the mode. Fig-

ure 2.10(b) plots the slope of the curves corresponding to γ, and demonstrates
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Figure 2.10: (a) Calculated band structure of the PhC slab along the front,
red, interface configuration [see Fig. 2.7(a)]. The grey region corresponds to
the projected bulk bandstructure, the red line is the edge mode dispersion
and the purple shaded area represents the light cone. Modes at A and B are
above and below the light line, respectively. The band structure has been
obtained with Bloch PBCs on the (xy)-plane, PML boundary conditions in
the z-direction and an air spacer layer between the slab and the PML. (b)
Temporal decay of the mode at the point A (blue curve) and B (green curve)
in (a). (c),(d) Field profile of the edge modes lying below the light line (point
B) in the y = 0 plane and the z = 0 plane, respectively. The dashed lines are
a guide to the eye for the z-limit of the free-standing slab. The field profiles
have been obtained from time monitors after excitation of the edge mode with
an electric dipole source inside the slab at the interface and at the “B”-point
frequency. The 3D simulation cell for the field profiles is made of several unit
cells and PML boundary conditions is applied in all boundaries.

a negligible γB for the mode below the light line (point B), whereas a finite

leakage γA is present for the mode lying above the light line (point A). Fig-

ures 2.10(b) and 2.10(c) show the electric field distribution corresponding to

the point B in Fig. 2.10(a). Out-of-plane confinement is guaranteed by the

mode’s presence below the light line.
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2.6 Summary

In summary, we have introduced a new kagome-like photonic topological in-

sulator emulating the optical analogue of the quantum valley Hall effect. We

have numerically shown that the associated topological edge modes do not

intrinsically suffer from back-scattering for tailored inclinations. For Γ−K in-

clination, the coupling between pseudo-spin channels is shown to be negligible

while edge modes are guaranteed in the centre of the bandgap. It can be shown

further that these modes also exhibit a certain degree of robustness against

bends with arbitrary angles and weak disorders as long as the field overlap

of the modes belonging to different valleys is negligible [17,21]. Based on our

theoretical predictions, we have presented a realistic 3D design that can be fab-

ricated with state-of-the-art methods [71], and works at suitable wavelengths

for telecommunication applications. We have demonstrated improved vertical

confinement due to edge modes lying below the light line. The simplicity of

the proposed design structure due to its monodisperse rods/holes makes it

possible to fabricate it using many conventional techniques such as selective-

area epitaxy or electron-beam patterning. We have also shown that possible

challenges resulting from the low filling ratio can be overcome by tuning the

perturbation making the bandgap of about 100 nm wide at telecommunica-

tion wavelengths. Complementing previous work with kagome lattices [83], we

have provided an in-depth analysis by explaining the reason for possible back-

reflection translated in the transmission spectra and analysing the out-of-plane

loss in 3D realistic design.



Chapter 3

Topological insulator laser using

valley Hall photonic crystals

3.1 Introduction

Transplanting the concept of topological phase transitions in fermionic systems

to photonics has recently attracted enormous interest [3, 4, 84]. In contrast to

conventional photonic defect states that are sensitive to perturbations, edge

states from two topologically distinct regions in PTIs are robust against lo-

cal perturbations and immune to backscattering [6–26]. This could lead to

intriguing and remarkable photonic devices and functionalities for robust elec-

tromagnetic wave transport and processing [58,85–87].

In addition to passive PTIs systems, a lot of attention has been made to-

wards the study of non-Hermitian PTIs by engaging edge states with optical

non-linearity to enable topological lasing. In contrast to the conventional laser

technologies, which are generally sensitive to cavity deformations caused by

fabrication imperfections and fluctuations, topological insulator laser cavities

are potentially immune to certain cavity defects with higher lasing efficiency at-

tributed to the unique characteristics of non-trivial edge states. A topological

insulator laser was first experimentally reported in magneto-optical photonic

crystals pumped by a static magnetic field to break time-reversal symme-

try [31]. Although this approach allows non-reciprocal lasing from topological

cavities of arbitrary geometries, it produces a narrow topological bandgap due

to weak magneto-optic effect in the optical regime. Non-magnetic topologi-

37
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cally protected edge-mode lasing was later proposed and implemented by non-

trivial semiconductor ring resonator arrays, and high-efficiency single-mode

lasing that is robust to cavity defects/disorders was reported [36, 37]. The

one-dimensional SSH Hamiltonian model is another popular approach to gen-

erating edge states and various types of SSH lasing devices have been recently

demonstrated based on micro-ring resonators [34, 35] [Chap. 1], semiconduc-

tor pillar arrays [88], and photonic crystal nanocavities [89,90]. A topological

laser arising from the valley Hall edge state was theoretically suggested [84]

and an electrically pumped topological laser with valley edge modes was first

experimentally achieved in the terahertz regime using quasi-hexagonal pho-

tonic crystals [91].

In this chapter, we propose a new kind of all-dielectric photonic topological

lasers in the telecommunication region based on kagome valley Hall photonic

crystals (KVPs) that consist of a hexagonal lattice with primitive cells contain-

ing three nano-holes in a compound semiconductor membrane. We first start

looking at the presence of the topological edge state at telecommunication

wavelengths. The topological waveguide obtained from topologically distinct

KVPs is then used to construct a triangular cavity. The lasing dynamics of

the topological cavity by means of a four-level two-electron model are explored

in the last section.

3.2 Topological waveguide

The proposed all-dielectric topological strategy is based on a hole array KVPs

in a high refractive index InGaAsP membrane, which has a hexagonal lattice

with primitive cells composed of three nanoholes with identical diameters D,

as schematically depicted in Fig. 3.1(a). As shown in Chap. 2, perturbation

to retrieve non-trivial KVPs can be introduced by putting the three nanoholes

closer (negative perturbation) or further away (positive perturbation) from

each other. When the hole-to-centre spacing d equals to d0 = a/2
√
3, the

KVPs are typical kagome photonic crystals with C6v symmetry featuring a

Dirac cone at the K and K′ points in the momentum space. When we in-
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Figure 3.1: (a) Schematic of the top view of the KVPs indicating the primi-
tive cell that contains three holes with unit vectors of R1 and R2 and lattice
constant length of a. (b) Schematic of the topological waveguide made of
positive and negative perturbed KVPs. The positive and negative perturba-
tion occurs at spacing d > d0 and d < d0, respectively, with d0 = a/2

√
3.

(c) Projected band structure of the topological waveguide in (b). The black
dotted lines represent the light lines, and the blue parallel dotted line shows
edge mode wavelength λ0 = 1.525 µm at kx = 0. The band structure has been
obtained with Bloch PBCs on the (xy)-plane, PML boundary conditions in
the z-directions and an air spacer layer between the slab and the PML. (d)
Decay slope of the edge states of the topological waveguide. The purple per-
pendicular dashed lines indicate the wave vector at which the light lines and
the edge dispersion curve cross. The KVPs have lattice constant a = 500 nm,
hole diameter D = 150 nm, and a slab height h = 170 nm. The unperturbed
KVPs has d = d0 = 144 nm, while the positively and negatively perturbed
KVPs have d = 1.1d0 and d = 0.9d0, respectively. The refractive index of
InGaAsP material is 3.3 and the material dispersion has been neglected [77]
in the calculation of the band structure.

troduce a positive perturbation by varying d = d0 to d = 1.1d0 or a negative

perturbation by varying d = d0 to d = 0.9d0, the inversion symmetry is broken

and the lattice symmetry is reduced to the C3v symmetry. As a result, the

degeneracy at the K (and K′) point is lifted and a bandgap opens. The pos-

itively (negatively) perturbed KVPs have a positive (negative) valley Chern

number [see Chap. 2]. Thereby edge states are guaranteed at the interface

between them.

Thanks to the bulk-edge correspondence, we can achieve topological edge

states at the boundary between the KVPs with positive and negative pertur-
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bation as shown in Fig. 3.1(b). The band structure [Fig. 3.1(c)] numerically

calculated using Lumerical FDTD solutions [82], a FDTD solver, reveals that

edge states with wavelengths, ranging from 1.468 µm to 1.578 µm, are gener-

ated within a photonic bandgap. Moreover, the edge states at wavelengths

ranging from 1.500 µm to 1.578 µm are below the light line, thus guaranteeing

broadband topologically protected light propagation with out-of-plane con-

finement.

It is worth noting that the edge states can be categorised into two regions:

region I (vpvg ≤ 0) and region II (vpvg > 0), where vp and vg are the phase

velocity and group velocity, respectively. The wavelengths of the two regions

overlap from 1.468 µm to λ0 = 1.525 µm within the photonic bandgap. We

observe from Fig. 3.1(c) that when the edge mode wavelength is longer than

λ0, only the single unidirectional edge modes within the region I can be excited

at each wavelength with propagation in the ±x-direction. However, when the

edge mode wavelength is shorter than (or equal to) λ0, dual unidirectional

edge modes (one in region I and the another in region II) can be excited at

each wavelength with propagation in the ±x-direction. The above interesting

features have not been demonstrated by the valley Hall photonic crystals based

on kagome lattices reported in Ref. [26, 92]. Figure 3.1(d) demonstrates that

the edge modes below the light line in region I have a smaller decay slop than

the others because of lower vertical light loss.

Similarly to the 2D analysis done in Chap. 2, we investigate the unidi-

rectional propagation feature of the edge states in KVP waveguide in 3D,

as schematically depicted in Fig. 3.2(a). Figure 3.2(b) shows that the same

sources at different structure positions can excite unidirectional edge states

propagating in the opposite direction due to chiral light-matter interaction [92],

which is also observed in other reported photonic spin Hall systems [11,13,14]

and photonic valley Hall systems [24, 25]. When a left-handed circularly po-

larised source excites photons at locations “1” (“2”), negative (positive) chiral-

ity is predominant and leftward (rightward) unidirectional light propagation

occurs. At location “3”, the local electric fields of the edge mode are ellip-

tically polarised and hence the light propagates in both left and right direc-

tions [78, 92]. In any case, the light is well confined at the boundary between
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(a)

(b)

Figure 3.2: (a) Positions of the left-handed circular polarised dipoles (marked
as star symbols) near the interface between the negatively and the positively
perturbed KVPs. The white dotted line indicates the boundary between the
negatively and the positively perturbed KVPs. (b) Field distribution |E|2 of
the edge mode at λ = 1.550 µm in the (xy) and (xz) planes for the different
source positions in (a). The geometric parameters are the same as in Fig. 3.1.

(a) (b)

Figure 3.3: (a) Transmission spectra of the Z-shaped waveguide obtained by
normalising the transmission with respect to the transmission of the straight
waveguide. (b) Field distribution |E|2 at λ = 1.550 µm along the Z-shaped
topological waveguide. The shaded area indicates the wavelength range of the
bandgap. The 3D full-wave simulations have PML boundary conditions in all
the x-, y-, and z-directions. The geometric parameters are the same as in
Fig. 3.1.

the two perturbed KVPs in both the (xy) and (xz) planes due to the presence

of the topological edge states below the light line. The modes in both region

I and region II are excited [as predicted in Fig. 3.1], and the intensity of the

excited modes in the two regions varies significantly with wavelength under

the same dipole source excitation.
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(a) (b)

Figure 3.4: (a) Schematic of the topological waveguide made of positive and
negative perturbed KVPs. (b) Projected band structure of the topological
waveguide in (a). The solid black lines represent the light lines. The band
structure has been obtained with Bloch PBCs on the (xy)-plane, PML bound-
ary conditions in the z-direction and an air spacer layer between the slab and
the PML. The geometric parameters are the same as in Fig. 3.1 except for the
perturbation value that is reversed.

The transmission spectrum of the Z-shaped waveguide normalised by the

transmission of the straight waveguide with the same geometrical parameters

is plotted in Fig. 3.3(a). We can see a wavelength range where the transmis-

sion is close to 1. This confirms that the excited topologically protected light

mode indeed propagates smoothly around sharp bends with high transmission.

Because of the simulations done in 3D, any transmission below 1 is represen-

tative of some back-reflection or out-of-plane loss at the bendings. Besides,

spectral oscillations happen at wavelengths shorter than λ0 = 1.525 µm be-

cause of mode mixing and dual unidirectional propagation coming from region

I and region II. The field profile of the mode propagating along the Z-shaped

topological waveguide at wavelength λ = 1.550 µm is shown in Fig. 3.3(b).

3.3 Topological cavity

Based on the developed KVP scheme, we design a triangular topological cav-

ity with 120-degree bends that consists of negatively perturbed KVPs inside

the cavity and positively perturbed KVPs outside the cavity, as depicted in

Fig. 3.5(a). If the cavity is arranged in an opposite manner, i.e. the interior

of the cavity is the positively perturbed KVPs while the exterior is the nega-

tively perturbed KVPs, then the interface is different than in Fig. 3.1 and the

majority of the edge states lie above the light line [Fig. 3.4].

The proposed topological cavity supports two types of resonator modes:
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Figure 3.5: (a) Schematic of the topological cavity, and a zoomed-in on the
bottom-left cavity corner area. The red and black areas represent the nega-
tively and positively perturbed KVPs, respectively, and the white dotted lines
indicate the boundary between them. The star symbol indicates the location
where the dipole sources are placed to excite the cavity modes. (b) Opti-
cal spectrum of the KVP cavity with a cavity edge length of L = 14.5 µm.
(c),(d) Field distribution |E|, in the z = 0 µm plane, of the topological
ring resonator modes at frequencies of f3 = 194.8THz (λ3 = 1.540 µm)
and f5 = 198.2THz (λ5 = 1.513 µm), respectively. (e),(f) Field distribu-
tion |E|, in the z = 0 µm plane, of the FP resonator modes at frequencies of
f ′2 = 197.6THz (λ2 = 1.518 µm) and f ′4 = 199.8THz (λ4 = 1.501 µm), re-
spectively. The 3D full-wave simulations have PML boundary conditions in
all the x-, y-, and z-directions. The geometrical parameters are the same as
in Fig. 3.1.

ring resonator modes and Fabry-Pérot (FP) resonator modes. Using a cavity

edge length L = 14.5 µm and electrical dipoles placed randomly near one of

the cavity edges (see the star symbol in Fig. 3.5) to excite all the resonant

modes, we observe in Fig. 3.5(b) nine ring resonator modes with frequencies

of fi (i = 1, 2, . . . 9) and seven FP resonator modes with frequencies of f ′m

(m = 1, 2, . . . 7). The ring resonator modes arise from the excitation of the

low propagation loss edge modes within region I [Figs. 3.1(c) and 3.1(d)]. This

is evidenced by the E-field distributions in Figs. 3.5(c) and 3.5(d) showing that

the light propagates smoothly along the whole cavity. In contrast to the ring

resonator modes, the FP resonator modes experience high reflection from the

cavity corners as seen in Figs. 3.5(e) and 3.5(f). The FP resonator modes
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(a) (b)

Figure 3.6: (a) Numerically and analytically obtained FSR of the ring res-
onator modes for a cavity edge length L = 14.5 µm. (b) Dependence of the
frequencies of the resonant modes on cavity length. The geometrical parame-
ters are the same as in Fig. 3.1.

originate from the excitation of the lossy edge modes in region II [Figs. 3.1(c)

and 3.1(d)], which explains why the wavelengths of the FP resonator modes

are shorter than λ0 in Fig. 3.5(b).

However, one should note that for the ring resonator modes displayed,

both the left and right counter-propagating topological edge modes are ex-

cited. This results in standing wave patterns in Figs. 3.5(c) and 3.5(d) where

interference fringes are observed.

The resonant modes can be further analysed. The cavity modes are stud-

ied by performing free-spectral-range (FSR) calculations of the ring resonator

modes based on [93]:

∆λFSR =
λ2

ngLcavity
, (3.1)

where λ is the light wavelength, ng = c∂k/∂ω is the group index obtained

from the bandstructure in Fig. 3.1 and Lcavity is the effective length of light

propagating in the cavity. Here c is the velocity of light, k the wavenumber

and ω the angular frequency of light. The length of the edge of the cavity is

chosen similar to Fig. 3.5, i.e. L = 14.5 µm. The numerically calculated FSR

results are obtained from FDTD results using:

∆λFSR,FDTD = |λi − λi+1| , (3.2)

where λi, i = 1, 2, . . . 8, are the wavelengths of the i-th ring resonator modes.

Figure 3.6(a) shows that there is a discrepancy between the analytically and
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(a) (b)

Figure 3.7: (a) Dependence of the ring resonator modes’ Q factor on the cavity
length L. (b) The maximum Q factor (Qmax) of the edge modes against the
cavity length L. The geometrical parameters are the same as in Fig. 3.1.

the numerically obtained FSR. This arises from the fact that we approximate

Lcavity = 3L in the numerical analysis. In fact, Lcavity should change with

the wavelength, since different ring resonator modes have slightly different

field profiles around the cavity corners and thus yield different effective length

Lcavity. Besides, we note that the value of the FSR of the ring resonator modes

is not constant because of the waveguide dispersion, namely ng varies with the

wavelength. We further study, in Fig. 3.6(b), the dependence of the cavity

length on the frequencies of the resonant modes. The frequency spacing of the

ring resonator modes decreases with L. We note that the FP resonator modes

always appear at wavelengths shorter than λ0 = 1.525 µm, which confirms that

the physical origin of FP resonator modes is coming from the excitation of the

edge modes in region II [Figs. 3.1(c) and 3.1(d)].

The Q factor is also studied for this type of topological cavity. It is defined

by [94,95]:

Q =
2πng
αλ

, (3.3)

where ng, α and λ are the group index, propagation loss and resonant wave-

length of the edge mode, respectively. Using the same simulation setup as in

Fig. 3.5, time monitors are randomly placed near the cavity edges to record the

electric field. The logarithmic slope of the envelope of the decaying light signal

in the cavity is extracted, and the Q factor is derived by averaging the ob-

tained slopes from all the monitors. We stress that estimating the Q factor of

the cavity is valid only when the size of the surrounding PhCs is large enough

to confine the field of the edge modes near the cavity edges. When the size of
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the surrounding PhCs is small, light leakages to the surrounding occurs and

introduces additional optical loss, and hence estimation of the Q factor will

not be correct. Figure 3.7(a) shows that for the same cavity length, the ring

resonator modes at the frequencies in the sides of the edge states range tend to

have smaller Q factors than those at the frequencies in the middle of the edge

states range. This is because the modes that are closer to the bulk modes

have larger lateral losses. We observe that the maximum Q factor reaches

Q = 2.1 × 104 at wavelength λ = 1.518 µm (f = 197.4THz) when the cavity

edge length is L = 8.5 µm. The proposed cavity has a higher Q factor than

that of the recently reported topological ring resonator cavity based on the

photonic quantum spin hall effect [16]. We demonstrate in Fig. 3.6(b) that

the maximum Q factor depends on the cavity length and decreases rapidly

when L < 8.5 µm. This is due to couplings of the light in the cavity edges

when the size of the cavity becomes too small. We also note that the max-

imum Q factor starts to slightly decrease when the cavity length increases

(L > 8.5 µm). This is a numerical artefact because of the large simulation

cell required and the surrounding of the cavity being too close to the PML in

(xy)-plane.

3.4 Topological laser cavity

We study the lasing performance of the topological cavity by introducing gain

to the InGaAsP material and by optically pumping the topological cavity

[Fig. 3.8]. In order to investigate the lasing dynamics of the cavity, we utilised

the four-level two-electron model based on a 3D FDTD method implemented

in Lumerical [96]. Figure 3.8(a) illustrates how the dynamics of the electron

transition and the population density are modelled in the four-level system by

considering two coupled dipole oscillators Pa (formed by level 1 and level 2)

and Pb (formed by level 0 and level 3) with an angular frequency of ωa and

ωb, and a dephasing rate γa and γb, respectively. The dipoles are assumed to

be linearly polarised. The transition dipole moments are also assumed to be

equal in the x-, y- and z-components with the polarisation field components

being independent to each other, and given by µa =
√
6ℏπϵ0c3/2ω3

aτ21 and
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(b)(a) (c)

Figure 3.8: (a) Schematic diagram of the four-level two-electron model used
to modelled the gain in the active material. Ni is electron population density
probability in level i and τij (i, j = 0, 1, 2, 3) are the decay time constant
between levels i and j. The gain parameters for the InGaAsP material in the
model are ωa = 1260THz, ωb = 1770THz, γa = 168THz, γb = 1THz, τ30 =
τ21 = 300 ps and τ32 = τ10 = 0.1 ps [96,97], which give µa = 6.28× 10−28 Cm,
µb = 3.77×10−28 Cm. (b) Schematic of the cavity that is optically pumped by
another laser from the top. (c) Spatial intensity profile of the Gaussian source
directed along the z-direction with waist radius of 12 µm and at z = 1 µm above
the cavity. The Gaussian source is linearly polarised along the x-direction. The
white dotted line represents the outline of the cavity edges.

µb =
√
6ℏπϵ0c3/2ω3

b τ30, with ϵ0 and c being the permittivity and speed of light

in vacuum [96]. The system is then selectively pumped with a narrow linewidth

that is centred on the transition frequency ωb. The angular frequencies chosen

for the InGaAsP material are here set to ωa = 1260THz (λa = 1.495 µm)

and ωb = 1770THz (λb = 1.064 µm) [96, 97]. A continuous-wave laser with a

Gaussian shape intensity profile [Fig. 3.8(b)] at wavelength λ = 1.064 µm is

used to pump the KVP cavities to excite the topological laser modes in the

telecommunication region. The Gaussian source is placed at z = 1 µm away

from the cavity surface and has a waist radius of 12 µm in order to pump both

the inside and outside of the cavities [Fig. 3.8(c)].

The electron population density of the levels relies on the stimulated and

spontaneous emission decay. Lasing is achieved once population inversion

between level 1 and level 2 is realised, from which the stimulated emission is

the dominant process. As an example, we simulate a topological cavity with an

edge length of L = 6.5 µm. Figure 3.9(a) shows that the laser intensity (|Ex|2+

|Ey|2 + |Ez|2) recorded at the bottom-left corner experiences a dramatically

jump when the power of the pump laser increases to a certain threshold value,

and then the laser intensity becomes saturated when the pump laser intensity

further increases. This is a typical laser behaviour which indicates a transition
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Figure 3.9: (a) Normalised output laser intensity versus normalised pump laser
intensity with 1 corresponding to a pump amplitude of |E| = 3 × 105V/m.
(b) Time evolution of the electron population density N1 and N2 of the level 1
and 2, respectively. The inset shows the population inversion when the lasing
is stabilised. (c) Spectrum of the KVP laser at a pump amplitude of |E| =
3 × 105V/m. The inset is the spectrum of the pump laser at λ = 1.064 µm.
(d) Lasing field distribution |E| in the z = 0 µm plane of the topological cavity
at λ = 1.523 µm in (c). The 3D full-wave simulations have PML boundary
conditions in all the x-, y-, and z-directions. The cavity edge length in the
simulations is L = 6.5 µm and the other geometrical parameters are the same
as in Fig. 3.1. The gain parameters are the same as in Fig. 3.8.

from dominant spontaneous emission to dominant stimulated emission. We

demonstrate in Fig. 3.9(b) that the population inversion of level 2 relative

to level 1 can indeed be achieved with a pump laser amplitude of |E| = 3 ×

105V/m. Consequently, lasing at edge state λ ≃ 1.523 µm is achieved, as

shown from the laser spectrum and the field distribution in Figs. 3.9(c) and

3.9(d). The field profile looks slightly different to that in Fig. 3.5(c) because

they are corresponding to different modes at different wavelengths. Similarly

to Fig. 3.5, the lasing mode in Fig. 3.9(d) displays standing wave patterns

because both counter-propagating edge modes are lasing.

We now investigate the robustness of the proposed topological laser cav-

ity. We design a topological cavity with a complex closed boundary between
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(a)

Figure 3.10: (a) Schematic top-view of the cavity with a complex geometry.
The red and black regions indicate the negatively and positively perturbed
KVPs, respectively. (b) Spectrum of the laser cavity in (a) at a pump am-
plitude of |E| = 3 × 105V/m. (c) Field distribution |E| of the edge mode
laser at wavelength λ = 1.516 µm in (b). The 3D full-wave simulations have
PML boundary conditions in all the x-, y-, and z-directions. The geometrical
parameters of the cavity are the same as in Fig. 3.1 except for the cavity shape
and length. The gain parameters are the same as in Fig. 3.8.

the perturbed KVPs as depicted in Fig. 3.10(a). Despite the complex cavity

geometry, distinct topological invariants of the two perturbed KVPs ensure

the existence of topological modes, and the generated laser is well confined

and propagates smoothly along the boundary [Fig. 3.10(c)] as long as there

is no inter-valley mixing. The cavity has a different cavity length to that in

Fig. 3.9 and hence generates resonant edge modes with different wavelengths.

The lasing at the resonant mode wavelength λ = 1.516 µm is dominant, which

we think is due to this mode having higher gain and lower loss than the other

resonant modes from the same cavity.

We note from Fig. 3.9(c) and Fig. 3.10(b) that multiple lasing modes are

excited, which is due to the fact that we use a relatively large value of dephasing

rate γa in our design so that the gain of the material covers a broad wavelength

range of edge states. As a result, when the pump laser power is strong enough,
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additional ring resonator modes start to lase as well.

3.5 Summary

In summary, we have demonstrated a PTI strategy based on an all-dielectric

hole-type kagome lattice. One advantage of the developed KVPs in the semi-

conductor membrane platform is that it allows broadband non-trivial gener-

ation in the telecommunication region below the light line and thus enables

robust photonic routing in waveguides even with sharp bends. We analytically

and numerically investigate the bandstructure of the kagome photonic crystals

and show that the valley-dependent edge states can be categorised into two

regions, i.e. region I (vpvg ≤ 0) and region II (vpvg > 0), where vp and vg are

phase velocity and group velocity, respectively. Edge modes in region I have

low propagation loss and are topologically protected while the edge modes

in region II have high propagation loss and suffer from inter-valley mixing.

This results in the coexistence of the topological ring resonator modes and

the trivial Fabry–Pérot resonator modes in the proposed triangular-type KVP

cavities. We study the proposed topologically protected laser cavity based on

the four-level two-electron model and evaluate the robustness and dynamics

of the lasing cavities by studying the population inversion, the lasing spectra,

the field profile of the lasing modes, and the light-in light-out (L-L) responses.

To date, tight-binding models are widely used to design and analyse gain and

lasing behaviours of topological insulator lasers [36, 37]. Our work suggests

that the FDTD-based four-level two-electron model offers a powerful alter-

native platform to study laser performances of topological insulator cavities

with arbitrary geometry. Our study will help to understand the interplay be-

tween non-Hermiticity and topology, and more importantly provides a new

scheme to explore compact all-dielectric topological lasers that can be easily

integrated into other passive or active photonic devices by the well-established

semiconductor photonic integrated circuit technologies.



Chapter 4

Topological bulk lasing modes

using an imaginary gauge field

4.1 Introduction

In an attempt of controlling the flow of light, PTIs [4] have enabled exciting

devices such as unidirectional waveguides and topological lasers that are ro-

bust against a certain class of perturbations and defects. In particular, the

realisation of robust topological optical systems has drawn attention for ad-

vanced photonic by reducing propagation loss in optical devices [57, 92], for

quantum computers [98,99], photonic neural networks [100] and near-zero ep-

silon devices [101–103].

Recently, considerable effort has been made to study non-Hermitian PTIs

by engaging topological edge modes to enable a lasing regime with optical

non-linearity [34, 37], distribution of gain and loss [33, 35, 104–106] or non-

reciprocal couplings [31, 38, 39]. For example, the 1D SSH model [32] has

been utilised to generate edge states with gain/loss and implement topological

lasing devices [33–35]. A cavity made of topologically distinct PTIs has been

proposed to enhance the lasing efficiency by using unidirectional topologically

protected edge modes [31,106].

However, the edge-mode-based topological lasers are not appropriate for

high power lasers due to the localised nature of the edge modes and the possible

breakdown of the constituting optical elements. As an alternative, topological

bulk lasers have been proposed to achieve broad-area emission by using ex-

51
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tended topological modes based solely on the parity symmetry at the Γ-point

in a 2D hexagonal cavity [38] or by using an imaginary gauge field in a 1D

PT -symmetric SSH lattice to delocalise the zero-energy boundary mode over

the 1D bulk [39]. Although the spatial stability, i.e. robustness, of the topolog-

ical lasing mode is guaranteed based on topological band theory, its temporal

behaviour is not necessarily stable due to the non-linear nature of the optical

gain in lasers [42]. Therefore the temporal instability can further deteriorate

the performance of lasing devices and it becomes important to study the dy-

namics and the temporal stability of the topological lasing modes [107].

In this chapter, we generalise the topological extended mode on the 1D

SSH [39] lattice to higher-dimensional lattices. In particular, we demonstrate

a topological extended mode on a 2D bulk by using a kagome lattice with

a rhombus geometry and by using non-reciprocal couplings modelled by a

complex imaginary gauge field. The topological bulk laser is studied with

an alternating gain and loss distribution. Using the laser rate equations, we

show that the topological extended mode lases and has large stable regions

in its parameter space. We thus demonstrate that a phase-locked broad-area

topological laser can be realised in a 2D kagome lattice.

4.2 Extended topological mode in a 1D lattice

Here, we briefly recall the procedure used to delocalise the topologically pro-

tected (zero-energy) mode in the SSH lattice in Ref. [39].

The SSH lattice, depicted in Fig. 4.1(a), is a 1D lattice made of an array

of Ns sites. It has a unit cell composed of two sites (A and B) and the lattice

is characterised by alternating intra- and inter-unit cell couplings given by the

real scalars t1 and t2, respectively.

In the non-Hermitian configurations, where an extended mode has been

proposed [39, 108], a purely complex imaginary gauge potential, A = −ihe1,

h real, is introduced. In the presence of the gauge field, the Peierl’s phase

modifies the hopping terms by a factor: ei
∫
A·dl, with dl = dxiei the direction

of the hopping. The couplings are therefore modified and become asymmetric.
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(a)

(f) (g)

(d) (e)

(b) (c)

A AAB B
t1 t2 t2t1

Figure 4.1: (a) Schematic of a non-Hermitian SSH finite-size lattice made of
an array of Ns sites. The lattice starts from a site A and terminates at a
site A. The usual Hermitian SSH lattice corresponds to the case where h = 0.
(b),(c) Real and imaginary parts of the spectrum of the finite-size SSH lattice
against the non-Hermitian term h, respectively. (d),(e) Normalised field profile
|ψn| of the zero-energy mode from the finite-size SSH lattice in the Hermitian
(h = 0) and non-Hermitian (h = h0) settings, respectively. (f),(g) Normalised
field profile |ψn| of all the non-zero-energy (bulk) modes from the finite-size
SSH lattice in the Hermitian (h = 0) and non-Hermitian (h = h0) settings,
respectively. The colours correspond to the different modes. The parameter
are chosen such that Ns = 19, EA = EB = 0, t1 = 0.02, t2 = 0.06.

Note that the usual pre-factors are here absorbed in A, or equivalently in h.

The coupling constants get a eh factor term when hopping from left to right,

and a e−h factor term when hopping from right to left. The coupled-mode
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equations are then written as:

i
dan
dt

= EAan + t1e
−hbn + t2e

hbn−1, (4.1)

i
dbn
dt

= EBbn + t1e
han + t2e

−han+1, (4.2)

with an and bn the modal amplitudes on the A and B sites at the n-th unit

cell, respectively. Eσ is the on-site energy on the site σ = A,B.

For a finite system, the introduction of the imaginary gauge field will not

affect the spectrum [108] as shown in Figs. 4.1(b) and 4.1(c). This can be

made explicit by noting that the system of equations above can be solved with

a suitable gauge transformation:

an = e2hnãn, (4.3)

bn = e2hne−2hb̃n (4.4)

where an and bn are solutions of the coupled-mode equations if ãn and b̃n are

solutions of the Hermitian SSH coupled-mode equations, namely when h = 0.

For a SSH lattice starting and terminating on an A site, it is known that

the zero-energy mode of the Hermitian SSH lattice reads:

ãn = r̃nã0, (4.5)

b̃n = 0, (4.6)

where

r̃ = − t1
t2

(4.7)

is defined by

ãn+1 = r̃ãn (4.8)

and satisfies the destructive interference condition on the B sites

t1 + r̃t2 = 0. (4.9)
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The solution for the non-Hermitian SSH lattice is then written as:

an = rna0, (4.10)

bn = 0, (4.11)

where

r = − t1
t2
e2h (4.12)

is defined as

an+1 = ran (4.13)

and satisfies the modified destructive interference condition on the B sites

t1e
h + rt2e

−h = 0. (4.14)

The main effect of this imaginary gauge field is to change the localisation

property of the modes without affecting the spectrum [Figs. 4.1(b) and 4.1(c)].

In particular, one can delocalise the topologically protected edge mode over

the whole 1D bulk, while keeping its topological protection from the chiral

symmetry of the Hermitian topologically protected (zero-energy) mode. The

exponentially increasing or decaying factor is removed by appropriately choos-

ing the gauge field h such that |r| = 1:

h = h0 := −1

2
ln

(
t1
t2

)
. (4.15)

Figures 4.1(b) and 4.1(c) show that the spectrum of the finite-size Hermitian

and non-Hermitian SSH lattice are indeed unchanged as we turn on the non-

Hermitian term h. However, for t1 < t2, the field profile |ψn| of the zero-energy

mode is localised on the left edge for the Hermitian case [Fig. 4.1(d)], while it is

extended over the 1D bulk for the non-Hermitian case with h = h0 [Fig. 4.1(e)].

In addition to the zero-energy mode, the field profiles of the bulk modes are

also modified [Figs. 4.1(f) and 4.1(g)]. For t1 < t2, and thus h > 0, they

become localised on the right edge of the lattice: this is known as the (non-

Hermitian) skin effect. This alteration of the bulk modes is one of the reasons

why the bulk-edge correspondence breaks down in non-Hermitian systems [27]
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Figure 4.2: (a) Schematic of a d-dimensional lattice in a quasi-1D lattice made
of an array of Ns (d − 1)-dimensional lattices. (b) Schematic of the kagome
lattice drawn in the quasi-1D lattice formalism. The solid and dashed lines
denote the intra-cell (t1) and inter-cell couplings (t2), respectively.

and justify the importance to do the analysis in the open boundary conditions

as mentioned in Chap. 1.

Finally, it is worth noting that although the zero-energy mode is topo-

logically protected, its localisation property depends locally on the coupling

constants, and is therefore sensitive to their perturbations. However, for rea-

sonably small perturbations, i.e. small enough so that the bandgap does not

close, the delocalisation is not destroyed: the amplitudes remain at the same

order of magnitude over the bulk but are simply not equal anymore [see for

example Fig. 4.6(f)].

4.3 Extended topological mode in a d-dimensional lattice:

example on the kagome lattice

We now generalise this notion of delocalised (or extended) topological mode

over a whole d-dimensional bulk.

4.3.1 General framework

The strategy follows similar steps as in the previous section, namely to find an

exact solution of the (topologically protected) boundary state, and then use

non-Hermiticity to change the localisation property of the chosen mode.

In order to find an exact solution, we follow the procedure in Ref. [109,110].

One needs to consider a d-dimensional lattice as a stack of (d−1)-dimensional
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lattices (e∥-direction) and with OBCs in the remaining one-dimensional (e⊥-

direction) boundaries [109–111] [see Fig. 4.2 for the example of the kagome

lattice]. The lattice can then be considered as a quasi-1D lattice with the

unit cell composed of two lattice-sites, I and J , except that here the lattice-

sites represent (d − 1)-dimensional lattices, as shown in Fig. 4.2. Additional

conditions are assumed such as the quasi-1D lattice needs to start and termi-

nate on the same I lattice-site, and we forbid direct hopping between the I

lattice-sites [109,110,112]. Therefore, the lattice naturally supports the exact

disappearance of the modal amplitude of n modes on the J lattice-sites, with

n the number of degrees of freedom on the I lattice-site.

From the quasi-1D formalism, the coupled-mode equation is conveniently

written as:

i
dΨ

dt
= HlatticeΨ (4.16)

where Ψ = (ψI,0, ψJ,0, . . . , ψI,N )T with ψI,n and ψJ,n being the modal ampli-

tudes on the I and J lattice-sites in the n-th stacked unit cell, respectively. N

is the index of the last unit cell. The Hamiltonian of the lattice reads:

Hlattice =


HI HI←J 0 · · ·

H̃†I←J HJ H̃†J→I · · ·

0 HJ→I HI · · ·
...

...
...

. . .

 (4.17)

with HI and HJ being the Hamiltonian of the lattice I and J , respectively.

HI←J and HJ→I are (Ns ×N ′s)-matrices, and correspond, respectively, to the

intra- and inter-unit cell couplings between the I and J lattices. Ns and N ′s

are the number of sites in the I and J lattices, respectively. For the Hermitian

case, we have H̃†I←J = H†I←J and H̃†J→I = H†J→I .

For the general d-dimensional lattice, the eigenvalue problem HlatticeΨ =

EΨ yields, for n = 0, . . . , N :

HI,kψI,n +HI←JψJ,n +HJ→IψJ,n−1 = EψI,n, (4.18)

HJ,kψJ,n + H̃†I←JψI,n + H̃†J→IψI,n+1 = EψJ,n. (4.19)

The condition for destructive interference on the J-lattices, ψJ,n = 0, is given
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by:

H̃†I←Jψ
(i)
I,n + H̃†J→Iψ

(i)
I,n+1 = 0. (4.20)

From Eq. 4.18, the solution with vanishing amplitude on the J-lattice therefore

gives the additional condition:

HIψI,n = EψI,n, (4.21)

namely ψI,n must be an eigenmode of the Hamiltonian on the lattice I, labelled

ψ
(i)
I,n, with corresponding energy E = E

(i)
I .

Since we are looking at edge states, we can ask for solutions which expo-

nentially decay or increase, or equivalently solutions that satisfy [109,111]:

ψ
(i)
I,n+1 = riψ

(i)
I,n (4.22)

with ri being a scalar term representing the decaying amplitudes of the mode

inside the quasi-1D lattice.

The boundary state solution of the Hamiltonian Hlattice with energy E
(i)
I

is therefore of the form:

ψ
(i)
I,n = rni ψ

(i)
I,0 (4.23)

with ri satisfying the destructive interference condition on the J lattice:

H̃†I←Jψ
(i)
I,0 + riH̃

†
J→Iψ

(i)
I,0 = 0. (4.24)

In summary, the modes with eigenenergy E = E
(i)
I , such that HIψ

(i)
I =

EIψ
(i)
I , are the modes which are exponentially localised on one edge and with

non-vanishing amplitudes only on the lattice-sites I, with mode distribution

corresponding to ψ
(i)
I on the lattice-site I.

The delocalisation of the edge modes is then realised by introducing an

imaginary gauge field such that |ri| = 1. The non-Hermitian terms allow the

change of the localisation properties while keeping the spectrum unchanged.
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Figure 4.3: (a) Schematic of the kagome lattice in the non-Hermitian setting.
eh, eh

′
, eh

′′
correspond to the imaginary gauge field introduced for delocalising

the topological mode. (b),(c) Real and imaginary parts of the spectrum of the
kagome lattice in the rhombus geometry against the non-Hermitian term h,
respectively. (d),(e) The normalised field profile |ψn,m| of the zero-energy mode
of the kagome lattice in the rhombus geometry in the Hermitian (h = h′ =
h′′ = 0) and non-Hermitian setting (h = h′ = h0, h

′′ = 0), respectively. Here,
there are Ns = 9 sites both in the I lattice and the quasi-1D lattice. t1 = 0.02,
t2 = 0.06.

4.3.2 Extended topological mode in 2D kagome lattice

As a concrete example, we will look at the case of the kagome lattice as shown

in Fig. 4.3(a). Additional examples, such as the Lieb and the 2D SSH lattices,

are given in Sect. 4.5. The kagome lattice is characterised by a unit cell

composed of three sites A, B, and C and the coupling strengths between sites

are different for intra-unit cell (t1) and inter-unit cell (t2) couplings.

We will specifically look at the topological zero-energy corner mode present

in the rhombus geometry of the kagome lattice [113–115] [see Fig. 4.3(d) for the

geometry of the lattice]. Figure 4.3(c) plots the normalised field distribution

|ψn,m| of the zero-energy mode for t1 < t2. This shows that the mode is
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localised on the bottom-left corner, with vanishing amplitudes on the B and

C sites, as explained later.

Applying the previous quasi-1D formalism to the kagome lattice in the

rhombus geometry, we have HI = HSSH, HJ = diag(EB, . . . , EB). The cou-

pling matrices are given by:

H̃†I←J = H†I←J =


t1 t1 0 . . . . . . . . .

. . . 0 t1 t1 0 . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 0 t1

 (4.25)

and

H̃†J→I = H†J→I =


t2 0 . . . . . . . . . . . .

0 t2 t2 0 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . 0 t2 t2

 . (4.26)

The rhombus geometry is interesting since in the e∥-direction, the I lat-

tices, which are equivalent to the SSH lattice, start with and are terminated

by the same site (here site A). In this configuration, we can see the zero-energy

corner mode is related to the topological zero-energy mode present in the chi-

ral symmetric SSH lattice. The zero-energy corner mode can be seen as the

boundary state of the kagome lattice with eigenenergy E
(i)
I = E

(0)
I = 0 and

can be analytically written as [110]:

ψ
(0)
I,m = rm0,2ψ

(0)
I,0 (4.27)

with [
ψ
(0)
I,0

]
n
= rn0,1a0,0 (4.28)

being the n-th component of the zero-energy mode ψ
(0)
I,0 of the SSH lattice,

and an,m the modal amplitude on the A site at the n-th unit cell in the m-th

lattice I. The interference conditions [Eq. 4.24] give:

r0,1 = − t1
t2

(4.29)
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(a) (b)

Figure 4.4: Normalised field profile |ψn,m| of the zero-energy mode of the
kagome lattice in the rhombus geometry with (a) h = h0, h

′ = h′′ = 0 and (b)
h′ = h0, h = h′′ = 0. The other parameters are the same as in Fig. 4.3.

and

r0,2 = − t1
t2
. (4.30)

As expected, the analytical expression shows that by choosing different intra-

and inter-unit cell coupling constants, t1 < t2 or t1 > t2, the zero-mode is

exponentially localised, respectively, on the bottom-left or upper-right edge of

the SSH lattice with vanishing amplitudes on the B and C sites.

We now use an imaginary gauge field to change the localisation property of

this corner mode [39, 108]. Figure 4.3(a) sketches the gauge potential consid-

ered where eh, eh
′
and eh

′′
represent the phase factor in the couplings between

the sites A and B, A and C, and B and C, respectively. Conditions on h, h′

and h′′ are imposed given an imaginary gauge field A = (A1,A2). From the

Peierls’ phase corresponding to eh we have A1 = −ih, with dl = e1. Similarly,

eh
′
gives A2 = −ih′, using dl = e2. These two conditions on A mean that for

eh
′′
we must have:

h′′ = −h+ h′ (4.31)

where dl = e2 − e1. With the imaginary gauge field, the coupling matrices

are then modified, and particularly we have:

H̃†I←J =


t1e

h′
t1e

h′′
0 . . . . . . . . .

. . . 0 t1e
h′

t1e
h′′

0 . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 0 t1e
h′

 (4.32)
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and

H̃†J→I =


t2e
−h′

0 . . . . . . . . . . . .

0 t2e
−h′′

t2e
−h′

0 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . 0 t2e
−h′′

t2e
−h′

 . (4.33)

The interference conditions now yield:

r0,1 = − t1
t2
e2h (4.34)

and

r0,2 = − t1
t2
e2h

′
. (4.35)

Delocalisation over the e1-direction is achieved by requiring |r0,1| = 1,

namely choosing h = h0. Similarly, delocalisation over the e2-direction is

realised with h′ = h0 so that |r0,2| = 1. One can notice that there is no further

condition on h′′ to delocalise the mode in the quasi-1D lattice. This is because

of the vanishing amplitudes on the B and C sites. Figures 4.4(a) and 4.4(b)

show the normalised field profile |ψn,m| of the zero-energy mode using h = h0,

h′ = h′′ = 0 and h′ = h0, h = h′′ = 0, respectively. In Fig. 4.4(a), the mode is

localised on the bottom edge while being extended over the e1-direction. On

the other hand, Fig. 4.4(b) shows that the mode is localised on the left edge

while being extended along the e2-direction. It is worth noting that for the

values of h, h′ and h′′ chosen for drawing Fig. 4.4, the spectrum is not identical

to the Hermitian case since the condition on the gauge field [Eq. 4.31] is not

satisfied.

Provided Eq. 4.31 holds, the introduction of the imaginary gauge field will

only affect the localisation property of the mode while keeping the spectrum

unchanged [Figs. 4.3(b) and 4.3(c)]. Therefore, in this case, the condition

|r0,i| = 1 does not correspond to the band touching between the edge band

and the bulk band [109], and thus the topological is retained. Combining the

two results obtained above for the delocalisation of the zero-energy mode and
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the restricting condition on the gauge field [Eq. 4.31], we can choose:

h = h′ = h0 := −1

2
ln

(
t1
t2

)
(4.36)

and

h′′ = 0 (4.37)

to completely delocalise the topological corner mode over the bulk of the

kagome lattice. Figures 4.3(b) and 4.3(c) show that the numerically calcu-

lated spectrum of the kagome lattice in the rhombus geometry does not change

when the imaginary gauge is introduced. Nevertheless, Figure 4.3(c) plots the

normalised field distribution of the zero-energy mode using h = h′ = h0 and

h′′ = 0, and shows that the topologically protected zero-energy mode is now

extended over the whole bulk of the kagome lattice: we have obtained a topo-

logical bulk mode in the 2D kagome lattice.

The generalisation to higher-dimensional lattices can be achieved using a

similar procedure: namely starting by delocalising a topologically protected

mode over a lower-dimensional bulk, and repeating this step with the higher

dimension.

It is interesting to note the usefulness of this bottom-up approach presented

in this section because it gives us some intuitive insight into the behaviours

of the boundary states from the lower dimensional lattice. This will be used

again in the next section [Sect. 4.4] when the gain and loss will be considered.

4.4 Lasing in the non-Hermitian kagome lattice

The peculiarity of this extended topological mode is its vanishing amplitudes

on the B and C sites but most of all, that it is topologically protected over a

2D bulk, and has a π-phase difference between non-vanishing sites. This hints

at the possibility to realise phase-locked broad-area topological lasers in 2D

lattices.
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4.4.1 An active and non-Hermitian kagome lattice

The design presented above can be extended to build a topological laser by

considering optical pumping of semiconductor ring resonators with gain (g)

and loss (−g) as the main sites A, B or C. The imaginary gauge field can be

made using auxiliary ring resonators with different losses strength between the

upper and lower half perimeter of the ring [39], as we will see in section 4.6.

The values of the imaginary gauge field h, h′, h′′ would then mainly depend

on the losses contrast by depositing lossy materials with different thicknesses

on top of the auxiliary rings or using different materials [34–36,116].

The gain and loss configuration is chosen based on the SSH sublattices

since we are looking for topological modes in the kagome lattice that originate

from the topological mode in the SSH sublattice. In the literature, it is well

known that the SSH lattice in a PT -symmetric configuration [33,34] (gain on

A sites, EA = ig, and loss on C sites, EC = −ig) can preserve the topological

protection of the zero-energy. Particularly, if the SSH lattice is in the unbroken

PT -symmetric phase, i.e. g/t1 < (t2/t1−1), then the gap does not close in the

presence of gain or loss, and the zero-energy mode remains well separated from

the bulk [34,105]. When the energy is complex, we refer to the zero-energy as

the real part of the energy being zero.

Since the only non-vanishing terms of the extended topological mode are

located in the A sites [as shown in Eq. 4.27 and Fig. 4.3(e)], we would like

to get lasing to come from these sites. Therefore we consider gain on site A,

EA = ig, and lossy rings on the B and C sites, (EB = EC = −ig), as shown

in Fig. 4.5(a). We observe in Figs. 4.5(b) and 4.5(c) that as long as the gain

and loss strength is low enough, the zero-energy mode is well isolated and

no bandgap closing occurs. Thus the topological protection remains for low

gain and loss g. The gap closing occurs when g/t1 = (t2/t1 − 1) (here g/t1 =

2) and corresponds to the transition point from unbroken PT -symmetric to

broken PT -symmetric phase in the PT -symmetric SSH lattice [34] [Chap. 1].

This topological transition of the zero-energy mode in the kagome lattice is

in correspondence with the topological transition of the zero-energy mode in

the SSH lattice since they have the same origin: the topological mode can

be derived from the topological mode in the SSH lattice. Figure 4.5(b) plots
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Figure 4.5: (a) Schematic of the non-Hermitian kagome lattice in the active
setting. g (−g) is the gain (loss) considered for the laser setting. (b),(c) Real
and imaginary parts of the spectrum of the kagome lattice in the rhombus
geometry against the linear gain g, respectively. (d) Spectrum of the non-
Hermitian active kagome lattice in the rhombus geometry for g/t1 = 1. (e) The
normalised field profile |ψn,m| of the zero-energy mode of the non-Hermitian
active kagome lattice in the rhombus geometry. We have Ns = 29 sites both
in the I lattice and the quasi-1D lattice in (b),(c) and Ns = 9 in (d),(e). The
coupling parameters are t1 = 0.02, t2 = 0.06 and h = h′ = h0, h

′′ = 0.

the spectrum in the complex plane and the normalised field profile |ψn,m| of

the zero-energy mode, numerically calculated with EA = ig, EB = EC = −ig

and g/t1 = 1. with h = h′ = h0 and h′′ = 0. This demonstrates that the

zero-energy mode is present and remains delocalised over the kagome bulk.

Besides, the zero-energy mode has high gain compared to the other modes

because of the gain on the A sites, i.e. where the zero-energy mode is non-

vanishing. This shows that, for g/t1 < (t2/t1 − 1), the zero-energy mode is

lasing and its delocalisation is not altered as well as its topological protection:

we have obtained a topological bulk lasing mode in the 2D kagome lattice.
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One should note that having gain only near the region where the topological

edge mode is localised should be enough for the topological bulk mode to lase.

Indeed, the gauge transformation relating the Hermitian and non-Hermitian

kagome lattice similar to Eq. 4.31 suggests that the mode is mainly sensitive

to the gain near the edge where the topological localised mode is present. A

deeper reason is that the overlap matrix element with gain also involves the

left eigenvectors which are even more localised to the edge [117]. This explains

why the topological bulk mode is still mainly sensitive to gain near the edge.

However, apart from lasing, it is also important to note the importance of

the gain and loss distribution in terms of the bulk excitation and their decay

in time. Indeed, as we have seen in Sect. 4.2, the non-Hermitian skin effect is

present due to the imaginary gauge field. The skin effect will thus be dominant

in the dynamics if the loss distribution is not appropriately chosen, i.e. if the

bulk modes do not vanish over time.

4.4.2 Temporal dynamics of the zero-energy mode

Time-domain modelling of the mode dynamics is essential for determining

whether the lasing mode is stable. In the frequency analysis, we have shown it

is possible to have an active non-Hermitian kagome lattice with an extended

topological mode. However, the previous analysis provides only a simple phys-

ical model of the active non-Hermitian kagome lattice. Indeed, it has been

shown that temporal instabilities in the laser array may prevent phase-locking

and reduce the laser quality or even dominate and suppress the topological

signature of the corresponding lasing mode [39,42].

We consider the laser rate equation based on a two-level system for mod-

elling the gain in the active rings A [39,52,118] [see Chap. 1]. Optical pumping

is assumed to be small enough to leave the lossy ring resonators (rings B and

C, and auxiliary rings) in the linearised regime below their threshold point.

Linear losses are thus chosen, and the losses and imaginary gauge field are

considered to be carrier-independent. The normalised laser rate equation in

1A similar expression can be found for the kagome lattice in the rhombus geometry.
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the kagome lattice, with h = h′ = h0 and h′′ = 0, is then given by:

i
dan,m
dt

= i
1

τp
(1− iαH)Zn,man,m

+ t1e
−h0bn,m + t1e

−h0cn,m + t2e
h0bn,m−1 + t2e

h0cn−1,m,

(4.38)

i
dbn,m
dt

= i(−gB + iδB)bn,m

+ t1e
h0an,m + t1cn,m + t2e

−h0an,m−1 + t2cn−1,m+1,

(4.39)

i
dcn,m
dt

= i(−gC + iδC)cn,m

+ t1e
h0an,m + t1bn,m + t2e

−h0an+1,m + t2bn+1,m−1,

(4.40)

τs
dZn,m

dt
= pA − Zn,m − (1 + 2Zn,m)|an,m|2, (4.41)

where an,m, bn,m and cn,m are the normalised modal amplitudes on the site

A, B and C and in the (n,m)-th unit cell, respectively. n and m stand for

the unit-cell index in the SSH lattice and quasi-1D lattice, respectively. Zn,m

is the normalised excess carrier density in the active ring A, τp and τs are

the photon and spontaneous carrier lifetimes, respectively, αH the linewidth

enhancement factor [54], pA the normalised excess pump current in the ring

A, and gB and gC the linear loss in the ring B and C, respectively. δB and

δC are added to the equations in order to take into account possible (global)

geometrical perturbation of the ring resonators with respect to the A rings.

Here we show that a broad-area and phase-locked laser can be realised.

The parameters are chosen similar to Ref. [39, 52, 118] and are typical for

semiconductor lasers. The coupled-mode equations are integrated using ran-

dom noise of field amplitudes between [0, 0.01] and equilibrium carrier density

Zn,m = pA as the initial condition. The random noise as initial condition is

chosen to trigger non-linear behaviour and see whether or not the mode is sta-

ble. Figure 4.6(a) plots the time evolution of the instantaneous spectrum of

the matrix Hamiltonian given by Eqs. 4.38-4.40 (recall Eq. 4.16), namely using

the carrier density Zm,n(t) at given time t. This shows that after a transient

time, the system reaches a single laser mode regime. The laser mode is the

topological zero-energy mode with Im(E) = 0. Figures 4.6(b) and 4.6(c) show

that after a transient regime, only the zero-energy mode survives and reaches
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Figure 4.6: Time evolution of (a) the instantaneous spectrum of the kagome
lattice in rhombus geometry (b) the amplitudes of all the A sites, and (c)
the phase differences between the adjacent A sites when there is no disorder.
Similarly for (d), (e) and (f) when asymmetric disorders are introduced. The
parameters used are: τp = 40ps, αH = 3, τs = 80ns, pA = 0.02, gBτp =
gCτp = 0.05, δBτp = δCτp = 0.01, t1τp = 0.02, t2τp = 0.06.

a steady state. The amplitudes of all the A sites are equally distributed over

the bulk and have a fixed π-phase difference. The laser system obtained is,

therefore, broad-area and phase-locked.

The laser mode is topologically protected in addition to being broad-area

and phase-locked. Figure 4.6(d) shows the spectrum of the system when

a spatially varying and random asymmetric perturbation on the couplings,

δt1± ∈ [−0.12t1, 0.12t1], is added: t1e
h → (t1 + δt1+)e

h and t1e
−h → (t1 +

δt1−)e
−h. This asymmetric perturbation accounts for perturbation in the cou-

pling strength as well as for the imaginary gauge field. One can see that the

zero-energy mode is still present. However, Figures 4.6(e) and 4.6(f) show a

slightly different behaviour in the time series of the field amplitudes and the

phase differences between the A rings. They do not reach the same values in
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Figure 4.7: Stability diagrams of the topological extended mode. The colour
corresponds to the probability of the system being in the stable regime over
200 realisations in the random initial conditions of the mode amplitudes. The
fixed parameters are the same as in Fig. 4.6.

amplitudes and phase differences. The amplitudes are not equally distributed

but have slightly different offsets because of the different couplings between

two adjacent sites: a single choice for the imaginary gauge field h and h′ can-

not satisfy the |r0,i| = 1 conditions between each sites. Similarly, the phase

differences are no longer equal to π and are seen to be due to the non-linear

Henry factor αH. Nevertheless, here, the addition of perturbation in the cou-

pling strengths does not give rise to unstable behaviour in the amplitudes and

phases of the topological extended mode.

With the chosen parameters, the zero-energy mode shown in Fig. 4.6 does

not suffer from non-linear instabilities. Indeed, the system reaches a stationary

state which does not evolve into random oscillation in their amplitudes and

phase differences. Even though the spatial stability of the topological mode

may be guaranteed by its topological invariant, it is worth looking at its tem-

poral stability in the parameter space to delimit the region where temporal

instabilities arise due to the non-linear terms. In the following, we will refer to
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the stable regime, the regime of single-mode lasing in the topological extended

mode. Therefore, we say the system to be unstable (or stable) if oscillations

are present (or not) in their amplitudes or phase differences.

Stable phase-locking of the non-Hermitian gauge laser array is possible in

a relatively large region of the parameter space. Figure 4.7 shows the stability

diagram of the topological extended lasing mode for different slices of the

parameter space. The numerical results show the stability of the topological

extended mode requires a minimum coupling strength [Figs. 4.7(a) and 4.7(b)].

One reason is that the PT -symmetric phase of the SSH lattice is broken when

the couplings are too small compared to the gain and loss [34]: the system

is no longer in the single-mode lasing regime. The second reason is that the

non-reciprocal dissipative couplings need to be high enough in order to reach

a (soft) synchronisation [119]. On the other hand, instabilities arise when the

detunings δb and δc are too high [Fig. 4.7(c)]. The major critical case is with

positive detunings [Figs. 4.7(c) and 4.7(d)]. However, stability is retrieved if

the dissipation is large enough to compensate the detunings in the rings B and

C.

Extended lasing modes present an important advantage in getting a better

slope efficiency, compared to the localised lasing modes. Figure 4.8(a) plots

the total intensity, I =
∑

m,n |ψn,m|2 against the pump amplitudes pA for the

localised and extended lasing modes where the colour plot corresponds to the

system being in the stable or unstable regime. The numerical results show

that the localised mode has lower slope efficiency compared to the extended

mode. The remarkable difference is the scaling of the slope efficiency with

the size of the system for the delocalised mode while it remains constant for

the localised mode, as shown in the inset of Fig. 4.8(a). This is because of

the extended nature of the mode whose contribution to the lasing intensity

increases with the size of the system. Figure 4.8(b) shows the slope efficiency

is robust against asymmetric disorder in the couplings, for both the localised

and extended modes, due to the topological nature of the lasing modes. The

localised mode has a relatively constant slope efficiency with increasing disor-

der strength. While the extended mode gives varying slope efficiency because

of the varying field distribution of the extended mode in the bulk as explained
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(a) (b)

(c) (d)

Figure 4.8: (a) Total intensity against pump amplitudes pA for the localised
and delocalised topological modes with Ns = 9. The triangles (circles) corre-
spond to the topological edge (bulk) laser. The colours indicate if the system
is in the unstable (blue) or stable (red) regime. (b) Slope efficiency against
the size Ns of the system for the topological edge (bulk) laser in orange tri-
angle points (green circle). (c) Slope efficiency against disorder strength δt1±
(for Ns = 9). The orange triangle (green circle) points correspond to the
topological edge (bulk) laser. For each disorder strength, the slope efficiency
is averaged over 800 random realisations of the disorder. (d) Total intensity
against pump amplitudes pA for the topological bulk modes with Ns = 9
and with a background loss γ0τp = 0.01. The parameters are the same as in
Fig. 4.6. Besides, panel (a)-(c) has no background loss γ0τp = 0.

before, its slope efficiency remains higher compared to the localised mode.

However, for high values of disorder strength in the couplings, the slope ef-

ficiency of the extended mode starts to decrease. This is explained because

the delocalisation of the topological mode, originating from non-reciprocal

couplings, is highly perturbed by the asymmetric perturbation δt1± in the

couplings: the topological mode may not be completely delocalised anymore.

It is worth noting that any background losses have been neglected, re-

sulting in threshold-less lasers [Fig. 4.8(a)]. However, the physical elements

that produce the non-reciprocal couplings might inevitably change the laser

threshold. Indeed, as we will see in Sect. 4.6, the non-reciprocal couplings can

be implemented by introducing additional gain and/or loss in the system that
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Figure 4.9: Stability diagrams of the topological (a),(c) localised and (b),(d)
extended modes. The colour corresponds to the probability of the system being
in the stable regime over 200 realisations in the random initial conditions of
the mode amplitudes. The fixed parameters are the same as in Fig. 4.6 except
here pA = 0.01.

were previously hidden in the tight-binding model. By considering only ad-

ditional losses in a system made of ring resonator array, the imaginary gauge

field strength h = h0 required for complete delocalisation can be related to an

overall background loss γ0 via Eq. 4.93: h0 = αη/2. Using Eq. 4.91, we have

γ0 = 2h0c/ηng, where c is the speed of light, ng the group refractive index

of the ring resonator, and η the length of the additional leg of the auxiliary

rings. We set γ0τp = 0.01 by controlling the length’s leg η. Figure 4.8(d) then

shows the total intensity I against the pump amplitude pA from which the

system has now a laser threshold at pA = 0.01. Although the laser threshold

value of the system changes, the slope efficiency is the same as in the absence

of background loss (γ0 = 0). Nevertheless, we can see [Fig. 4.8(d)] that the

stability has now been reduced and the stability region might be reduced in

the parameter space due to the additional background loss.

The imaginary gauge field helps to stabilise the system in the zero-energy
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lasing mode. The extended nature of the topological mode over the bulk allows

the zero-energy mode to carry all the gain of the system while suppressing all

the other bulk modes. The colour plot in Fig. 4.8(a) indicates that the lo-

calised mode reaches an unstable regime for relatively low values of pump

intensity whereas the extended mode is unstable for higher pump intensities.

Nevertheless, the topological bulk mode survives up to a critical pump inten-

sity before becoming unstable. From the linear gain gAτp = pA equivalent,

this critical pump value is given by pA/t1 ≈ (t2/t1 − 1) (here pA = 0.04)

and corresponds to the bandgap closing in Fig. 4.5(b) and, thus, to a possible

topological phase transition. This is another evidence where temporal stabil-

ity is important to take into account: the localised zero-energy mode does not

survive to high pump intensity even though it is guaranteed to be stable spa-

tially from its topological properties. The stability diagrams for the localised

mode are shown in Figs. 4.9(a)-4.9(c). Compared to the extended mode in

Figs. 4.9(b)-4.9(d), these diagrams demonstrate that the extended mode have,

indeed, larger regions of stability in the parameter space than the localised

mode.

4.5 Extended topological mode in Lieb lattice and 2D SSH

lattice

This section provides additional examples of the delocalisation of the boundary

modes over a d-dimensional bulk: the Lieb lattice and the 2D SSH lattice.

4.5.1 Lieb lattice

We focus, here, on the anisotropic Lieb lattice [120] which is described by three

sites by unit cell and intra-cell couplings (t1, t2) and inter-cell couplings (t3,

t4) as shown in Fig. 4.10(a).

Specifically, we will delocalise the zero-energy corner mode present in the

truncated Lieb lattice [see Fig. 4.10(b) for a sketch of the finite-size lattice].

Figure 4.10(b) plots the normalised field distribution |ψn,m| of the zero-energy

corner mode obtained for t1 < t2 and t3 < t4.

Applying the recipe given in above to the (Hermitian) truncated Lieb lat-
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Figure 4.10: (a) Schematic of a non-Hermitian (and anisotropic) Lieb lattice
drawn in the quasi-1D lattice formalism. The solid and dotted lines represent
the intra-cell couplings t1 and t2, respectively. The short and long dashed lines
denote the inter-cell couplings t3 and t4, respectively. e

h1 , eh2 correspond to
the imaginary gauge field. The normalised field profile |ψn,m| of the zero-
energy mode of the truncated Lieb lattice is plotted in (b) for the Hermitian
case, and in (c) for the non-Hermitian case. Here, there are Ns = 9 sites
both in the I lattice and the quasi-1D lattice. t1 = 0.02, t2 = 0.06, t3 = 0.03
and t4 = 0.045. The Hermitian setting corresponds to the case h1 = h2 = 0,
whereas the non-Hermitian setting is for h1 = h0, h2 = h′0.

tice, we have HI = HSSH, HJ = diag(EB, . . . , EB). The Hermitian coupling

matrices are given by:

H̃†I←J = H†I←J =


t3 0 . . . . . . . . . . . .

. . . 0 t3 0 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 0 t3

 (4.42)

and

H̃†J→I = H†J→I =


t4 0 . . . . . . . . . . . .

. . . 0 t4 0 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 0 t4

 . (4.43)
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The zero-energy corner mode is analytically written as:

ψ
(0)
I,m = rm0,2ψ

(0)
I,0 (4.44)

with [
ψ
(0)
I,0

]
n
= rn0,1a0,0 (4.45)

being the n-th component of the zero-energy mode ψ
(0)
I,0 of the SSH lattice, and

an,m is the modal amplitude on the A site at the n-th unit cell in the m-th

lattice I. The interference conditions [Eq. 4.24] give:

r0,1 = − t1
t2

(4.46)

and

r0,2 = − t3
t4
. (4.47)

We use an imaginary gauge field in order to delocalise the corner mode.

Figure 4.10(a) sketches the gauge potential considered where eh1 and eh2 rep-

resent the phase factor in the couplings between the sites A and C, A and B,

respectively. The coupling matrices are then modified, and we have:

H̃†I←J =


t3e

h2 0 . . . . . . . . . . . .

. . . 0 t3e
h2 0 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 0 t3e
h2

 (4.48)

and

H̃†J→I =


t4e
−h2 0 . . . . . . . . . . . .

. . . 0 t4e
−h2 0 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 0 t4e
−h2

 . (4.49)

The interference conditions now yield:

r0,1 = − t1
t2
e2h1 (4.50)
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Figure 4.11: (a) Schematic of a non-Hermitian 2D SSH lattice drawn in the
quasi-1D lattice formalism. The solid and dashed lines denote the intra-cell
(t1) and inter-cell couplings (t2), respectively. e

h1 , eh2 , eh3 and eh4 correspond
to the imaginary gauge field. The normalised field profile |ψn,m| of the zero-
energy mode of the truncated 2D SSH lattice is plotted in (b) for the Hermitian
case, and in (c) for the non-Hermitian case. Here, there are Ns = 9 sites both
in the I lattice and the quasi-1D lattice. t1 = 0.02, t2 = 0.06. The Hermitian
setting corresponds to the case h1 = h2 = h3 = h4 = 0, whereas the non-
Hermitian setting is for h1 = h2 = h3 = h4 = h0.

and

r0,2 = − t3
t4
e2h2 . (4.51)

Delocalisation over the ei-direction is achieved by requiring |r0,i| = 1,

namely choosing:

h1 = h0 := −1

2
ln

(
t1
t2

)
(4.52)

and

h2 = h′0 := −1

2
ln

(
t3
t4

)
. (4.53)

Figure 4.10(c) shows that the zero-energy mode is indeed extended over the

whole bulk of the Lieb lattice.

4.5.2 2D SSH lattice

Here, we study the 2D SSH lattice [121] which is characterised by four sites

by unit cell, and intra-cell (t1) and inter-cell (t2) couplings, as shown in
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Fig. 4.11(a). The method follows similarly to the two examples already pro-

vided previously.

We will delocalise the zero-energy mode present in the 2D SSH lattice [see

Fig. 4.11(b) for the shape of the lattice]. Figure 4.11(b) plots the normalised

field distribution |ψn,m| of the zero-energy corner mode which is exponentially

localised on the bottom-left corner for t1 < t2.

For the (Hermitian) truncated 2D SSH lattice, we have HI = HSSH,

HJ = HSSH. The intra- and inter-stacked lattice couplings HI←J and HJ→I ,

respectively, are given via:

H̃†I←J = H†I←J = diag(t1, t1, . . . , t1, t1) (4.54)

and

H̃†J→I = H†J→I = diag(t2, t2, . . . , t2, t2). (4.55)

The zero-energy corner can be written as:

ψ
(0)
I,m = rm0,2ψ

(0)
I,0 (4.56)

with [
ψ
(0)
I,0

]
n
= rn0,1a0,0 (4.57)

being the n-th component of the zero-energy mode ψ
(0)
I,0 of the SSH lattice, and

an,m is the modal amplitude on the A site at the n-th unit cell in the m-th

lattice I. The interference conditions [Eq. 4.24] give:

r0,1 = − t1
t2

(4.58)

and

r0,2 = − t1
t2
. (4.59)

An imaginary gauge field is used to change the localisation property of the

corner mode. Figure 4.11(a) sketches the gauge potential considered where

eh1 , eh2 , eh3 and eh4 represent the phase factor in the couplings between the

sites A and D, A and B, B and C, and D and C, respectively. The values for

eh1 , eh2 , eh3 and eh4 are not independent of each other. For the spectrum to
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remain unchanged, one needs to satisfy:

h3 = h1 (4.60)

and

h4 = h2. (4.61)

With the imaginary gauge field, the coupling matrices are then modified. Par-

ticularly, we have:

H̃†I←J = diag(t1e
h2 , t1e

h4 , . . . , t1e
h2 , t1e

h4) (4.62)

and

H̃†J→I = diag(t2e
−h2 , t2e

−h4 , . . . , t2e
−h2 , t2e

−h4). (4.63)

The interference conditions read:

r0,1 = − t1
t2
e2h1 (4.64)

and

r0,2 = − t1
t2
e2h2 . (4.65)

Delocalisation over the ei-direction is achieved by requiring |r0,i| = 1,

namely choosing:

h1 = h2 = h0 := −1

2
ln

(
t1
t2

)
. (4.66)

Figure 4.11(c) shows that the zero-energy mode is indeed extended over the

whole bulk of the 2D SSH lattice.

4.6 Physical realisation of extended modes in a ring res-

onator array

A physical realisation of such a non-Hermitian system for the extended modes

is possible by considering an array of coupled active ring resonators [39, 122].

Then, the non-Hermitian term can be modelled by an auxiliary ring, con-

necting the ring resonators, and with different loss constants on the upper
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Figure 4.12: (a) Schematic of the tight-binding model (TB) with non-
reciprocal couplings. ai, i = 1, 2, are the amplitudes on the corresponding
site, and h is the non-Hermitian strength. The “in” and “out” arrays represent
the input and output coupling of the system, respectively. (b) Schematic of
the transfer matrix method (TMM) with main rings coupled via an interme-
diate ring. The main rings have absorption constant α and the intermediate
ring has different absorption constants on the upper (α2) and lower (α1) half
of its perimeter. ai, bi, ci and di are the modal amplitudes in their corre-
sponding section of the waveguides. (c) Absolute value of transmission (in
dB) 10 ln(|Tout|2)/ ln(10). TB stand for the transmission calculated from the
TB model (Eq. 4.70), TMM and TMM1 for the exact (Eq. 4.72) and approx-
imated (Eq. 4.94) expression in the TMM method, respectively. The parame-
ters used are similar to Ref. [8]. The tight-binding parameters are κex = 3GHz,
κin = 0.2GHz, J = 2GHz. We have consider silicon-on-insulator (SOI) ring
resonators with effective (group) refractive index neff = 2.47 (ng = 4.7). The
ring resonator length is L = 80.3 µm so that the resonant wavelength is at
λ0 = 1550 nm. In the auxiliary ring, the additional leg length is η = 4λ0/neff,
the absorption constant is given by α0 = α/2.

and lower half of its perimeter as illustrated in Fig. 4.12(b). In this section,

we explore the equivalence between the tight-binding (TB) formalism used to

derive the results so far, and the transfer matrix method (TMM) commonly

used to describe the ring resonator arrays [50, 51]. This extends the work re-

alised in Ref. [8] which was used for introducing phase shifts in the couplings.

Moreover, the TMM analysis provides additional insight into the geometrical

parameters for an experimental realisation.

To study the equivalence between the two formalisms, we will focus on

the transmission spectra after injection of a source term. Besides, instead of

looking at the whole lattice, we will consider the building block of the system:
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it is made of only two sites that are coupled each other via an asymmetric

coupling, as illustrated in Fig. 4.12(a) for the TB model. The equivalent

building block for the ring resonator system is made of two main rings and an

additional auxiliary ring resonator [Fig. 4.12(b)].

The tight-binding formalism [Fig. 4.12(a)] is given by:

i
da1
dt

= i(−κin − κex)a1 + Jeha2 −
√
2κexEin, (4.67)

i
da2
dt

= i(−κin − κex)a2 + Je−ha1 (4.68)

where κin is the internal loss, J the coupling strength, h the gauge field. Ein is

the source term that is coupled with the system at the a1 site with an external

coupling strength κex. The transmission at the a2 site is defined as:

Tout,TB :=

√
2κexa2
Ein

. (4.69)

This yield:

Tout,TB =
2iκexJe

−h

J2 + (iω − κin − κex)2
. (4.70)

On the other hand, the ring resonator system is composed of two main

rings of perimeter L and an auxiliary ring of perimeter L + 2η, where 2η is

the total length of the additional legs compared to the main circular rings.

The absorption constant of the main rings is α, and the auxiliary is considered

to have different internal losses on the upper (α2) and lower (α1) half of its

perimeter. The relation between the input b0 and the output c3 is given, in

the transfer matrix formalism, by:

 c3

d3

 =M

 b0

a0

 (4.71)

from which we set a0 = 0 and d3 = 0, and the transmission is defined as:

Tout,TMM :=
c3
b0
. (4.72)
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The transfer matrix M reads:

M =M1Q1(M2Q2M2)Q1M1. (4.73)

The matrices Mi, i = 1, 2, are the transfer matrices of the waveguided modes

between the external waveguide to the main rings, or between the main rings

and the auxiliary ring, respectively. For example, we have for M1: c1

d1

 =M1

 b0

a0

 ,

 c3

d3

 =M1

 b2

a2

 (4.74)

The matrices Qi, i = 1, 2, are the transfer matrices of the waveguided modes

inside the main rings or the auxiliary, respectively. For example, we have for

Q1:  b1

a1

 = Q1

 c1

d1

 ,

 b2

a2

 = Q1

 c2

d2

 (4.75)

The transfer matrices are then written as:

Mi =
1

ti

 −r2i + t2i ri

−ri 1

 (4.76)

with ti an ri being the transmission and reflection coefficient between the

waveguides, and

Qi =

 qi,l 0

0 qi,r

 (4.77)

where

q1,l = ei(β+iα)L
2 , (4.78)

q1,r = e−i(β+iα)L
2 , (4.79)

q2,l = ei(β+iα1)(L
2
+η), (4.80)

q2,r = e−i(β+iα2)(L
2
+η). (4.81)

β = 2πn/λ is the propagation constant, where n is the refractive index of the

ring resonators and λ is the considered wavelength.
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Assuming the coupling loss is negligible and that the junctions are highly

reflective, we set:

ti = iϵi, (4.82)

ri =
√
1− ϵ2i (4.83)

where ϵi ≪ 1, i = 1, 2. Besides, we assume :

βL≪ 1 (4.84)

since we are interested in the regime close to the resonant frequency of the main

rings, i.e. ω ≪ FSR with ω the detuning frequency away from the resonant

frequency ω0 and FSR = 2πc/(ngL) the free spectral range of the cavity mode

and ng the group refractive index. Because of the low propagation loss over

the scale of the system, we take, for i = 1, 2:

αL≪ 1, (4.85)

αiL≪ 1. (4.86)

By keeping only the terms up to the second order in ϵ2i , βL, αL, αiL,

i = 1, 2, we have for

α1,2 = α± α0, (4.87)

the transmission in the TMM formalism that reads:

Tout,TMM ≃ − 2κexJe
−h

2(iω − κin − κex)J cos(βη) + i[((iω − κin − κex)2 + J2) sin(βη)]
(4.88)

where the normalised quantity are:

ϵ21 = 4π
κex
FSR

, (4.89)

ϵ22 = 4π
J

FSR
, (4.90)

αL = 2π
κin
FSR

, (4.91)

βL = 2π
ω

FSR
, (4.92)



Chap. 4. Topological bulk lasing modes... 83

and where the imaginary gauge field h is given by:

h = −α0η =
α2 − α1

2
η. (4.93)

For general βη, i.e. for an arbitrary leg length in the auxiliary ring, and as

long as sin(βη) ̸= 0, the transmission is re-written as:

Tout,TMM ≃ − 2iκexJeffe
−h

J2
eff + (iωeff − κin − κex)2

(4.94)

with

Jeff := − J

sin(βη)
, (4.95)

ωeff := ω − J

tan(βη)
. (4.96)

Therefore, for TB to be equivalent to TMM, one needs to make the following

modification:

J → −Jeff, (4.97)

ω → ωeff. (4.98)

We can see in Fig. 4.12(c) that the transmission spectrum for the TB and

TMM formalism are indeed identical for the parameter given in the caption.

Moreover, it should be noted that the ring-resonators feature degener-

ates clockwise and counter-clockwise modes. Here, we have used the counter-

clockwise mode in the main rings for the purpose of the demonstration. Yet,

we can see that using the clockwise mode in the main rings, instead of the

counter-clockwise mode, leads to a different situation where the modes propa-

gating from left to right go through the α1-leg, instead of the α2-leg. Similarly

for the modes propagating from right to left that go through the α2-leg, in-

stead of the α1-leg. The main consequence is the modification of Eq. 4.93

which takes a minus sign. Therefore, the defining relation for the strength of

the imaginary gauge field can be reduced to:

h = |α0η| =
∣∣∣∣α2 − α1

2
η

∣∣∣∣ , (4.99)
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while the sign is determined based on which situation we would like to realise.

4.7 Summary

To summarise, we have shown a procedure to obtain topological modes ex-

tended over a d-dimensional bulk using an imaginary gauge field. In par-

ticular, we have demonstrated the existence of a topological extended mode

in the kagome lattice in the rhombus geometry. The topological extended

mode in the kagome lattice has been studied in the context of a lasing sys-

tem where the laser rate equation is included to take into account non-linear

effects. By investigating its temporal stability, we proved that stable topo-

logical broad-area phase-locked laser operation is possible in a large region in

the parameter space. Furthermore, it has been shown that the topological

extended mode presents clear advantages over the topological localised mode.

The extended nature of the former topological mode over the bulk enhances

its temporal stability, and yields higher slope efficiency that scales with the

size of the system. In terms of footprint, a higher-dimensional extended mode

is also more advantageous compared to their lower-dimensional one since, at

equivalent slope efficiency, for example, the system occupies a smaller region

in real space when increasing the dimensionality of the system. This can lead

to applications where transport of high energy density is possible. A physical

system made of ring resonators has been studied for the purpose of a possible

realisation of the topological bulk lasing modes.



Chapter 5

Data-driven classification of

topological lasing modes

5.1 Introduction

In the past years, significant research has been made on PTI lasers. Yet, the

efforts have been mainly focused on the spatial stability of the topologically

protected edge mode, namely on the existence of such topological edge mode

from non-Hermitian PTIs [28–30], whereas the temporal stability has not been

the focus of interest so far [42]. Because of the non-linear nature of PTI lasers,

the temporal stability is an important characteristic to take into account. In-

deed spatial stability may be guaranteed in active non-Hermitian PTIs, i.e. no

back-scattering at corners, sharp edges, etc., but unstable behaviour may be

present in its time series. In this regard, the temporal dynamics of the topolog-

ically protected modes have been studied [39–41], mainly using linear stability

analysis. It is, however, a challenging task to apply the same approach to

more complex structures because of the high-dimensional phase and parame-

ter space as well as the lack of analytical solutions [42].

ML can be advantageous for the theoretical study of PTIs which requires

the simulations and study of several varying parameters. ML is a data-based

method and the most appropriate ML strategy depends on the dataset we

are working with. A supervised learning strategy relies on labelled datasets,

namely on input-output pairs datasets. This has been utilised, for example, to

draw topological phase diagrams [43], calculate topological invariants [44], or

85
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explore topological band structures [45]. On the other hand, an unsupervised

learning strategy consists of extracting information from the dataset from

which we do not have the labels. This is used for dimensional reductions by

keeping only the main features of the high dimensional structure of the dataset

or for clustering problems from which the data is divided into different types.

For instance, this has been successful in obtaining the phase transition in the

Ising model [123], or clustering Hamiltonians belonging to the same symmetry

classes [124].

In the unsupervised learning strategy, modal decompositions are common

and successful methods which reduce the analysis of a very high-dimensional

data to a set of relatively few modes. Principal component analysis (PCA) is

one of these modal decomposition methods from which it derives the eigen-

modes or the main features based on their variance in the data [125]. These

eigenmodes can then be utilised as a basis to represent the dataset [126]. This

reduced-order model method has been extended to identify distinct non-linear

regimes [127–133] by constructing a library composed of representatives of

these regimes: this is known as representation classification. Nevertheless,

the construction of the library is a manual process and requires an expert

knowledge of the complex system.

In this chapter, we propose to use representation classification in order to

study the spatio-temporal dynamics of non-linear topological systems. To re-

move the required expertise on the complex system, we present an algorithm

in order to construct an appropriate library of the different phases in an auto-

matic way. The results will be based on the phase diagram of the SSH lattice

with a domain wall and with saturable gain [40,41]. To this end, we will start

by presenting the results on the SSH lattice known from Ref. [40]. This will

be used as a reference for comparing the results using the proposed method.

Moreover, we will review the representation classification method based on

the construction of a library of bases. We will also see how to obtain such

bases from the dataset. Finally, we present our adaptive method to classify

the topological phase in the SSH system. Here, two approaches are suggested

to achieve this goal: a top-down approach for which the library has too many

phases and then merge the equivalent phases, and a bottom-up approach for
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t1 t2 t2t1 t1
A AB B B BA AA

t2 t1t2

(a)

(e) (f)

(d)(c)

(b)

Figure 5.1: (a) Schematic of the domain-wall-type SSH lattice considered. (b)
Phase diagram of the SSH lattice presented in (a) with saturable gain and
linear loss on the A and B sublattices. The spatio-temporal dynamics of the
non-oscillating and oscillating topological lasing modes are plotted in (c),(d)
and (e),(f), respectively. The coupling and gain parameters chosen are t1 = 1,
t2 = 0.7t1 and gB = 0.

which we complete the library on the fly in order to get the most accurate

classification.

5.2 Toy model: the SSH lattice with saturable gain

The system, that we will be looking at, is the domain-wall-type SSH lattice

with saturable gain [Fig. 5.1(a)]. The SSH lattice is composed of two sites per
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unit cell, A and B, and is characterised by intra- and inter-unit cell coupling

t1 and t2, respectively. The domain-wall divides the SSH lattice where the

intra-unit cell coupling is greater than the inter-unit cell coupling on one side,

and the reverse on the other side [see Chap. 1], as schematically shown with

the vertical dotted line in Fig. 5.1(a).

The dynamics ψ(t) = (. . . , an(t), bn(t), . . .) ≡ x(t) of the system is governed

by the coupled-mode equations:

i
dan
dt

= i

(
gA

1 + |an|2
− γA

)
an + t1bn + t2bn−1, (5.1)

i
dbn
dt

= i

(
gB

1 + |bn|2
− γB

)
bn + t1an + t2an+1, (5.2)

where an and bn are, respectively, the amplitudes of the A and B sites on

the n-th unit cell. gσ and γσ are the linear gain and linear loss at the site

σ = A,B.

Depending on the gain and coupling parameters, it has been shown in

Ref. [40,41] that the system belongs to different topological phases. In partic-

ular, we show in Fig. 5.1(b) the phase diagram that will serve as a reference for

our proposed method. This phase diagram has been obtained by fast Fourier

transform (FFT) by setting t1 = 1, t2 = 0.7t1, gB = 0, and by varying gA,

and γA = γB ≡ γAB in the parameter space. The system has two topological

phases in this configuration: it can be either in a non-oscillating phase or in an

oscillating phase. This can be seen by looking at the real and imaginary parts

of the space-time evolution of the topological modes in Figs. 5.1(c)-5.1(f). The

even (odd) site indices correspond to the A (B) sites, and the domain wall hap-

pens at the site index 10 (an A site). The non-oscillating phase is similar to

the zero-energy mode in the passive SSH lattice. We can see in Figs. 5.1(c)

and 5.1(d) that the mode is exponentially localised at the interface and has the

majority of its amplitudes on the A sublattice. On the other hand, the system

with saturable gain exhibits a new topological phase with no counterpart in

the Hermitian setting. The new topological mode is characterised by an edge

mode at the domain wall with an oscillating behaviour of the amplitudes on

the A and B sites, as shown in Figs. 5.1(e) and 5.1(f).

The dataset that we will utilise throughout this chapter is composed of
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about 1000 samples which are randomly generated from the same coupling

and gain parameters’ range as in Fig. 5.1(b). The coupled-mode equations

[Eqs. 5.1 and 5.2] are integrated using a fourth-order Runge-Kutta method

and with an(t = 0) = bn(t = 0) = 0.01, ∀n as initial condition. Although the

integration has been performed using a fixed time step dt/t1 = 0.01 until a final

time at t/t1 = 1400, only 2000 time snapshots are retrieved in order to keep

the time series at a reasonable size. The phase diagram is then intended to be

obtained solely from the time series of the states within the given parameter

space.

The method proposed in the next sections might seem unnecessary since

the phase diagram in Fig. 5.1(b) has been obtained solely by a FFT of the

times series in the parameter space. Nevertheless, this classification has been

possible thanks to the known results derived in Ref. [40], and thus from an

expert knowledge of this non-linear system. The aim is to have a tool to explore

the topological phases of topological insulator lasers in a more complicated

setting from which we have little knowledge.

5.3 Representation classification

In this section, we will briefly review the representation classification method

to identify distinct non-linear regimes [127, 131, 132]. The general idea of

representation classification relies on the assumption, and common situations,

that the dynamics of a high-dimensional system evolve on a low-dimensional

attractor [134]. The low-dimensional structure of the attractors allows for a

reduced-order model that accurately approximates the underlying behaviour

of the system: the dynamics of the complex system can thus be written using

a basis that spans the low-dimensional space. Representation classification

consists of constructing a library of appropriate basis, representative of the

dynamical regimes of interest, and only then employ a filtering strategy to

identify the regime corresponding to a given unknown time series. Here we

use the term “regime” to denote the different dynamical behaviours or the

different topological phases in the non-linear system.
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5.3.1 Library construction

As is common in complex dynamical systems, the dynamics of a system close

to an attractor lie in a low-dimensional space. This means that a given spatio-

temporal dynamics, denoted by the vector x(t), can be approximately written

in terms of a basis Φ = {ϕi}i=1,...,D spanning the low D-dimensional space,

namely:

x(t) =
D∑
i=1

ϕiβi(t) = Φβ(t) (5.3)

where βi are the weighted coefficients in the above linear combination of basis

states ϕi. x(t), at a given time t, is a vector column of size Ns with Ns the

size of the spatial grid, i.e. the number of sites in our SSH lattice for instance.

However, one of the main characteristics of non-linear systems is the dras-

tically different dynamical behaviours with respect to the system’s parameters.

Therefore the reduced-order modelling strategy using a single representative

basis, i.e. corresponding to a single regime, is bound to fail. Instead of finding

a global basis, we here construct a set of local bases, i.e. construct a library

composed of the bases of each non-linear regime of interest:

L = {Φ1, · · · ,ΦJ} = {ϕj,i}j=1,...,J , i=1,...,D, (5.4)

where J is the number of regimes, Φj are the bases of each of the dynamical

regime j, and ϕj,i are the corresponding basis states. This is the supervised

learning part of the method, from which the data-driven method attempts to

capture the dynamics of the system in the reduced-order model. Therefore,

the library L contains the representative basis of each regime of interest, and

corresponds to an overcomplete basis that approximates the dynamics of the

system across the given parameter space:

x(t) =

J∑
j=1

D∑
i=1

ϕj,iβj,i(t) =

J∑
j=1

Φjβj(t) (5.5)

where βj,i are the weighted coefficients in the above linear combination in the

overcomplete basis library. It is worth noting that the library modes ϕj,i are

not orthogonal to each other, but rather orthogonal in groups of modes for
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each different regimes j.

5.3.2 Basis generation

There are many ways to generate the low-order model of a given dynamical

behaviour. An important quantity is the so-called data matrix X built from

the data at hand. The data matrix is a (Ns ×Nt)-matrix that collects the Nt

data snapshots x(ti) into columns:

X = [x(t0), x(t1), . . . , x(tNt)] . (5.6)

Here, the vector x(ti) is chosen to be the complex-valued amplitudes of the

modes at the A and B sites. Other “observables”, such as the absolute values

or the total intensity per sublattices, can be used. This may give different

(better or worse) results and is left for a future study. The bases can then

be constructed using dimensional reduction techniques on the data matrix.

Here we will cover different methods in order to highlight their importance

and limitations for the classification scheme used.

Proper orthogonal decomposition (POD) [128] is a commonly used tool for

dimensionality reduction of physical systems. This decomposition relies on the

singular value decomposition (SVD) of the data matrix, given by:

X = UΣV † (5.7)

where U and V † are (Ns ×Ns) and (Ns ×Nt) unitary matrices, respectively.

Σ is a diagonal (N ×N)-matrix diag = (σ1, . . . , σN ), with N = min(Ns, Nt).

The diagonal entries of Σ are the so-called singular values and are ordered in

ascendant order σ1 > σ2 > . . . > σN ≥ 0. The SVD gives us two orthonormal

bases U and V † since the matrices U and V † are unitary matrices. The columns

of U are ordered according to the variance σi they capture in the data matrix

and are called the singular vectors: these are the POD modes that are used in

the basis Φ. Moreover, the POD modes are complex because of the complex

data X.

For a low-dimensional attractor, the POD basis can be safely truncated
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(d)

(f)

(g)

(e)

(c)

(b)(a)

(h)

Figure 5.2: Singular values of the (a) non-oscillating and (b) oscillating
regimes. The red dots correspond to the singular values cumulating 99% of
the total variance of the data. Real and imaginary parts of the field profile
of: (c),(d) the first POD mode for the non-oscillating regime (j = 1), and of
(e),(f) the first and (g),(h) the second POD modes for the oscillating regime
(j = 2). The POD bases have been generated from the time series starting at
the 1800-th time step.

at a cut-off value r while retaining the main information of the data matrix.



Chap. 5. Data-driven classification... 93

Explicitly, the SVD reads:

Xim =
N∑

n=0

UinσnV
†
nm, (5.8)

and keeping only the r highest terms in the decomposition [Eq. 5.8], we have

the approximation:

Xim ≃
r∑

n=0

UinσnV
†
nm. (5.9)

This is re-written, in a matrix form, as:

X ≃ UrΣrV
†
r (5.10)

where Ur, Σr and V †r are the truncated matrix of U , Σ and V †, respectively.

Although the cut-off value r can be chosen based on different criteria [135],

r is typically chosen so that the POD modes retain a certain amount of the

variance (or energy) σX in the data, namely:

r∑
i=0

σi > σX . (5.11)

Figure 5.2 displays the POD method of the non-oscillating and oscillating

regimes in the domain-wall SSH lattice with saturable gain [Fig. 5.1]. The

truncation has been chosen such that σX = 99% of the total variance is re-

tained. We observe in Figs. 5.2(a) and 5.2(b) the normalised singular values,

and that a single POD mode is retained for the zero-mode-like, whereas three

POD modes are needed for the oscillating regime, as marked by the red dots.

The real and imaginary parts of the field profile of the corresponding first few

POD modes are plotted in Figs. 5.2(c) and 5.2(d) and Figs. 5.2(e)-5.2(h) for

the zero-mode-like non-oscillating and oscillating regimes, respectively. One

can see that the main spatial feature of the zero-mode is captured in the sin-

gle POD mode obtained after truncation, where the majority of its amplitudes

are on the A sublattice. On the other hand, the POD modes of the oscillat-

ing dynamical regime also capture part of the information with some finite

amplitudes on the A and B sublattices.

Importantly, in this decomposition [Eq. 5.8], SVD is implicitly doing a
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(e)

(c)

(a)

(f)

(d)

(b)

Figure 5.3: (a) Singular values of the oscillating regime in the DMD. The red
dots correspond to the singular values cumulating 99% of the total variance of
the data. (b) Plots of the logarithm of DMD values ln(λ) in the complex plane.
The size of the open circle is proportional to their corresponding singular
values. Real and imaginary parts of the field profile of: (e),(f) the first and
(g),(h) the second DMD modes, respectively, for the oscillating regime (j = 2).
The DMD basis has been generated from the time series starting at the 1800-
th time step.

space-time separation of the data matrix, where the POD modes U contain

the spatial information while V have the temporal information at each spatial

grid point. Therefore, the POD modes give a static basis and do not explicitly

model the temporal dynamics of the time series. This method will therefore

most likely fail to identify the correct dynamical regime in the classification

step.

Dynamical mode decomposition (DMD) [128,136,137] is an alternative to

the POD method for learning the dynamics of non-linear systems. DMD is an
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explicitly temporal decomposition that takes the sequences of snapshots into

account, and is able to derive the spatio-temporal patterns of the data matrix

X. The dynamics of the system are taken into account by considering a linear

matrix A that maps a data matrix X1, starting at some time steps (t1), to

the data matrix X2, starting at the next time step (t2). The matrix A is thus

defined as:

X2 = AX1, (5.12)

and the corresponding data matrices are given by:

X1 = [x(t1), x(t2), . . . , x(tNt−1)] (5.13)

and

X2 = [x(t2), x(t3), . . . , x(tNt)] . (5.14)

Interestingly, Equation 5.12 is similar to a linear stability analysis formulation

for discrete maps if we think of the stability matrix as the linear matrix A.

The DMD method thus consists of solving the following eigenvalues problem:

AΦ = ΦΛ (5.15)

where the columns of Φ are the DMD modes ϕi and the corresponding DMD

eigenvalues λi are the diagonal entry of Λ. The DMD modes ϕi give us the

spatial eigenmodes while their corresponding eigenvalues λi have their tem-

poral information. Using a change of units from data snapshots, observed at

every ∆t, to units in time, the eigenvalues are complex-valued scalars:

ln (λi)

∆t
= µi + iωi (5.16)

where µi gives the growth (decay) rate if µi > 0 (µi < 0) and ωi the oscillation

frequency of the DMD modes ϕi.

However, the size of the data matrix usually makes the eigendecomposition

not feasible. The goal, here, is therefore to approximate the eigenvalues and

eigenvectors of A, using only the data matrices X1 and X2. The idea is to
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start by the truncated SVD of X1 = UrΣrV
†
r in which Eq. 5.12 becomes:

X2 = AUrΣrV
†
r . (5.17)

Then the linear matrix A is reduced by considering its projection onto the

truncated POD subspace:

Ar := U †rAUr = U †rX2VrΣ
−1. (5.18)

The eigenvalue problem for Ar is solved with:

ArW =WΛ, (5.19)

from which we have the relation:

Φ = X2V Σ−1W. (5.20)

The key feature of the DMD method is that it decomposes the data into a

set of coupled spatio-temporal modes. The DMD resembles a mixture of the

POD in the spatial domain and the discrete Fourier transform (DFT) in the

time domain. Figure 5.3 shows the DMD results for the oscillating regime. We

can, indeed, see in Fig. 5.3(a) that the singular values are similar to that of

the POD. Besides, we observe in Figs. 5.3(c)-5.3(f) that the field profile of the

DMD modes closely resembles the POD modes in Fig. 5.2. The largest DMD

modes not only look similar to the POD modes, but they also contain the

oscillation frequencies from ωi, as in DFT. The DMD even goes beyond DFT

by giving an estimate of the growth (decay) rate in time via µi > 0 (µi < 0).

This can be seen by plotting the DMD modes, scaled by their contribution in

the decomposition σi, in the frequency plane of λi. We can see in Fig. 5.3(b)

that the dynamical regime has a single DMD mode with ωi = 0 akin to the

offset of the oscillation amplitudes, and two DMD modes with opposite ωi ̸= 0

corresponding to the oscillating behaviours. All the above three DMD modes

have vanishing growth or decay rate µi = 0.

Although the DMD gives the temporal behaviours of the non-linear system,
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(e)
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Figure 5.4: (a) Singular values of the oscillating regime in the aDMD. The red
dots correspond to the singular values cumulating 99% of the total variance
of the data. (b) Plots of the logarithm of aDMD values ln(λ) in the complex
plane. The size of the open circle is proportional to their corresponding singu-
lar values. Real and imaginary parts of the“field profile”of the (e),(f) first and
(g),(h) second aDMD modes, respectively, for the oscillating regime (j = 2).
Here by “Site n”, we mean the n-entry of the eigenvector. The aDMD basis
has been generated with Nw = 25 from the time series starting at the 1800-th
time step.

the temporal information is not fully incorporated into the DMD basis Φ since

only the DMD modes are used. Exploiting the time evolution in the dynamical

regime requires the use of DMD modes along with their eigenvalues. The

idea is therefore to incorporate the dynamic information by augmenting the

basis Φ [132]. This time-augmented DMD will be denoted by aDMD in the

remaining of this chapter. Using the defining relation of the eigenvalues λi

as similar to a time evolution operator, i.e. multiplying by λ is the same as

shifting by one time step, we have for a given DMD mode ϕi, its evolution
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given by λNw
i ϕi at Nw time step ahead in time. Therefore, the time-augmented

basis vector reads: 
ϕi

λiϕi
...

λNw
i ϕi

 . (5.21)

The basis decomposition for a single regime [Eq. 5.3] is then re-written:

x(ti : ti+Nw) = Φβ(ti : ti+Nw) (5.22)

where the notation (ti : ti+Nw) means we consider a time window from time

step ti to ti+Nw .

By considering a time window Nw, the time-augmentation of the DMD ba-

sis provides us with the dynamical information of the non-linear regime. Fig-

ure 5.4 shows the aDMD results for the same oscillating regime as in Fig. 5.3.

We can see that the singular values and aDMD eigenvalues plots [Figs. 5.4(a)

and 5.4(b)] are the same as in the DMD algorithm [Figs. 5.3(a) and 5.3(b)]

whereas the “field profile” of the aDMD modes [Figs. 5.4(c)-5.4(f)] carry some

temporal evolution information. In particular, we observe in Figs. 5.4(c) and

5.4(d) the static behaviours of the aDMD mode with ωi = 0. On the other

hand, we can see, in Figs. 5.4(e) and 5.4(f), one of the first aDMD modes

with ωi ̸= 0 featuring some oscillating behaviour in time. The size of the basis

mode is larger than the plain DMD, and can exhibit its time evolution. Nev-

ertheless, the graphs do not exactly plot the temporal evolution of the DMD

modes since the first Ns entry of the basis state is for the Ns sites; the next

Ns for again the Ns sites but at the next time step, etc.

A last improvement of the DMD method would be to circumvent the re-

striction of the maximum number of DMDmodes [130]. The maximum number

of DMD modes is indeed restricted by N = min(Ns, Nt), which may be too

few to capture the dynamics of some non-linear regimes. The work-around is

to augment the data matrix by stacking the data matrices with Nh version of
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(a) (b)

Figure 5.5: (a) Singular values of the oscillating regime in the hDMD. The
inset is a zoom-in on the plot. The red dots correspond to the singular values
cumulating 99% of the total variance of the data. (b) Plots of the logarithm
of hDMD values ln(λ) in the complex plane. The size of the open circle is
proportional to their corresponding singular values. The hDMD basis has
been generated with Nh = 19 from the time series starting at the 1800-th time
step.

itself but shifted one time step ahead in time:

X1,Hankel =


x(t1) x(t2) · · · x(tNt−Nh

)

x(t2) x(t3) · · · x(tNt−Nh+1)
...

...
...

...

x(tNh
) x(tNh+1) · · · x(tNt−1)

 (5.23)

and

X2,Hankel =


x(t2) x(t3) · · · x(tNt−Nh+1)

x(t3) x(t4) · · · x(tNt−Nh+2)
...

...
...

...

x(tNh+1) x(tNh+2) · · · x(tNt)

 . (5.24)

The subscript “Hankel”, in the shift-stacking-augmented data matrices, stems

for its inspiration from the Hankel matrix [138]. This data-augmented de-

composition, denoted by hDMD, proceeds similarly to the DMD method by

looking at the following eigenvalues problem:

X2,Hankel = AX1,Hankel. (5.25)

The hDMD modes are then usually taken to be the first Nh entries of the

eigenvector of data-augmented matrix A. Likewise, the time-augmentation of
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the hDMD basis proceeds as in the aDMD method. Nevertheless, here we will

not consider this method, i.e. Nh = 1, since the rank of the matrix is high

enough for the dynamics of interest in this chapter.

Figure 5.5 depicts the hDMD results for the oscillating regime for Nh =

19. We can see that the number of singular modes, hence the number of

hDMD modes, has indeed increased. The decomposition has also become more

accurate. This is seen by observing, for example, that the two hDMD modes,

contributing to the oscillating behaviour, have now almost equal contributions

in the plot of the singular values. We also observe that a fourth hDMD mode,

close to zero frequency ωi ≈ 0, is present but with a decay rate µi < 0.

Nevertheless, this hDMD mode has negligible contribution to the dynamics as

its variance σi is small compared to the other hDMD modes.

5.3.3 Classification strategy

We will use the terminology frequently employed in the literature and refer

to the Ns-vector column x(ti) as the state measured at snapshot ti. Sparse

sensing is often desirable since the measurement and the data collection can

be expensive for a complex system if the space grid is too fine, i.e. if Ns is

very large. The compressed measurement y(t) is derived from the full-state

measurement x(t) and the measurement matrix C:

y(t) = Cx(t), (5.26)

where C is a matrix of size (Np ×Ns) with Np the number of measurements.

Although the measurement matrix C can be represented by some advance and

complex mapping [139], here we focus on point-wise measurements, namely the

Cij entry in the matrix measurement corresponds to the i-th measurement at

the j-th spatial grid point. Therefore the compressed basis is given by:

Θ = CΦ (5.27)
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(a)

(d)(c)

(b)

Figure 5.6: Phase diagram obtained from the library composed of two regimes
(one non-oscillating and one oscillating), represented by the black dots, from
which the bases have been generated using different decomposition methods:
(a) POD, (b) DMD, (c) aDMD with Nw = 5, (d) aDMD with Nw = 25. The
grey and white areas are overlays of the referenced phase diagram obtained in
Fig. 5.1. The bases have been generated from the time series starting at the
1800-th time step.

where Φ is the basis obtained from the full-state data collection. The library

of bases for the J distinct dynamical regimes is similarly re-written as:

L = {Θ1, . . . ,ΘJ}. (5.28)

Nevertheless, the size of the current SSH lattice is, here, reasonable and allows

us to choose the matrix measurement as the identity matrix C = 1Ns . We will

thus use the full-state instead of sparse measurements, but retain the Θ and

y(t) notations to keep the general formalism.

The classification scheme used here has been proposed in Ref. [132], and

is based on a simple hierarchical strategy. The regime classification approach

is fundamentally a subspace identification problem, where each regime is rep-
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resented by a different subspace. Given the measurement y(ti) at time ti, the

correct regime j∗ is identified as the corresponding subspace in the library L

closest to the measurements in the L2-norm sense [132]:

j∗ = arg min
j=1,...,J

{
min
βj

∥y(ti)−Θjβj(ti)∥2
}

(5.29)

where the L2-norm ∥·∥2 of a vector v is given by:

∥v∥2 =
√∑

i

|vi|2. (5.30)

Therefore, the classification algorithm identifies the best matching between

the compressed linear combinations Θjβj and the measurement y(ti). In other

words, the classification strategy is to find the subspace that maximises the

projection of the measurement onto the regime subspace:

j∗ = arg max
j=1,...,J

∥Pjy(ti)∥2, (5.31)

where the projection operator Pj is given by:

Pj = ΘjΘ
+
j (5.32)

with Θ+
j being the pseudo-inverse of Θj . Compared to the single snapshot

classification scheme, the multiple snapshot classification scheme uses the time-

augmented bases and is written as:

j∗ = arg max
j=1,...,J

∥Pjy(ti : ti+Nw)∥2. (5.33)

Figure 5.6 displays the phase diagram obtained from the different decom-

position methods reviewed in the previous section. The colours in the plots

represent the identified regime j∗ [Eq. 5.31] of each sample depicted by the

dots in the parameter space. The grey and white areas are overlays of the

referenced phase diagram obtained in Fig. 5.1. We observe in Figs. 5.6(a) and

5.6(b) that the phase diagrams fail to correctly predict the distinct dynami-

cal regimes. This is expected since the POD or DMD modes do not contain

enough information about the temporal behaviours. Besides, the classification
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(a) (b)

Figure 5.7: Phase diagram obtained from the library composed of (a) three
regimes (two non-oscillating and one oscillating) and (b) four regimes (three
non-oscillating and one oscillating), represented by the black dots, from which
the bases have been generated using the aDMD with Nw = 25. The grey and
white areas are overlays of the referenced phase diagram obtained in Fig. 5.1.
The bases have been generated from the time series starting at the 1800-th
time step.

for these diagrams is based on a single snapshot. Thus, it is expected the

classification fails to capture the correct dynamics since a single snapshot only

relies on the spatial pattern of the regime. On the other hand, we can see in

Figs. 5.6(c) and 5.6(d) that the derived phase diagrams have better accuracy

when the bases are time-augmented, or equivalently when the classification

scheme uses several snapshots. By increasing the time window in the classifi-

cation, the derived phase diagram is even better as illustrated in Figs. 5.6(c)

and 5.6(d) for Nw = 5 and Nw = 25, respectively. The phase diagram will

get improved until the time window is large enough to capture the dynamic

behaviour.

Nevertheless, we can see that the phase diagrams, obtained from the

aDMD, still fail to correctly predict all the dynamical behaviours [Fig. 5.1].

We observe that many times series are not correctly identified. Yet, using

three bases in the library instead of two bases, or equivalent considering three

regimes from the given parameter space, Fig. 5.7(a) shows better results. Sim-

ilarly, four bases in the library [Fig. 5.7(b)] gives slightly better classifications.

Therefore, Figure 5.7 reveals that increasing the number of bases in the library

L might help to get closer to the desired phase diagram, though they belong

to a distinct regime index j∗.
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(a) (b)

Figure 5.8: (a) Block coherence µB against the time window Nw used for
generating the aDMD bases. (b) Subspace alignment matrix γij for the library
composed of four regimes used in Fig. 5.7(b). The bases have been generated
from the time series starting at the 1800-th time step.

5.3.4 Classification performance

The classification strategy used here relies on the assumption that each ba-

sis in the library L, i.e. each representative of the dynamical regimes, spans

sufficiently dissimilar subspaces. This means that the projection of the mea-

surement onto one subspace’s regime would need to be high enough for the

corresponding regime and low enough for another regime. Therefore the accu-

racy of the classification depends crucially on choosing the correct subspaces

and library samples.

To quantify this statement, we can look at how good is a given constructed

library for the classification purpose by means of the block coherence of the

library. The block coherence µB of a library is defined as:

µB := max
i,j=1,...,J

i ̸=j

1

ri
∥Θ†iΘj∥2 (5.34)

where the L2-norm ∥·∥2 of a matrix M corresponds to its largest singular

value:

∥M∥2 =
√
λmax(M †M) (5.35)

with λmax(Q) being the highest eigenvalues of the matrix Q. Intuitively, µB

gives the maximum correlation between the eigenvectors in regime i and j,

i.e. between the subspaces of different regimes. Hence a low µB is desirable for

better dissimilarity in the subspaces and thus a better classification using the

given library. Figure 5.8(a) shows the block coherence of a library composed



Chap. 5. Data-driven classification... 105

of two regimes [Fig. 5.6] against the time window used in the generated time-

augmented bases in aDMD. This is consistent with the derived phase diagram

shown in Figs. 5.6(b) and 5.6(c) from which the coherence among the regimes

is globally decreasing when increasing the time window in aDMD. This shows

and quantifies the advantage of using a larger time window for the generation

of the bases.

To get more insight into the subspaces of the different regimes, we can also

look at their subspace alignment [132]:

γij :=
∥PiPj∥2F

∥Pi∥F ∥Pj∥F
(5.36)

where the Frobenius norm ∥·∥F of a matrix M is given by:

∥M∥F =

√∑
i,j

|mij |2. (5.37)

γij indicates the fraction of information that is conserved after projecting the

regime j onto the subspace of the regime i. By definition, the γij matrix is

symmetric and the entries lie in [0, 1] thanks to the normalisation denominator.

Figure 5.8(b) plots the γij matrix for the library composed of four regimes, as

in Fig. 5.7(b). As expected from the known phase diagram, we can see that the

three different phases that are located in the non-oscillating region have high

projection values onto each other. This is consistent with the fact that they

all belong to the same non-oscillating regime and suggests the possibility to

construct an adaptive library to fully apprehend the dynamical phase diagram

in an automatic way, as we will see in the next section.

5.4 Automatic library construction

So far, the construction of the library L was a manual process from which we

already know the different dynamical regimes. This, however, requires an ex-

pertise of the complex system considered. The strategy, here, is to adaptively

construct the library based on the given data samples. Two approaches are

suggested to achieve this goal. A top-down approach is presented from which

we start with too many samples used for the construction of the library, and
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then reduce the library size by merging some of them. On the opposite, a

bottom-up approach is proposed where we start with only a few samples in

the library, and then add samples on the fly if the library is not good enough.

Based on some measures in the decision process, this automated construction

of the library thus removes the manual construction of the regimes.

5.4.1 Top-down approach

The underlying assumption of the classification scheme is based on the dissim-

ilarity between the subspace of different regimes. We thus propose to consider

regimes that are similar as equivalent regimes. This would, for instance, help

us to merge the three phases in the non-oscillating region in Fig. 5.7(b), and

consider them as a single regime. In other words, the regimes i and j are said

to be equivalent, denoted by i ∼ j, if the fraction of information retained after

the projection onto each other is high enough:

γij > γth, (5.38)

where γth ∈ [0, 1] is the hyper-parameter which decides the threshold value

for merging different regimes. Importantly, the relation Eq. 5.38 is numeri-

cally computed in such a way that the transitivity property of the relation is

satisfied, namely that if i ∼ j and j ∼ k then i ∼ k. The relation Eq. 5.38

is therefore an equivalence relation since the reflexive (i ∼ i) and symmetric

(i ∼ j ⇒ j ∼ i) property of the relation is automatically satisfied from the

definition of γij [Eq. 5.36].

One should that, compared to standard clustering algorithm which use

some metrics to cluster the samples based on some features, the clustering

algorithm proposed here simply build, effectively, a connectivity graph from

which the number of components of the obtained graph gives us the number of

clusters or phases. However, it would be interesting, as a future work, to build

upon the distance between regimes defined as γij to use in conjunction with

standard clustering algorithm such as k-means clustering, spectral clustering,

hierarchical clustering, etc [140].

We have seen in Sect. 5.3.3 that the phase diagram was not correctly de-
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(a)

(c) (f)

(e)(b)

(d)

Figure 5.9: (a) Subspace alignment matrix for the initial library composed
of J = 60 regimes. (b) Subspace alignment matrix from the same library as
in (a), grouped into equivalent regimes. (c) Subspace alignment matrix from
the reduced library after the equivalent regimes are merged with γth = 0.75
in (b). (d)-(f) Total intensity IA =

∑
n |an|2 (and IB =

∑
n |bn|2) on the

A (and B) sublattice in blue (and orange) for a representative of the first,
second and third regime, respectively. The black vertical dotted line indicates
the starting time from which the bases are generated. The aDMD bases have
been generated with Nw = 25 from the time series starting at the 1800-th time
step.

rived for two regimes, as well as with four regimes. Therefore, the general idea

of the top-down construction of the library is to start with a library made of

a high number of bases generated from the time series randomly chosen in the

given parameter space region, and then merge them into groups of equivalent

regimes. Figure 5.9 illustrates the top-down algorithm. Starting with a library
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(c)

(a)

(d)

(b)

Figure 5.10: (a) Phase diagram obtained using the top-down classification
strategy with an initial library composed of J = 60 regimes randomly cho-
sen and γth = 0.75. The grey and white areas are overlays of the referenced
phase diagram obtained in Fig. 5.1. (b)-(d) Total intensity IA =

∑
n |an|2

(and IB =
∑

n |bn|2) on the A (and B) sublattice in blue (and orange) for a
representative of the transient, non-oscillating and oscillating regime, respec-
tively. The black vertical dotted line indicates the starting time from which
the bases are generated. The aDMD bases have been generated with Nw = 25
from the time series starting at the 1800-th time step.

composed of J = 60 bases, the subspace alignment γij is computed [Fig. 5.9(a)]

and then grouped into equivalent regimes according to Eq. 5.38 [Fig. 5.9(b)].

Each representative of the regimes is then randomly selected within each group

[Fig. 5.9(c)]. We observe in Figs. 5.9(d)-5.9(f) the time series of the represen-

tative of each regime. These regimes are the oscillating and non-oscillating

regimes, as well as a third regime which may correspond to a transient regime.

The vertical dashed line in the time series represents the initial time used for

constructing the bases in the library. For convenience, we have plotted only

the total intensity on the A (IA =
∑

n |an|2) and B (IB =
∑

n |bn|2) sublattices

to represent the given regime. Nevertheless, the complex amplitudes at each

site are chosen as “observables”. We can see that the information measured is

not the same compared to the total intensity where, for instance, the relative

phase information between sites is lost.
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The top-down-based representation classification strategy is to classify the

times series according to a large library of bases, and only then merge the

equivalent identified regimes via the calculated alignment subspace γij and

the equivalence relation Eq. 5.38. Figure 5.10 shows the phase diagram ob-

tained from the top-down algorithm started with a library composed of J = 60

regimes randomly chosen, along with the representative of each phase. We ob-

serve in Fig. 5.10(a) that the derived phase diagram is able to distinguish the

non-oscillating [Fig. 5.10(c)] and oscillating regimes [Fig. 5.10(d)]. In addition,

a third regime corresponding to a transient regime [Fig. 5.10(b)] is found close

to the γAB = 0 or gA − γAB = 0 axis. This transient regime indicates that a

longer final time in the simulations might be needed to be considered either

in the oscillating or non-oscillating regimes.

However, we can see that the derived phase diagram is still failing in the

low γAB and low gA − γAB region, where some time series are interpreted as

oscillating instead of non-oscillating regime. This shows the limitation of this

method where the initially constructed library may lack some of the paths

that may connect similar bases. For example, regimes i and k might not be

similar enough to be considered as equivalent directly [Eq. 5.38] but are both

equivalent to the regime j, i.e. i ∼ j and j ∼ k, which is missing in the library.

The natural workaround would be to increase the initial library size and be

sure that the regimes in the library have no missing paths, as we will see in

the next section.

The hyper-parameter γth is an important quantity in the algorithm since

it dictates which regimes are equivalent or not. A low threshold γth will easily

merge regimes while a high γth will barely reduce the size of the library as

depicted in Fig. 5.11(a). The threshold is here arbitrarily chosen based on

Fig. 5.11, and based on the refinement of the desired library. For example, we

can see in Fig. 5.11(b) that the derived phase diagram with γth = 0.75 has three

different phases corresponding to the oscillating, non-oscillating and transient

phases. The distinct regimes are separately plotted in Fig. 5.11(c) for a better

visualisation of the regimes’ location. On the other hand, with the same

library as in Fig. 5.11(b), Figure 5.11(d) displays the obtained phase diagram

for a finer threshold value γth = 0.95. The plot shows that the algorithm
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(e)(d)

(b) (c)

(a)

Figure 5.11: (a) Library size against γth. (b),(c) Phase diagram derived using
the top-down classification strategy with γth = 0.75, and the location of the
regimes in the parameter space. Similarly for (d),(e) but with γth = 0.95. The
grey and white areas are overlays of the referenced phase diagram obtained in
Fig. 5.1. The initial library is composed of J = 60 regimes randomly chosen.
The aDMD bases have been generated with Nw = 25 from the time series
starting at the 1800-th time step.
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separates the parameter space into several regimes which can be grouped into

four main regimes, as displayed in Fig. 5.11(e). In addition to the oscillating,

the non-oscillating and the transient regimes that remain present, there is a

regime corresponding to the transition between the two topological phases.

Besides, this finer description allows us to see distinct sets of modes in the

oscillating parameter space region [top-right plot in Fig. 5.11(e)]. The analysis

of these distinct oscillating regimes found from the data-driven classification

is interesting and is left for a future study. Nevertheless, we observe again

that the initial library misclassify some of the non-oscillating time series most

likely because of some missing paths, as said previously.

5.4.2 Bottom-up approach

The dual approach, suggested here, is to consider fewer samples in the library.

The core idea of the bottom-up approach is then to add samples on the fly

during the classification of the samples if the library is not good enough. Here,

the library is considered to be good enough if the maximal projection of the

measurement onto the regimes’ subspace is high enough. In other words, we

can look at the worst relative reconstruction error of the library given by:

ϵ := max
j=1,...,J

∥Pjy(t)− y(t)∥2
∥y(t)∥2

, (5.39)

and say that the library is good enough if the worst relative reconstruction

error is low enough:

ϵ < ϵth, (5.40)

where ϵth is the hyper-parameter which decides the threshold quality of the

library.

Figure 5.12 illustrates the bottom-up methodology proposed. We start

with a single sample in the library, randomly chosen in the parameter space

region [Fig. 5.12(a)]. The library is then adaptively constructed according to

the relative reconstruction error ϵ [Fig. 5.12(b)]. Finally, with the large library

at hand, the top-down approach is used to reduce the library size by merging

equivalent regimes [Fig. 5.12(c)]. The representative of the regimes is plotted

in Figs. 5.12(d)-5.12(f) and corresponds to the non-oscillating, oscillating and
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(a)

(c) (f)

(e)(b)

(d)

Figure 5.12: (a) Total intensity IA =
∑

n |an|2 (and IB =
∑

n |bn|2) on the
A (and B) sublattice in blue (and orange) for a single regime in the library.
(b) Subspace alignment matrix from the adaptively constructed library with
the single initial regime in (a) and with ϵth = 0.01. (c) Subspace alignment
matrix from the reduced library after the equivalent regimes are merged with
γth = 0.75 in (b). (d)-(f) Total intensity on the A (and B) sublattice in blue
(and orange) for a representative of the first, second and third regime. The
black vertical dotted line in (a) and (d)-(f) indicates the starting time from
which the bases are generated. The aDMD bases have been generated with
Nw = 25 from the time series starting at the 1800-th time step.

transient regimes, respectively. The advantage of this bottom-up approach

is the full exploration of the parameter space region and the automatic con-

struction of a library based on its quality. This method does not suffer from

the randomly chosen samples used to construct the library, and the library

composition is not restricted to a narrow parameter space region. Using a

good enough library quality, the algorithm should therefore be able to sort the



Chap. 5. Data-driven classification... 113

(c)

(a)

(d)

(b)

Figure 5.13: (a) Phase diagram obtained using the bottom-up classification
strategy with a starting library composed of a single regime randomly chosen,
ϵth = 0.005 and γth = 0.75. The grey and white areas are overlays of the
referenced phase diagram obtained in Fig. 5.1. (b)-(d) Total intensity IA =∑

n |an|2 (and IB =
∑

n |bn|2) on the A (and B) sublattice in blue (and orange)
for a representative of the transient, non-oscillating and oscillating regime,
respectively. The black vertical dotted line indicates the starting time from
which the bases are generated. The aDMD bases have been generated with
Nw = 25 from the time series starting at the 1800-th time step.

missing paths issue in the top-down method.

The bottom-up-based representation classification scheme consists of clas-

sifying the time series according to a given library or adding this sample into

the library if the library is not good enough, and only then merging the dif-

ferent phases obtained into groups of equivalent regimes using the top-down

method. Figure 5.13 depicts the phase diagram derived from the bottom-up

classification algorithm with a starting library composed of a single regime.

Similarly to the top-down approach in Fig. 5.10(a), we observe three distinct

regimes corresponding to the non-oscillating, oscillating and transient regimes

[Figs. 5.10(b)-5.10(d)]. Nevertheless, the obtained phase diagram now cor-

rectly predicts the regimes. We do not have misclassifications of oscillating

and non-oscillating regimes which were due to missing paths in the library.

Likewise, the transient points are indications of longer simulations needed be-
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(e)(d)

(b) (c)

(a)

Figure 5.14: (a) Library size against ϵth. The inset is a zoom-in of the plot.
(b),(c) Phase diagram derived using the bottom-up classification strategy with
ϵth = 0.01 and γth = 0.95, and the location of the regimes obtained in the
parameter space. Similarly for (d),(e) but with ϵth = 0.005. The grey and
white areas are overlays of the referenced phase diagram obtained in Fig. 5.1.
The initial library is composed of a single regime randomly chosen. The aDMD
bases have been generated with Nw = 25 from the time series starting at the
1800-th time step.

cause of the long transient time.

Along with the γth hyper-parameter, the threshold hyper-parameter ϵth is

an important parameter since it tells us whether we want to add or not a given

sample into the library. We observe in Fig. 5.14 that a low threshold ϵth will
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add many samples to the library, whereas a high ϵth will not add samples to

the library at all. The threshold value ϵth is, again, arbitrarily chosen but with

a preference for a high-quality library, i.e. low ϵth, in order to avoid missing

paths. For example, we can see in Fig. 5.14(b) the phase diagram derived

using ϵth = 0.01 (and γth = 0.95), namely with a library that gives less than

1% of the reconstruction error of the measurement. Figure 5.14(c) displays the

four main regimes that seem to correspond to the oscillating, non-oscillating,

transition and transient regimes. Yet, there is some misidentification of the

two topological phases most likely because of the missing paths of the obtained

library. On the other hand, with a better library quality, here ϵth = 0.005, the

missing paths are retrieved and the derived phase diagram correctly predicts

the topological phases [Fig. 5.14(d)]. Figure 5.14(e) shows that the different

regimes obtained previously with a lower library quality are now better defined.

The non-oscillating and oscillating regimes are well located in their respective

parameter space region, and the transition points follow the transition bound-

ary between the two topological phases. In addition, the bottom-up-based

representation classification is predicting distinct oscillating modes [top-right

plot in Fig. 5.14(e)]. Even though the characterisation of these modes is left

for a future study, this is an example of new insights given by the data-driven

classification method.

5.5 Summary

In summary, we have proposed a data-driven approach in order to explore the

dynamics of the topological phases. As an example, we have considered the

domain-wall-type SSH lattice with saturable gain from which the results are

known. We have utilised the representation classification strategy, based on

the aDMD, in order to identify the different topological lasing phases in the

parameter space region. Moreover, we proposed an automatic library construc-

tion scheme in order to lift the manual labelling requirement. Both top-down

and bottom-up approaches have been suggested to merge similar phases in the

library or adaptively construct the library based on its quality, respectively.

Even though the bottom-up method is desired due to the missing paths issue,
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both methods give us the possibility to explore the parameter space without

any expert knowledge of the complex non-linear system. This method also

provides new insights into the dynamics of the topological lasing mode in the

parameter space by a careful examination of the derived phase diagrams. Via

reverse engineering, this can be used as a tool to find novel topological lasing

modes in more complicated settings. Given the rate equations of a lasing sys-

tem, such as the kagome lattice in the previous chapter, one would only need

to integrate the differential equations in the desired parameter space region

and then apply the bottom-up representation classification strategy based on

an optimal decomposition method and with a starting library composed of a

single chosen regime. Scanning over the hyper-parameters ϵth and γth might

help finding the optimal values needed for the correct classifications.



Conclusions and future directions

In this thesis, we have explored and studied several designs of topological

insulator lasers for improving existing laser devices.

We started, in Chap. 2, with a simple design to achieve topological edge

states in an all-dielectric kagome lattice compatible with the current semicon-

ductor technology. Facilitated by the obtained optical valley Hall effect, we

have demonstrated broadband suppressed reflection in the presence of sharp

corners and shown negligible vertical losses in a semiconductor-based device

at telecommunication wavelengths.

In Chap. 3, we proposed an all-dielectric topological laser cavity working

in the telecommunication wavelength region based on semiconductor cavities

formed by topologically distinct kagome photonic crystals. One of the main

advantages of this topological cavity, compared to standard cavities, is its ro-

bustness against fabrication defects or bendings. Interestingly, we have shown

the topological cavity made of kagome lattices features the coexistence of topo-

logical ring-resonator modes and trivial Fabry–Pérot resonator modes. The

simplicity of the proposed kagome-lattice-based device and its all-dielectric

nature provide a new route to develop integrated topological systems for ro-

bust light generation and transport.

From the interplay between non-Hermiticity and PTIs, we have been able

to design a topologically robust and temporally stable broad-area, phase-

locked laser in a kagome lattice in the rhombus geometry in Chap. 4. The

laser, made of a ring-resonator array, is shown to be robust against pertur-

bation thanks to the topological protection of the lasing modes, as well as

temporally stable owing to the imaginary gauge field. We believe that our

work will provide a new route for achieving robust, stable and high-power

117



118 Conclusions and future directions

lasers.

Finally, in Chap. 5, we have proposed a data-driven tool in order to further

explore new topological lasing modes. These topological lasing modes have no

counterpart in the linear-Hermitian setting and are described by different dy-

namics. The bottom-up representation classification strategy suggested has

been proven successful in finding the two topological lasing modes on the toy

model given by the SSH lattice with saturable gain.

Several future research directions can be built upon the results presented

in this thesis.

Indeed, for the topological cavity laser, the analysis can be carried out fur-

ther to achieve lasing of only one of the two counter-propagating topological

edge mode, from a uniform pumping configuration from above. The param-

eter space can be explored to find a regime where bifurcations happen and

spontaneous symmetry-breakings occur. One of the two counter-propagating

mode would then be favoured because of a better mode overlapping with the

gain. Lasing of a single topological edge mode might also be achieved when

only part of the system is pumped.

Concerning the topological bulk laser, the carrier dynamics can be intro-

duced for the lossy rings as well as for the auxiliary rings that modelled the

imaginary gauge field. In addition, the work realised on the topological bulk

lasing mode made of ring resonator array can be continued by simulated full-

wave simulations thus bridging the gap between the theoretical results and pos-

sible experimental implementations. The lattice and material configurations

are also not limited to those studied in this thesis. Furthermore, the scope of

this novel topologically protected mode is not limited to ring resonator arrays,

and metamaterials with smaller scales as well as electronic circuits equivalent

can be considered, for instance. Lastly, it might be interesting to consider

“topological bulk moving modes”, which are the equivalent of the delocalised

corner modes but for the topological moving modes.

On the other hand, the data-driven classification tool developed in Chap. 5

was only shown for demonstrative purposes, and can be used to study gen-

eral non-linear and non-Hermitian PTIs. For instance, the distinct oscillating
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modes obtained in the SSH lattice with saturable gain can be characterised.

Besides, one can go further in the lattice model by considering the laser rate

equation with the carrier dynamics instead of the saturable gain. The tool can

also be used for exploring the parameter space of the topological bulk lasing

mode obtained in the kagome lattice to get more refined phase diagrams, or to

study systems with the Kerr non-linear effect, etc. Furthermore, the decom-

position method and/or observables used can be tailored for a suitable need

with respect to the system’s pattern. The clustering algorithm proposed can

also be extended to use standard clustering methods such as k-means clus-

tering, spectral clustering, hierarchical clustering, etc. Complementary to the

data-driven classification approach, the interplay between the topologically

protected modes and the non-linear modes can be analysed via numerical

continuations of the fixed points [141]. Bifurcation behaviours can then be

uncovered as in Ref. [142].
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vation of unidirectional backscattering-immune topological electromag-
netic states,”Nature, vol. 461, no. 7265, pp. 772–775, 2009.

[7] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky,
F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet
topological insulators,”Nature, vol. 496, no. 7444, pp. 196–200, 2013.

[8] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor,“Imaging topo-
logical edge states in silicon photonics,” Nat. Photonics, vol. 7, no. 12,
pp. 1001–1005, 2013.

[9] S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi,
“Topologically robust transport of photons in a synthetic gauge field,”
Phys. Rev. Lett., vol. 113, no. 8, p. 087403, 2014.

[10] R. O. Umucalılar and I. Carusotto, “Artificial gauge field for photons in
coupled cavity arrays,” Phys. Rev. A, vol. 84, no. 4, p. 043804, 2011.

[11] L.-H. Wu and X. Hu, “Scheme for achieving a topological photonic crys-
tal by using dielectric material,” Phys. Rev. Lett., vol. 114, no. 22, p.
223901, 2015.

121



122 Bibliography

[12] S. Peng, N. J. Schilder, X. Ni, J. van de Groep, M. L. Brongersma,
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