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A B S T R A C T

Despite their widespread use in cell biology, fluorescence lifetime imaging microscopy (FLIM) data-sets are
challenging to analyse, because each spatial position can contain a superposition of multiple fluorescent
components. Here, we present a data analysis method employing all information in the available photon
budget, as well as being fast. The method, called uFLIM, determines spatial distributions and temporal
dynamics of multiple fluorescent components with no prior knowledge. It goes significantly beyond current
approaches which either assume the functional dependence of the dynamics, e.g. an exponential decay, or
require dynamics to be known, or calibrated. Its efficient non-negative matrix factorization algorithm allows
for real-time data processing. We validate in silico that uFLIM is capable to disentangle the spatial distribution
and spectral properties of five fluorescing probes, from only two excitation and detection channels and a
photon budget of 100 detected photons per pixel. By adapting the method to data exhibiting Förster resonant
energy transfer (FRET), we retrieve the spatial and transfer rate distribution of the bound species, without
constrains on donor and acceptor dynamics.
1. Introduction

Fluorescence microscopy is a widely used tool to study the distri-
bution of biomolecules in living cells and tissues, with high contrast,
specificity, and spatial resolution. The decay dynamics of the fluores-
cence intensity following pulsed excitation can reveal information on
the local environment of the emitting fluorophore. This concept is used
in fluorescence lifetime imaging microscopy (FLIM), where spatially-
resolved emission dynamics are recorded (Berezin and Achilefu, 2010).
Typically, the emission intensity is measured as a function of the
delay after an excitation pulse, but there are also frequency-domain
implementations (Raspe et al., 2016). Spatially-resolved fluorescence
dynamics have been used to sense local variation of temperature (Ok-
abe et al., 2012), pH (Orte et al., 2013; Schmitt et al., 2014), and
ion concentration (Agronskaia et al., 2004). FLIM can also be used
to distinguish multiple spectrally overlapping fluorophores via their
different decay dynamics (Niehörster et al., 2016).

Among the various processes which alter the lifetime of an emit-
ter, Förster resonant energy transfer (FRET) offers the possibility of
studying protein–protein interaction (Sun et al., 2011; Margineanu
et al., 2016). Here, two proteins of interest are tagged with different
fluorophores, called donor and acceptor. The emission spectrum of the
donor spectrally overlaps with the absorption spectrum of the acceptor,
and the excitation is spectrally overlapping with the absorption of the
donor. If the distance of the two fluorophores is small enough, typically
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in the nanometre range, significant non-radiative transfer of the exci-
tation occurs from the donor to the acceptor. Such energy transfer can
be detected by a quenching of the donor emission and a corresponding
enhancement of the acceptor emission. For high accuracy and sensitiv-
ity, a method to detect the transfer not relying on absolute intensities
is preferable, and this can be achieved by measuring the change of
the fluorescence dynamics in FLIM. The energy transfer provides an
additional loss channel for the donor, increasing its decay rate, and a
corresponding delayed excitation of the acceptor. Notably, FLIM-FRET
is not affected by absolute intensity changes, typically present due
to photobleaching, illumination inhomogeneity and/or concentration
distributions.

To analyse FLIM, a common approach is to fit the signal decay
assuming a mono- or bi-exponential decay behaviour. Recently, global
analysis methods offering faster algorithms compared to pixel by pixel
fitting have been reported (Datta et al., 2020), and a clustering step
can be introduced to further speed up the analysis (Brodwolf et al.,
2020; Li et al., 2021). Most of these methods assume exponential decay
dynamics, and the instrument response function in time-domain needs
to be known to extract the exponential time constants. FRET is observed
as an additional decay rate and can be extracted from the fit parame-
ters (Laptenok et al., 2007; Warren et al., 2013). However, while being
a convenient mathematical function to use, and the simplest solution
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of rate equation models, an exponential decay is only approximately
representing the physical behaviour of a fluorophore embedded in a
heterogeneous environment.

Phasor analysis is an alternative simple and widely used approach
(Clayton et al., 2004; Digman et al., 2008; Stringari et al., 2011). In this
method, each FLIM pixel is represented by two quantities, namely the
real and imaginary part of the Fourier coefficient of the first harmonic
(typically referring to the excitation repetition rate) normalized to the
amplitude of the zeroth harmonic. These values are then interpreted
as coordinates in the resulting ‘‘phasor plot’’ in the complex plane.
Pure exponential decay dynamics of varying decay times are forming a
semi-circle in this plot. Due to the linearity of the transform, mixed ex-
ponential decay dynamics are resulting in averages of pure component
phasors, and thus have amplitudes inside the circle. The phasor analysis
provides a useful tool when applied to FLIM-FRET data. The occurrence
of energy transfer can be identified as a deviation of the phasors from
the values obtained in regions of the sample occupied only by unbound
donor molecules. For a quantitative analysis of FRET some assump-
tions are imposed, e.g. the FRET efficiency trajectory is obtained by
approximating the unbound donor fluorescence as mono-exponential.

FLIM data can also be analysed by linear unmixing of the inten-
sity decay on the basis of selected reference patterns (Gregor and
Patting, 2015) measured a priori in samples with similar properties
s the sample under investigation. In this method, each fluorescence
ecay is approximated as a linear combination of reference decay
urves by minimizing the Kullback–Leibler discrepancy (KLD) (Lee
nd Seung, 2001), which maximizes the likelihood of the model for
ata showing Poisson noise, which is the expected photon detection
tatistics. Typically, a gradient descent method using multiplicative
pdate rules is used to find the non-negative fractional concentrations
f the reference patterns (Lee and Seung, 2001). The reference pat-
erns are either extracted from singly labelled control samples or by
electing regions of the image which are assumed to show the indi-
idual components. This approach has been applied to the analysis of
ultispectral time-domain FLIM, and up to nine different fluorophores

ould be visualized (Niehörster et al., 2016). The supervised determi-
ation of the components and their dynamics complicates the analysis,
nd introduces a bias. Specifically in the analysis of FRET-FLIM data,
here the different components interact, a reliable determination of the

ndividual component dynamics is challenging.
Recently, a deep learning method to analyse FLIM and FLIM-FRET

atasets was developed (Smith et al., 2019). However, the benefits of
he fit-free approach are accompanied by the typical shortcoming of
eep learning, i.e. the need to generate the training set and to train the
eural network, which is a topic of further investigation (Xiao et al.,
021). Notably, generating the training dataset requires prior knowl-
dge. For example, in Smith et al. (2019) a single or bi-exponential
luorescence decay and the instrument response were used to create the
raining set, which is defining the expected responses, and restricting
he retrieved parameters to two time-constants and two amplitudes.

In this work, we propose an unsupervised FLIM analysis (uFLIM)
ethod, using a fast non-negative matrix factorization (NMF) algo-

ithm (Kim and Park, 2009) and random initial guesses for both the
patial distribution and decay traces of the factorization components.
imilar to the pattern unmixing, the NMF method decomposes the
ata into a linear combination of few components, but differently from
attern unmixing, it does not require prior knowledge of the component
atterns, which instead can be deduced as part of the factorization. The
ethod thus offers the advantages of pattern unmixing, i.e. the absence

f assumptions on fluorescence dynamics and of prior knowledge of
he instrument response function, while operating at higher speed
nd additionally dropping the prior knowledge of reference patterns.
e demonstrate the performance of uFLIM in distinguishing multiple

pectrally overlapping fluorescing proteins, showing that the method
an retrieve the spatial distribution and dynamics of five fluorescent
2

rotein probes using data from a simple FLIM set-up with only two
xcitation lasers and two detection channels.

Building on this method, we introduce a FRET analysis, which uses
he donor and acceptor dynamics determined by uFLIM from samples
r sample regions not showing FRET. Energy transfer is quantitatively
haracterized by the quantum efficiencies of donor and acceptor emis-
ion into the detection channels, as well as the mean and variance of the
ransfer rate distribution, here assumed to be log-normal (Balakrishnan
t al., 1994). The analysis determines the values of these quantities,
nd thus the donor–acceptor pair (DAP) dynamics, together with the
patial distribution of the DAPs, by minimizing the NMF factorization
rror. Other components, such as autofluorescence, can be retrieved
t the same time without prior knowledge. Notably, uFLIM-FRET does
ot assume a functional dependence of the fluorescence dynamics, but
alculates the non-exponential donor and acceptor dynamics in the DAP
rom their unbound dynamics using the distribution of FRET rates.

. Method

.1. uFLIM

Measured FLIM data are reshaped as an (𝑁s×𝑁t) matrix 𝐃 where 𝑁s
and 𝑁t indicate the number of spatial and temporal points, respectively.
Then, a number of components 𝑁c much smaller than 𝑁t is chosen to
represent the data, and NMF is used to determine the spatial distribu-
tion matrix 𝐒 of 𝑁s×𝑁c elements, and the dynamics matrix 𝐓 of 𝑁c×𝑁t
elements. If present, multiple spectral channels are stacked in the 𝑁t
dimension, and multiple data are stacked in the 𝑁s dimension, keeping
track of the ordering for later decomposition.

We assume in the following that 𝐃 is given as the number of
detected photons, which has Poissonian noise with a standard deviation
given by

√

𝐷𝑖𝑗 . We utilize a fast NMF algorithm that minimizes the
esidual ‖𝐃− 𝐒𝐓‖2, where ‖.‖2 indicates the Frobenius norm (Kim and
ark, 2009). This method provides the decomposition of maximum
ikelihood in the case of Gaussian white noise in the data, i.e. a
oise independent of the data value. To be able to use this algorithm,
hich is 2–3 orders of magnitude faster than gradient descent methods
ccounting for non-white noise, we partially whiten the data before
actorization by applying a scaling as follows. We generate the time-
veraged image �̄� and the spatially averaged dynamics �̄� by averaging

𝐃 along the temporal and spatial points, respectively,

�̄�𝑖 =
1
𝑁t

∑

𝑗
𝐷𝑖𝑗 , �̄�𝑗 =

1
𝑁s

∑

𝑖
𝐷𝑖𝑗 , (1)

For average counts below unity, the photon counting statistics
eviates significantly from Gaussian noise, and the above whitening is
ot representing the required whitening well. We therefore limit �̄�𝑖 and

�̄�𝑗 to a minimum of 𝜉 in the whitening. The background-subtracted,
partially whitened data 𝐃w are then defined as

𝐷w
𝑖𝑗 =

𝐷𝑖𝑗 − 𝑏
√

�̄�𝑖

√

�̄�𝑗
, (2)

with the average dark counts 𝑏, which can be measured independently.
We assume here that 𝑏 is equal across the position, time, and spectral
channels, as it is typically the case for scanning time-correlated single
photon counting, but also note that inhomogeneous dark counts can
be subtracted in the same fashion. In 𝐃w, the data has been divided
by the expected standard deviation of the data when factorized into
the average spatial and temporal dependence. This method whitens
spatially dependent time-integrated intensities, as well as spatially
integrated time-dependent intensities. 𝐃w is then factorized by NMF,
minimizing 𝐸 = ‖𝐃w − 𝐒w𝐓w

‖2, and the resulting decomposition 𝐒w
and 𝐓w is de-whitened to recover the factorization of the original data

w
√

�̄� , 𝑇 = 𝑇w
√

�̄� , (3)
𝑆𝑖𝑗 = 𝑆𝑖𝑗 𝑖 𝑖𝑗 𝑖𝑗 𝑗
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so that 𝐃 ≈ 𝐒𝐓+ 𝑏. We will see that this treatment of noise is providing
equivalent results to minimizing the KLD for the data considered.
When showing 𝐒 in this work, it refers to a normalized 𝐓, such that

represents the number of photons detected at each spatial point.

.2. uFLIM-FRET

Beyond the unsupervised analysis of FLIM data, we have extended
he algorithm to retrieve the spatial distribution of FRET pairs. In the
iterature, FRET efficiencies are often derived from fitting the measured
ynamics by exponential decays and comparing the resulting decay
imes with the decay constant measured in samples where only the
onor is present. These methods are limited by the assumption of expo-
ential decay dynamics, and require the knowledge of the instrument
esponse function.

In uFLIM, the temporal dynamics are retrieved without prior knowl-
dge or assumption of an exponential decay. Therefore uFLIM can be
pplied to data showing pure donor and acceptor dynamics as com-
onents, providing the normalized pure donor and acceptor dynamics,
hich we call 𝐓d and 𝐓a, with {𝐓d} = {𝐓a} = 1 where {.} indicates

he 1-norm. We note that the emission of a molecule is proportional
o the probability to be in its excited state. FRET occurs when donor
nd acceptor are in close proximity, forming a DAP. The FRET process
ntroduces a non-radiative excitation transfer channel from the donor to
he acceptor, characterized by a rate 𝛾 (a sketch of the energy diagram
s shown in the supplementary information (SI) Fig. S25). Therefore, the
luorescence intensity of the donor in the DAP at a given time point can
e calculated by subtracting from 𝐓d the FRET to the acceptor up to that
ime point. Equivalently, the intensity of the acceptor in the DAP can be
alculated from 𝐓a by adding the FRET from the donor. The modified
onor dynamics �̃�d in the DAP is accordingly calculated using

̃ d
𝑖 (𝛾) = 𝑇 d

𝑖 −
𝑖−1
∑

𝑗=1
𝑓𝑗 (𝛾)�̂� d

𝑖−𝑗+1 , (4)

terating along the time point 𝑖 = 1, 2,… , 𝑙. This expression contains the
ynamics

̂ d
𝑘 =

{

𝑇 d
𝑚+𝑘−1∕𝑇

d
𝑚 for 𝑘 ≤ 𝑙 − 𝑚 + 1

�̂� d
𝑙−𝑚𝑇

d
𝑙 ∕𝑇

d
2𝑙−𝑚−𝑘 for 𝑘 > 𝑙 − 𝑚 + 1

, (5)

here 𝑚 is the time point at which 𝐓d is maximum. In Eq. (5), we have
xtrapolated the donor excitation decay beyond the last measured point
using the decay observed over the extrapolation time interval prior to
. The FRET transfer 𝑓𝑗 (𝛾) at time 𝑗 over the time step 𝛥 is given by

𝑗 (𝛾) = �̃� d
𝑗 𝛾𝛥 , (6)

sing the modified occupation �̃� d
𝑗 of the donor excited state at that time

nd the transfer rate 𝛾.
These equations determine the effect of FRET on the donor excita-

ion, by subtracting the FRET transfer at points in the past, propagated
o the present using the response function �̂�d. We approximate �̂�d by
he measured donor emission dynamics, normalized to its maximum
nd starting from its maximum as time zero of the response. This
s adequate for FRET rates smaller than the inverse time resolution
f the measurements, and is consistent with the finite resolution of
he data for which it is used. To support this statement, we have
ompared the resulting dynamics with the analytical solution of the
onor excitation modified by a single FRET process in the simple con-
ition of a mono-exponential decay for the pure donor and a Gaussian
nstrument response function (IRF), as shown in the SI Sec. S6. The
ime-resolution limitation can be controlled by refining the system
ynamics, for example, by deconvolution of a response function before
nalysis. Note, however, that the deconvolution is modifying the noise
f the data from the simple Poisson distribution of photon counts.

Fig. 1 illustrates the iterative calculation of �̃�d from 𝐓d by Eq.
4). The modified dynamics �̃�d(𝑛) including only the contributions of
3

Fig. 1. Illustration of Eq. (4) calculating the modified donor dynamics in the DAP
undergoing FRET, �̃�d, from the free donor dynamics 𝐓d. Intermediate results subtracting
only the transfer occurring before time point 𝑛 (�̃�d(𝑛)) and 𝑛+1 (�̃�d(𝑛+1)) are shown,
together with the corresponding subtracted transfer 𝐓d−�̃�d(𝑛) and 𝐓d−�̃�d(𝑛+1), and the
additional transfer occurring between 𝑡𝑛 and 𝑡𝑛+1, given by �̃�d(𝑛)− �̃�d(𝑛+1). The curves
re simulated for a donor decay rate of 0.33/ns, a log-normal FRET rate distribution
q. (13) with �̄� = 10∕ns and 𝜎 = 0.5, using a time step of 𝛥 = 25ps and a Gaussian IRF

of width 𝑠 = 100ps (see SI Sec. S6).

previous time points up to 𝑛 − 1 are shown in green filled circles and
are given by

�̃� d
𝑖 (𝑛) = 𝑇 d

𝑖 −
min(𝑛,𝑖)−1

∑

𝑗=1
𝑓𝑗 �̂�

d
𝑖−𝑗+1. (7)

ncluding the time point 𝑛, the resulting �̃�d(𝑛 + 1) (blue filled circles)
s decreased for 𝑖 > 𝑛 by the contribution of the excitation transferred
etween the time point 𝑛 and 𝑛 + 1 (empty blue diamonds), given by

̃ d
𝑖 (𝑛) − �̃� d

𝑖 (𝑛 + 1) =

{

𝑓𝑛�̂� d
𝑖−𝑛+1, for 𝑖 ≥ 𝑛

0 otherwise
. (8)

ncluding all previous time points, we recover the modified donor
ynamics �̃�d.

The modified acceptor excitation dynamics are calculated using the
ame approach, resulting in

̃ a
𝑖 (𝛾) = 𝜅𝑇 a

𝑖 +
𝑖−1
∑

𝑗=1
𝑓𝑗 (𝛾)�̂� a

𝑖−𝑗+1, (9)

with the normalized and zero-centred acceptor dynamics

�̂� a
𝑘 =

{

𝑇 a
𝑚+𝑘−1∕𝑇

a
𝑚 for 𝑘 ≤ 𝑙 − 𝑚 + 1

�̂� a
𝑙−𝑚𝑇

a
𝑙 ∕𝑇

a
2𝑙−𝑚−𝑘 for 𝑘 > 𝑙 − 𝑚 + 1

. (10)

The normalization of 𝐓d and 𝐓a ensures the conservation of the number
of excitations by the transfer from donor to acceptor in Eq. (9), which
also contains the direct excitation of the acceptor by the laser (see SI
Fig. S25) quantified by 𝜅. While 𝜅 can be included in the parameters
to be determined by the method, we assume in the following that 𝜅 is
known a priori, noting that it is given by the relative absorption cross-
section of acceptor and donor at the excitation wavelength and can be
determined independently. We assume to have two spectral channels,
and that the donor and acceptor emission is detected dominantly by
the respective channels, given by the fraction of donor 𝑅d (acceptor
𝑅a) emission detected by the donor (acceptor) channel, respectively.
The dynamics �̃�D (�̃�A) detected in the donor (acceptor) channel for a
DAP undergoing FRET with rate 𝛾 is then given by

�̃�D(𝛾, 𝑞) = 𝑅d�̃�d(𝛾) + 𝑞
(

1 − 𝑅a) �̃�a(𝛾) ,
̃ A ( d) ̃ d a ̃ a (11)

𝐓 (𝛾, 𝑞) = 1 − 𝑅 𝐓 (𝛾) + 𝑞𝑅 𝐓 (𝛾) .
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Here, we have introduced the ratio 𝑞 between acceptor and donor, of
he detection probability (summed over both channels) of an excita-
ion decay, to take into account the different quantum efficiency of
he acceptor and donor, and the different probability of detecting an
mitted photon in the two channels, including detector efficiency and
ilter performance. The values of 𝑅d and 𝑅a can be simply measured
sing samples of only donor or acceptor from the ratio of the number
f detected photons in donor versus acceptor channel. Determining 𝑞
nstead requires to additionally determine the relative excitation rates
f the donor versus acceptor molecules in the two samples, which in
urn requires knowledge of relative molar concentration and relative
bsorption 𝜅. We have considered here the case where 𝑅d and 𝑅a have

been measured, while 𝑞 is determined by uFLIM-FRET.
Typically, the acceptor has a small absorption at the excitation

wavelength, so 𝜅 ≪ 1, and is hardly detected by the donor channel, so
1−𝑅a ≪ 1. In the simulations shown later we use the more challenging
condition of 𝜅 = 1, where three components (donor, acceptor, and DAP)
need to be included, while the simpler case 𝜅 = 0, showing an improved
retrieval for a given photon budget, is given in the SI.

In the NMF, the temporal points of the donor and acceptor channel
are concatenated into the temporal dimension of 𝐃. Three NMF compo-
nents in 𝐓 are used, given by the donor,

[

𝑅d𝐓d,
(

1 − 𝑅d)𝐓d], the accep-
or 𝜅𝑞 [(1 − 𝑅a)𝐓a, 𝑅a𝐓a] and the DAP �̃�f (𝛾, 𝑞) =

[

�̃�D(𝛾, 𝑞), �̃�A(𝛾, 𝑞)
]

. The
latter is a function of the FRET rate 𝛾 and the ratio 𝑞. The spatial dis-
tributions 𝐒d, 𝐒a, and 𝐒f of these components are determined from the
ata by NMF. Additional components can be added to the NMF analysis,
or example, to take into account autofluorescence, determining their
emporal dynamics and spatial distribution without prior knowledge,
s shown, for example, in the SI Sec. S13.

The most likely values of 𝛾 and 𝑞, given the data, are the ones
minimizing the residuals of the NMF. The model can be expanded
to several FRET components with different rates, which is a typical
situation in FRET due to the variation in the distance and the relative
orientation of the donor and acceptor transition dipoles (Gopich and
Szabo, 2012). Such a variation can be efficiently rationalized using a
distribution of rates 𝑃 (𝛾; �̄� , 𝜎) of mean value �̄� and relative standard
deviation 𝜎, resulting in the FRET dynamics

𝐓f (�̄� , 𝜎, 𝑞) = ∫ 𝑃 (𝛾; �̄� , 𝜎)�̃�f (𝛾, 𝑞)𝑑𝛾 . (12)

Again, the most likely values of the parameters �̄�, 𝜎, and 𝑞 minimize the
residual of the NMF, which are found using a computationally efficient
method detailed in the SI Sec. S7.

In the following, we consider a log-normal distribution (Balakrish-
nan et al., 1994) of rates with mean �̄� and standard deviation �̄�𝜎, which
can be written as

𝑃ln(𝛾) =
1

𝛾𝜁
√

2𝜋
exp

(

−1
8

(

2
𝜁
ln
(

𝛾
�̄�

)

+ 𝜁
)2

)

, (13)

here 𝜁 =
√

ln
(

𝜎2 + 1
)

. Interestingly, this distribution can also deter-
mine the mean and standard deviation of the donor–acceptor distance.
In the dipole approximation, and for a given relative donor and ac-
ceptor orientation or fast orientational averaging, the FRET rate is
simply expressed as 𝛾 = 𝛾D(𝑅0∕𝑅)6, with the Förster radius 𝑅0, the
free donor decay rate 𝛾D, and the donor–acceptor distance 𝑅. Using
this expression, the extracted log-normal distribution in the FRET rate
𝛾 of mean �̄� and standard deviation 𝜎�̄� can be analytically expressed by
a log-normal distribution in distance given by

𝑃 (𝑅) = 6
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√
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The first and second moments of this distribution can be calculated as
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so that the standard deviation 𝜎𝑅 in distance can be determined using
𝜎2𝑅 = 𝑅2 − �̄�2 as

𝜎𝑅 = 𝑅0
6

√

𝛾D
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√

(
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)
2
9 −

(
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7
36 . (17)

The mean �̄� and the standard deviation 𝜎𝑅 of the donor–acceptor
distance is therefore obtained analytically by the parameters of the
log-normal rate distribution determined by uFLIM-FRET.

3. Results and discussion

3.1. uFLIM application I: Single spectral channel datasets

Here, we demonstrate the uFLIM analysis of experimental data
reported in Chennell et al. (2016), in which the fluorescence lifetime of
a dye changes due to variations in the environmental conditions, specif-
ically the T2-AMPKAR construct in the presence of the 991 activator
resulting in FRET. In these measurements, a single channel detects the
dynamics of the T2-AMPKAR compound using time-correlated single
photon counting (TCSPC) with 50ps time bins. We have analysed the
data in Fig. 4 of Chennell et al. (2016), with 4 × 4 spatial binning
and a temporal binning as discussed in S1, using 𝑡b = 100ps and
𝑟b = 0.1. Data have been factorized by uFLIM into two components
sing a whitening threshold 𝜉 = 1, as shown in Fig. 2 for a selection of
ctivator concentrations (complete results are shown in the SI Fig. S1).
e have measured a computational time of about 0.6 μs/pixel for a

ingle uFLIM step on an Intel i7-8700 CPU. We found that convergence
error change below 1‰ per iteration) was reached within about 10
terations. Further computational times reported below refer to the
ame CPU.

The dynamics 𝐓1,2 of the components (see Fig. 2 bottom) sug-
est that the first component, showing a slower decay, represents the
mission of T2-AMPKAR without 991, while the second represents the
2-AMPKAR - 991 pair. For visualization, the spatial distributions 𝐒1,2
re encoded using a hue-saturation-value (HSV) colour mapping at
aximum saturation. The value (V), which is the brightness, is taken

s the square root of 𝐒1 + 𝐒2, normalized for each image. The hue
H) is given by the point-wise contrast (𝐒2 − 𝐒1)∕(𝐒1 + 𝐒2), offset and

scaled as indicated. We observe a change of colour of the HSV maps
from green to violet with an increasing concentration of 991, showing
an increasing fraction of T2-AMPKAR with 991 attached. To compare
with the global fitting exponential decay analysis in Chennell et al.
(2016), the average lifetime ⟨𝜏⟩ = ({𝐒1}𝜏1 + {𝐒2}𝜏2)∕({𝐒1} + {𝐒2})
is given in the inset of the bottom panel in Fig. 2, where 𝜏2 and
𝜏3 are the lifetimes of the individual components given by the first
moments of their dynamics. The resulting ⟨𝜏⟩ exhibits a dependence on
the activator concentration consistent with Chennell et al. (2016). The
applied spatial and temporal binning increases the average number of
photons per point well above one, from 0.19 in the original data to 17
in the binned data, improving the outcome of the factorization, as we
detail in the SI Sec. S2.

This example shows that uFLIM is able to analyse FLIM experi-
ments with the resulting weighted average lifetime showing a similar
dependence as the value obtained by the global exponential fitting,
yet providing the dynamics of the components not constrained to an
exponential decay. As an additional example, we show in the SI Sec. S3
the uFLIM analysis of time-gated FLIM images of mixtures of two
different dyes, and its ability to recover their dynamics and distribution.
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Fig. 2. Results of the uFLIM algorithm applied on a dataset from Chennell et al. (2016)
of TCSPC FLIM on HepG2 expressing the T2-AMPKAR compound as a function of the
concentration of the 991 activator. In these measurements, a single channel detects
the dynamics of the T2-AMPKAR compound. The data have been factorized into two
components which show different dynamics. Top: Concentrations 𝐒1 and 𝐒2 displayed
with an HSV mapping as discussed in the text for different concentrations of 991 as
indicated. The contrast is encoded as the hue of the colour. Bottom: Temporal dynamics
𝐓 of the two retrieved components. Inset: Weighted average lifetime ⟨𝜏⟩ (black symbols)
and fraction of 𝐒2 in each image 𝑟 = {𝐒2}∕({𝐒1} + {𝐒2}) (red symbols) for the different
fields of view versus the activator concentration. The green symbols show the lifetime
estimated in Chennell et al. (2016), obtained by global least square fitting, divided by
1.25.

3.2. uFLIM application II: Multiple spectral channels and unmixing of many
fluorescent proteins

Imaging living cells which are expressing multiple fluorescent pro-
teins (FPs) is crucial when disentangling the protein interaction net-
work. Here, we explore the capability of uFLIM to extract the spatial
distribution of a large number of FPs, by unmixing their spectral
and temporal profiles. A similar question was asked in Niehörster
et al. (2016) using a pattern-matching algorithm on spectrally-resolved
fluorescence lifetime imaging microscopy (sFLIM) data. sFLIM was
employed with sequential excitation at three wavelengths and detection
5

over 32 spectral channels. Up to nine fluorescent probes could be
separated, for data having a photon budget of around 1000 photons
per pixel in the bright regions. However, this result required prior
knowledge of fluorescence decay and spectral signature patterns, a
constrain that can be lifted with uFLIM.

To test the performance of uFLIM on sFLIM datasets, we generated
synthetic data combining several FPs. Since the large number of ex-
citation and detection channels used in Niehörster et al. (2016) are
not available in most FLIM experimental set-ups, we simulate here a
much simpler system with only two excitation lasers (at wavelengths
of 460 nm and 490 nm) and two detection channels (over wavelength
ranges of 500–550 nm and 550–700 nm). We use an excitation rep-
etition rate of 𝑟 = 40MHz, a detection range from −1 ns to 24 ns
with 𝑙 = 1000 temporal channels, and a Gaussian instrument response
function exp(−𝑡2∕𝑤2) with 𝑤 = 141.4ps.

We first consider eight known FPs numbered by the index 𝑓 (see
SI Table S1), with spatial distributions given by selected paintings
(Wikipedia), which were cropped and resized to 256 × 256 pixels,
converted to greyscale using a gamma of 1.5 and normalized to have
unity mean, yielding the distribution matrix 𝐅𝑓 . For each combination
of excitation wavelength (index 𝑒) and detection channel (index 𝑑), we
define a scaled spatial distribution 𝐅𝑑𝑒𝑓 = 𝑐𝑑𝑒𝑓𝐅𝑓 , where 𝑐𝑑𝑒𝑓 accounts
for the quantum efficiency and the extinction coefficient of the FP, and
the fraction of photon emission by FP 𝑓 detected by channel 𝑑, see SI.
We also define the fraction of photons detected in a given channel as
̂𝑑𝑒𝑓 = 𝑐𝑑𝑒𝑓∕

∑

𝑑,𝑒 𝑐𝑑𝑒𝑓 , and the fraction of detected photons contributed
by a given FP as 𝑐𝑓 =

∑

𝑑,𝑒 𝑐𝑑𝑒𝑓∕
∑

𝑑,𝑒,𝑓 𝑐𝑑𝑒𝑓 . The measured FP dynamics
over the time 𝑡, represented by the matrix 𝐓𝑓 , are calculated as the
convolution between the Gaussian IRF and a mono-exponential decay
with a decay rate 𝛾𝑓 given by the inverse lifetime 𝜏, see SI Sec. S5i.
The noiseless sFLIM synthetic data are then obtained by multiplying
the paintings with the FP dynamics, and summing the resulting FP
emission, assuming equal spatially-integrated numbers of each FP,
yielding

𝐃s
𝑒𝑑 = 𝐴

∑

𝑓
𝐅𝑑𝑒𝑓𝐓𝑓 , (18)

where the normalization 𝐴 is ensuring {𝐃s} = 𝑁s𝐼 t , and the average
number of photons 𝐼 t per spatial point was chosen to be 100 or
104 in the results shown. To simulate photon counting detection and
corresponding noise, the integer values of a random variable following
Poisson statistics with a mean value given by the noiseless sFLIM
data are taken as sFLIM data. Computational time was reduced by
partially binning the 1000 time channels in 𝐓𝑓 according to the method
described in the SI Sec. S1, using 𝑟b = 0.05 and 𝑡b = 25ps.

This synthetic data is then analysed by uFLIM according to the
method described in Section 2.1 with 𝜉 = 0 whitening threshold for
the spatial and time averages. As a first test, for direct comparison
with Niehörster et al. (2016), we retrieved the spatial distribution 𝐒w
in a single step NMF, with the dynamics 𝐓w fixed by 𝐓𝑓 , i.e. assuming
prior knowledge on the dynamics. The resulting 𝐒 are shown in Fig. 3
for 𝐼 t = 104. To quantify the retrieval performance, we calculated the
root-mean-squares (rms) 𝑟 of the distribution differences 𝐒𝑓−𝑐𝑓 𝐼 t𝐅𝑓 for
each FP 𝑓 and the corresponding relative error 𝛱 obtained by dividing
𝑟 by the rms of 𝑐𝑓 𝐼 t𝐅𝑓 . The spatial distributions of all eight FPs are
well retrieved, with 𝑟 of a few hundred photons, comparable to the
shot noise, and 𝛱 of 5 to 40%. We emphasize that this was achieved
using only two channels in excitation and detection, compared to 3 and
32 channels in Niehörster et al. (2016). FPs with properties differing
significantly from each other are well recovered, while more error is
visible for FPs with similar properties, for example, for mEos2 and
mVenus, and for FPs with weak emission, such as LSS-mKate2. Even
for a much smaller photon budget 𝐼 t = 100 (see SI Fig. S7), spatial
distributions are recovered, albeit with accordingly larger noise and
reconstruction error.

To evaluate if the retrieval could be improved by an accurate treate-
ment of the Poisson noise, we have implemented a gradient descent
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Fig. 3. Spatial distributions obtained by applying uFLIM to sFLIM synthetic data
generated with 8 FPs (see labels), having spatial patterns given by selected paintings,
and detected by a two-channel FLIM set-up (see text). uFLIM, in this case, assumes
prior knowledge on the FP dynamics, i.e. uses fixed 𝐓𝑓 . Greyscale is from 𝑚 to 𝑀 .
Top rows: Retrieved 𝐒with 𝑚 = 0 and the maximum (𝑀) as indicated. The spatially
averaged pixel values (𝑎) are also given, for comparison with the nominal values 𝑐𝑓 𝐼 t ,
see Table S1. Bottom rows: Difference between the nominal and retrieved distributions
corresponding to the top rows, with 𝑀 and 𝑚 as given.

minimizing the KLD. We have used a multiplicative update rule (Lee
and Seung, 2001), and, as an initial guess of 𝐒, either the solution of
the linear system 𝐃 = 𝐒𝐓 (see SI Sec. S4), or the result of the NMF. In
both cases, we did not observe a relevant improvement of the results
compared to the fast NMF algorithm (see SI Fig. S8 and Fig. S9 for 𝐼 t =
104 and Fig. S10 and Fig. S11 for 𝐼 t = 100), despite a 15–50 times longer
computational time. Using the fast NMF, the uFLIM computational
time was 5 μs/pixel. This indicates that the whitening transformation,
combined with fast NMF algorithm, is a suitable alternative to the
computationally expensive gradient descent method.

Next, we applied uFLIM to retrieve the spatial distribution and the
FP spectral and dynamic properties directly from the simulated photon
counting data, with no prior knowledge. Since determining the FP
properties additionally to the spatial distribution is more taxing on
the data information content, we have removed the three FPs with the
smallest differences in their properties from the eight previously used
(see Table 1). To introduce unknown variations from the nominal FP
properties, often encountered in the cellular environment, the sFLIM
data are generated with a ±20% relative variation in 𝑐𝑑𝑒𝑓 and 1∕𝛾𝑓 ,
and an additional ±5% on the resulting 𝑐𝑓 , taken at random from a
uniform distribution. We use the iterative uFLIM method, where both
𝐒 and 𝐓 are calculated. The nominal FP properties, before parameter
variation, are used to generate the initial value of 𝐓, while the guesses
for 𝐒 are obtained by solving the system 𝐃 = 𝐒𝐓 and then setting
negative values to zero. We constrain the dynamics of a given FP to be
the same for all excitation and detection channels by replacing at each
NMF iteration step the dynamics calculated for the different channels
with their average. The iteration is stopped if the factorization error has
not improved for three consecutive steps, allowing for a maximum of
100 iterations. Here, a single iteration step took about 2 μs/pixel, and
typically 10–25 steps were used.

Fig. 4 shows the retrieved spatial distributions and FP properties
obtained for 𝐼 t = 104. The spectral and temporal properties extracted
6

Table 1
Spectral properties and lifetimes of the 5 FPs used in the synthetic sFLIM data analysed
in Fig. 4. The values retrieved from a single data realization by uFLIM for 𝐼 t = 104 are
given in red, where the lifetimes are the first moment of the retrieved dynamics for
positive times. The standard deviations of the retrieved parameters due to photon shot
noise are given in green.

Name of FP/ 𝑓 𝑐11𝑓 𝑐12𝑓 𝑐21𝑓 𝑐22𝑓 𝑐𝑓 𝜏 (ns)
painting

WasCFP/ 1 0.27 0.07 0.53 0.13 0.36 5.05
The creation of 0.28 0.08 0.51 0.13 0.41 4.73
Adam 2.2e−4 1.4e−4 2.8e−4 1.2e−4 3.0e−4 0.017

BrUSLEE/ 2 0.26 0.09 0.52 0.14 0.22 0.94
The Hay Wain 0.26 0.07 0.53 0.14 0.20 0.95

1.3e−4 1.6e−4 1.6e−4 0.9e−4 1.6e−4 4.8e−4

mBeRFP/ 3 0.01 0.64 0.01 0.34 0.19 2.31
The ambassadors 0.01 0.65 0.01 0.33 0.19 2.24

1.4e−4 2.9e−4 2.9e−4 3.8e−4 2.1e−4 0.0024

Dendra2(Red)/ 4 0.01 0.44 0.01 0.54 0.13 4.46
Old woman and 0.01 0.44 0.01 0.54 0.13 4.38
boy with candles 3.8e−4 2.4e−4 4.0e−4 3.0e−4 2.8e−3 0.0024

MiCy/ 5 0.63 0.11 0.22 0.04 0.10 3.90
The great wave 0.80 0.12 0.08 0.00 0.07 3.72
off Kanagawa 6.4e−4 6.2e−4 7.8e−4 2.8e−4 1.3e−4 0.0027

from the retrieved quantities are given in red in Table 1, showing a
good agreement between the retrieved and original 𝐒 and 𝐓, with 𝐓
being slightly faster. Even for 𝐼 t = 102 (see SI Fig. S13), the retrieval
works reasonably, showing only some cross-talk between the FPs with
most similar properties, mBeRFP and Dendra2(Red). Results can be
slightly improved by subsequently minimizing the KLD (see SI Fig. S18
and Fig. S19). However, this takes two to five times longer than the fast
NMF, depending on 𝐼 t and the choice of initial guesses.

We note that the number of FPs retrievable within a certain error
depends in a complex way on their properties, especially on their
differences, as well as the signal strength 𝐼 t , and the FP spatial dis-
tributions. Therefore, for a given experiment, a reliable determination
of the retrieval error should be obtained via repeated retrievals using
new realizations of the photon counts 𝐃 from probability distributions
determined by the measured counts. To give an example, for the
parameters shown in Table 1, we evaluated ten realizations of the
photon shot noise, and found that the absolute deviations for 𝑐𝑑𝑒𝑓 and
̂𝑓 and the relative deviation for 𝜏 are below 1%, as shown in Table 1.

To exemplify the benefits of using retrieved properties versus fixed
properties, we show in the SI Fig. S21 the FP distributions obtained
from the data of Fig. 4 fixing the FP properties to the nominal ones,
not including the variations introduced. Significant systematic errors
are found for weak FPs, e.g. Dendra2(Red) and MiCy. With decreasing
𝐼 t , the noise in the data is increasing and the relative importance of the
systematic error decreases, so that for 𝐼 t = 100 (see SI Fig. S22), they
are less relevant.

We emphasize that while we have chosen here exponential dynam-
ics allowing to use known FP parameters, the method is applicable for
any dynamics – as example we show in the SI Sec. S5v results for a
log-normal distribution. The retrieval quality, even when using a broad
distribution 𝜎 = 0.8, is similar to the case of exponential dynamics,
confirming that the method is suited for a wide range of FP dynamics.

We stress that retrieving both the spatial distribution and the FP
spectral and dynamic properties from the measured data eliminates the
need for separate measurements on reference samples with individual
FPs. Notably, the spectral and dynamic properties of FPs vary with
their environment, and thus can be different between pure solutions
and cellular samples. Furthermore, a long-term drift of the instrument
response can introduce systematic deviations between the FP properties
used and the ones present in the sample of interest. Removing the need
for such prior knowledge is, therefore, a major advantage of uFLIM.
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Fig. 4. Spatial distributions and properties of 5 FPs retrieved by uFLIM from sFLIM synthetic data with 𝐼 t = 104, generated as described in the text, on a greyscale from 𝑚 to 𝑀 .
Here, uFLIM is applied with no prior knowledge on the FP properties. Top row: Retrieved 𝐒 with 𝑚 = 0 and the maximum 𝑀 as indicated. The spatially averaged pixel values 𝑎
are given, having the nominal values 𝑐𝑓 𝐼 t , see Table 1. Middle row: Retrieved dynamics 𝐓𝑓 (red), and corresponding original dynamics (black). Bottom row: Difference between
the retrieved and original distributions, using 𝑀 and 𝑚 as given.
3.3. uFLIM-FRET application I: Analysis of synthetic data

To verify the uFLIM-FRET method, we first use synthetic data.
We consider two detectors which are mostly detecting the donor and
acceptor emission, respectively, given by 𝑅d = 𝑅a = 0.9. The FLIM
system is the same as in Section 3.2. We consider that the donor and
the acceptor fluorescence have exponential dynamics, with decay rates
of 𝛾D= 0.33/ns and 𝛾A= 0.385/ns, respectively, corresponding to the
decay lifetimes of mNeonGreen and mRuby. We vary the spatially
averaged time-integrated photon counts of the donor emission 𝐼d,
proportional to the one of the acceptor emission, 𝐼a, using 𝐼a = 0.8𝐼d
throughout. The dynamics of the DAP detected by the two channels are
calculated according to Eq. (12), considering a log-normal distribution
of FRET rates.

We generated data with �̄� taking values of �̄�s = 0.1/ns, 0.5/ns
and 0.9/ns, and 𝜎 given by 𝜎s = 0.5. The relative detection efficiency
between donor and acceptor was taken to be 𝑞s = 1. In the following,
symbols without subscript refer to the parameter values changed by the
algorithm, while symbols with the subscript s refer to the values used to
generate the data, and symbols with the subscript r are values resulting
from the algorithm.

Various relative strengths of DAP and donor emission, 𝐼 f∕𝐼d, are
considered, where 𝐼 f are the spatially averaged time-integrated photon
counts of the DAP emission. As spatial distributions of donor, acceptor,
and DAP, we used Monet’s Nymphéas, Van Gogh’s Starry Night, and
Leonardo’s La Gioconda, respectively. The drawings (Wikipedia) were
cropped, resized to 256 × 256 pixels, and converted to greyscale. The
synthetic data 𝐃s = 𝐒s𝐓s + 𝑏 are then created by multiplying each
pixel of the images with the corresponding decay curve and adding
the dark counts 𝑏, which we characterize by their equivalent intensity
𝐼b = 𝑏𝑁t . For the data shown, we have considered 𝑏 = 0, 0.001, and
0.01, corresponding to 𝐼b = 0, 2, and 20.

The photon counting data 𝐃 is generated from 𝐃s using Poissonian
statistics as before, and we repeated the analysis for 10 realizations of
7

𝐃. To reduce the analysis time, we apply a time binning with 𝑡b= 25 ps
and 𝑟b= 0.05 (see SI Sec. S1). The data are then factorized using the
donor (𝐓d), acceptor (𝐓a), and FRET (𝐓f ) components over a grid of
the FRET parameters �̄�, 𝜎, and 𝑞. Donor and acceptor dynamics without
FRET are taken as known — in experiments, these would have been
measured and retrieved by uFLIM. No free components are used so that
the factorization is a single step NMF for the spatial distributions 𝐒w,
which minimize the residual 𝐸. The initial guesses for 𝐒w are random.

The dependence of the factorization error 𝐸 over the parameter
space is shown in Fig. 5. The top panel of Fig. 5 shows 𝐸 over the
coarse grid of FRET parameters �̄� and 𝜎 for 𝑞 = 1, and 𝐼d = 𝐼 f = 104.
The bottom image shows 𝐸 calculated during the grid refinement step,
within the finer grid range indicated by the grey rectangle in the top
panel. The residual is minimized to a relative change better than 10−5.
Note that the non-zero residual is due to the shot noise in the photon
counts. The estimated parameter values are close to the ground truth of
the simulated data (the relative errors are 0.07%, −0.72%, and 0.17%
for �̄�, 𝜎 and 𝑞, respectively), with remaining deviations due to the
photon shot noise.

Fig. 6 shows uFLIM-FRET results for the values of �̄�r , 𝜎r , and 𝑞r
minimizing the residual, for a specific data realization with �̄�s = 0.5/ns,
𝐼b = 2 and 𝜅 = 1. Results for small intensity and strong FRET
(𝐼d = 𝐼 f = 100) are given on the left, for large intensity and weak
FRET (𝐼d = 16𝐼 f = 10000) in the middle, and for large intensity
and strong FRET (𝐼d = 𝐼 f = 10000) on the right. The first row
shows the data summed over the temporal channels, 𝑁t �̄�, where the
images of donor and acceptor are visible, and the FRET image is
discernible for strong FRET. The synthetic data dynamics 𝐓s,d, 𝐓s,a,
and 𝐓s,f , are given as solid lines in Fig. 6 (bottom). The second, third
and fourth rows from the top show the spatial distributions 𝐒d, 𝐒a,
𝐒f retrieved by NMF, recovering the corresponding images well, also
in conditions of small intensity (left) and weak FRET (middle). The
difference between the original and retrieved data is quantified using



Medical Image Analysis 82 (2022) 102579F. Masia et al.
Fig. 5. Factorization error 𝐸 as a function of the FRET distribution parameters �̄� and
𝜎 for 𝑞 = 1 for data generated using 𝐼d = 𝐼 f = 104, �̄�s= 0.5/ns, 𝜎s= 0.5, 𝑞s= 1, 𝜅 = 1
and 𝐼b = 2. Top: Coarse grid, 𝑚 = 399, 𝑀 = 537. Bottom: refined grid (see SI Sec. S7),
𝑚 = 399.163, 𝑀 = 399.256. The refinement domain is defined by the grey rectangle in
the top panel. Colour scale as given from 𝑚 to 𝑀 .

the relative error 𝜖 = ‖𝐃s−𝐒𝐓‖2∕‖𝐃s
‖2, and similarly the reconstruction

of the individual components is quantified by the relative errors 𝜖𝑖 =
‖𝐒s,𝑖𝐓s,𝑖 − 𝐒𝑖𝐓𝑖

‖2∕‖𝐒s,𝑖𝐓s,𝑖
‖2, where 𝑖 ∈ {d, a, f}. The mean values (⟨.⟩)

and the standard deviations (].[) of the reconstruction errors calculated
over the data realizations are shown in the SI Fig. S34. As expected, the
reconstruction error decreases with increasing intensities. We find that
the error scales approximately as 1∕

√

𝐼d (see SI Fig. S35). In general, 𝜖,
𝜖d, and 𝜖a depend mostly on 𝐼d, while 𝜖f is affected by both 𝐼d and 𝐼 f .
We note that all errors are below 10% for the high-intensity case, and
that they are always much larger than the parameter retrieval error,
since they are dominated by the shot noise in the realizations.

The uFLIM-FRET analysis is largely superior to the phasor analysis
approach, as we show in the SI Sec. S8 using the same data. Specifically,
to extract quantitative information, a phasor analysis needs to assume
a simple model of the dynamics, and the abundance of the donor–
acceptor pairs undergoing FRET and the FRET efficiency are typically
not separated. Furthermore, the spatial distributions of the donor-only
and DAPs obtained with the phasor analysis poorly reflect the original
distributions (see SI Fig. S30).

The uFLIM-FRET retrieved dynamics of the FRET component 𝐓f

(dashed lines in Fig. 6) agree well with the ground truth, which is
confirmed by the close match of true and retrieved values of the
parameters �̄�r , 𝜎r , and 𝑞r given in the caption. Their mean values and
standard deviations over the ensemble of realizations are given in the
SI Fig. S46. The errors decrease as the intensities increase, showing that
the method is correctly retrieving the FRET parameters. The standard
deviation, which is due to the photon shot noise in each realization, is
rather similar for the different parameters, with 𝜎 being retrieved with
less accuracy as its influence on the dynamics 𝐓f is lower. However, we
also see some systematics for low intensities, in particular 𝜎 is underes-
timated. To verify if this could be due to the remaining non-whiteness
of the noise in the analysed data 𝐃w, we repeated the factorization
using the gradient descent minimizing the KLD, with the fast NMF
results as initial guesses. The retrieved spatial distributions and FRET
parameters obtained with the two methods are generally very similar
(see SI Fig. S80), confirming the suitability of the fast NMF algorithm on
partially whitened data for the analysis of data showing Poisson noise.
Additionally, the gradient descent comes with more than two orders
8

of magnitude longer computational time, here about 1 ms/pixel for a
single CPU core for given FRET parameters, and since of the order of
5000 evaluations are used to find the parameters that minimize the
error, it is unsuitable for real-time analysis.

The difference in the accuracy among the different parameters can
be understood by looking at the curvature of the reconstruction error
along the directions defined by the parameters. The curvature is much
smaller along the 𝜎 direction, resulting in a lower accuracy in the
determination of this parameter (see SI Sec. S12).

Further results for different �̄�s and 𝐼b are given in the SI Sec. S11.
In the case of a small FRET rate �̄�s = 0.1/ns, donor and DAP dynamics
are similar, making the retrieval more challenging, so that for small
intensities, the FRET image bleeds through to the 𝐒d component, 𝐓f

differs from 𝐓s,f , and the value of 𝜎 is underestimated. For a higher
rate �̄�s = 0.9/ns instead, the DAP dynamics and spatial distribution are
recovered with higher accuracy. The obtained average parameters for
the two cases of �̄� = 0.1/ns and �̄� = 0.9/ns are also given in the SI
Sec. S11. The dark count rate adds uncertainty to the retrieval. Without
dark rate (𝐼b = 0), the method is able to retrieve the correct parameters
of the FRET distribution with smaller error than for 𝐼b = 2 (see SI
Fig. S44 and Fig. S45), and the retrieval is possible for intensities as
small as 𝐼d = 32 and mean FRET rates of 0.5 and 0.9/ns. Conversely,
for large dark rate (𝐼b = 20), higher 𝐼d and 𝐼 f are required for retrieval,
see SI Fig. S47 and Fig. S48.

The dependence of the reconstruction and FRET parameter retrieval
errors on the image size is analysed in the SI Fig. S37. The systematic
errors of the mean FRET parameters are not significantly affected by the
number of pixels 𝑁s. The standard deviation, instead, scales as 1∕𝑁s,
which is steeper than the 1∕

√

𝑁s dependence expected for the shot
noise. We note that each pixel comes with its own concentration in 𝐒,
so that the number of photons per retrieved information is independent
of 𝑁s, as long as the number of spatial points is much larger than the
number of FRET parameters.

We have repeated the analysis in the case of negligible direct excita-
tion of the acceptor molecules, choosing 𝜅 = 0 in Eq. (9). Accordingly,
we do not include a pure acceptor component with dynamics 𝐓a in the
NMF. The corresponding increase in contrast and reduction in free pa-
rameters results in smaller errors of both reconstruction and retrieved
parameters, as shown in the SI Fig. S54 to Fig. S70. We also show the
ability of uFLIM-FRET to retrieve the FRET parameters and the DAP
spatial distribution in the presence of an additional component, such
as autofluorescence, in the SI Sec. S13. The method performs well even
in the presence of multiple autofluorescent species, such as bound and
unbound NADH and FAD, when taking data for additional excitation
and detection channels, as shown in the SI Sec. S14.

We have also considered the case of environmental conditions
which could alter the dynamics, such as a spatial dependent pH,
resulting in a modification of the unquenched donor dynamics similar
to a FRET process. By providing two donor and two acceptor dynamics,
corresponding to the end points of the pH dependence present in the
data (such dynamics could be extracted from uFLIM analysis), and
including a constrain given by a single spatially dependent environ-
mental parameter, we show in the SI Sec. S15 that such environment
effects can be disentangled from the FRET process and quantified by
the uFLIM-FRET method.

3.4. uFLIM-FRET application II: Analysis of experimental data

To show that uFLIM-FRET works well also with experimental data,
we analysed FLIM-FRET in vivo experiments using the data published
in Smith et al. (2019), where four Matrigel plugs containing different
donor (AF700)-acceptor (AF750) ratios (ROI1: D:A = 1:0, ROI2: D:A =
1:1, ROI3: D:A = 1:2, ROI4: D:A = 1:3) are implanted subcutaneously
into a mouse and imaged (Smith et al., 2019; Sinsuebphon et al., 2018).
Only one channel, centred at the donor emission, has been acquired
in the FLIM measurements. In the analysis, the data of the regions
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Fig. 6. Results of uFLIM-FRET for synthetic data generated using �̄�s = 0.5/ns, 𝜎s = 0.5, 𝑞s = 1, 𝐼b = 2 and 𝜅 = 1. The three columns refer to different intensities, as indicated on
the top. Top row: the time summed data 𝐒f = 𝑁t �̄�, on a linear grey scale from a minimum 𝑚 (black) to a maximum 𝑀 (white) as indicated. The second to fourth rows show
the retrieved spatial distributions of the donor 𝐒d, acceptor 𝐒a, and FRET 𝐒f . Here 𝑚 = 0, and 𝑎 is the average pixel value over the image. The bottom panels show the ground
truth dynamics of donor 𝐓d (black), acceptor 𝐓a (green), and DAPs undergoing FRET 𝐓f (blue), with the retrieved FRET dynamics given as red dashed lines. The signals acquired
at the donor (acceptor) detector are given in the top (bottom) panel, respectively. The dynamics are normalized to have a sum of unity over the 2000 temporal points of both
detectors. The retrieved FRET rate distribution parameters are �̄�r = (480.52 ± 0.03)∕μs, 𝜎r = 0.0732 ± 0.0013 and 𝑞r = 0.98143 ± 0.00007 for the first column, �̄�r = (502.55 ± 0.39)∕μs,
𝜎r = 0.5201 ± 0.0019 and 𝑞r = 0.99961 ± 0.00006 for the second column, and �̄�r = (499.72 ± 0.11)∕μs, 𝜎r = 0.499 ± 0.00055, and 𝑞r = 1.00042 ± 0.00002 for the third column. The errors
given are the uncertainty of the minimum position of the second order polynomial fit to the reconstruction error (see Fig. 5).
corresponding to the four Matrigel plugs were used. Before performing
the uFLIM-FRET, we compensated for the possible pixel-dependent
variation of the laser pulse arrival time. For each pixel, we defined
9

the pulse arrival time as the time when the measured intensity is half
of the maximum recorded signal. To align the time axis, data were
interpolated, and we used linear extrapolation to take into account
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Fig. 7. Results of the uFLIM-FRET analysis on data from Smith et al. (2019). The
different Matrigel plugs contain different donor–acceptor ratios (ROI1: D:A = 1:0, ROI2:
D:A = 1:1, ROI3: D:A = 1:2, ROI4: D:A = 1:3). (a) Spatial distribution of the quenched
donor fraction 𝑓 f in the different ROIs. (b) Histograms of 𝑓 f measured in the four
ROIs. c) Dynamics of the uFLIM-FRET components for the unquenched (𝐓d, black) and
quenched (𝐓f , red) donor.

the truncated dynamics. Only data with a delay larger than −0.22 ns
were used to limit the contribution of the signal at negative time
delays.

After these pre-processing steps, we have used the pixels in the
Matrigel region with D:A = 1:0 (ROI1) to obtain the dynamics of
the free donor applying uFLIM with one component. The data were
temporally binned (𝑡b = 0.04ns and 𝑟b = 0.05) to improve the single
pixel signal-to-noise ratio and reduce computational time. We note that
such a temporal binning step might be useful also for other analysis
methodologies. uFLIM-FRET was then used to estimate the distribution
of the DAP undergoing FRET, including all pixels in the four ROIs. Since
the data were acquired using only a single channel resonant with the
donor emission, and the acceptor bleed-through was not characterized,
we have performed our analysis assuming 𝑅a = 1 and 𝜅 = 0 and
searching for the combination of �̄� and 𝜎 minimizing the NMF error. We
did not apply partial whitening as the noise in the data did not show a
significant intensity dependence, which may be due to dominating read
noise or other classical noise.

Fig. 7 shows the results of the uFLIM-FRET analysis. The retrieved
FRET rate distribution has a mean rate �̄� of about 1.2GHz with a
negligible width (𝜎 ∼ 0). We calculated the fraction of photons emitted
by the donor undergoing FRET as point-wise 𝑓 f = 𝐒f∕

(

𝐒d + 𝐒f
)

. The
spatial distribution of 𝑓 f is shown in Fig. 7a. The different ROIs present
rather uniform values of 𝑓 f quantified by the histograms in Fig. 7b.
The retrieved dynamics of the unquenched (𝐓d) and quenched (𝐓f )
donor ( Fig. 7c) show approximately mono-exponential decays with
lifetimes of 1.05 ns and 0.425 ns, respectively. Our results are consistent
with least-square fitting and deep-learning approaches (see SI of Smith
et al. (2019)). Importantly, uFLIM-FRET retrieves a more uniform
distribution of 𝑓 f in the different ROIs (narrower histograms), which
is closer to the uniform distribution expected from the experiment.

Additional unknown fluorescence components, such as autofluores-
cence, can be included in uFLIM-FRET, as we demonstrate here using
FLIM-FRET experiments reported in Long et al. (2017) on Arabidop-
sis roots co-expressing two tagged interacting transcription factors,
SHORT-ROOT (SHR) and SCARECROW (SCR). The levels of both pro-
teins are elevated in the endodermis controlled by the SCR promoter
10
Fig. 8. uFLIM-FRET analysis of pSCR expressed SCR and SHR in the Arabidopsis
root endodermis. The images show the distribution of the three components used
in the uFLIM-FRET analysis on a greyscale as in Fig. 4 with 𝑚 = 0. Red: donor
(pSCR::SCR:YFP), green: autofluorescence, Blue: DAP. The corresponding dynamics 𝐓d

(red), 𝐓f (blue), and 𝐓u (green) are shown in the graph.

(pSCR). The SCR factor is tagged with YFP acting as donor, while
the SHR protein is tagged with the RFP acting as acceptor. Only one
channel, centred at the donor emission, has been acquired in the
FLIM measurements. The data were binned both spatially (2 × 2)
and temporally (𝑡b = 100ps, 𝑟b = 0). We used uFLIM on images
of roots expressing only pSCR::SCR:YFP to retrieve the donor (𝐓d)
and autofluorescence (𝐓u) dynamics. Using these dynamics, we have
applied uFLIM-FRET on data from roots co-expressing pSCR::SCR:YFP
and pSCR::RFP:SHR, using 𝑟b = 0.1, and the time zero was set to the
peak of the autofluorescence component. Since only the donor was
measured, we used 𝑅𝑑 = 1 and 𝑅𝑎 = 0 and the FRET dynamics
simplified to

𝐓f (�̄� , 𝜎) = ∫ 𝑃 (𝛾; �̄� , 𝜎)�̃�d(𝛾)𝑑𝛾 . (19)

Fig. 8 shows the results of uFLIM-FRET, yielding �̄�r = 0.57∕ns and
𝜎r ∼ 0. This corresponds to a quenched donor decay time of 𝜏f =
𝜏d∕(1+ �̄�r𝜏d) = 1.2ns and a FRET efficiency of 𝐸 = 1−(�̄�r𝜏d+1)−1 = 0.66,
where a donor lifetime of 𝜏d = 3.57ns has been estimated from the first
moment of 𝐓d.

The analysis reveals an accumulation of DAPs in the endodermis of
the root, where both donor and acceptor are expressed, in line with the
reported single-pixel lifetime analysis of Long et al. (2017) (see also
the distribution of the retrieved average lifetime in the SI Sec. S16).
The computational time was about 2 μs/pixel for a single iteration
performed by a single CPU core, and some 700 iterations were used
to find the parameters that minimize the error. With our CPU, the total
analysis time was about 10 s, including fitting. The computational time
can be significantly reduced if a GPU is used, allowing more parallel
calculations. As with the synthetic data, using the gradient descent
minimizing the KLD instead of fast NMF does not lead to significant
changes in the parameters (�̄�r = 0.47∕ns and 𝜎r ∼ 0, see SI Fig. S81).

4. Conclusion

We have demonstrated a data analysis method, which we call
uFLIM, to analyse FLIM data in an unsupervised way. It employs a
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fast non-negative factorization algorithm on partially whitened data
to infer the emission dynamics and the spatial distribution of emitting
molecules. The method offers several advantages compared to other ap-
proaches in the analysis of FLIM data available in the literature. Firstly,
it does not make assumptions on the shape of the dynamics, which is
instead the starting point of standard fitting techniques. Secondly, the
algorithm does not require reference patterns, which are the component
dynamics, as input. It can unmix spectrally resolved FLIM images where
several spectrally overlapping fluorescing probes are present, extending
the multiplexing capabilities of FLIM. Furthermore, the method uses a
fast NMF algorithm, capable of analysing data in real-time on desktop
computers. This speed comes with an approximate treatment of the
noise in the data, but we have verified that the resulting systematic
errors in the retrieval are not significant by comparing with a gradient
descent algorithm that uses the exact noise model of the data, at the
cost of orders of magnitude longer computational time.

Based on uFLIM, we developed uFLIM-FRET, which extracts FRET
rates and spatial distributions. Here, the individual donor (and acceptor
if detected) emission dynamics, which can be determined by uFLIM, are
used to calculate the DAP dynamics for a distribution of FRET rates.
uFLIM-FRET determines the values of the FRET distribution param-
eters which minimize the residual of the NMF, at the same time as
determining the spatial distribution of donor, acceptor, and DAPs. The
distribution parameters characterize the fluctuations in the separation
and orientation of the donor and acceptor in the DAP, going beyond
the approximation of a single FRET rate. Additional known or unknown
components can be added to the retrieval. uFLIM-FRET can estimate the
FRET parameters even in the presence of unknown autofluorescence.
The method can be adapted to retrieve donor, acceptor, and DAP dy-
namics without separate donor and acceptor data. Generally, the more
information is available, the more parameters can be retrieved. The
precision of retrieval depends on the corresponding effect on the data
– the larger the difference between, for example, donor, acceptor, and
FRET dynamics over the detected channels, the higher the precision.

Both uFLIM and uFLIM-FRET have been demonstrated on synthetic
data with known ground truth and realistic photon shot-noise, as well
as on experimental data taken from a range of applications, showing
its wide suitability and performance. FRET could be retrieved even
in presence of spatially varying donor and acceptor lifetimes due to
e.g. pH dependencies, and in the presence of strong autofluorescence
with multiple components, such as bound and free FAD and NADH.

Notably, the method also offers the possibility to compress the data
of FLIM experiments into the spatial distributions of few components,
which facilitates the usage of FLIM-FRET as a high-throughput tool for
cell biology.

In order to enable widespread adoption of uFLIM-FRET as a method
of choice to analyse FLIM data, the corresponding software is provided
(http://langsrv.astro.cf.ac.uk/uFLIM/uFLIM.html). Information on the
data underpinning the results presented here, including how to ac-
cess them, can be found in the Cardiff University data catalogue at
http://doi.org/10.17035/d.2020.0115661402.
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