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An Order Statistics Post-Mortem on LIGO–Virgo GWTC-2
Events Analyzed with Nested Sampling

Talya Klinger* and Michalis Agathos

The data analysis carried out by the LIGO–Virgo collaboration on
gravitational-wave events utilizes nested sampling to compute Bayesian
evidences and posterior distributions for inferring the source properties of
compact binaries. With poor sampling from the constrained prior, nested
sampling algorithms may misbehave and fail to sample the posterior
distribution faithfully. Fowlie et al. (2020) outlines a method of validating the
performance of nested sampling, or identifying pathologies such as plateaus
in the parameter space, using likelihood insertion order statistics. Here, this
method is applied to nested sampling analyses of all events in the first and
second gravitational wave transient catalogs (GWTC-1 and GWTC-2) of the
LIGO–Virgo collaboration. The insertion order statistics are tested for
uniformity across 45 events in the catalog and it is found that, with a few
exceptions that have negligible effect on the final posteriors, the data from the
analysis of events in the catalog is consistent with unbiased prior sampling.
There is, however, weak evidence against uniformity at the catalog-level
meta-test, yielding a Kolmogorov–Smirnov meta-p-value of 1.44 × 10−3.

1. Introduction

Since the first direct detection of gravitational waves (GWs) in
2015,[1] the LIGO–Virgo collaboration (LVC) has published the
detection of tens of GW signals emitted by coalescing black-
hole and neutron-star binaries, in the three observing runs car-
ried out so far (O1, O2, and O3).[2–4] In gravitational-wave data
analysis, parameter estimation is the process of inferring the
source properties of signals which have already been identified as

T. Klinger
Cardiff University School of Physics and Astronomy
5 The Parade, Newport Road, Cardiff CF24 3AA, UK
E-mail: talyaklinger@gmail.com
M. Agathos
DAMTP
Centre for Mathematical Sciences
University of Cambridge
Wilberforce Road, Cambridge CB3 0WA, UK
M. Agathos
Kavli Institute for Cosmology Cambridge
Madingley Road, Cambridge CB3 0HA, UK

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/andp.202200271

© 2022 The Authors. Annalen der Physik published by Wiley-VCH
GmbH. This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/andp.202200271

gravitational waves produced by com-
pact binaries. Bayesian inference meth-
ods are employed to fit waveformmodels
to data, using algorithms designed for ef-
ficiently sampling high-dimensional pa-
rameter spaces. One such algorithm is
nested sampling, a method for efficiently
computing Bayesian evidences as well as
posterior probability distributions, intro-
duced by Skilling in 2006[5] (for a review,
see ref. [6]). Here, we use a new method
of statistically verifying nested sampling
output, the insertion order cross-check
developed by Fowlie et al.,[7] to test for
biased nested sampling in the LVC’s
gravitational-wave data analysis.
The LVC uses nested sampling along-

sideMarkov ChainMonte Carlo (MCMC)
and occasionally RIFT[8] to obtain pos-
terior distributions in parameter esti-
mation. These algorithms serve nec-
essary and complementary purposes.

While the LVC’s implementation of MCMC converges faster
for signals with long inspiral times, and RIFT allows for di-
rect comparison to numerical relativity, they do not directly
compute evidence, delivering only the normalized posterior
and requiring further statistical calculations to estimate the ev-
idence, introducing significant statistical errors. Nested sam-
pling computes the evidence directly, allowing for greater
accuracy.
In the LSC algorithm library (LAL), nested sampling was orig-

inally implemented in the LALInference package.[9,10] During the
third observing run (O3), the LVC (now LVK) Collaboration grad-
ually shifted its main data analysis pipelines to a newer Bayesian
inference library bilby,[11] a Python-based modular code which
combines LAL’s libraries for data infrastructure and waveform
modeling with third-party nested samplers. The insertion order
cross-check defined later in this paper has already been imple-
mented in many bilby samplers, including CPNest,[12] nessai,[13]

and UltraNest.[14] However, the first two observing runs, O1 and
O2, and the first half of the third observing run, O3a, were ana-
lyzed using LALInference alone. In this work, we utilize the inser-
tion order cross-check to perform a post-mortem analysis on all
nested sampling output for GW events in O1, O2, and O3a, eval-
uating the validity of parameter estimation results for the LVC’s
event catalogs GWTC-1 and GWTC-2.[15]

This article is structured as follows. In Section 2 we briefly
describe the nested sampling algorithm and the insertion order
statistics we use to estimate the validity of the LVC analyses. We
then describe our implementation for the parameter-estimation
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dataset output by LALInference in Section 4 and present the re-
sults on the GW events in Section 5. Concluding remarks are
given in Section 6.

2. Insertion Order Statistics in Nested Sampling

2.1. Nested Sampling

For a given GW event associated with the coalescence of a com-
pact binary, we can describe its source properties by a parame-
ter vector 𝜃 ∈ Θ, where Θ denotes the corresponding parameter
space, including the mass and spin of each component, the dis-
tance to the source, its sky-location and orientation angles, time,
and phase of coalescence, as well as any additional parameters
relating to matter properties in case of a neutron star, orbital ec-
centricity, etc. Given the observed data D, our aim is to infer the
parameters 𝜃 of the source, i.e. estimate the posterior distribu-
tion P(𝜃|D,) under the assumption that our background infor-
mation  about the nature of the source, the behavior of our de-
tectors and the validity of GR as the underlying theory is correct.
In Bayesian statistics, this amounts to updating our prior ex-

pectations quantified by P(𝜃|) by making appropriate use of
Bayes’ theorem

P(D|𝜃,) × P(𝜃|) = P(D|) × P(𝜃|D,) (1)

L(𝜃) × 𝜋(𝜃) d𝜃 = Z × p(𝜃) d𝜃

L(𝜃) = P(D|𝜃,), known as the likelihood function, and 𝜋(𝜃) =
P(𝜃|), the prior, give the desired quantities Z = P(D|), the evi-
dence and p = P(𝜃|D,), the posterior. Computing the likelihood
function (the probability density for observing data D, given the
model and the true values of the parameters) requires models
for both the detector signal and noise—in LIGO’s case, LALSim-
ulation can generate a waveform model for the signal, while the
noise for each detector is assumed to be Gaussian and is charac-
terized by a power spectral density (PSD) which is pre-estimated
based on a stretch of data around the time of the event.[15] Infor-
mation from all detectors in operation is combined into a coher-
ent network likelihood which is the product of individual detec-
tor likelihoods.[10] The task of efficiently sampling the parameter
space to map the likelihood function, is carried out by the nested
sampling algorithm.
The evidence Z—the probability of observing the measured

data, given the model—is defined as

Z = ∫ L(𝜃)𝜋(𝜃)d𝜃 (2)

This is an important quantity in Bayesian data analysis, as
the evidences produced by different models can be directly com-
pared. Hence, the evidence can be used to rank competing hy-
potheses and quantify how much a given model is supported by
the data. dX = 𝜋(𝜃)d𝜃 is known as the element of prior mass. If
the prior mass contained by a likelihood contour

X(𝜆) = ∫L(𝜃)>𝜆
𝜋(𝜃)d𝜃 (3)

is known, the evidence can be written as a 1D integral,

Z = ∫
1

0
L(X)dX (4)

which is more computationally manageable than integrating
across a high-dimensional parameter space Θ.
Nested sampling is a method for computing evidence that

takes advantage of this formulation, relying on the statistical
properties of prior sampling to provide a fast and accurate es-
timate of the prior mass at each integration step.

2.2. Summary of the Nested Sampling Algorithm

Nested sampling relies on sampling from the constrained prior:
points from the prior with likelihood higher than some mini-
mum value. As points from the constrained prior are sampled
and discarded throughout the algorithm, the samples used at
each step are called live points.
The nested sampling algorithm proceeds as follows:

1. Choose the number of live points nlive and sample nlive ini-
tial points from the constrained prior. Also, set an evidence
threshold 𝜖.

2. Identify the live point with the lowest likelihood L∗i . Discard
the live point and record its likelihood.

3. Sample a new live point from 𝜋(𝜃) with L > L∗i . At this stage,
the prior volume compresses exponentially, giving prior vol-
ume Xi ≈ exp(−1∕nlive) on the ith step (the proof is nontrivial,
see ref. [5]).

4. Integrate the evidence Zi using L
∗
i and Xi.

5. Repeat steps (2)–(4) until a stopping condition is reached:
LmaxXi∕Zi < e𝜖 , where Lmax is the highest likelihood discov-
ered so far, Xi is the prior volume inside the current iso-
likelihood contour L∗i , and Zi is the current estimate of the
evidence. For LALInference, 𝜖 = 0.1; essentially, if all the live
points were to have the maximum discovered likelihood, the
evidence would only change by a factor of less than 0.1.[10]

Nested sampling requires faithful sampling from the con-
strained prior to produce accurate evidences and posteriors. In
practice, sampling from the entire prior and accepting only
points with high enough likelihood is impractically slow, be-
cause the volume of acceptable points decreases exponentially
in time. So, most implementations of nested sampling sample
from a restricted region of parameter space drawn around the
live points. LALInference, in particular, generates samples by an
MCMC chain from a randomly chosen previous livepoint, and
choosing the length of the MCMC chain is a tradeoff between
speed and accuracy.[10]

If the restricted region is too small or the MCMC chains too
short, the constrained prior may not fully cover the iso-likelihood
contour, violating the fundamental assumptions of nested sam-
pling. Plateaus—regions of constant L(𝜃)—also violate the as-
sumptions of nested sampling, causing live points to be nonuni-
formly distributed in X .

2.3. Insertion Order Crosscheck

The insertion index is the position where an element must be
inserted in a sorted list to preserve order. More concretely, if x is
a sorted list and there exists a sample y such that

xi−1 < y < xi (5)
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Figure 1. These illustrations depict likelihood insertion order plots from well-behaved (left) and pathological (right) nested sampling runs. In the first
plot, the points, each representing a likelihood insertion order, are evenly distributed throughout the plane. In the second plot, some regions are densely
populated with points or almost empty, associated with excessive sampling from a specific likelihood range. There is also a run of repeated indices,
resulting from a plateau in prior space.

the insertion index of y in list x is i.[7] For example, in the list
(1 3 5 7 9), y = 4 would have an insertion index of 3.
Fowlie et al.[7] noted that, if the assumptions of nested sam-

pling are met, the insertion index of new live points into the list
of likelihoods of current live points should follow a uniform dis-
tribution; that is, new live points should have an arbitrary likeli-
hood, only constrained to be higher than the lowest likelihood.
The prior mass enclosed by a certain likelihood decreases mono-
tonically as that likelihood increases, so sorting live points by like-
lihood is equivalent to sorting by prior mass.
Therefore, nonuniformity of likelihood insertion indices

serves as an early warning for any irregularities in sampling the
prior. For example, a likelihood plateau in the parameter space
results in a stretch of repeated indices. Such a problem would
be visible in plots of the likelihood insertion index or detectable
with statistical tests of uniformity. Figure 1 illustrates what such
nonuniformities might look like in a plot of insertion order.
For our purposes, the insertion order cross-check is the sim-

plest and most flexible method for verifying nested sampling.
Buchner’s “shrinkage test” is limited to toy likelihood func-
tions with certain analytic properties, and is designed for con-
strained prior sampling using regions (such as ellipsoids) rather
than LALInferenceNest’s MCMC steps.[16] The diagnostic meth-
ods implemented in Nestcheck[17] are more applicable to LIGO
parameter estimation, but they require multiple runs. One of the
strengths of the insertion order crosscheck is that it can provide
useful information on any scale, from an individual chain to an
entire observing run.

3. Gravitational Wave Data

During the first three observing runs, two LIGO detectors (LIGO
Hanford, LIGO Livingston) and the Virgo detector participated
in the network. During O1, only the two LIGO detectors were op-
erating, with Virgo beginning operation in August of 2017 dur-
ing O2. In this work, we analyze 45 events in total, which were
observed by two or more detectors as listed in Table 1 (with the
exception of one single-detector event GW190424A). In all three
observing runs, the data used is sampled at 4096 Hz for all de-
tectors, with a low frequency between 20 and 30 Hz, and upper

frequency determined by the Nyquist frequency. The noise PSDs
are calculated using either off-source data (LALInference) or on-
source data (BayesWave) methods, while several calibration and
data-cleaning methods were employed; these techniques are de-
scribed in detail in refs. [15, 18, 19]. To account for possible mis-
calibration in the instruments, calibration errors were marginal-
ized over, following the uncertainty envelopes in amplitude and
phase provided by the data quality team.

3.1. First Observing Run (O1)

In the first observing run, O1, extending from 12 September
2015 to 19 January 2016, three GW events were detected with
high confidence, all of which were identified as signals from the
coalescence of binary black holes (BBH): GW150914 (the first
gravitational-wave detection), GW151012, and GW151226. For
the catalog paper,[18] all O1 events were analyzed using two wave-
form models: IMRPhenomPv2,[20] a phenomenological model
calibrated to numerical relativity for gravitational waves frompre-
cessing BBH binaries, and SEOBNRv4, a model based on the ef-
fective one-body formalism.[21] We have analyzed the nested sam-
pling results of all three events in O1.

3.2. Second Observing Run (O2)

O2 includes seven more BBH mergers and one binary neutron
star (BNS) merger, all observed between 30 November 2016 and
25 August 2017. Some significant milestones from O2 are the
first BNS event, GW170817, and the first GW signal to be de-
tected by both LIGO interferometers and the Virgo interferom-
eter, GW170814. The O2 events were also analyzed using IMR-
PhenomPv2 and SEOBNRv4, with a few exceptions. GW170729
was also analyzed with IMRPhenomD (a model similar to IM-
RPhenomPv2 for spinning but nonprecessing binaries), and
GW170809was analyzed using IMRPhenomDandmultiple runs
of IMRPhenomPv2 with different priors. The events from O1
and O2 together formed the first GW transient catalog GWTC-
1, the results of which are detailed in ref. [19]. Our data cross-
check includes all available output files for the primary nested
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Table 1. Event-level meta-p values for each event in chronological order,
together with the set of interferometric detectors (IFOs) that participated
in the detection, the number of chain files per event, and number of live
points used in the analysis.

Event IFOs #chains Nlive Meta p-value

GW150914 HL 12 2048 0.2953

GW151012 HL 12 1024 0.0973

GW151226 HL 12 2048 0.0973

GW170104 HL 12 1024 0.1047

GW170608 HL 12 1024 0.0333

GW170729 HLV 20 2048 0.2519

GW170809 HLV 32 2048 0.0212

GW170814 HLV 26 2048 0.1603

GW170818 HLV 16 1024 0.1419

GW170823 HL 18 2048 0.0317

GW190408A HLV 4 2048 0.5709

GW190412A HLV 4 2048 0.8341

GW190413A HLV 4 2048 0.4058

GW190413A HLV 4 2048 0.0387

GW190421A HL 8 2048 0.2037

GW190424A L 4 2048 0.3008

GW190503A HLV 4 2048 0.1350

GW190512A HLV 4 2048 0.2218

GW190513A HLV 16 2048 0.4650

GW190514A HL 4 2048 0.2093

GW190517A HLV 4 2048 0.5249

GW190519A HLV 4 2048 0.6515

GW190521A HL 4 2048 0.3208

GW190521B HLV 4 2048 0.6330

GW190527A HL 4 2048 0.0330

GW190602A HLV 4 2048 0.9461

GW190620A LV 4 2048 0.0321

GW190630A LV 4 2048 0.5345

GW190701A HLV 4 2048 0.0849

GW190706A HLV 7 2048 0.1111

GW190707A HL 4 2048 0.3056

GW190708A LV 4 2048 0.1964

GW190719A HL 4 2048 0.1297

GW190720A HLV 4 2048 0.1349

GW190727A HLV 4 2048 0.3458

GW190728A HLV 4 2048 0.7932

GW190731A HL 4 2048 0.4246

GW190803A HLV 4 2048 0.8563

GW190828A HLV 5 2048 0.1731

GW190828B HLV 4 2048 0.5201

GW190909A HL 4 2048 0.1586

GW190910A LV 4 2048 0.4375

GW190915A HLV 4 2048 0.6632

GW190929A HLV 4 2048 0.6984

GW190930A HL 4 2048 0.1731

sampling runs of the ten binary black hole mergers. We omit
the binary neutron star merger since it was not analyzed with
nested sampling.

3.3. First Half of Third Observing Run (O3a)

The next upgrade to the instrumentation of both LIGO detectors
and Virgo further improved their sensitivity, increasing the dis-
tance reach and thus the event detection rate of the three-detector
network. In O3a, the first half of the third observing run between
1April 2019 and 1October 2019, 39 newGWevents were detected
with high confidence, of which we include 35 events analyzed
with LALInferenceNest in this analysis. Among the most interest-
ing events in O3a are a couple of highly asymmetric (in mass)
compact binaries, the first black-hole—neutron-star binary can-
didates and the most massive black-hole binary observed to date,
reaching a total mass of ≈ 150M

⊙
. Several different waveform

models were employed in the analyses of these events, especially
for the oneswhosemass ratio was found to be highly asymmetric,
as well as some that showed weak signs of spin-induced preces-
sion. Both phenomenological (IMRPhenom) and effective-one-
body (SEOBNR) models were used in all cases; however, here we
focus on the nested sampling analyses that used IMRPhenomPv2
as the underlying waveform model, a set-up that is used in the
analyses of almost all O3a events. Further details about the data,
the detection statistics and the properties of all O3a events can be
found in ref. [15]. The events from O3a, together with the ones
from O1 and O2, form the second gravitational wave transient
catalog, GWTC-2.[22,23]

4. Implementation

4.1. Data Parsing

The likelihood insertion indices defined in Section 2.3 can be
computed either from the nested sampling iteration i and like-
lihood, or birth and death contours (initial and final likelihood),
of each point. LALInference stores both the contours and the like-
lihoods themselves, but this information is distributed across two
different types of output files. Log files contain the nested sam-
pling iteration i, birth and death contours, and likelihood of each
point. Since the likelihood is stored to higher precision than the
birth and death contours, we use the likelihood and iteration to
compute insertion indices. However, the initial pool of Nlive (typ-
ically 1024 or 2048) points is missing from the log files, so it is
impossible to compute the insertion indices of early live points
from the logs alone.
On the other hand, the main data product of LALInferenceNest,

the chain files, contain the initial live points but not the nested
sampling iteration, making it impossible to compute insertion
order from these files alone. Whenever possible, we match each
log file with the associated chain file to find the initial live points,
then replay the algorithmic process to compute the insertion in-
dices exactly. In the absence of a match, we attempt to mini-
mize the effect of the missing initialNlive live points by removing
the first 5 × Nlive points from our reconstructed chain (a cutoff
which removed missing-point effects from insertion order plots
effectively), then compute the insertion indices for the remain-
ing points.
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Log files have less strict I/O specifications than chain files and
occasionally have some duplicate blocks of points, resulting from
resubmitted jobs. When this is the case, we identify and remove
the older duplicate live points.

4.2. Measuring Uniformity

To interpret the computed insertion order statistics, we must
measure how uniformly they are distributed between 1 and Nlive.
Several statistical tests exist to determine whether two (or more)
samples are drawn from the same underlying probability distri-
bution, or compare a sample to a reference probability distribu-
tion. In particular, we use the Kolmogorov–Smirnov (KS) test,[24]

as implemented in scipy.[25]

The KS test measures the distance between two cumula-
tive distribution functions (CDFs). More precisely, for empiri-
cal CDF Fdata(x) and CDF of the uniform distribution FU, the
Kolmogorov–Smirnov statistic is defined as

Dn = sup
x

|Fdata(x) − FU(x)| (6)

The KS test produces a test statistic between 0 and 1, with
higher values corresponding to more distinct distributions. The
KS statistic is independent of the number of samples, so the
number of samples must be taken into account separately when
interpreting the test results.
In the context of hypothesis testing, the p-value of a measure-

ment or test statistic x is the probability of obtaining the ob-
served value, or a more extreme value (for uniformity testing, a
test statistic associated with a larger difference between the two
distributions), assuming that the null hypothesis is correct. The
KS test can be converted to p-values through the Kolmogorov–
Smirnov distribution, which associates probabilities with test re-
sults for the hypothesis that two samples are drawn from differ-
ent distributions. In cases where nested sampling has proceeded
correctly, the insertion order distribution is uniform and the null
hypothesis is true, leading to a uniform distribution of p-values
over different runs. In isolation, small p-values do not necessar-
ily mean that an entire nested sampling run is compromised, but
if small p-values predominate, that could be a sign of systematic
problems.
A seemingly insignificant subtlety that turns out to be impor-

tant is that the standard KS test implementation is designed for
comparing distributions of continuous variables; however, in this
case our insertion order data is discrete.[14] The impact of this ef-
fect is discussed in Section 5. There are two ways of resolving
the problem: we can either transform the data into an equivalent
continuous distribution ranging in [1, Nlive + 1) by adding a ran-
dom number in [0, 1) to each insertion index (which will respect
uniformity if the underlying discrete distribution is uniform); or
we can implement a discrete version of the KS test or variations
thereof, as described in refs. [26, 27]. For simplicity, we have cho-
sen to do the former.

4.3. Performing Insertion Order Crosscheck

LALinference is heavily parallelized, with each event’s nested sam-
pling analysis split into several parallel chains. The top and bot-

tom panels of Figure 2 showcase two examples of the inser-
tion order distribution of single chains, one very uniform, one
less so.
For each event, we compute insertion orders and KS statistics

over each individual chain. To assess the overall quality of nested
sampling in each event, we perform a KS test on the combined
insertion orders from all parallel chains which we will refer to as
the “event-level meta test”.
In each chain, we also perform “rolling tests”: a series of tests

on each sequential stretch of 2 × Nlive points. An example rolling
test is shown in Figure 4. These rolling test values can be used to
examine and compare the severity of local anomalies. In particu-
lar, we report the minimum p-value from all rolling tests of each
event. To assess the uniformity of the entire GWTC-1 andGWTC-
2 dataset, we perform a final KS test on the KS p-values from each
individual rolling test, known as the “catalog-level meta test.”

5. Results

We perform the nested sampling replay on each chain and recon-
struct the insertion index data for each event in Table 1. We first
perform rolling KS tests for each chain and verify that none of
the individual chains shows significant bias in its insertion order
statistics. For each one of the events we then pool together the
insertion indices from all parallel chains and perform a single
event-level KS test by calculating the KS-statistic for that event
and the corresponding p-value. The p-values for all the events an-
alyzed are given in Table 1. We find a seemingly healthy distribu-
tion that spans the entire range between 0 and 1, whose unifor-
mity we will examine with a higher level meta-p-value test for the
entire catalog of events.
Before describing the final catalog-level results, let us first dis-

cuss the impact of two subtle effects that we introduced in Sec-
tion 4: the effect of the discrete nature of the insertion index and
its “continuification;” the effect of missing data and our recov-
ery process.
Although the insertion index is a discrete variable, it is plau-

sible to assume that its wide range (Nlive is typically 2048) effec-
tively makes it continuous in practice. However, due to the very
large number of data points, from the perspective of a KS test the
underlying discreteness is significant. The KS statistic tests uni-
formity by measuring the maximum deviation of the empirical
CDF from the diagonal. The empirical CDF of any discrete vari-
able will inevitably have a staircase-like structure, and the ability
of the KS test to discern this deviation from uniformity depends
on the range of the discrete variable (Nlive ≈ O(103)) and the sam-
ple size. For large sample sizes (here O(105)), the discreteness
has a significant impact, as our results demonstrate. When treat-
ing the insertion index as a continuous variable, without trans-
forming it to one, we found a clear deficit at high p-values, with
no event in the range [0.8,1.0] and a very high excess in the low
p-value range [0,0.2]. Accounting for the discrete nature of the
variable remedies this bias to a large extent.
Next, we examine whether our attempt of correcting for miss-

ing data, either in the initial Nlive points or in mid-run, has a
significant effect on the overall insertion order statistics. On a
per-chain basis, the removal of 5 × Nlive samples on either side
of the gap seems to suppress the bias completely (even for a
small number of missing chain points, the chain-level p-value is
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Figure 2. Top: example of the insertion order distribution from a single chain from GW150914 analyzed with IMRPhenomPv2. The flat distribution of
insertion indices is typical for our dataset, and indicates that no major errors in prior sampling occurred in this chain. Bottom: a less uniform-looking
example of a single chain from GW170823 analyzed with SEOBNRv4. The histogram shows one very frequent value, potentially indicating a plateau.
However, in this case, the fluctuations are most likely due to the small-sample statistics of this shorter chain. The deviation from uniformity can be
quantified using the KS-statistic and the significance of such a deviation can be assessed by calculating the corresponding p-value, which takes into
account the sample size.

typically corrected by several orders ofmagnitude, back toO(0.1)).
However, the catalog-wide statistics point in a different direction:
in the population of all chains in the catalog, a residual bias re-
mains. The size of this effect can be estimated by completely re-
moving all chains that had missing data from the catalog-level
analysis. Although these make up a small fraction of the total
number of chains, we find that their removal leads to a system-
atic improvement of themeta-p-value by a factor of≈4. A possible
compromise would be to increase the number of points we trun-
cate around missing data, however this in practice would render
the heavily truncated chains virtually uninformative.
Having removed all chainswithmissing data and having trans-

formed the insertion index to a continuous variable, we can now
perform the final meta-test at the catalog level. Figure 3 shows
the results of the event-level p-value test, each conducted over all
insertion index samples for each event, arranged in increasing or-
der of KS p-value. The event names and their test results are listed
in chronological order in Table 1. If the insertion order data were
uniform, the p-values would also follow a uniform distribution,
and the points in Figure 3 would fall along a straight line from 0
to 1. However, we still observe an excess of low p-values, particu-
larly among events from O1 and O2. A final test comparing the
meta p-values to the uniform distribution results in a KS p-value
of 1.44 × 10−3.
We also perform a meta-p-value test on the rolling test re-

sults. Figure 4 shows the distribution of all rolling test p-values.
The catalog-level meta-p-value, including all rolling tests and ad-
justed for the number, is 0.871, indicating no significant diver-
gence from the uniform distribution and an overall healthy per-
formance across all three runs.

Figure 3. Cumulative plot of the event-level meta p-values associated with
each event in the GWTC-1 and GWTC-2 dataset. Each point in this plot re-
sults from combining insertion orders of all chains from a single event and
performing a KS test. If all insertion order data were completely uniform,
the p-values would fall along a straight line from 0 to 1. The meta-p-value
for this distribution is 0.00144.

6. Conclusion

We examined the hypothesis that the nested sampling analyses
performed in GWTC-1 and GWTC-2 were well-behaved and un-
biased from an insertion order statistics perspective. The event-
levelmeta-p-values, shown in Figure 3 and listed in Table 1, follow
a slightly non-uniform distribution at p = 1.44 × 10−3. In particu-
lar, although no individual pathological case has been identified,
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Figure 4. Top: typical example of a KS-statistic sequence obtained from
rolling tests on data from GW190408, performed on chunks of 2 ×Nlive
points; data from each chain and log file is drawn in a different color. Bot-
tom: histogram showing the distribution of the p-values of all rolling tests,
conducted over all events and chains. Performing a catalog-level meta-test
to compare this distribution to uniformity, we obtain a KS p-value of 0.871.

Figure 3 shows that there is a slight excess of lower p-values, pro-
viding weak evidence for sampling misbehavior in nested sam-
pling. While the few O1 and O2 events tend to have lower meta
p-values, the events from O3a cover the entire range from 0 to 1.
This may indicate that, with updates to the sampling algorithms
and more computational resources, the quality of nested sam-
pling in LVC analysis is showing (weak) evidence of improvement
over time. In particular, increasing the number of live points and
the length of the MCMC chains used in prior sampling leads to
more uniform insertion order statistics and, in consequence, to
more reliable nested sampling output. The vast majority of the
posterior samples is collected toward the final stages of the sam-
pling, with dense exploration of the high-likelihood peak(s). So,
there is little reason to believe that weak signs of misbehavior at
random intervals on the chain could have a significant detrimen-
tal effect on the inference of the source parameters; however, they
could impact evidence estimation.
The distribution of rolling test results pictured in Figure 4 is far

more uniform than distribution of event-level meta test results,
which is skewed toward lower p-values. The apparent contradic-
tion between these results stems from the nature of the KS statis-
tic. The KS test measures the supremum of distances from uni-
formity, so it measures whether any fault exists anywhere, not the

average quality of sampling. While most individual segments are
essentially uniform, it is unlikely that there would be no anoma-
lies in multiple chains with tens of thousands of livepoints each.
p-value adjustment for multiple tests reduces the impact of this
effect, but does not eliminate it completely as long as the under-
lying distribution is nonuniform.
In combination, the rolling and meta tests indicate that sam-

pling proceeds correctly in most small, local segments, but most
events have at least one flaw in sampling somewhere. More-
over, we find that however tempting it is to make use of contin-
uous tests of uniformity (such as the Kolmogorov–Smirnov or
Anderson–Darling tests) without transforming discrete data, or
to try and recover partial results from chains with missing data
points, both of the above techniques lead to significant biases in
our statistical results.
The location and p-value of the minimum rolling test can be

used to identify and characterize these anomalous regions, and
in practice, the combination of multiple chains and the sup-
plementation of nested sampling with MCMC posteriors fur-
ther suppress their effects. Taking all complete parallel chains
into account, the overall results are consistent with unbiased
nested sampling.
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