
1. Introduction
Hurricane events generally pose a threat to the coastlines across the globe (e.g., Klotzbach et al., 2018; Peduzzi 
et al., 2012; Phillips et al., 2018). During such events, coastal drainage systems may be adversely affected by 
a combination of multiple hazards due to their destructive power of storm surge and intense rainfall. This is 
commonly referred to as a hydrological compound or multivariate event (Leonard et  al.,  2014; Moftakhari 
et al., 2017; Wahl et al., 2015; Zscheischler et al., 2020) and represents a combination of physical weather phenom-
ena that are spatiotemporally correlated (Gori et al., 2020). The simultaneous occurrence or co-occurrence of 
intense rainfall and storm tides can lead to or exacerbate the potential for compound flooding in low-lying coastal 
areas (e.g., Klotzbach et al., 2021). Understanding the probability of these compound events and the processes 
driving them is essential to mitigate the associated high-impact flood risks (Wahl et al., 2015).

Abstract A hurricane event can often produce both intense rainfall and a storm tide that can cause a major 
compound flooding threat to coastlines. This paper examined applications of multivariate copula-based time 
series models using data observed during Hurricane Irma (2017) along the coastlines of Florida, Georgia, and 
South Carolina, United States. Multivariate time series models were developed using bivariate copulas wherein 
storm tide and rainfall data were modeled using LOWESS-based autoregressive moving average (ARMA). 
n samples of observed data were then synthesized using a Monte Carlo approach in which the empirical 
copula and the parametric estimate of the copula were obtained to approximate two-sided p-values using the 
Rosenblatt probability integral transform method. Analysis suggested that proper selection of the underlying 
LOWESS-based ARMA model was the crucial aspect for modeling compound flooding wherein Archimedean, 
Elliptical, and Extreme Value copulas all offered consistent flexibility in terms of dependence modeling. As a 
backdrop to compound flood probabilities, this research also outlined both theoretical and applied frameworks 
for the calculation of non-exceedance probabilities in a multidimensional environment using classical 
isofrequency probability assumptions for the “AND” (a bivariate joint probability) and Survival Kendall 
definitions. Random realizations from storm copulas combined with multivariate non-exceedance probability 
definitions ultimately showed there were periods of temporal yet cyclical high intensities that lasted 1–2 hr. 
Lastly, a discussion is presented on the broader application of the proposed methodology within the field of 
engineering design and risk management which may serve as a catalyst for the continued research in compound 
flooding.

Plain Language Summary When a storm tide and intense rainfall simultaneously co-occur 
in coastal areas, the potential for flooding is often much greater than from either independent event. 
Understanding how to assess the probability of these compound events is important in planning for and 
managing flood risks in coastal communities. This study investigated the temporal dynamics of these two 
phenomena during a landfalling hurricane across the southeast United States using a multivariate copula-based 
time series model. The analysis revealed that storm tide dynamics were more accurately captured in the 
proposed model when compared to rainfall observations, although temporal rainfall was reasonably described 
by the model. This study highlights the temporal multivariate probabilistic approach needed to cope with 
compound flood risk assessment. All outcomes outlined herein are based on the theory of multivariate 
copula-based dependence models with three application sites that illustrated the proposed methods.
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Over the last two decades copulas have become a more popular tool to construct the joint distribution of a variety 
of hydrological extremes, such as intense rainfall (e.g., Salvadori & De Michele, 2006; Serinaldi & Kilsby, 2014), 
runoff/discharge (e.g., De Michele et al., 2005; Favre et al., 2004; Genest et al., 2007; Ghizzoni et al., 2010; 
Karmakar & Simonovic, 2009; Shiau et al., 2006; Volpi & Fiori, 2012), droughts (e.g., Aghakouchak, 2014; 
Kao & Govindaraju, 2010; Salvadori & De Michele, 2015; Serinaldi, 2016; Shiau, 2006), and tidal surge (e.g., 
Tu et al., 2018; Xu et al., 2014). These studies focused on applications of copulas to characterize the nature of a 
single hydrologic/hydraulic extreme event variable on an annual basis (i.e., block maxima).

There has been a recent attempt to redraw the attention on the application of copulas for compound flood events 
and the risk associated with a given return period. To name a few, Svensson and Jones  (2004) provided an 
early application of copulas theory to compound flood assessment when sea surge, river flow, and precipita-
tion co-occurred in the south and west Britain. Kew et al. (2013) applied copulas to the Rhine delta compound 
flooding events by exploring the joint occurrence of storm surge and extreme discharge. Concurrently, Zheng 
et al. (2013) quantified the dependence between extreme rainfall and storm surge in the coastal zone in Australia. 
Wahl et al. (2015) provided the first application of copulas theory to compound flood assessment across United 
States' coastlines where storm surge and extreme precipitation co-occurred simultaneously. The theoretical basis 
of copulas for compound flood assessment was strengthened by Salvadori et al. (2016) with an introduction to 
hazard scenarios, a probabilistic approach of multivariate occurrences, accounting for risk and failure. An excel-
lent application of Salvadori et al. (2016) is given by Moftakhari et al. (2019) with a bivariate copula study of 
joint return periods for stream flow and ocean water level for Newport Bay, CA. Compound flood heights were 
generated by considering a bivariate definition of the hazard scenarios where both streamflow and ocean water 
level are extreme (an “AND” scenario) or where at least one of those variables is extreme (an “OR” scenario). 
Gori et al. (2020) and Zhang and Wang (2021) are the latest applications of copulas for tropical storm-driven 
compound flood studies.

These applications yield success when the practitioner is interested in the likelihood of the joint occurrence 
of two (or more than two) extreme events defined by static point estimates (e.g., 10-year peak stage and 24-hr 
precipitation or 100-year extreme wave, intense rainfall, and storm surge). However, it might be difficult to justify 
these approaches in the case of hurricanes when the timing of coincident peaks and temporal interdependence 
throughout a compound flood event, particularly between rainfall and storm tide, is paramount and can signifi-
cantly affect the design of infrastructure in low-lying coastal areas. For example, coastal systems are dynamic in 
nature and require the use of unsteady hydrodynamic models, and therefore require dynamic boundary conditions 
(e.g., hourly rainfall and storm tide). When using dynamic coastal boundary conditions, there are unlimited 
choices on the timing of rainfall and storm tide, thus leaving engineers and planners to assume a “conservative” 
estimate for design. In many cases, designers may artificially set the rainfall hyetograph timing such that peak 
rainfall intensity occurs at high storm tide or mid storm tide rising. Although simple, and frequently used in infra-
structure design, could we consider the dynamic dependence between rainfall and storm tide to develop a multi-
variate probabilistically based design metrics for completing coastal hydrodynamic assessments? To answer this 
question and fill the knowledge gap, this research presents three case studies wherein multivariate copula-based 
models were developed to capture the multivariate temporal dependence of tidal-rainfall relationships observed 
during a landfalling hurricane in the southeast United States.

The objective of this paper is to present and use a multivariate copula-based dependence framework for a time 
series assessment that is suitable to deal with (a) temporal dependence between rainfall and storm tide at a single 
site during a landfalling hurricane and (b) the concept of multivariate non-exceedance probabilities such as 
“AND” (a bivariate joint probability) and Survival Kendall (SK) for assessing the temporal evolution of prob-
abilities observed during a hurricane event. Herein, we focused on applications of copulas for estimation of 
continuous joint marginals extended to the case in which each univariate marginal can be a mixture of an abso-
lutely continuous random variable and a discrete random variable, all of which were measured with hourly and/
or sub-hourly time scales from a singular hurricane event. It should be noted that due to the paucity of data, n 
samples of the hurricane data were synthesized using a Monte Carlo (MC) approach by randomly sampling sets 
of storm tide and rainfall time series.

This paper is organized as follows. The study region and data used in this research are described in Section 2. 
Methodology and mathematical structures of multivariate copula-based time series, parameter estimates, statis-
tical performance, and techniques for evaluating multivariate non-exceedance probabilities are outlined in 
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Section 3. Results are discussed in Section 4 using three applications with different study sites. A detailed discus-
sion and conclusion of the study, its potential use in flood risk management of coastal drainage systems, and 
critical guidelines to address limitations of the proposed methodology for use in evaluating coastal compound 
flooding are discussed in Section 5.

2. Study Area and Data
This study focused on exploring the temporal joint occurrence of rainfall and storm tide observed during Hurri-
cane Irma (September 2017). The focus was on the Southeast Atlantic coastlines of Florida (FL), Georgia (GA), 
and South Carolina (SC) where Hurricane Irma caused severe damage and widespread flooding (see Figure 1). 
Irma's sustained winds (i.e., ∼75–110  mph) brought rising storm surge and intense rainfall alongside the 
ever-rising high tide stages in Cape Canaveral, FL, Savannah GA, and Charleston, SC. As a result, severe damage 
was experienced along these coastlines. For example, many areas including Miami were reported to have more 
than 1 m of inland flooding (BBC News, 2017). Also reports show that the Charleston Harbor experienced its 
third highest stage of approximately 2.07 m NAVD 88 (∼6.79 feet NAVD 88), causing the historic city to experi-
ence severe flooding (Yan et al., 2017). Following these reports and based on data availability, this study focused 
on Cape Canaveral, FL where 15-min rainfall data from Pinebrook Canal (the United States Geological Survey; 
USGS) and 15-min storm tide data from Port Manatee (the National Oceanic and Atmospheric Administration; 
NOAA) were considered. Savannah was selected as a representative study location in Georgia with hourly rainfall 
data and hourly storm tide data from Fork Pulaski (NOAA) and the Savannah tide gauge (NOAA), respectively. 
Representative hourly rainfall and storm tide data for coastal South Carolina was collected from gauging stations 
at the Charleston International Airport (NOAA) and the Cooper River (NOAA), respectively.

Representative hourly/sub-hourly rainfall and storm tide data recorded during the hurricane at coastal gauging 
stations managed by USGS and NOAA were carefully examined. Storm tide data used for the analysis presented 
herein represents the combined water levels due to the astronomical tide, storm surge, and limited wave setup. A 

Figure 1. Hurricane Irma study area with specific study sites and their associated hydrologic unit code (HUC).
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summary of the stations used in this study and their representative identification (ID) numbers are presented 
in Table 1. Each data set was evaluated and analyzed using geostatistical techniques, such as inverse distance 
weighting (IDW) and Thiessen polygon, to ensure spatial continuity and representativeness of compound flood-
ing data within the study area.

3. Methodology
The temporal dependence structure of hourly/sub-hourly rainfall and the storm tide observed during Hurricane 
Irma was analyzed with applications of two-dimensional multivariate copula-based dependence models. It was 
assumed that flooding in the study region was a compound coastal flood event caused by heavy rainfall and storm 
tides wherein only coincident time series observed during the event were considered. Multivariate copula-based 
dependence modeling requires data representative of an independent and identically distributed (iid) sample. 
Because observed hurricane data is not representative of a stationary process, the development of a multivariate 
copula-based dependence model involved a two-step process. First, the temporal dependence of each variable was 
investigated separately to fit an appropriate time series model of the observations. Once an appropriate time series 
model was selected for each variable, residuals were computed. The second step was to perform traditional copula 
modeling of the residuals, assuming residuals represented an iid sample.

Two-dimensional copulas described in subsequent sections were implemented to link univariate marginal proba-
bility distributions of rainfall and storm tide residuals to the joint distribution of rainfall and storm tide residuals. 
This allowed the data dependence structure to be modeled in a stochastic context and an investigation of tail 
dependence and the evolution of exceedance probabilities observed during Hurricane Irma. The suitability of 
constructed copulas and joint distributions were evaluated using the multi-dimensional Cramér-von Mises test, 
root mean square error (RMSE), and the Nash-Sutcliffe model efficient coefficient (NSE) between the observed 
event and model results. The Akaike information criterion (AIC) was also used to evaluate performance between 
copulas. The method of maximum pseudo-likelihood was implemented to estimate copula dependence parame-
ters independent of univariate marginals such that inadequate selection of marginal distributions would not affect 
the copula selection process. We refer readers to Genest et al. (1995) for more information on this methodology. 
For comparative purposes, we also applied the tau inversion method, as described by Nelsen (2006), to estimate 
copula performance. However, this method was not implemented in the final multivariate models presented 
herein. A summary of the hurricane copula-based time series development process is summarized and presented 
in Figure 2.

3.1. Time Series Modeling

This study implemented stationary multivariate copula-based time series modeling of data observed during 
Hurricane Irma. Such copula-based models have been widely used in economics and finance (e.g., Bonhomme 
& Robin, 2009; Chen & Fan, 2006; Heinen & Rengifo, 2007; Patton, 2009). Recently, these same models have 
found use in the field of hydrology (e.g., Arya & Zhang, 2017; Sugimoto et al., 2016; Zhang & Singh, 2019). 
Herein, we adopted the assumption that hourly/sub-hourly observations of rainfall and storm tide follow an 
autoregressive moving average (ARMA) process. ARMA models have been successfully applied to understand 
and predict hydrologic time series (e.g., Burlando et al., 1993; McMichael & Hunter, 1972) since first popular-
ized by Box and Jenkins (1970) and have found an integral part in multivariate copula-based modeling (Zhang 
& Singh, 2019).

In general form, the ARMA (𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 ) model of a time series is given by

Study station Location Station names Rainfall ID Tide ID

1 Cape Canaveral, FL Pinebrook Canal and Port Manatee 02308870 8726384

2 Savannah, GA Savannah and Fork Pulaski 72207003822 8670870

3 Charleston, SC Charleston International Airport and Cooper River Entrance 72208013880 8665530

Table 1 
Summary of Hydrological Study Locations, Their Names, Their Associated Variables, and IDs
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𝑋𝑋𝑡𝑡 = 𝑐𝑐 +

𝑝𝑝
∑

𝑖𝑖=1

𝜙𝜙𝑖𝑖𝑋𝑋𝑡𝑡−𝑖𝑖 +

𝑞𝑞
∑

𝑖𝑖=1

𝜃𝜃𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡 (1)

where 𝐴𝐴 𝐴𝐴𝑡𝑡 is the stochastic variable at time t, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 represent the number of autoregressive and moving average 
terms, respectively, 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑖𝑖 are the autoregressive and moving average coefficients, respectively, 𝐴𝐴 𝐴𝐴𝑡𝑡−𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑡𝑡−𝑖𝑖 are 
the lagged response and residual at time 𝐴𝐴 𝐴𝐴 − 𝑖𝑖 , and 𝐴𝐴 𝐴𝐴𝑡𝑡 is the model error at time 𝐴𝐴 𝐴𝐴 .

A fundamental assumption of the ARMA process outlined in Equation 1 is that the stochastic variable is repre-
sentative of a Gaussian stationary process with error terms representing white noise. However, observed rainfall 
and storm tide time series were not representative of a Gaussian stationary process and required transforma-
tion prior to ARMA fitting. Transformation to a stationary process was achieved by detrending, that is, fitting 
LOWESS (Cleveland,  1979; Cleveland & Devlin,  1988) curves to each observed time series and using their 
inherited residuals. Using a smoothing method to isolate and remove the trend in a time series, so that the 
remaining residual time series exhibits characteristics of stationarity, is a common practice in time series analysis 
(Cryer & Chan, 2008). Shumway and Stoffer  (2019) suggest the LOWESS approach, originally proposed by 
Cleveland (1979). In the context of ice velocity time series, Derkacheva et al. (2020) compared three methods of 
smoothing (i.e., moving averages, cubic splines, and LOWESS), and found that LOWESS yielded the best solu-
tion for their data. Lawrance (2013) used a LOWESS method to smooth a volatility function related to financial 
time series. Gumbricht (2016) used LOWESS to smooth a soil surface wetness curve, noting that the LOWESS 
smoothing “removes the effects of erratic rainfall events and noise” and is “more robust for identification of 
wetness phenology.” Crawford et al. (2017) smoothed the CO2 time series using LOWESS in R, which accounted 
for both the stochastic shocks caused by storms and regular anomalies in the data.

The presence and removal of serial correlation in LOWESS residuals were confirmed using the auto-
correlation function, partial autocorrelation function, augmented Dickey-Fuller (ADF) test, and the 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. The detrending procedure, by which a smooth curve was fit 

Figure 2. Storm modeling and multivariate probabilistic assessment process.
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to the series and the time series analysis proceeded on the residuals of the fit, produced a residual series which 
was judged stationary by common tests of stationarity. However, the proposed method cannot transform the 
non-Gaussian rainfall field into a Gaussian process, which is a limitation of this framework and may lead to the 
introduction of epistemic uncertainty (i.e., bias). Finally, ARMA models were fit to these residuals to develop iid 
observations of the observed event for direct use in copulas presented in Section 3.1.

3.2. Copula Modeling

A copula (also commonly referred to as a copula function) is a multivariate joint probability distribution function 
that captures the entire scale-free dependence structure between two or more dependent hydrological variables 
(Hao & AghaKouchak, 2014; Salvadori & De Michele, 2007; Serinaldi & Grimaldi, 2007). Sklar's (1959) theo-
rem provides the theoretical framework for the application of copulas and the dependence between two or more 
random variables, 𝐴𝐴 𝐴𝐴1, . . . , 𝐴𝐴𝑛𝑛 . According to the theorem, the joint (i.e., multivariate) cumulative distribution 
function (CDF) is given by

�(�1, . . . , ��) = ℙ (�1 ≤ �1, . . . , �� ≤ ��) . (2)

The copula function, C, can then be defined such that joint CDFs of the random variables can be expressed as

�(�1, . . . , ��) = �(�1 (�1) , . . . , ��(��)) . (3)

Equation 3 provides the basis for evaluating the dependence structure between the univariate distribution func-
tions of random variables through the copula function. Any multivariate CDF can be written in copula form, and 
if the marginal distributions are continuous, the copula is unique (Sklar, 1959).

While a variety of copulas have been applied in hydrology, the Archimedean, Elliptical, and Extreme Value are 
well-known tools to model the dependence structure among multiple hydrological extremes. These copulas have 
been widely used in hydrology (e.g., Favre et al., 2004; Grimaldi & Serinaldi, 2006a; Grimaldi & Serinaldi, 2006b; 
Salvadori & De Michele, 2010; Bracken et al., 2018; among others). Table 2 presents a summary of copula func-
tions and parameter space for the selected Archimedean, Elliptical, and Extreme Value copulas.

Copula Copula function 𝐴𝐴 𝐴𝐴 (𝑢𝑢1, 𝑢𝑢2)

Parameter (𝐴𝐴 𝐴𝐴 ) 
range

Gumbel 𝐴𝐴 exp

[

−
{

(−log 𝑢𝑢1)
𝜃𝜃
+ (−log 𝑢𝑢2)

𝜃𝜃
}1∕𝜃𝜃

]

 𝐴𝐴 [1,∞) 

Clayton 𝐴𝐴
(

𝑢𝑢1
−𝜃𝜃 + 𝑢𝑢2

−𝜃𝜃 − 1
)−1∕𝜃𝜃 𝐴𝐴 [−1,∞)∕ {0} 

Frank
𝐴𝐴 −

1

𝜃𝜃
log

[

1 +
(e−𝜃𝜃𝜃𝜃1 − 1)⋅(e−𝜃𝜃𝜃𝜃2 − 1)

e−𝜃𝜃 −1

]

 𝐴𝐴 (−∞,∞)∕ {0} 

Joe 𝐴𝐴 1 −
[

(1 − 𝑢𝑢1)
𝜃𝜃
+ (1 − 𝑢𝑢2)

𝜃𝜃
− (1 − 𝑢𝑢1)

𝜃𝜃
⋅ (1 − 𝑢𝑢2)

𝜃𝜃
]1∕𝜃𝜃 𝐴𝐴 [1,∞) 

Normal 𝐴𝐴 𝐴𝐴𝜃𝜃
𝑛𝑛
(

𝐴𝐴−1 (𝑢𝑢1) , 𝐴𝐴
−1 (𝑢𝑢2)

)

 𝐴𝐴 (−1, 1) 

Student's t 𝐴𝐴 𝐴𝐴𝜃𝜃𝜃𝜃𝜃

(

𝑡𝑡𝜃𝜃
−1 (𝑢𝑢1) 𝜃 𝑡𝑡𝜃𝜃

−1 (𝑢𝑢2)
)

 𝐴𝐴 (−1, 1) 

Galambos 𝐴𝐴 𝐴𝐴1𝐴𝐴2 exp

{

[

(1 − 𝐴𝐴1)
−𝜃𝜃

+ (1 − 𝐴𝐴2)
−𝜃𝜃
]−1∕𝜃𝜃

}

 𝐴𝐴 (0,∞) 

Hüsler-Reiss 𝐴𝐴 exp

[

𝜙𝜙

{

𝜃𝜃

2
+

1

𝜃𝜃
log

(

log 𝑢𝑢2

log 𝑢𝑢1

)}

log 𝑢𝑢1 + 𝜙𝜙

{

𝜃𝜃

2
+

1

𝜃𝜃
log

(

log 𝑢𝑢1

log 𝑢𝑢2

)}

log 𝑢𝑢2

]

, 𝐴𝐴 (0,∞) 

Tawn
𝐴𝐴 𝐴𝐴1𝐴𝐴2

(

−𝜃𝜃
log(𝐴𝐴1)log(𝐴𝐴2)

log(𝐴𝐴1𝐴𝐴2)

)

 𝐴𝐴 (0, 1) 

t-EV
𝐴𝐴 exp

[

𝑇𝑇𝜈𝜈+1

{

−
𝜃𝜃

𝑏𝑏
+

1

𝑏𝑏

(

log 𝑢𝑢2

log 𝑢𝑢1

)1∕𝜈𝜈
}

log 𝑢𝑢1 + 𝑇𝑇𝜈𝜈+1

{

−
𝜃𝜃

𝑏𝑏
+

1

𝑏𝑏

(

log 𝑢𝑢1

log 𝑢𝑢2

)1∕𝜈𝜈
}

log 𝑢𝑢2

]

; 𝑏𝑏2 =
1−𝜃𝜃2

𝜈𝜈+1
 
𝐴𝐴 (−1, 1) 

Note. Notes on additional variables. 𝐴𝐴 𝐴𝐴 = univariate normal cumulative distribution function; 𝐴𝐴 𝐴𝐴−1 = inverse of the 
univariate normal cumulative distribution function; 𝐴𝐴 𝐴𝐴𝜌𝜌

𝑛𝑛
= joint cumulative distribution function for the n-dimensional 

normal distribution; 𝐴𝐴 𝐴𝐴𝜈𝜈 = cumulative distribution function of a Student random variable with 𝐴𝐴 𝐴𝐴 degrees of freedom; 𝐴𝐴 𝐴𝐴𝜃𝜃𝜃𝜃𝜃 = 
n-dimensional Student's t distribution with ν degrees of freedom and correlation matrix 𝐴𝐴 𝐴𝐴 .

Table 2 
Selected Copulas, Their Functions, and Parameter Space
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3.2.1. Archimedean Copulas

Archimedean copulas have been largely used in hydrology because of their flexibility and simplicity (Grimaldi 
& Serinaldi, 2006b; Saad et al., 2015). As provided by Nelsen (2006), an n-dimensional Archimedean copula 
takes the form

𝐶𝐶 (𝑢𝑢1, . . . , 𝑢𝑢𝑛𝑛) = 𝜑𝜑−1

[

𝑛𝑛
∑

𝑖𝑖=1

𝜑𝜑 (𝑢𝑢𝑖𝑖)

]

 (4)

where 𝐴𝐴 𝐴𝐴 is a continuous generator (i.e., function) such that 𝐴𝐴 𝐴𝐴 (1) = 0 , 𝐴𝐴 𝐴𝐴 is strictly decreasing on [0,1], 𝐴𝐴 𝐴𝐴 is convex 
on [0,1], and 𝐴𝐴 (𝑢𝑢1, . . . , 𝑢𝑢𝑛𝑛) ∈ [0, 1]

𝑛𝑛 .

Among the well-known Archimedean copulas, the Clayton (Clayton, 1978), Frank (Frank, 1979), Gumbel, and 
Joe (1997) one-parameter copulas were considered in this research since they have been frequently used in hydro-
logical applications (e.g., Favre et al., 2004; Grimaldi & Serinaldi, 2006a; Volpi & Fiori, 2012). Table 2 presents 
the Archimedean copulas considered herein, and their functions and parameters. The Gumbel and Joe Archime-
dean copulas are limited to positive dependence only, while the remaining can model both positive and negative 
dependence structures. Readers are referred to Nelsen (2006) for more details on Archimedean copulas. It is 
important to note that the Gumbel copula is considered both an Archimedean and Extreme Value copula.

3.2.2. Elliptical Copulas

The choice of an Elliptical copula arises when the dependence structure among correlated variables is best suited 
with Elliptical distributions. n-dimensional Elliptical copulas can be generalized as

�(�1, . . . , ��) = �
(

�−1 (�1) , . . . , �−1 (��)
)

 (5)

where 𝐴𝐴 𝐴𝐴 is a suitable multivariate distribution and 𝐴𝐴 𝐴𝐴−1 is the inverse of the univariate marginal distribution. Ellip-
tical copulas are symmetric and capable of positive and negative dependence modeling. For many years, Elliptical 
copulas have been extensively used in the fields of economics and finance (e.g., Ortobelli et al., 2002; Owen & 
Rabinovitch, 1983; Pradier, 2011) and have become increasingly popular in modeling the dependence structure 
among hydrologic variables (e.g., Bracken et al., 2018; Moazami & Golian, 2017; Song & Singh, 2010). Herein, 
two popular families of Elliptical copulas were considered: Normal (i.e., Gaussian) and Student's t (see Table 2).

3.2.3. Extreme Value Copulas

The family of Extreme Value copulas naturally represents the joint behavior of random variables derived in clas-
sical Extreme Value theory, which makes their use in hydrology very appealing and quite convenient (Gudendorf 
& Segers, 2010). For the n-dimensional case, the Extreme Value copula is represented as

�(�1, . . . , ��) = exp

{(

�
∑

�=1

log ��

)

�

(

log �1
∑�

�=1 log ��
, . . . ,

log ��
∑�

�=1 log ��

)}

 (6)

where A is the Pickands dependence function, which is a convex function that satisfies 
𝐴𝐴 max(𝑡𝑡𝑡 1 − 𝑡𝑡) ≤ 𝐴𝐴(𝑡𝑡) ≤ 1 for all t ∈ [0𝑡 1] (Beirlant et al., 2006). Henceforth, successful application of an Extreme 

Value copula lies with proper selection of the appropriate Pickands dependence function.

Here, we implemented parametric forms of the Pickands dependence functions to formulate the Galambos, 
Hüsler-Reiss, Tawn, and t-EV Extreme Value copulas (see Table 2). Each of these copulas is limited to posi-
tive dependence, while the t-EV is capable of modeling both positive and negative dependence. As previously 
mentioned, it is important to note that the Gumbel copula represents both Archimedean and Extreme Value copu-
las (i.e., Gumbel-Hougard) and that was also implemented.

The Galambos copula is typically limited to medium-to-large dimensional problems (Mathieu & 
Mohammed, 2012), while the Hüsler-Reiss and extremal-t (i.e., t-EV) Extreme Value copulas do not suffer from 
this drawback. The Tawn copula was also implemented in this study, which is an asymmetric extension of the 
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Gumbel copula. Theoretical background and derivations of Extreme Value copulas can be found in the works of 
Demarta and McNeil (2005), Beirlant et al. (2006), and Mathieu and Mohammed (2012).

3.2.4. Univariate Marginal Distributions

Construction of univariate distributions to describe residual time series were required for copula modeling. 
Several parametric distributions were fit to rainfall and storm tide residual time series, including the Generalized 
Extreme Value (GEV), Gumbel, and normal. Final distributions were selected based on graphical inspection of 
probability plots (e.g., quantile plots). For all three applications, rainfall residuals were represented by the GEV 
distribution while storm tide residuals were represented by the normal distribution.

3.2.5. Parameter Estimation

The method of maximum pseudo-likelihood was used to estimate copula parameters. This approach was selected 
given the nature of the semiparametric method wherein copula parameters are selected based on empirical 
marginal probabilities rather than fitted parametric marginals. Using this method, the empirical probability is 
given in terms of the Weibull plotting formula by (Zhang & Singh, 2019).

�̂�(�) =
1

� + 1

�
∑

�=1

1(��� ≤ �) , � = 1, . . . , �. (7)

Using marginal probabilities obtained from Equation 7, the pseudo-log-likelihood function can be maximized to 
provide optimal copula parameter(s) expressed as (Zhang & Singh, 2019)

log�(�) =
�
∑

�=1

ln
[

�
(

�̂1(�1�) , . . . , �̂�(���) ;�
)]

. (8)

Copula parameters estimated using Equation 8 are independent of the parametric marginal distribution. Hence, 
misidentification of marginal distributions does not entirely limit the accuracy of the selected copula.

3.2.6. Statistical Performance

Throughout this study, we primarily applied standard statistics, that is, the Cramér-von Mises test statistic, to 
characterize the significance of the fitted copula model. The major strength of this test lies in the fact that the 
asymptotic distribution of its test statistic is completely independent of the null-hypothesis CDF. The Cramér-von 
Mises test is defined by Genest et al. (2009) as

𝑆𝑆𝑛𝑛 =
∫
[0,1]𝑑𝑑

𝐶𝐶𝑛𝑛(𝒖𝒖)
2
𝑑𝑑𝐶𝐶𝑛𝑛(𝒖𝒖). (9)

In particular, the Cramér-von Mises test statistic was derived by considering a 1,000-sample MC approach in 
which the empirical copula and the parametric estimate of the copula obtained via the method of maximum 
pseudo-likelihood were used to approximate two-sided p-values using the Rosenblatt probability integral trans-
form method (Rosenblatt, 1952). Readers are referred to Genest and Rémillard (2008), Genest et al. (2009), and 
Genest et al. (2011) for more detailed information.

The Akaike information criterion (AIC) (Akaike, 1974) was a secondary copula selection criterion used to rela-
tively evaluate the balance between copula accuracy (i.e., pseudo-likelihood) and simplicity (i.e., number of 
model parameters, 𝐴𝐴 𝐴𝐴 ) given by

AIC = −2 log𝐿𝐿(𝜽𝜽) + 2𝑚𝑚𝑚 (10)

3.3. Multivariate Probability and Tail Dependence Assessment

3.3.1. Multivariate Non-Exceedance Probabilities

Multivariate non-exceedance probabilities using copula-based dependence models were estimated using classical 
isofrequency probability assumptions for the “AND” (bivariate joint probability) and Survival Kendall (SK) cases 
based on a d-dimensional Kendall distribution (see Salvadori et al., 2013, 2016). These metrics are commonly 
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applied in a return period context using annual maximum/minimum or peaks-over-threshold data series and 
have found use in drought and water resources research around the globe (e.g., AghaKouchak et al., 2014; De 
Michele et al., 2013; Salvadori et al., 2011). Rather than focus on historical data to develop return period rela-
tionships and compare to Irma's observed data, we focus solely on the multivariate temporal non-exceedance 
probabilities using storm copulas outlined in the previous sections. As a result, the non-exceedance probabilities 
presented herein represent event-specific frequency curves and are not necessarily representative of long-term 
region-specific multivariate frequency curves.

The non-exceedance probability for the “AND” case is classified as the probability of observing each event (e.g., 
storm tide and intense rainfall) exceeding given magnitudes. For the bivariate applications presented herein, this 
probability is given in copula terms as

𝑃𝑃 (𝑋𝑋 ≥ 𝑥𝑥 ∩ 𝑌𝑌 ≥ 𝑦𝑦) = 1 − 𝑢𝑢 − 𝑣𝑣 + 𝐶𝐶(𝑢𝑢𝑢 𝑣𝑣). (11)

Kendall's measure, 𝐴𝐴 𝐴𝐴𝑐𝑐 , has become a popular tool for evaluating multivariate probabilities using copulas wherein 
𝐴𝐴 𝐴𝐴𝑐𝑐 represents the Kendall distribution of copula 𝐴𝐴 𝐴𝐴 (Genest & Rivest, 1993) given in bivariate terms as

𝐾𝐾𝑐𝑐(𝑡𝑡) = 𝑃𝑃 (𝐶𝐶(𝑢𝑢𝑢 𝑢𝑢) ≤ 𝑡𝑡) = 𝑡𝑡 −
∫

1

𝑡𝑡

𝜕𝜕

𝜕𝜕𝑢𝑢
𝐶𝐶 (𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑡𝑡) (12)

where 𝐴𝐴 0 < 𝑡𝑡 ≤ 1 , 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢𝑢 = 𝐶𝐶−1
𝑢𝑢  , and 𝐴𝐴 𝐴𝐴𝑢𝑢(𝑣𝑣) = 𝐴𝐴(𝑢𝑢𝑢 𝑣𝑣) . From the definition of 𝐴𝐴 𝐴𝐴𝑐𝑐 in Equation 12, risk managers can define 

“safe” and “dangerous” regions, known as multivariate hazard scenarios, as 𝐴𝐴 𝐴𝐴𝑐𝑐 (𝑡𝑡
∗) > 𝑡𝑡∗ and 𝐴𝐴 1 −𝐾𝐾𝑐𝑐 (𝑡𝑡

∗) < 1 − 𝑡𝑡∗ 
where 𝐴𝐴 𝐴𝐴∗ is selected as the critical probability level 𝐴𝐴 𝐴𝐴(𝑢𝑢𝑢 𝑢𝑢) = 𝑡𝑡∗ (Salvadori et al., 2011). However, as pointed out by 
Salvadori et al. (2013), the “safe” region may be unbounded, whereas the SK's measure is bounded, thereby provid-
ing a better multivariate risk measure. Accordingly, SK's measure, 𝐴𝐴 𝐾𝐾𝑐𝑐 , for a bivariate copula can be written as

𝐾𝐾𝑐𝑐(𝑡𝑡) = 𝑃𝑃 (𝐶𝐶(𝑢𝑢𝑢 𝑢𝑢) ≤ 𝑡𝑡) = 1 −𝐾𝐾𝑐𝑐(𝑡𝑡)𝑢 (13)

which represents the exact probability that the given event, 𝐴𝐴 𝐴𝐴 , happens given any random realization of the 
subject coastal multivariate event under question (Salvadori et al., 2007). Figure 3 visually illustrates multivariate 
non-exceedance probability definitions using the “AND” and SK cases.

3.3.2. Tail Dependence

The tail dependence coefficient is a statistic that summarizes how individual extreme events tend to occur simul-
taneously (Mathieu & Mohammed, 2012). In the case of flood risk management, statisticians often parameterize 
the strength of the dependence of the variables using an upper tail dependence coefficient to investigate the 

Figure 3. Multivariate non-exceedance probability definitions using the “AND” (a) case and SK (b) case.
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conditional effects between the variables of interest (Schmid & Schmidt, 2007) wherein the upper tail depend-
ence coefficient is given by

𝜆𝜆𝑈𝑈 = lim
𝑢𝑢→1−

𝑃𝑃
(

𝑌𝑌 𝑌 𝑌𝑌 −1

𝑌𝑌
(𝑢𝑢)|𝑋𝑋 𝑌 𝑌𝑌 −1

𝑋𝑋
(𝑢𝑢)

)

= lim
𝑢𝑢→1−

1 − 2𝑢𝑢 + 𝐶𝐶(𝑢𝑢𝑢 𝑢𝑢)

1 − 𝑢𝑢
∈ [0𝑢 1]. (14)

Several parametric measures of dependence have been examined and developed in the past (e.g., Capéraà 
et al., 1997; Coles et al., 1999; Frahm et al., 2005; Joe et al., 1992). However, each of these parametric techniques 
are developed from the underlying basis of the fitted copula (e.g., diagonals along the copula), thereby relying 
on the choice of the copula. These shortfalls were overcome by studying the strength of upper tail dependence 
among the copula models using a nonparametric approach by considering the empirical copula function. We 
focused on two commonly applied upper tail dependence coefficients: 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆

𝑈𝑈
 (Schmid & Schmidt, 2007) and 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈
 

(Capéraà et al., 1997; Frahm et al., 2005).

Conditional versions of correlation coefficients are commonly applied nonparametric approaches to investigating 
the strength of dependence in the tails of multivariate distributions (Croux & Dehon, 2010; Durante et al., 2014). 
Schmid and Schmidt (2007) introduced such an approach based on conditional versions of Spearman's rho, 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆

𝑈𝑈
 . 

Given the following d-dimensional conditional version of Spearman's rho

𝜌𝜌𝑝𝑝(𝐶𝐶) =

∫
[0,𝑝𝑝]𝑑𝑑

𝐶𝐶(𝒖𝒖)𝑑𝑑𝒖𝒖 −
(

𝑝𝑝2∕2
)𝑑𝑑

𝑝𝑝𝑑𝑑+1∕(𝑑𝑑 + 1) − (𝑝𝑝2∕2)
𝑑𝑑

with 0 < 𝑝𝑝 ≤ 1, (15)

the coefficient of multivariate upper tail dependence, 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆

𝑈𝑈
 , can be defined by

𝜆𝜆𝑆𝑆𝑆𝑆

𝑈𝑈
(𝐶𝐶) = lim

𝑝𝑝→1−
𝜌𝜌𝑝𝑝(𝐶𝐶) = lim

𝑝𝑝→0+

𝑑𝑑 + 1

𝑝𝑝𝑑𝑑+1 ∫
[0,𝑝𝑝]𝑑𝑑

𝐶𝐶
(

𝒖𝒖

)

𝑑𝑑𝒖𝒖 with 0 ≤ 𝜌𝜌𝑆𝑆𝑆𝑆
𝑈𝑈

≤ 1, (16)

where 𝐴𝐴 𝒖𝒖 represents the d-dimensional vector of residual marginal probabilities (𝐴𝐴 1 − 𝒖𝒖 ). For the analysis presented 
herein, we limited 𝐴𝐴 𝐴𝐴𝑈𝑈 to pairwise dependence (i.e., 𝐴𝐴 𝐴𝐴  = 2).

Under the assumption that the empirical copula function is approximated as a limiting form of an Extreme Value 
copula and based on the work of Capéraà et al.  (1997), Frahm et al.  (2005) defined a closed form upper tail 
dependence coefficient (𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈
 ) which has gained popularity in tail dependence modeling using the copula frame-

work. In this approach, 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈
 is defined as

𝜆𝜆𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈
= 2 − 2 exp

⎡

⎢

⎢

⎢

⎣

1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

log

⎧

⎪

⎨

⎪

⎩

√

log

(

1

𝑈𝑈𝑖𝑖

)

log

(

1

𝑉𝑉𝑖𝑖

)

∕log

(

1

max(𝑈𝑈𝑖𝑖, 𝑉𝑉𝑖𝑖)
2

)

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

. (17)

4. Applications
4.1. Florida Analysis

Dependence modeling for Florida data was done in two steps. First, correlation pairs among the observed random 
variables for each location were evaluated for temporal correlation (i.e., serial dependence). New and uncorre-
lated random variables were then generated by fitting a LOWESS trend model to storm tide and rainfall time 
series and then using ARMA (1,0) and ARMA (0,1) models to model the residuals for the LOWESS fits for storm 
tide and rainfall time series, respectively. The second step of dependence modeling was to fit copula models to 
the ARMA residuals.

Pearson (𝐴𝐴 𝐴𝐴𝑝𝑝 ), Spearman (𝐴𝐴 𝐴𝐴𝑠𝑠 ), and Kendall (𝐴𝐴 𝐴𝐴 ) correlation coefficients, the most popular nonparametric meas-
ures of dependence, were used to measure the initial dependence structure and suitability of copula modeling. 
Figures 4a and 4b present pairwise plots of observed (serial correlated) and residual (non-serially correlated) time 
series, respectively, for Cape Canaveral storm variables available during the event. Figures 4c and 4d present the 
observed and simulated time series using the fitted ARMA models.

Observed rainfall and storm tide co-occurrences at Cape Canaveral resulted in slightly negative correlation coef-
ficients, all between approximately −0.1 and −0.2 (Figure  4a). This is primarily because rainfall intensities 
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started to decrease as storm tide levels increased. Correlation coefficients were significantly less when compar-
ing ARMA residual time series (Figure 4b) and more likely to represent the independent stochastic nature of 
observed storm tide and rainfall time series. Although independence was observed in ARMA residuals, copula 
modeling was still implemented for testing since a correlation coefficient of 0 is not always representative of 
independence. In the case that a low correlation coefficient is observed in storm tide and rainfall time series and 
there is a lack of dependence, the resulting copula would be classified as an independent copula and would still 
encapsulate the underlying probabilistic nature of each time series. Rather than using a non-dependent univariate 
model of both time series for independence and a copula model for dependent time series, this approach could 
potentially allow the development of a single universal multivariate copula-based model for coastal boundary 
conditions under both dependence and independence scenarios.

Table  3 presents fitting performance and estimated parameters for the copulas applied to Cape Canaveral. 
Two-sided p-values indicated there was not sufficient evidence to reject the null hypothesis of dependence for 
the tested copulas at the 5% significance level (i.e., p-values > 0.05), thereby suggesting tested copulas could 

Figure 4. Event correlation/frequency structure for Cape Canaveral, FL for (a) observed data and (b) time series model 
residuals; and autoregressive moving average (ARMA) model fitting for (c) storm tide and (d) rainfall time series. Lower left 
panels of (a, b) represent pairwise correlation plots between storm variables. Diagonal panels of (a, b) represent the frequency 
of each associated variable with the best fit indicated by red lines. Upper right panels of (a, b) contain the computed 
correlation coefficient between bivariate variables for: (1) Pearson (𝐴𝐴 𝐴𝐴𝑝𝑝 ); (2) Spearman (𝐴𝐴 𝐴𝐴𝑠𝑠 ); and (3) Kendall (𝐴𝐴 𝐴𝐴 ).
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encapsulate the interdependent relationships of rainfall and storm tide time series observed at Cape Canaveral. 
Parameter values and two-sided p-values were nearly identical when comparing results between the maximum 
pseudo-likelihood method and tau inversion method. Suitability of copulas was apparent in this application 
although tail dependence was nearly inexistent. Although such flooding could be modeled with copulas, tails of 
rainfall and storm tide residuals did not appear to stochastically coincide when considering the hurricane event 
window.

All copulas performed relatively similar when comparing two-sided p-values. As indicated by computed corre-
lation coefficients, all but the Frank and Hüsler-Reiss copulas resulted in parameters near independence. Tabular 
fitting results did not conclusively help to identify a “best” fit copula to describe the rainfall and storm tide time 
series from Irma since all copulas were generally within the same level of performance. Of the tested copulas, 
the Frank, Joe, and Normal were selected to further evaluate dependence modeling and applicability of the meth-
odology presented herein. Herein, the Normal copula was always selected as a baseline for testing and analysis.

Diagonal curves and contour levels plots for the Frank, Joe, and Normal copulas for Cape Canaveral are presented 
in Figure 5. Each model generally showed good performance in predicting the measured probability structure 
between rainfall and storm tide. In all three cases, the model showed some instability along the diagonals (i.e., 

𝐴𝐴 𝐴𝐴1 = 𝐴𝐴2 ) and contour levels, but otherwise, very consistent results were produced. Overall, all three copulas 
produced nearly identical results for both diagonals curves and contour levels without any practical difference. 
However, based on the results presented in Table 3, the Frank copula outperformed the Normal copula by approx-
imately 225% (i.e., two-sided p-values). Hence, inspection of tabular fitting for copula dependence results does 
not appear to solely justify the adequacy of Archimedean copulas over Elliptical copulas.

Observed time series and reconstructed randomizations of the event are presented in Figure 6. Rainfall simula-
tions reasonably followed the same pattern as the observed time series in terms of the expected range of values 
given the natural randomness associated with hourly rainfall. All copulas generated nearly indistinguishable 
results, with only microscale differences among the three copulas. In all three cases, storm tide simulations 
bound observed time series well throughout the entire simulation period. Rainfall simulations bound observed 
time series generally well through approximately hour 10. However, rainfall simulations are not able to accurately 
predict the observed peak intensity around hour 14 or intensities toward the end of the event (i.e., > hour 20).

Figure 6 presents the univariate viewpoint of the predictive capability to mimic observed rainfall and storm tide 
time series from the three multivariate copula models, along with relative rRMSE and relative bias (rB) estimates 
in decimal form. Overall, rRMSE and rB statistics were reasonable for each storm tide model while much more 
error and moderate bias were apparent in the rainfall models. A combined, multivariate viewpoint of such simula-
tions is presented in Figure 7 and arguably demonstrates the overarching fit of each copula. Each copula resulted 
in similar scattering, although the Frank and Joe copulas both resulted in similar two-sided p-values, while the 

Maximum pseudo-likelihood Tau inversion

AIC RMSE NSE𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆

𝑈𝑈
 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈
 Copula Parameter value𝐴𝐴 𝐴𝐴𝑛𝑛 p-value Parameter value𝐴𝐴 𝐴𝐴𝑛𝑛 p-value

Gumbel 1.000 0.330 1.001 0.337 2.001 0.013 0.997 0.011 0.008

Clayton −0.046 0.261 −0.047 0.246 1.869 0.015 0.996 0.010 −0.015

Frank 0.168 0.619 0.167 0.598 1.929 0.012 0.998 0.016 0.028

Joe 1.000 0.406 1.001 0.386 2.000 0.013 0.997 0.011 0.009

Normal −0.022 0.190 −0.022 0.181 1.963 0.014 0.997 0.009 −0.005

Student's t −0.001 0.336 0.000 0.374 1.724 0.013 0.997 0.034 0.023

Galambos 0.013 0.354 0.019 0.326 2.000 0.013 0.997 0.012 0.009

Hüsler-Reiss 0.121 0.335 0.121 0.339 2.000 0.013 0.997 0.012 0.008

Tawn 0.002 0.389 0.001 0.355 2.004 0.013 0.997 0.014 0.009

t-EV −0.998 0.341 −0.999 0.323 2.000 0.013 0.997 0.012 0.009

Note. Statistical significance represents approximate two-sided p-values from 1,000 MC simulations.

Table 3 
Copula Fitting Parameters and Statistical Fitting Results for Cape Canaveral, FL
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Normal copula was significantly lower (Table 3). Hence, all three copulas seem to be comparable regardless of 
significant fit test results.

Computed multivariate non-exceedance probability levels are presented in Figure 7 using “AND” and SK defini-
tions. Each copula produced practically identical results. The most noticeable result was that SK non-exceedance 
probabilities were always higher for any given storm tide and rainfall state throughout the hurricane event. This 
result substantiates the need to consider an SK measure over the traditional “AND” measure. However, as indi-
cated by Salvadori et al. (2016), the SK definition does not necessarily have a direct interpretation when compared 
to the “AND” definition in terms of designing structures and should only be used for planning or preliminary 
assessments. Hence, further research is required to properly compare multivariate statistics of compound events 
as estimated between “AND” and SK definitions to truly understand the value and differences between the two 
measures.

A noteworthy result presented in Figure 7 is that the most intense storm tide and rainfall co-occurrence was 
significantly underpredicted by all three multivariate copula-based dependence models. The methods adopted 
herein generally performed well during lower intensity periods observed in Florida, but more testing is required 
to better encapsulate peak intensities. As a result, these methods may not necessarily provide a direct method or 
accurate results for all regions and data.

Figure 5. Diagonal curves and empirical and theoretical cumulative distribution function (CDF) contours of the Frank (a, d), Joe (b, e), and Normal (c, f) copulas for 
the Cape Canaveral, FL hurricane model. Empirical curves are shown as solid red while theoretical curves are represented as dashed blue.
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4.2. Georgia Analysis

Our assessment of the distribution tails of Hurricane Irma in the spatial context of Georgia was focused on data 
near Savannah. Recorded storm tide and coincident rainfall for Savannah are presented in Figure 8a, along with 
Pearson, Spearman, and Kendall correlation coefficients, all around 0.20. Hourly storm tide and hourly rainfall 
time series were positively correlated and suggested an upward-moving dependence with increasing intensity 
(i.e., peak surge). Fitting a LOWESS trend model and then ARMA (0,2) model to the LOWESS residuals for 
both the observed storm tide and rainfall produced very similar correlation coefficients when comparing Spear-
man and Kendall values. However, the computed Pearson correlation coefficient dropped to nearly zero. Unlike 
the Florida application, the deconstructed time series at Savannah appeared to retain the same basic underlying 
correlation structure very well, with minor deviations.

None of the copulas implemented herein were rejected at a significance level 𝐴𝐴 𝐴𝐴 = 0.05 and 1,000 Monte Carlo 
simulations (see Table 4). This is a similar result seen in the Cape Canaveral application except a significantly 
higher acceptance rate (i.e., all above 50% level) which can be attributed to the better correlation measures 
observed for Savannah (i.e., Kendall's tau of 0.13 as opposed to 0.02). Extreme Value copulas generally produced 
the most significant fit, followed by Archimedean (outside the Clayton copula) and Elliptical copulas, respectively. 
Extreme value copulas satisfied significant smoothness assumptions on the copula and convexity assump tions 

Figure 6. Time series observations and autoregressive moving average (ARMA) model simulations of Cape Canaveral, FL multivariate Irma distribution for Frank 
(storm tide/rainfall) (a, d), Joe (storm tide/rainfall) (b, e), and Normal (storm tide/rainfall) (c, f) copulas. Descriptive statistics regarding model fits are presented in the 
form of relative root mean square error (rRMSE) and relative bias (rB).
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on an analog of Pickands dependence function. Although hard to verify analytically, the Extreme value copulas 
provided better approximations of the true parametric Pickands dependence function for sample sizes n. Results 
of the tau inversion method corresponded well with the maximum pseudo-likelihood method and did not indicate 
any copula outliers in terms of performance.

Tail dependence was present in the copulas fitted for Savannah when considering both the 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈
 estimator and 

𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆

𝑈𝑈
 coefficients. In terms of p-values, Savannah copulas were more arguably fitting than Cape Canaveral and 

ultimately resulted in much more significant dependence measures in ARMA residuals (i.e., Kendall's tau). In 
this case, increased tail dependence may be an indicator of the suitability to describe coincident rainfall and storm 
tide time series observed in Savannah during Irma.

Gumbel and Hüsler-Reiss copulas were among the top performers and were selected for further analysis, while 
the Normal copula was evaluated as a baseline. The performance of these copulas was further evaluated based on 
results from Figure 9 which presents a comparison between the empirical copula function (dashed red) and the 
theoretical copula function (solid blue). Figures 9a–9c present results in a one-dimensional view frame by consid-
ering the diagonal of the copula quantile functions (i.e., u = v in two-dimensional space), while Figures 9d–9f 
present joint level curves for the copula functions.

Differences among the three selected copula functions were not as apparent as one might expect based on the 
range of computed p-values and choice of copulas, a similar result seen in the Florida analysis. All empirical 

Figure 7. Observations versus simulations and probability level curves of Cape Canaveral, FL multivariate distribution under the hypothesis of Frank (“AND”/SK) (a, 
b), Joe (“AND”/SK) (b, e), and Normal (“AND”/SK) (c, f) copulas.
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curves produced reasonably comparable results when evaluating theoretical curves, with each copula generally 
capturing the full range of dependence and symmetry in its dependence structure. Differences in level curves for 
Savannah and Cape Canaveral are noteworthy. Correlation coefficients and two-sided p-values were significantly 
lower for Cape Canaveral. However, empirical copula contours for Cape Canaveral better represented theoret-
ical curves at all levels, producing an overall “more appealing” visual fit. This result is merely a response due 
to the larger sample size of the Cape Canaveral application. Given that our interest was focused on multivariate 
copula-based dependence modeling of a singular coincident event, large sample sizes may not always be physi-
cally available, particularly for hurricane events. For example, a typical coastal thunderstorm may only last hours 
while a hurricane event could span up to 24 hr. Therefore, the adequacy of such copula models should be reserved 
until a thorough inspection has been made from all perspectives.

Copula models were combined with ARMA forecasting techniques to synthesize storm data by randomly 
sampling sets of storm tide and rainfall time series and then reconstruct to the same scale/dimension of observed 
time series (Figure 10). Much like the Cape Canaveral application, the Savannah application resulted in simulated 

Figure 8. Event correlation/frequency structure for Savannah, GA for observed data (a) and time series model residuals (b) 
and autoregressive moving average (ARMA) model fitting for storm tide (c) and rainfall (d) time series. Lower left panels 
of (a, b) represent pairwise correlation plots between storm variables. Diagonal panels of (a, b) represent the frequency of 
each associated variable with the best fit indicated by red lines. Upper right panels of (a, b) contain the computed correlation 
coefficient between bivariate variables for: (1) Pearson (𝐴𝐴 𝐴𝐴𝑝𝑝 ); (2) Spearman (𝐴𝐴 𝐴𝐴𝑠𝑠 ); and (3) Kendall (𝐴𝐴 𝐴𝐴 ).
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Maximum pseudo-likelihood Tau inversion

AIC RMSE NSE𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆

𝑈𝑈
 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈
 Copula Parameter𝐴𝐴 𝐴𝐴𝑛𝑛 p-value Parameter𝐴𝐴 𝐴𝐴𝑛𝑛 p-value

Gumbel 1.237 0.814 1.238 0.810 0.642 0.033 0.966 0.306 0.254

Clayton 0.259 0.333 0.262 0.347 1.711 0.038 0.949 0.025 0.125

Frank 1.509 0.765 1.508 0.777 0.959 0.034 0.962 0.058 0.180

Joe 1.393 0.795 1.394 0.789 0.443 0.033 0.967 0.402 0.266

Normal 0.289 0.658 0.290 0.674 1.010 0.034 0.962 0.122 0.210

Student's t 0.290 0.665 0.290 0.665 1.010 0.034 0.962 0.121 0.209

Galambos 0.511 0.824 0.510 0.822 0.568 0.033 0.966 0.316 0.262

Hüsler-Reiss 0.898 0.844 0.899 0.854 0.519 0.033 0.966 0.328 0.270

Tawn 0.442 0.677 0.441 0.677 0.811 0.033 0.964 0.259 0.225

t-EV 0.711 0.790 0.712 0.804 0.586 0.038 0.973 0.318 0.262

Note. Statistical significance represents approximate two-sided p-values from 1,000 MC simulations.

Table 4 
Copula Fitting Parameters and Statistical Fitting Results for Savannah, GA

Figure 9. Diagonal curves and contour plots for the empirical and theoretical cumulative distribution functions (CDFs) for Gumbel (a, d), Normal (b, e), and 
Hüsler-Reiss (c, f) copulas of the Savannah, GA. Empirical curves are shown as solid red while theoretical curves are represented as dashed blue.
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storm tide time series which well-bounded observed time series with relatively low error (rRMSE) and bias (rB). 
However, in this case, simulated peak rainfall intensity was consistently higher than observed, whereas Cape 
Canaveral was always lower than observed. Although the Savannah rainfall models produced a more consistent 
peak intensity, moderately high error (rRMSE) and bias (rB) were apparent. Variability in simulated to observed 
storm tide time series was much lower when compared to rainfall time series. Again, this result is similar to Cape 
Canaveral and is representative of the difficulty in modeling the natural stochastic variability in observed rainfall 
with ARMA time series models.

Figures 11a–11f show the comparison of simulated two-dimensional multivariate copula model results and the 
observed/measured values using both “AND” and SK definitions. Parallel to previous figures, two-dimensional 
non-exceedance probability plots highlight very similar results among the copula models. Clustering of the simu-
lated data was within the observed values and tended to be attributed to less than the 80% probability level. 
However, in all three copulas, whether “AND” or SK, there was a short time window of high intensity well 
beyond the average storm duration.

Differences in predicted non-exceedance probabilities for “AND” and SK definitions were more apparent for 
Savannah. For example, observed peak storm intensity registered approximately at the 90% non-exceedance 
threshold for the “AND” definition. On the other hand, the SK definition registered at nearly the 95% threshold. 

Figure 10. Time series observations and autoregressive moving average (ARMA) model simulations of Savannah, GA multivariate distribution for Gumbel (storm tide/
rainfall) (a, d), Normal (storm tide/rainfall) (b, e), and Hüsler-Reiss (storm tide/rainfall) (c, f) copulas. Descriptive statistics regarding model fits are presented in the 
form of relative root mean square error (rRMSE) and relative bias (rB).
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This result corroborates the need for understanding implications of one multivariate non-exceedance probability 
measure over another. For example, in this case, one may consider the SK definition to provide a sense of resilient 
design when compared to “AND.” However, one measure over the other and a single multivariate hurricane event 
analysis cannot provide an all-encompassing viewpoint for coastal infrastructure design. Instead, a much broader 
analysis is needed to understand the true design and risk setting.

4.3. South Carolina Analysis

Our analysis for South Carolina focuses on the Lowcountry where the extent of Irma's radius impacted much of 
the Charleston region. The occurrence of hourly rainfall and storm tide levels during the peak of the storm is 
presented in Figure 12. The bulk of the high storm tide occurred during peak rainfall intensities (Figure 12a), thus 
resulting in a positive correlation structure when evaluating observed time series. In this case, Pearson, Spear-
man, and Kendall coefficients were greater than zero and very close to 0.50, which clearly indicates some positive 
dependence was present for the storm tide and rainfall interaction. LOWESS trend models were fit to storm tide 
and rainfall series, and ARMA (2,0) and ARMA (3,1) models were fit on the LOWESS residuals, to generate 
iid samples for both the storm tide and rainfall, respectively. Overall, the ARMA models described the observed 
time series quite well after the trend in the mean was accounted for. Examination of ARMA residuals showed the 
correlation pairs were still positively dependent although slightly less than the observed time series (Figure 12b).

Figure 11. Observations versus simulations and probability level curves of Savannah, GA multivariate distribution under the hypothesis of Gumbel (“AND”/SK) (a, b), 
Normal (“AND”/SK) (b, e), and Hüsler-Reiss (“AND”/SK) (c, f) copulas.
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Results of the bivariate copula modeling for South Carolina are presented in Table 5, with the goodness of fit 
statistics. The Cramér-von Mises two-sided p-values clearly show the adequacy of copula fitting to the event 
observed in Charleston. Elliptical copulas demonstrated the highest statistically sufficient modeling capacity with 
p-values around 0.80 followed by Archimedean and Extreme Value copulas. Both Archimedean and Extreme 
Value copulas had inconsistent goodness-of-fit statistics with two-sided p-values ranging from 0.20 to approx-
imately 0.70. However, like the previous applications, each of the tested copulas was able to encapsulate the 
dependence structure with statistically reliable results (i.e., two-sided p-values>0.05), with generally only the Joe 
and Tawn copulas producing significance levels below 0.50. In this case, the Pickands dependence function is 
sufficiently smooth, however the approximation rate could be improved using larger sample size.

Positive tail dependence was present and both coefficients, 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆

𝑈𝑈
 and 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈
 ,were in agreement for most of the 

tested copulas. The strength of residual tail dependence was similar to the Georgia application. In each of these 
applications, increasingly higher performance was followed by increased measures of tail dependence. Although 
tail dependence in residuals does not necessarily reveal tendencies in raw observations, such dependence does 

Figure 12. Event correlation/frequency structure for Charleston, SC for observed data (a) and time series model residuals 
(b) and autoregressive moving average (ARMA) model fitting for storm tide (c) and rainfall (d) time series. Lower left panels 
of (a, b) represent pairwise correlation plots between storm variables. Diagonal panels of (a, b) represent the frequency of 
each associated variable with the best fit indicated by red lines. Upper right panels of (a, b) contain the computed correlation 
coefficient between bivariate variables for: (1) Pearson (𝐴𝐴 𝐴𝐴𝑝𝑝 ); (2) Spearman (𝐴𝐴 𝐴𝐴𝑠𝑠 ); and (3) Kendall (𝐴𝐴 𝐴𝐴 ).
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help with improved time series reconstruction using realizations drawn from fitted copulas, a result presented 
later in this section. For this application, the Normal, Student's t, and Frank represent the top three rated copulas, 
respectively, and were selected for further analysis.

Figure  13 presents copula diagonals and two-dimensional copula level curves for empirical and theoretical 
models using the method of maximum pseudo-likelihood. Diagonal curve results were very similar, with better 
agreement between empirical and model curves. Level curves presented in Figures 13d–13f confirmed the diag-
onal copula results. Similar to the previous applications, diagonals were generally the more statistically unstable 
domain among the copula functions. Although, instabilities along the diagonals (i.e., u = v) were more apparent 
in the contour plots, propagation of the copula functions toward the upper tails improved the theoretical contour 
results, showing better agreement with measured data (i.e., empirical curves). Differences among non-exceedance 
probability curves did not appear to be significant, with each model performing adequately in terms of predicting 
the upper tail dependency of the hurricane event. Nonetheless, the Frank copula produced a 13% less statistically 
significant fit when comparing computed two-sided p-values.

Realizations of reconstructed rainfall and storm tide time series from each copula model and univariate marginal 
distributions (i.e., residual time series distributions) are presented in Figure  14. Both storm tide and rainfall 
simulations generally bounded observed time series, with storm tide simulations producing a much narrower 
band. Rainfall simulations presented more variability but still provided a reasonable prediction of observations 
with significantly lower error (rRMSE) and bias (rB) estimates. However, rainfall peak intensities at hours 10 and 
12 were consistently underpredicted. Overall, all three copulas generally spanned the range of observed rainfall 
intensities. The highly variable and stochastic nature of hourly rainfall resulted in a less defined range of simu-
lated rainfall curves, although this result should be expected in most stochastic rainfall simulations.

A multivariate representation of the results is presented in Figure 15 along with estimated non-exceedance proba-
bility curves. As expected, each copula model produced relatively little-to-no differences in the upper tail examin-
ing results for both “AND” and SK definitions. In this case, most of the event was below the 80% threshold, with 
only two observations beyond the 95% level. Results showed positive dependence with a clear trend in increasing 
intensity while simultaneously increasing both rainfall and storm tide. As with previous results and applications, 
the “AND” definition produced higher non-exceedance probability levels given the same rainfall and storm tide.

5. Discussion and Conclusions
This paper examined a probabilistically consistent framework suitable for modeling coastal multivariate time 
series. We take the traditional multivariate copula-based dependence approach often used in applied statistics 
wherein explanatory variables are drawn from the same population class (i.e., similar units of measurements) 

Maximum pseudo-likelihood Tau inversion

AIC RMSE NSE𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆

𝑈𝑈
 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈
 Copula Parameter𝐴𝐴 𝐴𝐴𝑛𝑛 p-value Parameter𝐴𝐴 𝐴𝐴𝑛𝑛 p-value

Gumbel 1.188 0.477 1.188 0.436 1.336 0.025 0.988 0.256 0.214

Clayton 0.547 0.634 0.547 0.632 0.290 0.026 0.986 0.040 0.225

Frank 1.514 0.687 1.515 0.657 0.963 0.023 0.989 0.060 0.182

Joe 1.200 0.199 1.199 0.188 1.729 0.026 0.987 0.244 0.161

Normal 0.337 0.796 0.337 0.783 0.693 0.026 0.987 0.150 0.243

Student's t 0.337 0.777 0.337 0.789 0.693 0.026 0.987 0.149 0.244

Galambos 0.462 0.544 0.462 0.543 1.181 0.025 0.988 0.274 0.229

Hüsler-Reiss 0.853 0.631 0.851 0.602 1.089 0.026 0.987 0.299 0.247

Tawn 0.309 0.229 0.309 0.235 1.589 0.025 0.988 0.179 0.160

t-EV 0.515 0.436 0.513 0.450 1.276 0.035 0.974 0.269 0.225

Note. Statistical significance represents approximate two-sided p-values from 1,000 MC simulations.

Table 5 
Copula Fitting Parameters and Statistical Fitting Results for Charleston, SC
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and expand to a storm tide and rainfall application using Hurricane Irma data (September 2017) as a case study 
in Florida, George, and South Carolina, United States. Due to the presence of observed serial correlation, 
LOWESS-based ARMA time series models were implemented to generate residuals that represented iid samples 
of the observed data. Apparent dependencies (i.e., Spearman, Pearson, and Kendall's tau) between rainfall and 
storm tide time series were reduced in all applications after removing serial correlation. Archimedean, Elliptical, 
and Extreme Value copulas were then fit using ARMA residuals and the method of maximum pseudo-likelihood 
in which copula parameters were estimated independent of the univariate marginals. n samples of the observed 
data were then synthesized using an MC approach in which the empirical copula and the parametric estimate of 
the copula were obtained to approximate two-sided p-values using the Rosenblatt probability integral transform 
method.

Each application progressively exhibited the power of a copula-based dependence model to describe multivariate 
hydrologic variables observed during Hurricane Irma. An important component in developing a suitable multi-
variate copula-based model to describe dependencies in the observed event was the selection of an appropriate 
time series model. In the Florida application, observed time series exhibited negative correlation while residuals 
represented near independence with correlation coefficients near zero. Unlike the other two applications, Flor-
ida did not have a recurring astronomical tide. Nevertheless, the Florida model still performed well although 
observed peaks were significantly underestimated. Georgia and South Carolina applications resulted in decreased 
residual dependence when compared to observed time series but still retained the observed positive dependence. 
Both Georgia and South Carolina's simulated peak rainfall and storm tide were in better agreement with observa-
tions under Extreme Value copulas assumption compared to Florida. Under the assumption of an Extreme Value 

Figure 13. Diagonal curves and contour plots for the empirical and theoretical cumulative distribution functions (CDFs) for Frank (a, d), Normal (b, e), and Student's t 
(c, f) copulas of the Charleston, SC. Empirical curves are shown as solid red while theoretical curves are represented as dashed blue.
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copula, the Pickands dependence function was estimated which was consistent against alternatives with left tail 
decreasing and relatively satisfied strong smoothness assumptions on the copula. In many cases, the Pickands 
dependence function can yield an estimator with a substantially larger error if the coefficient of tail dependence 
is small. This is the reason why the advantages of the asymptotically optimal weight function only start to play a 
role for rather large sample sizes, certainly larger than the sample and data used in this research.

Temporal dynamics of rainfall and storm tide time series observed during Hurricane Irma were investigated using 
“AND” and SK non-exceedance probability definitions. All three applications' observed rainfall and storm tide 
co-occurrences fell within 50% and 80% non-exceedance probability levels. However, there were at least 1–2 hr of 
combined peak intensities above the 95% threshold in Florida, Georgia, and South Carolina. This is typically the 
case with smaller compound flooding events in coastal areas wherein high-intensity rainfall and peak surges are 
short-lived. Although multivariate non-exceedance probabilities of observed rainfall and storm tide at any given 
hour were generally higher using the SK definition when compared to the “AND” definition, a direct comparison 
on this implication is not as straightforward (Salvadori et al., 2016) and further research should be conducted.

Multivariate copula-based dependence models developed as part of this study proved the ability to model 
hourly/sub-hourly rainfall and storm tide data of Hurricane Irma event with the presence of autocorrelation 
by using ARMA time series models. However, it is important to point out that a multivariate copula-based 

Figure 14. Time series observations and autoregressive moving average (ARMA) model simulations of Charleston, SC multivariate distribution for Frank (storm tide/
rainfall) (a, d), Normal (storm tide/rainfall) (b, e), and Student's t (storm tide/rainfall) (c, f) copulas. Descriptive statistics regarding model fits are presented in the form 
of relative root mean square error (rRMSE) and relative bias (rB).
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model developed based on numerous individual storms/hurricanes would warrant more conclusive results on 
the long-term inter-storm dependency that can be utilized as a more useful tool for risk managers. For instance, 
consider an event-based copula model as a set of random variables (e.g., peak storm tide, peak rainfall, and storm 
duration). Although the individual model may be composed of possibly small sample sizes, the estimated copula 
model of a large sample size of multivariate extreme events can be considered an iid sample of random variables 
approaching the underlying representation of the extreme multivariate event population. This extension of the 
methodology presented herein could help begin to address the variability and impacts of compound coastal flood-
ing and better assess the risk of such events occurring at a given location as stated by AghaKouchak et al. (2020).

Although the framework and results presented herein are promising, the proposed methodology has several limita-
tions that should be mentioned. First, ARMA models assume stationary conditions, and, although transformations 
from a stationary to non-stationary process are possible, epistemic uncertainty is inevitable. Such bias presents 
itself in several of the rainfall models herein. As a result, alternative time series methods to emulate observed 
rainfall data, such as multifractals (e.g., Schertzer & Lovejoy,  1987; Veneziano & Langousis,  2010), should 
be considered in future research. Second, copulas are stationary by nature. Transformation of non-stationary 
time series to stationary time series and then incorporating into a stationary copula may introduce additional 
uncertainty. Henceforth, caution should be exercised when using copulas for design and policy decisions. Third, 
although the path of a hurricane was not considered herein, it is a critical component of modeling multivariate 

Figure 15. Observations versus simulations and probability level curves of Charleston, SC multivariate distribution under the hypothesis of Frank (“AND”/SK) (a, b), 
Normal (“AND”/SK) (b, e), and Student's t (“AND”/SK) (c, f) copulas.
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flooding in coastal environments. The hurricane path and other hurricane components such as radius of maxi-
mum winds and forward speed could provide additional insight and clarity in coastal compound flood dynamics 
and assessment.

Development of a storm copula to describe the long-term probabilistic nature of rainfall and storm tide (or 
astronomical tide) time series is no different than techniques similarly applied to dimensionless cumulative rain-
fall curves implemented during the design and evaluation of stormwater facilities (e.g., Huff, 1967; Oppel & 
Fischer, 2020). Indeed, Grimaldi and Serinaldi (2006b) presented methods using copulas to generate such design 
hyetographs and dimensionless rainfall curves, substantiating the applicability of copulas for synthetic design 
events. The broader impacts of a copula-based dependence model could provide a mechanism to approach multi-
variate time series modeling on hourly/sub-hourly scales in which parameters are dependent and exhibit serial 
correlation. Such the case is storm tide and rainfall, as shown in these applications. Development and imple-
mentation of a temporal tidal-rainfall relationship for a given annual exceedance probability would be beneficial 
in enacting policy, supporting decision-making needs, co-producing knowledge (see Sanders et al., 2020), and 
establishing design standards by which engineers and planners can quantitatively and more accurately assess the 
risk of compound flooding for aging and vulnerable infrastructure within coastal communities.

A multivariate dynamic design storm would help reduce subjective aspects (people's risk perception, see Kellens 
et al., 2013) in evaluating coastal flood risk and design of stormwater management facilities by “leveling the 
playing field.” For example, the City of Charleston, South Carolina (i.e., peninsular Charleston) is vulnerable to 
compound flooding during high storm tides (or typical astronomical high tides) and the onset of rainfall since 
a substantial portion of the drainage network is below average tide elevations. As a result, a typical analysis for 
an infrastructure or development project may simulate such an event using continuous rainfall and a static mean 
storm tide. Obviously, this may not be the worst-case condition, and as such many engineers may model the 
system with a recurring tide in which the peak runoff occurs at mid-tide rising. However, there is no common 
method from a probabilistic perspective that represents the underlying risk observed or expected. But obviously, 
the time when peak rainfall and the storm tide co-occur simultaneously (the tails dependency) was when the 
maximum risk and damage might be occurred that the authors refer to as a “devil” condition. However, in the 
case of Hurricane Irma, “the devil” condition was short and temporary with two high-intensity 1-hr windows of 
concurrent rainfall and storm tide conditions.

Although, copulas are flexible mathematical tools that can support different configurations in terms of marginal 
fitting distribution. More research is needed to evaluate the historical evolvement of hurricane-driven compound 
floods, and certainly with longer datasets than what were used in this research. The applications presented herein 
are exploratory in nature and primarily aimed at hypothesizing stochastic dynamics between rainfall and storm tide 
time series observed during Hurricane Irma, thereby the methodology and results may have limited application in 
the field of compound flood hazards assessment. To compute the likelihood of hurricane-driven compound flood 
events more precisely, the knowledge of multivariate probabilities can be potentially combined with the physical 
processes that generate and shape the patterns and magnitude of hurricane events. This will offer a framework 
where copula dependence structure describing the interdependency among different hydrologic variables can be 
motivated by physical properties of the hurricane generating process. This combined approach can provide criti-
cal boundary conditions and precise return periods for hydrodynamic design models. These boundary conditions 
can also be used to analyze stormwater and riverine models and assess the risk associated with future hurricanes 
or intense storms (e.g., Farve et al., 2004; Grimaldi & Serinaldi, 2006a; Kao & Govindaraju, 2007; Salvadori 
et al., 2013; Zhang & Singh, 2012).

We recognize that point measurement techniques are both simple and yet statistically robust. However, simple 
stochastic risk models may not provide an appropriate answer during compound flood crises that span multiple 
hours or even days. As a result, we need more comprehensive models to understand both the stochastic and 
dynamic (i.e., spatiotemporal) nature of compound flood events as recently pointed out by Gori et al. (2020) and 
AghaKouchak et al. (2020). This call is not for “less mathematics (less dynamics)” involved in compound flood 
risk calculations, but rather for a better understanding of the physics and then the necessary mathematics (dynam-
ics) involved (e.g., Samadi et al., 2021). This will encourage us to keep vigilant and communicate in a forceful 
way those actuarial, hydrological, and risk findings which are of societal importance/concern while keeping in 
mind that these types of extreme events are no longer unexpected or surprising.
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