Incidence of Acute Cerebrovascular Events in Patients with Rheumatic or Calcific Mitral Stenosis: A Systematic Review and Meta-analysis

Qi Zhuang Siah, MBBCh, Bao Yu Pang, MBChB, Tiffany TS. Ye, MBBCh, Jamie SY. Ho, MBBChir, Yao Hao Teo, MBBS, Yao Neng Teo, Nicholas LX. Syn, MBBS, Benjamin YQ. Tan, MBBS, Raymond CC. Wong, MBBS, Leonard LL. Yeo, MBBS, Edward CY. Lee, MBBS, Tony YW. Li, MBBS, Kian-Keong Poh, MBBChir, William KF. Kong, MBChB, Tiong-Cheng Yeo, MBBS, Ping Chai, MBBS, Ching-Hui Sia

PII: S1109-9666(22)00117-8
DOI: https://doi.org/10.1016/j.hjc.2022.08.002
Reference: HJC 721

To appear in: Hellenic Journal of Cardiology

Received Date: 15 July 2022
Revised Date: 16 August 2022
Accepted Date: 23 August 2022

Please cite this article as: Siah QZ, Pang BY, Ye TT, Ho JS, Teo YH, Teo YN, Syn NL, Tan BY, Wong RC, Yeo LL, Lee EC, Li TY, Poh KK, Kong WK, Yeo TC, Chai P, Sia CH, Incidence of Acute Cerebrovascular Events in Patients with Rheumatic or Calcific Mitral Stenosis: A Systematic Review and Meta-analysis, Hellenic Journal of Cardiology, https://doi.org/10.1016/j.hjc.2022.08.002.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Hellenic Society of Cardiology. Publishing services by Elsevier B.V. All rights reserved.
Incidence of Acute Cerebrovascular Events in Patients with Rheumatic or Calcific Mitral Stenosis: A Systematic Review and Meta-analysis

Short Title: Thromboembolic Events in Mitral Stenosis

Authors: Qi Zhuang Siah*, Bao Yu Pang*, Tiffany TS Ye*, Jamie SY Ho, Yao Hao Teo, Yao Neng Teo, Nicholas LX Syn, Benjamin YQ Tan, Raymond CC Wong, Leonard LL Yeo, Edward CY Lee, Tony YW Li, Kian-Keong Poh, William KF Kong, Tiong-Cheng Yeo, Ping Chai, Ching-Hui Sia

*Joint first authors

Affiliations:
1School of Medicine, Cardiff University, Wales, United Kingdom
2Prince Charles Hospital, Cwm Taf Morgannwg University Health Board, Wales, United Kingdom
3Academic Foundation Year Programme, North Middlesex Hospital University Trust, London, United Kingdom
4Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
5Division of Neurology, Department of Medicine, National University Hospital, Singapore
6Department of Cardiology, National University Heart Centre Singapore, Singapore

Author Details:
Qi Zhuang Siah MBCh
SiahQZ@outlook.com
1School of Medicine, Cardiff University, Wales, United Kingdom

Bao Yu Pang MBChB
baoyu0205@hotmail.com
2Prince Charles Hospital, Cwm Taf Morgannwg University Health Board, Wales, United Kingdom

Tiffany TS Ye MBCh
Tiffanytsye@gmail.com

1School of Medicine, Cardiff University, Wales, United Kingdom

Jamie SY Ho MBBChir
sinyingh@gmail.com

3Academic Foundation Year Programme, North Middlesex Hospital University Trust, London, United Kingdom

Yao Hao Teo MBBS
teoyaohao@gmail.com

4Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Yao Neng Teo
teoyaoneng@gmail.com

4Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Nicholas LX Syn MBBS
nicholassyn@gmail.com

4Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

+65 6779 5555

Benjamin YQ Tan MBBS
benjaminyqtan@gmail.com

4Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
Division of Neurology, Department of Medicine, National University Hospital, Singapore
+65 6779 5555

Raymond CC Wong MBBS
raymond_cc_wong@nuhs.edu.sg

Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Department of Cardiology, National University Heart Centre Singapore, Singapore
+65 6779 5555

Leonard LL Yeo MBBS
leonardyeoll@gmail.com

Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Division of Neurology, Department of Medicine, National University Hospital, Singapore
+65 6779 5555

Edward CY Lee MBBS
edward.lee.cy@hotmail.com

Department of Cardiology, National University Heart Centre Singapore, Singapore
+65 6779 5555

Tony YW Li MBBS
tony_li@nuhs.edu.sg

Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Department of Cardiology, National University Heart Centre Singapore, Singapore
+65 6779 5555

Kian-Keong Poh MBChir
keong_kian@nuhs.edu.sg
William KF Kong MBChB
william_kong@nuhs.edu.sg

Tiong-Cheng Yeo MBBS
tiong_cheng_yeo@nuhs.edu.sg

Ping Chai MBBS
ping_chai@nuhs.edu.sg

Ching-Hui Sia MBBS
ching_hui_sia@nuhs.edu.sg

Corresponding Author:
Dr Ching-Hui Sia,
Department of Cardiology,
National University Heart Centre Singapore,
1E Kent Ridge Road, NUHS Tower Block Level 9,
Singapore 119228.
Email: ching_hui_sia@nuhs.edu.sg
Tel: +65 6779 5555 Fax: +65 6872 2998

Declaration of interest: None

Funding Sources: CHS was supported by the National University of Singapore Yong Loo Lin School of Medicine’s Junior Academic Fellowship Scheme. This funding source had no involvement in study design, data collection, data analysis, data interpretation, manuscript write-up and decision to submit the article for publication.
Incidence of Acute Cerebrovascular Events in Patients with Rheumatic or Calcific Mitral Stenosis: A Systematic Review and Meta-analysis

POPULATION

Systematic search for patients with mitral stenosis (MS) or mitral annular calcification (MAC), with or without atrial fibrillation (AF)

16 studies included 43,986 MS patients; 2,296 MAC patients

OUTCOMES OF INTEREST

Incidence of:
- Stroke/ transient ischaemic attack (TIA)
- Peripheral thromboembolic events (TEE)
- Composite acute cerebrovascular events (ACE) which includes Stroke/ TIA and peripheral TEE

in rheumatic MS (rMS), calcific MS & MAC

RESULTS

ACE: Pooled incidence of 8.30% (95% CI 3.45-18.63; \(I^2=96\%\)) among MS patients

Incidence of ACE in MAC patients
- 14.85% (95% CI 7.21-28.11; \(I^2=98\%\))

Incidence of ACE in MS patients
- 4.92% (95% CI 3.53-6.83; \(I^2=38\%\))

Incidence of ACE in MS patients with AF
- 31.55% (95% CI 3.60-85.03; \(I^2=99\%\))

The logit-transformed proportion of ACE increased by 0.0141 per year of follow-up

CONCLUSION

- High stroke/ TIA (7.11\%) and composite ACE (8.30\%) incidences were reported in MS patients
- Concomitant AF and MAC are risk factors for the development of ACE in the MS population
- Further research is needed to investigate the thromboembolic risks in rheumatic and calcific MS subtypes
Incidence of Acute Cerebrovascular Events in Patients with Rheumatic or Calcific Mitral Stenosis: A Systematic Review and Meta-analysis

Short Title: Thromboembolic Events in Mitral Stenosis

Authors: Qi Zhuang Siah*, Bao Yu Pang*, Tiffany TS Ye*, Jamie SY Ho, Yao Hao Teo, Yao Neng Teo, Nicholas LX Syn, Benjamin YQ Tan, Raymond CC Wong, Leonard LL Yeo, Edward CY Lee, Tony YW Li, Kian-Keong Poh, William KF Kong, Tiong-Cheng Yeo, Ping Chai, Ching-Hui Sia

*Joint first authors

Affiliations:
1 School of Medicine, Cardiff University, Wales, United Kingdom
2 Prince Charles Hospital, Cwm Taf Morgannwg University Health Board, Wales, United Kingdom
3 Academic Foundation Year Programme, North Middlesex Hospital University Trust, London, United Kingdom
4 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
5 Division of Neurology, Department of Medicine, National University Hospital, Singapore
6 Department of Cardiology, National University Heart Centre Singapore, Singapore

Author Details:
Qi Zhuang Siah MBCh
SiahQZ@outlook.com
1 School of Medicine, Cardiff University, Wales, United Kingdom

Bao Yu Pang MBChB
baoyu0205@hotmail.com
2 Prince Charles Hospital, Cwm Taf Morgannwg University Health Board, Wales, United Kingdom

Tiffany TS Ye *MBBCh*
Tiffanytsye@gmail.com

1 School of Medicine, Cardiff University, Wales, United Kingdom

Jamie SY Ho *MBBChir*
sinyingh@gmail.com

3 Academic Foundation Year Programme, North Middlesex Hospital University Trust, London, United Kingdom

Yao Hao Teo *MBBS*
teoyaohao@gmail.com

4 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Yao Neng Teo
teoyaoneng@gmail.com

4 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Nicholas LX Syn *MBBS*
nicholassyn@gmail.com

4 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

+65 6779 5555

Benjamin YQ Tan *MBBS*
benjaminyqtan@gmail.com

4 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
Raymond CC Wong MBBS
raymond_cc_wong@nuhs.edu.sg

Leonard LL Yeo MBBS
leonardyeoll@gmail.com

Edward CY Lee MBBS
edward.lee.cy@hotmail.com

Tony YW Li MBBS
tony_li@nuhs.edu.sg

Kian-Keong Poh MBChir
keong_kian@nuhs.edu.sg
4Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
6Department of Cardiology, National University Heart Centre Singapore, Singapore
+65 6779 5555
William KF Kong MBChB
william_kong@nuhs.edu.sg

Tiong-Cheng Yeo MBBS
tiong_cheng_yeo@nuhs.edu.sg

Ping Chai MBBS
ping_chai@nuhs.edu.sg

Ching-Hui Sia MBBS
ching_hui_sia@nuhs.edu.sg

Corresponding Author:
Dr Ching-Hui Sia,
Department of Cardiology,
National University Heart Centre Singapore,
1E Kent Ridge Road, NUHS Tower Block Level 9,
Singapore 119228.
Email: ching_hui_sia@nuhs.edu.sg
Tel: +65 6779 5555 Fax: +65 6872 2998

Funding Sources: CHS was supported by the National University of Singapore Yong Loo Lin School of Medicine’s Junior Academic Fellowship Scheme. This funding source had no involvement in study design, data collection, data analysis, data interpretation, manuscript write-up and decision to submit the article for publication.

Word count: 1232
Abbreviations

ACE Acute cerebrovascular events
AF Atrial fibrillation
CI Confidence interval
\(I^2 \) Heterogeneity
MAC Mitral annular calcification
MS Mitral stenosis
NOAC Non-vitamin K oral anticoagulant
NOS Newcastle Ottawa Scale
RHD Rheumatic heart disease
TEE Thromboembolic event
TIA Transient ischaemic accident
Abstract

Background

Patients with mitral stenosis (MS) may be predisposed to acute cerebrovascular events (ACE) and peripheral thromboembolic events (TEE). Concomitant atrial fibrillation (AF), mitral annular calcification (MAC) and rheumatic heart disease (RHD) are independent risk factors. Our aim was to evaluate the incidence of ACEs in MS patients and the implications of AF, MAC, and RHD on thromboembolic risks.

Methods

This systematic review was registered on PROSPERO (CRD42021291316). Six databases were searched from inception to 19th December 2021. The clinical outcomes were composite ACE, ischaemic stroke/transient ischaemic attack (TIA), and peripheral TEE.

Results

We included 16 and 9 papers, respectively, in our qualitative and quantitative analyses. The MS cohort with AF had the highest incidence of composite ACE (31.55%; 95% CI 3.60-85.03; I²=99%), followed by the MAC (14.85%; 95% CI 7.21-28.11; I²=98%), overall MS (8.30%; 95% CI 3.45-18.63; I²=96%) and rheumatic MS population (4.92%; 95% CI 3.53-6.83; I²=38%). Stroke/TIA were reported in 29.62% of the concomitant AF subgroup (95% CI 2.91-85.51; I²=99%) and in 7.11% of the overall MS patients (95% CI 1.91-23.16; I²=97%). However, the heterogeneity of the pooled incidence of clinical outcomes in all groups, except the rheumatic MS group, were substantial and significant. The logit-transformed proportion of composite ACE increased by 0.0141 (95% CI 0.0111-0.0171; p<0.01) per year of follow-up.

Conclusion

In the MS population, MAC and concomitant AF are risk factors for the development of ACE. The scarcity of data in our systematic review reflects the need for further studies to explore thromboembolic risks in all MS subtypes.

Keywords: mitral stenosis, ischaemic stroke, incidence
1. Introduction

Patients with mitral stenosis (MS) may be predisposed to acute cerebrovascular events (ACE). Concomitant atrial fibrillation (AF), mitral annular calcification (MAC) and rheumatic heart disease (RHD) are independent risk factors.[1–3] Our study aimed to evaluate the incidence of of ACE in MS patients and the implications of AF, MAC, and RHD on thromboembolic risks. We also aimed to compare the risk of ACE between the different subtypes of MS (calcific and rheumatic). Our secondary objective was to examine non-stroke clinical event such as peripheral thromboembolic events (TEE) in this population.

2. Methods

2.1 Study Protocol & Search Strategy

The protocol for this systematic review was registered on the International Prospective Register of Systematic Reviews (PROSPERO; CRD42021291316). A systematic search of PubMed, Scopus, Embase, Medline, Web of Science, and Cochrane Library databases was performed from inception to 19th December 2021. Supplemental Methods details our search strategy. Baseline characteristics of all patients in the included studies are presented in Supplemental Tables S1 and S2.

2.2 Assessment of Study Quality and Risk of Bias

The quality of the included studies was evaluated using Newcastle-Ottawa Scale (NOS) (Supplemental Tables S4, S5 and S6).

2.3 Data Analysis

The included studies were analysed using R software version 4.2.0 (R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/) to assess effect size (ES), its associated 95% confidence intervals (CI), the between-study variance (τ²) and the appropriateness of combining studies (I² statistic). Packages used for the analyses included dplyr, meta and metafor. Random effects model was employed, and forest plots were plotted. A cut-off of >50% heterogeneity with the I² statistic was deemed to be significant. A p-value of <0.05 was considered
statistically significant. A sensitivity analysis was performed to explore the source of high heterogeneities by excluding low-quality studies. We also performed meta-regression analyses to adjust our results to the follow-up period in each study.

3. Results

3.1 Study Selection
We included 16 and 9 papers, respectively, in our qualitative and quantitative analyses. The detailed study selection process is depicted in a preferred reporting items for systematic reviews and meta-analysis (PRISMA) diagram (Fig 1).

3.2 Quantitative Analysis

3.2.1 Acute cerebrovascular events in the overall MS population
Seven studies[4–8,11,16] with a pooled population of 43,522 patients reported 7,085 composite ACE events, with an incidence of 8.30% (95%CI 3.45-18.63). The included studies were of considerable heterogeneity with an I² of 96% (Fig 2a). The pooled incidence of stroke/TIA (Fig 2b) across five studies was 7.11% (95%CI 1.91-23.16).[4,7,8,11,16], with significant and substantial heterogeneity (I²=97%). There were only three articles[6,8,16] (n=927) which studied peripheral TEE as an outcome within the MS population (Fig 2c), with an overall incidence of 1.86% (95%CI 0.81-4.24; I²=74%) and significant heterogeneity.

3.2.2 Acute cerebrovascular events in the MS population with AF
In terms of composite ACE (Supplemental Fig S1a), two studies[11,16] which consisted of 566 MS patients with AF reported a pooled incidence of 31.55% (95%CI 3.60-85.03). However, considerable heterogeneity was noted with an I² of 99%. The incidence of stroke/TIA was 29.62% (95%CI 2.91-85.51) with an I² of 99%.

3.2.3 Acute cerebrovascular events in the MAC subgroup
Three studies[11–13] investigated the outcomes of stroke/TIA in patients with MAC (n=1,762) and reported a pooled incidence of 14.85% (95%CI 7.21-28.11; I²=98%), illustrated in Supplemental Fig S1b.

3.2.4 Acute cerebrovascular events in the rheumatic MS subgroup
Three studies[4,6,7] described a total of 36 composite ACE events in 730 patients with rheumatic MS (Supplemental Fig S1c). The pooled incidence rate was 4.92% (95% CI 3.53-6.83), with low heterogeneity ($I^2=38\%$; $p=0.20$). The analysis of the outcome of stroke/TIA (Supplemental Fig S1d) in two relevant studies[4,7] revealed the overall incidence was 5.45% (95% CI 3.51-8.36; $I^2=56\%$; $p=0.13$).

3.3 Sensitivity Analysis & Meta-regression

We performed a sensitivity analysis by excluding low-quality studies such as Aronow 1998[11] and Pengo 2003[8]. After the removal of these two papers (Supplemental Figure S2), the incidence of composite ACE in the overall MS population (n=43,332) was down to 7.00% (95% CI 4.16-11.53), but the heterogeneity remained significant (I^2 of 96%; $p<0.01$).[4–7,16] Exclusion of low-quality studies in the MAC population (n=817) revealed a composite ACE pooled incidence of 9.32% (95% CI 6.21-13.76), with reduced but still significant heterogeneity ($I^2=81\%$; Supplemental Figure S3).[12,13]

A meta-regression analysis was conducted to further explore the source of high heterogeneity in the overall MS population among the five studies[4–7,16]. The logit-transformed proportion of composite ACE increased by 0.0141 (95% CI 0.0111-0.0171; $p<0.01$) per year of follow-up (Supplemental Fig S4).

4. Discussion

Our meta-analysis revealed high stroke/TIA (7.11%) and composite ACE (8.30%) incidences in MS patients. The pooled incidence of stroke/TIA in MS patients with concomitant AF was 29.62%, and that in MAC (without MS) patients was 14.85%. The incidence of stroke/TIA in rheumatic MS was 5.45%, similar to the overall MS population.

In our study, we found a similar incidence (14.85%) of stroke/TIA in our pooled MAC population, whilst only 7.11% of the overall MS cohort experienced stroke/TIA.

However, similar to the previous studies[3,17], our study did not directly compare the incidence of ischaemic events between both MAC and the overall MS populations.

Therefore, our results could only suggest that MAC may confer a higher risk for
ischaemic events than the overall MS cohort but were unable to quantify the actual risk difference. Prospective studies directly comparing the incidence in both groups are needed to verify this claim.

Limitations of our systematic review include the high heterogeneities across our results where we ran sensitivity and meta-regression analyses to explore their source and the underreporting of anticoagulation usage within the patient populations.

5. Conclusion

MAC and concomitant AF in the MS population are significant risk factors for the development of ACE. The scarcity of data in our systematic review reflects the need for further studies to explore thromboembolic risks in the rheumatic and calcific subtypes of MS.

Acknowledgements: QZS, BYP and TTSY are joint first authors.

Authors’ contribution: The authors confirm contribution to the paper as follows: study conception and design: QZS, BYP, TTSY, JSYH, BYQT, LLLY, CHS; data collection: QZS, BYP, TTSY, CHS; analysis and interpretation of results: YHT, YNT, QZS, BYP, TTSY, JSYH, LLLY, CHS; draft manuscript preparation: QZS, BYP, TTSY, JSYH, NLXS, BYQT, RCCW, LLLY, ECYL, TYWL, KKP, WKFK, TCY, PC, CHS. All authors reviewed the results and approved the final version of the manuscript.

Declaration of interest: None

Funding Sources: CHS was supported by the National University of Singapore Yong Loo Lin School of Medicine’s Junior Academic Fellowship Scheme. This funding source had no involvement in study design, data collection, data analysis, data interpretation, manuscript write-up and decision to submit the article for publication.
References

calcium with new thromboembolic stroke at 44-month follow-up of 2,148
doi:10.1016/s0002-9149(97)00854-0

12. Boon A, Lodder J, Cheriex E, Kessels F. Mitral annulus calcification is not an
1997;244(9):535-541. doi:10.1007/s004150050140

13. Benjamin EJ, Plehn JF, D'Agostino RB, et al. Mitral Annular Calcification and
doi:10.1056/nejm199208063270602

annular calcifications and cerebrovascular ischemic episodes in patients with

doi:10.1536/jhj.45.999

concomitant valvular heart disease derived from electronic health records:
Phenotypes, population prevalence, trends and prognosis. *Europace.*

cardiovascular events in a multiethnic community. The Northern Manhattan
[INSERT FIGURE 1]

Fig 1 PRISMA diagram of the systematic literature search

[INSERT FIGURE 2a-c]

Fig 2a-c Summary data and pooled effect size of **cerebrovascular outcomes** in the overall mitral stenosis population (a: composite acute cerebrovascular events; b: ischaemic stroke/ transient ischaemic attack; c: peripheral thromboembolic event)

CI: Confidence interval; I^2: I-squared of statistic of heterogeneity; τ^2: between-study variance; p: p-value
Records identified through database search (n=1151)
PubMed (n=124), Scopus (n=50), Embase (n=467), Cochrane Library (n=9), Web of Science (n=228), Medline (n=273)

Additional records identified through cross-referencing (n=10)

Records after removing duplication (n=855)

Records screened by title or abstract (n=855)

Records excluded (n=801)

Full text articles assessed for eligibility (n=54)

Wrong population (n=17)
Wrong data presentation (n=13)
Overlapping population (n=4)
Wrong publication type (n=2)
Wrong outcome (n=1)
Wrong study design (n=1)

Studies included in qualitative synthesis (n=16)

Studies included in quantitative synthesis (meta-analysis) (n=9)
2a

<table>
<thead>
<tr>
<th>Study</th>
<th>Events</th>
<th>Total</th>
<th>Events per 100 observations</th>
<th>Events</th>
<th>95%-CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aronow 1998</td>
<td>44</td>
<td>83</td>
<td>53.01 [41.74; 64.07]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banerjee 2019</td>
<td>38</td>
<td>527</td>
<td>7.21 [5.15; 9.76]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cho 2019</td>
<td>16</td>
<td>225</td>
<td>7.11 [4.12; 11.29]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim 2015</td>
<td>12</td>
<td>293</td>
<td>4.10 [2.13; 7.04]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim 2020</td>
<td>6965</td>
<td>42075</td>
<td>16.55 [16.20; 16.91]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nunes 2014</td>
<td>8</td>
<td>212</td>
<td>3.77 [1.64; 7.30]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pengo 2003</td>
<td>2</td>
<td>107</td>
<td>1.87 [0.23; 6.59]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random effects model

Heterogeneity: $\hat{\tau}^2 = 1.4642$, $p < 0.01$

Events per 100 observations: 43522, $8.30 [3.45; 18.63]$

2b

<table>
<thead>
<tr>
<th>Study</th>
<th>Events</th>
<th>Total</th>
<th>Events per 100 observations</th>
<th>Events</th>
<th>95%-CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aronow 1998</td>
<td>44</td>
<td>83</td>
<td>53.01 [41.74; 64.07]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banerjee 2019</td>
<td>32</td>
<td>527</td>
<td>6.07 [4.19; 8.46]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cho 2019</td>
<td>16</td>
<td>225</td>
<td>7.11 [4.12; 11.29]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nunes 2014</td>
<td>8</td>
<td>212</td>
<td>3.77 [1.64; 7.30]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pengo 2003</td>
<td>1</td>
<td>107</td>
<td>0.93 [0.02; 5.10]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random effects model

Heterogeneity: $\hat{\tau}^2 = 2.2522$, $p < 0.01$

Events per 100 observations: 1154, $7.11 [1.91; 23.16]$

2c

<table>
<thead>
<tr>
<th>Study</th>
<th>Events</th>
<th>Total</th>
<th>Events per 100 observations</th>
<th>Events</th>
<th>95%-CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banerjee 2019</td>
<td>6</td>
<td>527</td>
<td>1.14 [0.42; 2.46]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim 2015</td>
<td>12</td>
<td>293</td>
<td>4.10 [2.13; 7.04]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pengo 2003</td>
<td>1</td>
<td>107</td>
<td>0.93 [0.02; 5.10]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random effects model

Heterogeneity: $\hat{\tau}^2 = 0.3039$, $p = 0.02$

Events per 100 observations: 927, $1.86 [0.81; 4.24]$