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ABSTRACT: Heterogeneous palladium catalysts modified by N-heterocyclic carbenes (NHCs) are shown to be highly effective
toward the direct synthesis of hydrogen peroxide (H,0,), in the absence of the promoters which are typically required to enhance
both activity and selectivity. Catalytic evaluation in a batch regime demonstrated that through careful selection of the N-substituent
of the NHC it is possible to greatly enhance catalytic performance when compared to the unmodified analogue and reach
concentrations of H,O, rivaling that obtained by state-of-the-art catalysts. The enhanced performance of the modified catalyst, which

is retained upon reuse, is attributed to the ability of the NHC to electronically modify Pd speciation.

-Heterocyclic carbenes (NHCs) are well-established

compounds in various fields of chemistry and find
application as ligands for numerous processes in the field of
homogeneous catalysis.' > This is due to their effective and
controllable donor capability and highly modular structure. As
a result, parameters such as stability, reactivity, and selectivity
can be effectively tuned, allowing ligands to be tailored for a
wide variety of applications. Well-known precatalysts contain-
ing NHCs as ligands include PEPPSI (pyridine-enhanced
precatalyst preparation stabilization and initiation) and the
second-generation Grubbs(—Hoveyda) catalysts.”” In compar-
ison, the systematic application of NHCs as ligands in
heterogeneous catalysis is still in its infancy.”” There is a
growing number of reports using NHCs for surface
modification,®™'* with many studies demonstrating their ability
to control important catalytic properties (Figure 1A presents
an example of both an NHC-based homogeneous catalyst and
an NHC-promoted heterogeneous catalyst).'' > Building on
these fundamental discoveries, the goal of this work is to use
NHC-modified heterogeneous catalysts for the production of
the commodity chemical hydrogen peroxide (H,0,) from the
elements (Figure 1B).

Global demand for H,0, has risen significantly in recent
years, driven largely by its use as an oxidant for a range of
chemical transformations, as well as its utilization as a
bleaching agent. Currently, industrial production of H,0, is
met almost entirely via the highly efficient anthraquinone
oxidation process.” However, numerous routes to small-scale
H,0, production have been investigated, including electro-
chemical,”” photocatalytic,”> and thermal catalytic ap-
proaches.”* The thermal catalytic direct synthesis of H,O,
from the elements is considered particularly attractive for on-
site production, at desirable concentrations of this powerful
oxidant, and theoretically allows for total atom efficiency. The
direct route is of particular interest for chemical processes
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A. Application of N-heterocyclic carbenes (NHCs) as ligands in catalysis
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Figure 1. N-Heterocyclic carbenes as ligands in catalysis and their
application for the direct synthesis of hydrogen peroxide.
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Table 1. Influence of Structurally Diverse NHCs on the Productivity and Selectivity of 1%Pd/TiO, toward the Direct Synthesis

of H,0,
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R2 CHPh2 R?= Me: IPr*
IC
productlvlty/ H,0, concn/ apparent rate of reaction at 30 min/ degradatlon/
entry catalyst molypo kg ' BT wt % mmoly;,0, mmolpg! min™~ molipo, kg™
1 1%Pd/TiO, (unmodified) 80 0.16 8.73 X 102 231
2 1%Pd-ICy(1:1)/TiO, 110 021 1.19 x 10° 208
3 1%Pd-IMes(1:1)/TiO, 133 0.27 1.40 X 10° 202
4 1%Pd-IPr(1:1)/TiO, 160 0.32 1.70 x 103 184
S 1%Pd-pPh-IPr(1:1)/TiO, 118 023 126 x 10 169
6  1%Pd-IPr¢(1:1)/TiO, 110 021 1.15 x 10 137
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Figure 2. Effect of Pd:IPr ratio on catalytic performance toward the direct synthesis of H,O,. (A) Catalytic activity of NHC-modified 1%Pd/TiO,
catalysts toward the direct synthesis of H,0, and its subsequent degradation as a function of Pd:IPr molar ratio. (B) CO-DRIFTS spectra of the 1%
Pd-IPr/TiO, catalysts, as a function of Pd:IPr molar ratio. H,O, direct synthesis reaction conditions: catalyst (0.01 g), H,O (2.9 g), MeOH (5.6 g),
5% H,/CO, (420 psi), 25% O,/CO, (160 psi), 0.5 h, 2 °C, 1200 rpm. H,0, degradation reaction conditions: catalyst (0.01 g), H,O, (50 wt %,
0.68 g) H,O (222 g), MeOH (5.6 g), 5% H,/CO, (420 psi), 0.5 h, 2 °C, 1200 rpm.

where the generated H,0, is utilized in situ for chemical
valorization™ or pollutant degradation.”® Pd-based catalysts
have been widely studied for the direct synthesis reaction;”’
however, they typically suffer from poor selectivity and require
the use of halide”® ™" or acid promoters.”’ While the use of
such agents can significantly enhance catalytic performance,
their application can have deleterious effects on catalyst and
reactor lifetimes and lead to the formation of complex product
streams. Indeed, in the case of some catalyst formulations the
use of halide additives can lead to a near-total inhibition of
catalytic performance;*” as such, there is a need for alternative
approaches to improve catalytic activity and selectivity.

The introduction of secondary metals®>™>® has also been
demonstrated to inhibit competitive reaction pathways while
avoiding the need for the stabilizing agents typically utilized for
Pd-only analogues. Notably, Fischer et al. have reported that
combining the stabilizing agents typically utilized for Pd-only
catalysts (HBr and H;PO,) with bimetallic Pd-based
formulations exceptionally high concentrations of H,O, can
be obtained. It should be emphasized that such concentrations
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are far greater than those often reported in the literature and
are even more remarkable, given the use of a water-only
reaction medium, which avoids the additional process costs
associated with the alcohol cosolvents commonly used to
promote H, solubility.”” However, the additional costs and
often complex synthesis procedures associated with the use of
bimetallic catalysts have prompted a focus on alternative means
to improve the performance of Pd-only formulations. The
encapsulation of supported Pd nanoparticles in organic
moieties such as poly(vinyl alcohol) or poly(vinylpyrrolidone)
has been shown to enhance performance by selectively tuning
the three-dimensional environment of the metal nano-
particle.’*™*" Recently, the groups of Pérez-Ramirez and
Nikolla have expanded on these studies, with the Ilatter
establishing the efficacy of a series of surface-bound ligand
modifiers to promote the selectivity of Pd nanoparticles toward
H,0, 1"

Herein, the effect of a range of NHCs (ICy, IMes, IPr, pPh-
IPr, and IPr*) on the catalytic performance of supported Pd
catalysts”> toward the direct synthesis and subsequent
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Figure 3. Comparison of catalytic performance toward the direct synthesis of H,0O, in addition to a structural and morphological analysis of the 1%
Pd/TiO, and 1%Pd-IPr(1:1)/TiO, catalysts. (A) Catalytic activity as a function of reaction time and (B) over sequential H,O, synthesis reactions.
Key: 1%Pd/TiO, (blue triangles); 1%Pd-IPr(1:1)/TiO, (black squares). TEM micrographs of the (C) 1%Pd/TiO, and (D) 1%Pd-IPr(1:1)/TiO,
catalysts. XPS spectra of (E) Pd(3d) and (F) N(1s) regions for (i) 1%Pd/TiO, and (ii) 1%Pd-IPr(1:1)/TiO, catalysts. Key: for the Pd 3d spectra
Pd** (purple), Pd® (blue); for the N 1s spectra, imidazolium salt (peach), NHC-Pd moiety (blue). H,0, direct synthesis reaction conditions:

catalyst (0.01g), H,O (2.9 g), MeOH (5.6 g), S%H,/CO, (420 psi), 25%0,/CO, (160 psi), 0.5 h, 2 °C, 1200 rpm.

degradation of H,0, was investigated. For this purpose, the
free NHCs were prepared via deprotonation of the
corresponding imidazolium salts and subsequently immobi-
lized onto a 1%Pd/TiO, catalyst. Successful NHC deposition
onto the catalyst surface was confirmed using attenuated total
reflectance infrared spectroscopy (ATR-IR) (Figure S.1) and
corroborated by XPS (Figure S.2; corresponding spectra of the
imidazolium salts are reported in Figure S.3). Initial catalytic
testing established the activity of the NHC-modified 1%Pd/
TiO, catalysts (Table 1). The unmodified 1%Pd/TiO, catalyst
(entry 1) was found to be highly active toward H,O, synthesis
(80 molyyo, kg ' h™') but also displayed considerable
activity toward its subsequent degradation (221 moly,p,
kg, ' h™'). The introduction of the various NHCs (so that
the Pd:NHC molar ratio was equal to 1:1) was found to greatly
modify catalytic activity toward both the direct synthesis and
subsequent degradation of H,O,. In particular, the optimal 1%
Pd-1Pr(1:1)/TiO, catalyst (entry 4) offered H,O, synthesis
rates (160 moly,0, kg, ' h™') double that of the unmodified
analogue, while degradation rates were reduced (184 moly,0,
kg, ' h7'). Indeed, the catalytic activity of the 1%Pd-
IPr(1:1)/TiO, catalyst can be considered to rival that achieved
by state-of-the-art materials,””** under identical reaction
conditions, although it should be noted that the NHC-
modified material is unable to attain the high selectivities
toward H,O, such as those reported in earlier works (Table
S.1). The improved activity of the 1%Pd-IPr(1:1)/TiO,
catalyst was also observed under conditions considered less
conducive to H,0, stability (Table S.2). Further studies,
comparing the activity of the optimal 1%Pd-IPr(1:1)/TiO,
catalyst to an equimolar physical mixture of 1%Pd/TiO, and
imidazolium salt (IPr-HBF,) (entry 7), indicated that the
NHC must be present on the catalytic surface in order to
achieve enhanced activity toward H,O,. It should be noted
that neither the IPr-HBF, salt alone nor the titania support
exhibited any activity toward H,O, synthesis or its subsequent
degradation (entries 8 and 9, respectively).
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The stark improvement in catalytic performance observed
over the 1%Pd-IPr(1:1)/TiO, catalyst, in comparison to the
unmodified analogue, motivated us to further investigate the
effect of varying the Pd:IPr molar ratio on catalytic
performance (Figure 2A). These studies indicated an optimal
catalyst composition of 1%Pd-IPr(1:1)/TiO,. Increasing IPr
content further was found to result in a decrease in H,O,
production, with a corresponding increase in H,0O, degrada-
tion, although it is noteworthy that, despite this loss in catalytic
selectivity at higher IPr loadings, all IPr-containing catalysts
still outperformed the 1%Pd/TiO, analogue.

With NHCs well-known to act as modifiers of metal species,
we next set out to determine the means by which the catalytic
performance was enhanced through NHC incorporation. The
evaluation of the 1%Pd-IPr/TiO, catalysts with varying Pd:IPr
molar ratio by CO-DRIFTS is shown in Figure 2B (an analysis
of the IPr/TiO, material (i.e., without Pd present) is reported
in Figure S.4). Typically, the CO-DRIFTS spectra of
supported Pd catalysts include CO adsorbed in a linear and
nonlinear mode at approximately 2050—2100 and 1800—2000
cm™), respectively."* The 1%Pd/TiO, catalyst was found to
exhibit the expected absorption bands, specifically at 2090,
1980, and 1870 cm™". The addition of the IPr moiety results in
two major changes to the CO-DRIFTS spectra. This includes a
new absorption band, which appears at 2170 cm™’, suggesting
a new adsorption site associated with the IPr-containing
catalysts.

A systematic shift in the wavenumber of the linear CO—Pd
band was observed as the IPr:Pd molar ratio increased, from
2090 cm™ in the 1%Pd/TiO, catalyst to 2060 cm™" in the 1%
Pd-IPr(1:10)/TiO, formulation. Such a shift indicates that the
adsorption of CO onto the Pd surface increases in strength,
which can be explained by the transfer of charge from the
NHC to the Pd surface and the resulting enhanced back-
donation to CO. Similar observations have been made by
Ouyang et al., who reported a comparable red shift upon the
alloying of Au with Pd and an associated enhancement in

https://doi.org/10.1021/jacs.2c04828
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catalytic selectivity.*’ It is therefore possible to conclude the
enhanced activity that results from the introduction of the
NHC:s onto the catalyst surface can be attributed to the ability
of the carbene moiety to electronically modify Pd species.

Finally, with the evident improved efficacy of the 1%Pd-
IPr(1:1)/TiO, catalyst in comparison to the unmodified 1%
Pd/TiO, analogue established, we were motivated to
investigate this subset of materials to gain further insight into
the underlying cause for the observed differences in perform-
ance. An assessment of selectivity toward H,O, (Table S.3)
further demonstrates the improvement that results from the
introduction of the carbene onto the catalytic surface, with the
1%Pd-1Pr(1:1)/TiO, catalyst displaying far greater selectivity
toward H,0, (64%) than the 1%Pd/TiO, analogue (22%). In
keeping with earlier studies (Table 1, entry 7) an evaluation of
fresh and used materials by XPS indicates that the observed
promotive effect that results from NHC incorporation cannot
be attributed to the presence of residual halide (Table S.4).
The enhanced activity of the 1%Pd-IPr(1:1)/TiO, catalyst was
further highlighted through a comparison of initial reaction
rates (Table S.5), where there are assumed to be no limitations
associated with reactant availability or contribution from H,O,
degradation pathways.

A comparison of catalytic activity as a function of reaction
time can be seen in Figure 3A, with the greater activity of the
19%Pd-IPr(1:1)/TiO, catalyst again clear, achieving concen-
trations of H,0, (0.32 wt %) double that of the unmodified
analogue (0.16 wt %), over a standard 0.5 h reaction. Indeed,
the 1%Pd-IPr(1:1)/TiO, catalyst displayed rates of H,O,
synthesis comparable to those reported for the current state-
of-the-art materials.””** A further evaluation of catalytic
performance over sequential H,O, synthesis reactions (Figure
3B) again demonstrates the enhanced activity of the 1%Pd-
IPr(1:1)/TiO, catalyst, which was able to achieve H,0,
concentrations (0.98 wt %) comparable to that achieved by
state-of-the-art materials.>*

Numerous studies have demonstrated the strong relation-
ship between catalytic activity toward H,O, synthesis and the
particle size of Pd-only catalysts.”® The determination of mean
particle size via TEM (Figure 3C,D, with particle size
distributions shown in Figure S.5) indicates no significant
change as a result of the introduction of the IPr carbene onto
the 1%Pd/TiO, catalyst (mean particle sizes determined to be
2.0 and 2.4 nm for the 1%Pd/TiO, and 1%Pd-1Pr(1:1)/TiO,
catalysts, respectively). As such, it is reasonable to propose that
the enhanced activity of the 1%Pd-IPr(1:1)/TiO, catalyst is
not associated with increased metal dispersion. However, an
analysis of the 1%Pd-IPr(1:1)/TiO, and 1%Pd/TiO, catalysts
via XPS indicated that the introduction of the IPr carbene
leads to a significant shift in the Pd oxidation state, toward Pd°
(Figure 3EF), corroborating our studies via CO-DRIFTS
(Figure 2.B).

We further determined the high stability of both the 1%Pd/
TiO, and 1%Pd-IPr(1:1)/TiO, catalysts. No loss in H,O,
synthesis activity was observed upon reuse of either material in
the direct synthesis reaction (Table S.5), while ICP-MS
analysis of post-reaction solutions (Table S.6) indicated
negligible metal leaching over the course of a standard
reaction. An analysis by TEM reveals a minor increase in
mean particle size after use (Figure S.6), although such a shift
occurs to a lesser extent over the NHC-incorporated material,
while XPS (Figure S.7) reveals no significant variation in Pd
oxidation state between the fresh and used materials. However,
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in the case of the IPr-modified sample, we do observe a
substantial loss in the N(1s) signal associated with the residual
parent imidazolium salt (centered at 403 eV), while the
corresponding signal associated with IPr moiety interacting
with Pd nanoparticles is retained, which correlates well with
the observed stability of the catalytic material and indicates
that the enhanced activity of the 1%Pd-IPr(1:1)/TiO, catalyst
results from the Pd—IPr interaction.

We have demonstrated the enhanced activity and selectivity
of NHC-modified supported palladium nanoparticles toward
the direct synthesis of H,O,. Our studies reveal the ability of
the NHC ligands to act as electronic modifiers of Pd, in a way
similar to that observed previously through the introduction of
secondary metals, with the catalytic performance being
retained upon reuse. Such results not only demonstrate the
efficacy of these materials toward H,0, formation but also
highlight the role that this class of ligand may offer toward a
range of heterogeneously catalyzed reaction pathways.
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