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Abstract 

An expanding range of hereditary genetic syndromes are characterized by genome-wide disruptions in 

DNA methylation profiles referred to as episignatures. Episignatures, detectible in peripheral blood, are 

distinct, highly sensitive and specific biomarkers that have recently been applied in clinical diagnosis of 

genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA 

methylation changes which can share significant overlap amongst different episignature conditions. In 

this study we perform functional genomic assessment and comparison of disorder-specific and 

overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously 

described diagnostic episignatures. We demonstrate evidence of disorder-specific and recurring genome 

wide differentially methylated probes (DMPs) and regions (DMRs). Overall distribution of DMPs and 

DMRs across majority of the neurodevelopmental genetic syndromes shows substantial enrichment in 

gene promoters and CpG islands, and under representation of the more variable intergenic regions. 

Overrepresentation analysis shows significant enrichment of the recurring DMPs and DMRs in gene 

pathways and networks related to neurodevelopment, including neuronal generation and 

differentiation and axon guidance. We demonstrate a strong correlation between the molecular 

function of the affected genes and the relatedness of the consequent DNA methylation profiles as 

evidence of functional roles of DNA methylation episignatures in the etiology of genetic 

neurodevelopmental disorders. This study builds on our understanding of DNA methylation, expanding 

beyond the diagnostic utility of DNA methylation episignatures as a key functional element in the 

molecular etiology of genetic neurodevelopmental disorders. 

 

 

 



 

 

Introduction 

DNA methylation is a fundamental aspect of mammalian development, and changes in DNA methylation 

are closely related to variation in the underlying genome [PMID 31399642, 33931130]. A rapidly growing 

number of genes causing neurodevelopmental syndromes has been shown to be associated with distinct 

changes in DNA methylation in patients affected with these disorders [PMID 30456829]. These 

methylation changes may be a direct cause of the disruption of the gene function as in the chromatin 

remodeling, DNA methyltransferase, and histone modification genes [PMID 34608297, 30875234]. More 

recent work has shown that genome-wide changes in DNA methylation are also found in patients with 

pathogenic variants in genes that have no known direct role in DNA methylation or chromatin 

remodeling [V3 paper]. Such indirect changes may be caused by perturbations in the interconnected 

molecular pathways, including transcriptional regulation and protein signaling. Genetic variants that are 

inherited or that occur at the earliest stages of development can therefore have wide reaching impact 

on DNA methylation throughout development. Such changes can be propagated through cell 

differentiation and tissues development.  Hence, easily accessible tissue such as peripheral blood can be 

used to demonstrate changes in DNA methylation and develop biomarkers of specific syndromes that 

occurred at early stages of development [PMID 32109418, V3 paper]. More than sixty syndromes 

genetic neurodevelopmental syndromes have now been identified which exhibit such changes DNA 

methylation, and the patterns of DNA methylation changes, referred to as episignatures, are now being 

used to as a diagnostic clinical biomarker [33547396].  

We have previously described development of DNA methylation episignatures as highly sensitive and 

specific diagnostic biomarkers in over sixty genetic neurodevelopmental disorders [PMID 32109418, V3 

paper]. We demonstrated that a genetic syndrome may have more than one episignature depending on 

the location and/or functional consequence of the underlying genetic variant. Conversely, similar 



 

 

syndromes, such as those caused by pathogenic variants in genes from the same gene family or a 

protein network, may share a common episignature. As molecular biomarkers, episignatures are 

optimized for clinical diagnostics and commonly represent only a fraction of the totality of the DNA 

methylation change in any given disorders.  

We have previously described 57 distinct diagnostic episignatures encompassing 65 

neurodevelopmental syndromes caused by pathogenic variants in 61 genes [AJHG 2019, AJHG, 2020, 

AJHG 2021, GIM 2021, and V3 paper]. In this study we expand on this work by investigating the broader 

context of changes in DNA methylation by performing functional genomic assessment and comparison 

of disorder-specific and overlapping genome-wide DNA methylation changes in these syndromes. We 

aimed to map disorder-specific and recurring genome wide differentially methylated probes (DMPs) and 

regions (DMRs) in relation to the functional genomic elements including gene promoters and CpG 

islands and intergenic regions. We explore the functional impact of these changes in relation to the 

corresponding gene pathways and transcriptional networks. By using various correlation analyses we 

assess relatedness of the genetic etiology and the consequent DNA methylation profiles in the etiology 

of genetic neurodevelopmental disorders.  

 

Materials and Methods 

Patient cohorts 

The case cohorts consisted of 1381 samples from patients who were diagnosed with one of the 65 

neurodevelopmental conditions and who had a positive Episign result for one of the corresponding 58 

episignatures. Mean, median, minimum, and maximum case cohort sizes were 25, 14, 3, and 191 (Table 

X, Table SX). The control cohort consisted of 4231 samples: 2701 unaffected controls and 1530 



 

 

unresolved samples. Unaffected controls are from individuals with no specific neurodevelopmental 

phenotype and no known pathogenic or suspected pathogenic variant in any of the episignature-related 

genes. These controls included a mix of samples from publicly available databases indicated to be 

“control”, “wildtype”, or similar, and new samples from patients clinically assessed as not having a 

neurodevelopmental phenotype. Unresolved samples are from patients with a neurodevelopmental 

phenotype but who were assessed as negative for all current episignatures [ref V3 paper]. 

 

Sample processing 

Peripheral blood DNA was extracted using standard techniques. Bisulfite conversion was performed with 

500 ng of genomic DNA using the Zymo EZ-96 DNA Methylation Kit (D5004), and bisulfite-converted 

DNA was used as input to the Illumina Infinium HumanMethylation450 (450K array) or MethylationEPIC 

BeadChip array (EPIC array). Array data were generated according to the manufacturer’s protocol. 

Sample quality control was performed using the R minfi package version 1.38.0. 

 

Methylation probe processing and selection 

The data analysis pipeline was adapted from previously described [PMID 32109418, V3 paper]. IDAT files 

containing methylated and unmethylated signal intensity were imported into R 4.1.0 for analysis. 

Normalization was performed using the Illumina normalization method with background correction 

using the minfi package. Probes with a detection p-value > 0.01, probes located on the X and Y 

chromosomes, probes which contained SNPs at the CpG interrogation or single nucleotide extension 

sites, and probes which are known to cross-react with other genomic locations were removed [PMID 

23314698, 27717381]. For each cohort, a set of controls was chosen using the R package matchit version 



 

 

4.2.0, matched for age, sex, and array type. For each case sample, one to ten controls were used 

(case:control ratio of 1:1 to 1:10). Mean, median, minimum, and maximum control cohort sizes were 60, 

56, 30, and 191 (Table SXX). 

Methylation levels (beta values) were used for linear regression modeling using the limma package 

version 3.48.0 [PMID 25605792]. Estimated blood cell proportions [PMID 22568884] were added to the 

model matrix as confounding variables. The generated p-values were moderated using the eBayes 

function. To facilitate comparisons between samples processed using 450K and EPIC arrays, only probes 

found on both arrays were used for analysis. Probes which had a mean methylation difference of less 

than 5% between the case and control samples were removed and Benjamini-Hochberg adjusted p 

values were calculated for the remaining probes. Probes with an adjusted p value less than 0.01 were 

selected as DMPs for analysis, except for cohorts KDM4B and CSS4_c.2650 which had too few probes 

and probes with a non-adjusted p value < 0.001 were used. 

Identification of differentially methylated regions 

Genome-wide DMR analysis was also implemented to determine regions that are significantly 

differentiated between cohort cases and matched controls. Methylation beta values equal to 0 or 1 

were initially shifted by a very small value (1e-10) to avoid infinite M-values during conversion 

implemented using minfi [minfi]. DMR analysis on the matrix of M-values were identified using the 

DMRcate package [dmrcate], where regions were defined to have at least five CpG probes within 1000 

bp of each other. Minimum absolute mean methylation difference between cohort cases and controls 

was set to 0.1 and significant results were chosen using a Fisher p-value cut-off of 0.01. 

Cohort comparisons and data visualizations 

Circos-style plots were made using the R package circlize version 0.4.14. Differentially methylated 

regions (DMRs) and DMPs were annotated in relation to CpG islands (CGI) and genes using the R 



 

 

package annotatr version 1.18.1 with AnnotationHub version 3.0.0 and annotations hg19_cpgs, 

hg19_basicgenes, hg19_genes_intergenic, and hg19_genes_intronexonboundaries. CGI annotations 

included CGI shores from 0-2kb on either side of CGIs, CGI shelves from 2-4kb on either side of CGI, and 

inter-CGI regions encompassing all remaining regions. For gene annotations, promoters were up to 1Kb 

upstream of the transcription start site (TSS) and promoter+ the region 1-5Kb upstream of the TSS. 

Annotations to untranslated regions (5’ UTR and 3’ UTR), exons, introns, and exon/intron boundaries 

were combined into the coding sequence (CDS) category. Heatmaps were made using the R package 

pheatmap version 1.0.12.  

Tree and leaf dendrograms were made by first aggregating probe methylation levels using their median 

value across samples with the same condition. Euclidean clustering using Ward’s method on the 

distances was then implemented on the combined values. Our initial analysis showed that the number 

of DMPs affect the clustering results, so final analysis was implemented by initially selecting the top 500 

DMPs ranked by p-values for each cohort before aggregation of beta values. For cohorts with fewer than 

500 DMPs all DMPS were used. This resulted to 20904 distinct probes across all groups. Clustering 

results were visualized as a binary tree using the R package TreeAndLeaf [Ref/version treeandleaf] to 

incorporate additional information such as global mean methylation difference and total number of 

DMPs selected for each cohort. 

Two-dimensional and three-dimensional representations of the topological structure of the entire 

cohort database were analyzed using unified mapping approximation and projection (UMAP). The global 

structure approximated by UMAP [Ref umap] was obtained by using 210 probes that were most 

differentiating across all cohorts selected by random forest feature importance as described below. The 

UMAP parameter for the number of nearest neighbors was set to 10 and minimum distance in final 

layout set to 0.99, and results were visualized using 2D and 3D scatter plots [ggplot2, plot3D].   



 

 

Selection of most differentiating probes across all cohorts 

Probes evaluated to be most discriminating of the 56 cohorts were identified by random forest using the 

R package randomforest version XX [Ref randomforest]. Feature importance was computed for the 

selected 20904 probes as previously described. Random forest multiclassification models were trained 

using the 20904 probes and 1381 samples, and variable importance measured as mean accuracy 

decrease was computed for each probe. Due to the randomness of the model, we repeated the 

procedure 1000 times and summed all variable importance values across all sets. Finally, probes who 

ranked in the top one percentile were selected (210 probes). For each trial, 100 trees were fitted using 

145 (default: sqrt(# of features)) randomly sampled probes at each split. Downsampling was 

incorporated to account for the sample imbalance across cohorts, and the number of samples drawn per 

group at each split was set to the minimum number of samples among all cohorts to ensure an identical 

value. 

Functional annotation of genes overlapping selected DMPs and DMRs 

Gene Ontology (GO) and KEGG pathways associated with DMPs and DMRs were identified using the R 

package clusterProfiler version XX, as well as human phenotype ontology using enrichR [Ref enrichR]. 

DMPs were first converted to gene IDs using the R package missMethyl version X. Overrepresentation 

analysis (ORA) was performed using either all DMPs, or using DMPs that were found in at least five 

cohorts. For DMRs, the CpG probes within each DMR were converted to gene IDs. Then ORA was 

performed using either all probes within all DMRs, or using probes that were found in at least two 

DMRs. The background lists of annotations were generated using all probes used for differential 

methylation analysis of all signatures (post-filtering). 

Network diagrams 



 

 

A network diagram was made by first determining the number of shared probes between each pair of 

cohorts. Each probe in a pair of cohorts was categorized depending on the direction of the probe’s 

change in methylation: hyper-hyper (probe had increased methylation in both cohorts), hypo-hypo 

(probe had decreased methylation in both cohorts), hypo-hyper or hyper-hypo (probe was increased in 

one cohort and decreased in the other). The obtained data matrix was visualized using Cytoscape 

version 3.9 [PMID 25199793] in which nodes represent cohorts, the edges connecting the nodes 

represent hyper or hypo methylated probes and the weight of the edge is proportional to the absolute 

count of the probes shared by the two nodes. 

 

Results 

Detection of differentially methylated probes and regions 

Using the above describe method we generated lists of DMPs for each cohort. CSS4_c.2650 which only 

has three samples had zero significant probes, and KDM4B which has 6 samples but more mild 

methylation changes had only 77 DMPs. For these two cohorts we therefore used a non-adjusted p 

value to attain 464 and 279 DMPs for all subsequent analysis. The 56 cohorts therefore ranged minimum 

of 279 DMPs for KDM4B to 151848 DMPs for ADCADN, with a mean of 13427 and a median of 5272 

(Table 1, Figure S1A). 

We next searched for DMPs that are found in more than one cohort. The 56 cohorts include a total of 

253431 unique DMPs. 113911 (55%) are unique, meaning they are found in only one cohort, while 

139520 (45%) are found in two or more cohorts. Most of the unique DMPs were found in the cohorts 

with the largest number of total DMPs: ADCADN and ICF2_3_4 accounted for 85% of the unique probes 

(Figure S1B). All other cohorts shared at least 85% of their DMPs with at least one other cohort, with all 

1015 BAFopathy DMPs found in at least one other cohort (Figure S1B). The cohorts with the largest 



 

 

number of DMPs generally also had the largest number of shared DMPs (Figure 1, Figures S1A,B). 

Among the 139520 DMPs found in two or more cohorts 46635 (33%) are found in exactly two cohorts 

while one DMP is found in each of 27 and 28 cohorts (Figure S1C). 

The lists of DMPs were then used to identify differentially methylated regions (DMRs). 48 cohorts 

returned significant results ranging from one to 1384 DMRs, with the median of the DMR counts at eight 

and mean of 89 (Supplementary Table XX). Eight cohorts did not have any significant DMR detected: 

AUTS18, BAFopathy, CSS_c.6200, CSS4_c.2650, CSS9, Kabuki, KDM4B, MRX93. Two of the cohorts with 

no DMRs, CSS4_c.2650 and KDM4B, have the fewest number of DMPs when using an adjusted p-value 

cut-off, explaining the lack of identified DMRs. Most cohorts with no significant DMRs either have mild 

changes in methylation (Kabuki, MRD51, MRX93) or relatively small number of identified DMPs 

(AUTS18), or both (BAFopathy, CSS9). Therefore, as expected, cohorts that were highly 

hypo/hypermethylated and with relatively large ratio of DMPs also have the highest number of 

identified DMRs, such as ADCADN (1384 DMRs), ICF2_3_4 (851), Sotos (809) and ICF1 (514). [To add 

supplementary figure (scatter plot) showing relationship between # of DMPs, # of DMRs, and mean 

methylation changes] 

 

 

 

Genomic context of differentially methylated probes 

We next examined the genomic locations of the probes. First, we assessed locations in relation to CpG 

islands (CGI). CpG annotations were available for 3,137,161,264 nucleotides divided into CGI (0.7%), CGI 

shores (3.2%), CGI shelves (2.8%), and inter-CGI regions (93.3%). However, since CGI are often the 



 

 

location of DNA methylation they are over-represented on the DNA methylation microarrays. After 

initial filtering to remove chromosome X and Y and certain other probes as described in the Methods, 

18.6% of microarray probes overlapped with CGI. This represents the “background” or “default” 

distribution of probes on the microarray (Figure 2A). 44 of the 56 cohorts (78.6%) had probes enriched 

for CGI, meaning they had greater than 18.6% of their DMPs in CGI, while 12 cohorts have less than 

18.6% of their DMPs in CGI. CGI and nearby regions (shelves and shores) account for 43.6% of probes in 

the default distribution. Nearly all (54/56) of the cohorts were enriched for these CGI and near-CGI 

regions. Only ICF2_3_4 and WHS are enriched for inter-CGI regions (Figure 2A).  

Similar analysis was then performed for the 49 cohorts which had at least one DMR. Since the 

microarrays contain probes and not DMRs a default distribution for DMRs cannot be generated. 

However, since DMRs require several probes within a limited region it is expected that DMRs even by 

random chance will be more often found in CGIs. 64% of the 5221 total DMRs overlapped CGI, and 38 of 

the 49 DMR cohorts (79%) had 50% or more of their DMRs overlapping CGI. There was variability in 

results between cohorts with several having all DMRs overlapping CGI and the lowest (cohort WHS) 

having only 1/13 (7.7%) of its DMRs overlapping CGI (Figure 2B).  

DMPs and DMRs were then annotated in relation to genes. The default distribution of probes found 

22.4% at promoters, 4.6% promoter+, 49.9% in CDS, and 23.1% intergenic (Figure 2C). 43/56 cohorts 

(76.8%) had probes enriched for promoters, meaning they had greater than 22.4% of their DMPs in 

promoters. Promoters and promoters+ account for 27.0% of probes in the default distribution. Nearly all 

(55/56) of the cohorts were enriched for this extended promoter region. Only ICF2_3_4 at 25.8% was 

not enriched for these promoter regions (Figure 2C). 58.1% of the 5221 total DMRs overlapped the 

extended promoter regions, and 29 of the 49 DMR cohorts (59.2%) had 50% or more of their DMRs 

overlapping the extended promoter regions (Figure 2D). 



 

 

 

We performed ORA on CpG probes in both DMRs and DMPs. Due to the large number of selected DMPs, 

as well as DMRs, returned in our analysis for ADCADN, we implemented two analyses: the first one tests 

for enriched terms for all results in both DMRs and DMPs; the second one tests for enriched terms in 

repeatedly selected probes for the purpose of determining which GO terms are most likely associated to 

the cohorts as a whole. Duplication counts were set to minimum of 2 for DMRs, i.e., probes in the range 

of two or more DMRs, and 6 for DMPs, or probes were selected in 6 or more cohorts.  When using all 

DMRs, 515 GO terms were found to enrich the overlapping genes. However, only 20 terms were 

returned by our analysis using genes overlapping duplicated probes in the DMRs, 18 of which were also 

in the 515 GO terms in the first analysis. The top ten most significant terms for the DMR results in both 

tests are shown in Table 2. On the other hand, in the probe level, all DMPs were enriched by 18 GO 

terms while duplicated DMPs were enriched by 586 GO terms, 15 of which are common to both 

analyses. The top ten most significant terms are shown in Table 3. Interestingly, results show that the 

genes associated with the DMPs have functions related to biological processes such as nervous system 

development, developmental process, neurogenesis, generation of neurons and neuron differentiation. 

Subsequent ORA for KEGG pathways using duplicated overlaps with all DMR results revealed enrichment 

of genes related to the neuroactive ligand-receptor interaction pathway (p.adjust = 0.018) and the 

arachidonic acid metabolism pathway (p.adjust = 0.046), while using duplicated DMPs indicated 

enrichment in pathways in calcium signaling (p.adjust = 5.53e-6), axon guidance (p.adjust = 1.53e-4), 

focal adhesion (p.adjust = 1.53e-4), MAPK signaling (p.adjust = 1.60e-4), and cancer (p.adjust = 0.001) 

[data not shown]. Additionally, enrichment tests using the Human Phenotype Ontology database on the 

same gene lists only returned one significant result: autosomal dominant inheritance (p.adjust < 0.001) 

[data not shown]. 

 



 

 

Relationships between cohorts 

All DMPs were used to calculate mean and median values for each cohort to identify overall trends in 

hypo- and hypermethylation. 37 (66.1%) cohorts had mean hypomethylation and 19 (33.9%) cohorts 

had mean hypermethylation. Using a stricter cutoff of at least a 5% change in mean methylation there 

were 12 (21.4%) hypomethylated cohorts and 10 (17.9%) hypermethylated (Figure 3A). 

To investigate relationships across all cohorts without bias caused by the number of DMPs selected, 

clustering analysis was performed on the combined top n DMPs for each cohort as detailed in the 

Methods section, and visualized using a binary tree as illustrated in Figure 3B. The nodes or leaves of the 

tree is colored based on the global mean methylation difference for the corresponding cohort, while the 

size is scaled to the number of significant DMPs identified. The 56 cohorts can ultimately be clustered 

into two groups: one group along the branch of ADCADN (upper left), and the rest of the tree branches 

as the second group. Sub-clustering of the second group is also evident. At first glance, some patterns 

are evident in the clustering as most of the highly hypo/hypermethylated cohorts are close together. 

Furthermore, for the other sub-clusters, cohorts on the same branch are either in the same range of 

mean methylation difference or number of DMPs due to the similarities in either node size or node 

color. We also see groupings consistent with our previous analysis of these cohorts where conditions 

sharing similarities, phenotypically or genetically, were clustered together: such as Sotos, ICF, RMNS, 

BFLS and TBRS [V2], and RSTS1 and RSTS2 [V3?]. Cohort pairs were also observed generating terminal 

branches suggesting high level of similarity. Some of these cohort couples include BAFopathy and CSS9, 

which are both included in the BAF complex, ARTHS and SBBYSS, which are caused by mutations in KAT6 

genes, and RSTS1 and RSTS2. To visualize global structure, we analyzed all cohorts using the most 

differentiating probes identified by random forest feature selection. Topological structures were 

approximated by UMAP and projected into two-dimensional and three-dimensional spaces as seen in 

Figure 4. Results of this analysis were concordant with the clustering analysis. Cohorts that are more 



 

 

alike are closer together, such as RSTS1 and RSTS2, and ARTHS and GTPTS, which is also associated with 

a KAT6 gene. While we can see a large degree of overlap for several cohorts in the 2D projection, we 

also observe locally condensed independent groupings of the same cohorts in the 3D projection. This 

demonstrates the level of complexity of the overall structure of the data and the effectiveness of a small 

set of probes to distinguish them to a certain degree. 

The network diagram of the probes shared between the cohorts illustrates several important details. 

First, the probes unique to the cohort (indicated by the self-loops) for the majority of the cohorts are 

hyper-methylated, while the probes, shared between the cohorts are hypomethylated practically in all 

cases, except of BEFAHRS (source node in the network), which shares probes mixed hyper-hypo status 

with MRD51, MRX93, GADEVS, BISS and DYT28 and except of Chr16p11.2del (source node) which shares 

mixed hyper-hypo status probes with DYT28. Mixed status of the shared probe is when the probe is 

hypermethylated in the first cohort, but hypomethylated in the other cohort and vice versa.  Second, the 

ADCADN cohort that has a largest number of differentially methylated probes is not sharing of a 

significant proportion of probes with any other syndrome as other syndromes with high number of 

differentially methylated probes do. Third, although this is fully connected network in which each cohort 

shares at least one probe with all other syndromes, it is easy to distinguish groups of cohorts that share 

substantial number of the DM probes with each other. One such “triangle” is Sotos, RMNS and TBRS.  

While sharing a small number of probes by the cohorts can happen by chance, a substantial number of 

shared DM probes may indicate an underlying biological process that is common to all cohorts. 

 

 

Discussion 

Significant overlap in differentially methylated probes between disorders 



 

 

Episignatures are used as clinical biomarkers and can act as a screen for patients undergoing first-tier 

diagnostic testing, or as a reflex test for patients with a variant of unknown significance or no variant 

identified [Jen Italy paper (under revision) & PMID 33547396). These methylation profiles are sensitive 

and specific to each disorder, and at times are also gene, region, or even variant specific (V3 paper ref). 

To achieve this specificity in 56 episignatures so far, DNA methylation profiles are optimized for use as a 

diagnostic biomarker by selecting the most differentially methylated probes and training against all 

other episignature samples [V3 paper] to generate the disorder classifier. In this study, we sought to 

look at methylation profiles of these disorders from a biological perspective, assessing all differentially 

methylated probes in each condition. The overwhelming observation is that there is significant overlap 

between all syndromes, highlighting the importance of training episignature classifiers against other 

disorders to allow for the proper detection of a specific methylation profile. Episignature detection 

would not be possible if only the most significantly differentiated probes for one disorder were 

considered as these probes would be present in many other disorder methylation profiles. This overlap 

is not necessarily surprising as the majority of these conditions are neurodevelopmental and often 

display similar or ambiguous clinical presentation that results in multiple disorders being considered in 

the differential diagnosis for a given patient. This highlights the importance of generating highlight 

specific episignatures; the usefulness of these biomarkers in the clinic depends on the ability to use a 

supervised algorithm that considers all detectable episignatures concurrently to avoid misclassification 

[PMID 32109418, V3 paper]. 

The cohorts that share a large numbers probes with many other disorders are those with a high number 

of significantly differentially methylated probes. When assessing the heatmap in figure 1, there are rows 

that are darker in colour when compared to the rest, indicating that that disorder shares a high 

percentage of probes with many of the disorders listed in the columns. Some examples include 

ADCADN, BEFAHRS, RMNS, Sotos, ICF1, and TBRS. These disorders are in the top 10 cohorts with highest 



 

 

number of probes, but are also all involved in chromatin remodeling through DNA methylation (ADCADN 

BEFARHS, ICF1, TBRS), histone methylation (Sotos), or linker histones (RMNS). ADCADN also 

demonstrated the most unique probes, a consequence of the sheer number of detected differentially 

methylated probes. Many other disorders involving chromatin remodeling genes demonstrated 

significant overlap and a high number of differentially methylated probes, including FLHS, ICF_2_3_4, 

HVDAS_T, DYT28, and BFLS. Copy number variant disorders that include chromatin remodeling genes 

within the deletion and duplications (HMA, Sotos, Dup7, Williams) also demonstrate high degrees of 

overlap and number of differentially methylated probes, and reciprocating deletion and duplication 

syndromes (HMA vs Sotos and Dup7 vs Williams) show some overlap in probes but are dissimilar in the 

both the UMAP clustering, as well as lying on different branches in the leaf and tree diagram.  

Sotos, TBRS, and RMNS overgrowth disorders show high overlap in probes (AUST18 and PCR2 show 

overlap) 

As observed in both Figure 1 and 5 three overgrowth disorders, Sotos (caused by mutations in NSD1), 

RNMS (caused by mutations in HIST1H1E), and TBRS (caused by mutations in DNMT3A), show significant 

overlap in differentially methylated probes. As mentioned previously, a “hypomethylation triangle” 

between these three syndromes. All three genes contribute to overgrowth phenotypes in patients and 

also are involved in chromatin remodeling directly (PMID: 28475857).  NSD1 is a histone 

methyltransferase and functional studies have shown that loss of NSD1 results in redistribution of 

DNMT3A and reduced methylation at the expected regions (PMID: 31485078). Therefore, 

hypomethylation at shared probes may be a consequence of either lack of NSD1 recruitment of 

DNMT3A or the loss of DNMT3A altogether. HIST1H1E, a linker histone, has key roles in chromatin 

accessibility and regulation of gene expression, aligning its functionality with histone methyltransferase 

NSD1 and DNA methyltransferase. Additionally, a recent study found that these 3 genes, as well as 3 

others (CHD8, EED, and EZH2), accounted for the mutations in 44% of patients in a large cohort of 



 

 

assessing molecular etiology for overgrowth and intellectual disability (PMID: 28475857). Clinically 

variants in these genes present with a similar phenotype and molecularly they are involved in chromatin 

organization and gene expression. Therefore, the observed overlap in all probes, as well as their 

relatedness when assessing only top 500 probes, is another layer of functional evidence indicating these 

syndromes may have very similar pathological mechanisms. We also assessed the methylation patterns 

for the 3 epigenetic genes assessed in the study by Tatton-Brown et al. EZH2 and EED are components of 

the polycomb repressive complex 2 (PCR2) and mutations in both genes are included in the assessed 

PCR2 cohort. CHD8 is an ATP-dependent chromatin-remodeling factor and variants in this gene cause 

AUST18. Both the PCR2 and AUST18 cohorts exhibited small numbers of definitely methylated probes 

(less than 3000), however a large number of their differentially methylated probes (between 38 and 

74%) are present in TBRS, Sotos, or RMNS probe lists, indicating common regions are impacted in these 

overgrowth syndromes. 

Differences in methylation profiles in paralogous genes  

Of the 56 cohorts assessed, 2 sets of paralogous genes are involved in multiple syndromes. Firstly, 

KAT6A and KAT6B are paralogous lysine acetyltransferases that form a complex with other proteins to 

control gene expression by histone acetylation (PMID: 33130515). Truncating mutations in the C-

terminal transactivation domain of KAT6A cause ARTHS (PMID: 25728777), while truncating mutations 

in the proximal portion of the last exon its paralog, KAT6B, lead to a protein with no transactivation 

domain and cause GTPTS (PMID: 22715153). KAT6B mutations can also lead to another syndrome 

SBBYS. SBBYS mutations can result in nonsense-mediated decay, or more distally in the last exon (PMID: 

22715153). SBBYS and ARTHS cluster more closely on the leaf and tree diagram, while GTPTS is a few 

branches away. On recent paper suggests that truncating mutations in the proximal portion of KAT6B 

lead to a gain of function in the protein (PMID: 22715153) and that this possible gain of function causes 

the phenotypes present in GTPTS but not in SBBYSS. This provides a possible reason as to why ARTHS 



 

 

and SBBYS group more closely when compared to GTPTS. Mutations causing GTPTS and ARTHS fall in 

similar regions in the two genes (KAT6B and KAT6A, respectively), however the two genes only share 

60% sequence. Further investigations assessing the protein changes caused by variants may provide 

further insight as to why ARTHS and SBBYSSS are more similar to each other than GTPTS, and if there 

truly is a gain of function within GTPTS variants that creates this dissimilarity.  

Two other paralogs, CREBBP and EP300, are associated to 3 assessed cohorts. CREBBP and EP300 are 

transcriptional coactivators and histone acetyltransferases that interact with over 400 interacting 

proteins (PMID: 20110770). Mutations in CREBBP cause RSTS1 and mutations in EP300 cause RSTS2, 

whereas variants in exon 30 and 31 of either gene can cause MKHK 1 and 2, respectively. Our cohort 

contains mutations in both genes that fall in the intrinsically disordered linker (ID4) region of these 

proteins (MKHK_ID4). One hypothesis is that missense mutations observed in MKHK patients result in 

gain of function within the proteins, resulting in a different phenotype compared to the loss of function 

observed in RSTS. Our data provides further functional evidence that these two syndromes have 

different pathological mechanisms with RSTS 1 and 2 showing high similarity to each other and mean 

hypomethylation and MKHK_ID4 exhibits overall hypermethylation and dissimilarity to RSTS1 and 2, as 

observed by the tree and leaf diagram. Gene expression analysis and functional assessment MKHK 

variants will provide more insight on the molecular mechanisms of these two syndromes. 

Hypomethylated probes are most commonly shared between disorders 

The conditions with the most differentially methylated probes also had the most unique probes, as 

outlined in the network diagram (Figure 5). The overlap in differentially methylated probes among all 

disorders is clear, however, the vast majority of overlapping probes between conditions are 

hypomethylated. Epigenetic changes to both DNA and histones, both transient and inherited, are 

essential to proper development, allowing for proper DNA expression that is cell-specific and temporal. 

Hypomethylation is indicative of gene activation, leading to the idea that overlapping probes may be 



 

 

involved in genes that may be expressed inappropriately. Alternatively, hypermethylated probes tend to 

be unique to a given syndrome as observed by the red loop coming from a disorder node in Figure 5. 

Given that hypermethylation is associated with gene silencing, these disorder-specific probes may 

provide insight in genes that are repressed in the wrong cell type or at the wrong time and could 

contribute to a given phenotype.  

Gene ontology analysis identifies enrichment in developmental and neurological pathways 

The cohorts assessed in this study are Mendelian genetic disorders with established episignatures. The 

motivation of using methylation profiles as clinical biomarkers comes in part with the shared and non-

specific clinical presentations exhibited in these syndromes, including the spectrum of 

neurodevelopmental delays and dysmorphic features (PMID: 29214565). Given many of these cohorts 

exhibit intellectual disability and developmental delay, it was not surprising that many of the top gene 

ontology terms for both DMPs and DMRs were involved in neurologic processes, such as chemical 

synaptic transmission, trans-synaptic signaling, synapse assembly, and glutamatergic synaptic 

transmission. Additionally, terms involved in developmental pathways and morphology, such as 

anatomical structure morphogenesis, cell-cell adhesion pathways, nervous system development, were 

enriched. Differential methylation within these genes, or near their promoters, implies possible 

alterations on gene expression, and with enrichment of DMPs and DMRs at CpG islands and promoters, 

these pathways may be impacted by abberant gene expression.  

Though our DNA methylation data was generated from peripheral blood samples, this enrichment of 

neurodevelopmental pathways points towards the possible inappropriate expression of genes required 

for proper cortical development. Spatial and temporal control of gene expression through DNA 

methylation is a highly dynamic process during development and many of the cohorts studied are 

involved its regulation. A recent review highlights the importance of DNA methylation in neuronal 

development within a set of neurodevelopmental syndromes, many of which are represented by our 



 

 

cohorts(https://doi.org/10.3389/fnins.2021.776809).  Further analysis of specific genes impacted, as 

well as direction of methylation change in the context of a given disorder, will provide further insight 

into possible underlying genetic pathways that may contribute to a given syndrome phenotype. Gene 

expression analysis would also further solidify the impact of these methylation changes on the genes in 

question. 

 

Conclusions: 
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Figure titles and legends 

Figure 1: Differentially methylated probes found shared between multiple cohorts. A. Percent of 

probes that are shared between each pair of cohorts. For each pair the colors indicate the percent of the 

top/bottom cohort’s probes that are also found in the left/right cohort’s probes. B. Probes that are 

shared between each pair of cohorts. Each labelled sector represents one cohort. The thickness of 

connecting line represents the number of probes shared between the two cohorts. 

Figure 2: DMPs and DMRs annotated in the context of CpG islands and genes. A. DMPs annotated in 

the context of CpG islands. B. DMRs annotated in the context of CpG islands. C. DMPs annotated in the 

context of genes. D. DMRs annotated in the context of genes. For CpG plots: Island, CpG islands; Shore, 

within 0-2kb of a CpG island boundary; Shelf, within 2-4kb of a CpG island boundary; Inter_CGI, all other 

regions in the genome. For gene context plots: Promoter, 0-1kb upstream of the transcription start site; 

Promoter+, 1-5kb upstream of the transcription start site; CDS, coding sequence. For DMP plots, the 

https://doi.org/10.3389/fnins.2021.776809)


 

 

Probes column represents the “background” or “default” distribution of all 450K array probes after 

initial filtering and used as input for DMP analysis. For DMR analysis, the numbers above each bar 

indicate the number of DMRs identified for each cohort. The following cohorts had no detected DMRs: 

AUTS18, BAFopathy, CSS4_c.2650, CSS9, Kabuki, KDM4B, MRX93. 

Figure 3: Relationships between cohorts. A. Methylation differences of all differentially methylated 

probes for each cohort, sorted by mean methylation. Each circle represents one probe. Red lines 

indicate mean methylation, yellow lines indicate median methylation. B. Tree and leaf visualization of 

Euclidean clustering of 56 cohorts using the top n DMPs for each group, where n = min (# of DMPs, 500). 

Cohort samples were aggregated using the median value of each probe within a group. A leaf node 

represents a cohort, with node sizes illustrating relative scales of the number of selected DMPs for the 

corresponding cohort, and node colors are indicative of the global mean methylation difference. 

Figure 4: UMAP visualization of 56 cohorts using the most differentiating probes. A-C. UMAP results 

projected to 3-dimensional space and snapshot from different perspectives. D. UMAP results projected 

to 2-dimensional plane. 

Figure 5: Differentially methylated probe sharing between the 56 cohorts. Network diagram shows 

cohorts connected by edges representing probes shared between them. Edges represent hyper-hyper, 

hyper-hypo, hypo-hyper and hypo-hypo type of connections in which an edge’s width is proportional to 

the total number of probes shared (in the range from 1 to 138,727). Probes unique to the cohort are 

represented by the self-loop. The total number of the differentially methylated probes in the cohort is 

simultaneously coded by a color and a height of the ellipse representing the cohort. The cohorts with a 

substantial number of probes are color-coded by an increasing gradient of purple; while cohorts with a 

small number of differentially methylated probes are color-coded by a yellow-white gradient. 

Tables 



 

 

Table 1: List of cohorts. 

Syndrome 
Signature 

Abbreviation 

Underlying 

gene or region 
OMIM Samples Probes Category 

X-linked alpha-

thalassemia/mental 

retardation syndrome (ATRX) 

ATRX ATRX 301040 30 8666 
SWI/SNF chromatin 

remodeling 

Arboleda-Tham syndrome 

(ARTHS) 
ARTHS KAT6A 616268 18 4487 Histone acetyltransferase 

Autism, susceptibility to, 18 

(AUTS18) 
AUTS18 CHD8 615032 28 2319 Transcription factor 

Beck-Fahrner syndrome 

(BEFAHRS) 
BEFAHRS TET3 618798 16 30391 DNA demethylase 

Blepharophimosis Intellectual 

disability SMARCA2 

Syndrome 

BISS SMARCA2 619293 12 10186 
SWI/SNF chromatin 

remodeling 

Börjeson-Forssman-Lehmann 

syndrome (BFLS) 
BFLS PHF6 301900 14 12321 Transcription factor 

Cerebellar ataxia, deafness, 

and narcolepsy, autosomal 

dominant (ADCADN) 

ADCADN DNMT1 604121 5 151848 DNA methyltransferase 

CHARGE syndrome CHARGE CHD7 214800 74 840 Transcription factor 

Chr16p11.2 deletion 

syndrome, 593-KB 
Chr16p11.2del Chr16p11.2del 611913 18 10105 CNV 

Coffin-Siris syndrome-1,2 

(CSS1,2) 
CSS_c.6200* 

ARID1B 

ARID1A 

135900 

614607 
4 3451 

SWI/SNF chromatin 

remodeling 

Coffin-Siris syndrome-1,2,3,4; 

Nicolaides-Baraitser 

syndrome (CSS12,3,4; NCBRS) 

BAFopathy 

ARID1B 

ARID1A 

SMARCB1 

SMARCA4 

SMARCA2 

135900 

614607 

614608 

614609 

601358 

124 1015 
SWI/SNF chromatin 

remodeling 

Coffin-Siris syndrome-4 

(CSS4) 
CSS4_c.2656* SMARCA4 614609 3 464 

SWI/SNF chromatin 

remodeling 

Coffin-Siris syndrome-9 

(CSS9) 
CSS9 SOX11 615866 13 430 Transcription factor 

Cohen-Gibson syndrome; 

Weaver syndrome (COGIS; 

WVS) 

PRC2 
EED 

EZH2 

617561 

277590 
8 2444 

Histone deacetylase 

Histone methyltransferase 

Cornelia de Lange syndromes 

1,2,3,4 (CDLS1,2,3,4) 
CdLS 

NIPBL 

SMC1A 

SMC3 

RAD21 

122470 

300590 

610759 

614701 

70 3623 

Chromosome 

cohesion/condensation; 

DNA repair (RAD21) 

Down syndrome Down Chr21 trisomy 190685 40 24712 CNV 

Dystonia 28, childhood-onset 

(DYT28) 
DYT28 KMT2B 617284 10 25260 Histone methyltransferase 

Epileptic encephalopathy, 

childhood-onset (EEOC) 
EEOC CHD2 615369 9 5284 Transcription factor 

Floating Harbour syndrome 

(FLHS) 
FLHS SRCAP 136140 21 26811 

SWI/SNF chromatin 

remodeling 

Gabriele-de Vries syndrome 

(GADEVS) 
GADEVS YY1 617557 10 4380 Transcription factor 

Genitopatellar syndrome (see 

also Ohdo syndrome, SBBYSS 

variant) (KAT6B) 

GTPTS KAT6B 606170 4 3008 Histone acetyltransferase 

Helsmoortel-van der Aa 

syndrome (HVDAS) 
HVDAS_C* ADNP 615873 14 6986 Transcription factor 

Helsmoortel-van der Aa 

syndrome (HVDAS) 
HVDAS_T* ADNP 615873 21 16756 Transcription factor 

Hunter McAlpine 

craniosynostosis syndrome 
HMA Chr5q35-qter dup 601379 8 17948 CNV 



 

 

Immunodeficiency-

centromeric instability-facial 

anomalies syndrome 1 (ICF1) 

ICF_1 DNMT3B 242860 8 38656 DNA methyltransferase 

Immunodeficiency-

centromeric instability-facial 

anomalies syndromes 2,3,4 

(ICF2,3,4) 

ICF_2_3_4 

ZBTB2 

CDCA7 

HELLS 

614069 

616910 

616911 

7 66568 

Transcription factor 

c-Myc responsive gene 

SWI/SNF chromatin 

remodeling 

Intellectual developmental 

disorder with seizures and 

language delay (IDDSELD) 

IDDSELD SETD1B 619000 11 5264 Histone methyltransferase 

Kabuki syndromes 1,2 

(KABUK1,2) 
Kabuki 

KMT2D 

KDM6A 

147920 

300867 
191 3749 

Histone methyltransferase 

Histone demethylase 

KDM2B-related syndrome KDM2B KDM2B unofficial 9 3632 Histone demethylase 

Autosomal dominant 

intellectual developmental 

disorder-65 (MRD65) 

KDM4B KDM4B 619320 6 279 Histone demethylase 

Kleefstra syndrome 1 

(KLEFS1) 
Kleefstra EHMT1 610253 32 4124 Histone methyltransferase 

Koolen de Vreis syndrome 

(KDVS) 
KDVS KANSL1 610443 16 6490 Histone acetylation 

Luscan-Lumish syndrome 

(LLS) 
LLS SETD2 616831 4 2405 Histone methyltransferase 

Menke-Hennekam 

syndromes 1,2 (MKHK1,2) 
MKHK_ID4* 

CREBBP 

EP300 

618332 

618333 
13 2570 Histone acetyltransferase 

Intellectual developmental 

disorder, X-linked, syndromic, 

Armfield type (MRXSA) 

MRXSA FAM50A 300261 6 4618 mRNA splicing 

Mental retardation, 

autosomal dominant 23 

(MRD23) 

MRD23 SETD5 615761 25 2795 Histone methyltransferase 

Mental retardation, 

autosomal dominant 51 

(MRD51) 

MRD51 KMT5B 617788 7 19803 Histone methyltransferase 

Intellectual developmental 

disorder, X-linked 93 (MRX93) 
MRX93 BRWD3 300659 11 16894 Transcription factor 

Intellectual developmental 

disorder, X-linked 97 (MRX97) 
MRX97 ZNF711 300803 18 3770 Transcription factor 

Intellectual developmental 

disorder, X-linked syndromic, 

Nascimento-type (MRXSN) 

MRXSN UBE2A 300860 4 6065 Enzyme 

Intellectual developmental 

disorder, X-linked, Snyder-

Robinson type (MRXSSR) 

MRXSSR SMS 309583 17 4062 Enzyme 

Intellectual developmental 

disorder, X-linked, syndromic, 

Claes-Jensen type (MRXSCJ) 

MRXSCJ KDM5C 300534 58 5013 Histone demethylase 

Myopathy, lactic acidosis, 

and sideroblastic anemia 2 

(MLASA2) 

MLASA2 YARS2 613561 11 2304 tRNA synthesis 

Ohdo syndrome, SBBYSS 

variant (SBBYSS) 
SBBYSS KAT6B 603736 9 1956 Histone acetyltransferase 

Phelan-McDermid syndrome 

(PHMDS) 
PHMDS Chr22q13.3del 606232 11 17581 CNV 

Rahman syndrome (RMNS) RMNS HIST1H1E 617537 9 26101 Linker histone 

Renpenning syndrome 

(RENS1) 
RENS1 PQBP1 309500 8 5228 mRNA splicing 

Rubinstein-Taybi syndrome 1 

(RSTS1) 
RSTS1 CREBBP 180849 37 5279 Histone acetyltransferase 

Rubinstein-Taybi syndrome 2 

(RSTS2) 
RSTS2 EP300 613684 29 7998 Histone acetyltransferase 

Sotos syndrome 1 (SOTOS1) Sotos NSD1 117550 69 43022 Histone methyltransferase 

Tatton-Brown-Rahman 

syndrome (TBRS) 
TBRS DNMT3A 615879 30 35130 DNA methyltransferase 



 

 

Velocardiofacial syndrome 

(VCFS) 
VCFS Chr22q11.2del 192430 47 4134 CNV 

Wiedemann-Steiner 

syndrome (WDSTS) 
WDSTS KMT2A 605130 52 4777 Histone methyltransferase 

Williams-Beuren deletion 

syndrome (WBS) 
Williams Chr7q11.23del 194050 22 13131 CNV 

Williams-Beuren duplication 

syndrome (Chr7q11.23 

duplication syndrome) 

Dup7 Chr7q11.23dup 609757 13 6963 CNV 

Wolf-Hirschhorn syndrome 

(WHS) 
WHS Chr4p16.13del 194190 17 7838 CNV 

* Episignatures which encompass a specific region or variant within a gene. 

 

  

  



 

 

Table 2: Top 10 most significant GO terms from enrichment analysis of DMRs. 

Using all CpG sites in the selected DMRs of all signatures. 

 
Ontology ID Description GeneRatio 

Adjusted p 

value 

 
BP GO:0007156 

homophilic cell adhesion via plasma membrane adhesion 

molecules 
77/2272 2.281E-22 

 BP GO:0098742 cell-cell adhesion via plasma-membrane adhesion molecules 100/2272 2.4689E-20 

 BP GO:0009653 anatomical structure morphogenesis 482/2272 2.0273E-12 

 BP GO:0009887 animal organ morphogenesis 222/2272 1.7703E-11 

 BP GO:0007268 chemical synaptic transmission 160/2272 3.7073E-11 

 BP GO:0098916 anterograde trans-synaptic signaling 160/2272 3.7073E-11 

 BP GO:0003002 regionalization 94/2272 3.7073E-11 

 BP GO:0022610 biological adhesion 289/2272 4.2794E-11 

 BP GO:0099537 trans-synaptic signaling 160/2272 5.9064E-11 

 BP GO:0007155 cell adhesion 286/2272 1.0448E-10 

 

Using duplicated CpG sites in the selected DMRs of all signatures. 
 

Ontology ID Description GeneRatio 
Adjusted p 

value 

 
BP GO:0007156 

homophilic cell adhesion via plasma membrane adhesion 

molecules 
46/543 1.9945E-27 

 BP GO:0098742 cell-cell adhesion via plasma-membrane adhesion molecules 54/543 4.8572E-25 

 
BP GO:0016339 

calcium-dependent cell-cell adhesion via plasma membrane 

cell adhesion molecules 
11/543 0.00010667 

 BP GO:0007416 synapse assembly 19/543 0.00134764 

 BP GO:0035249 synaptic transmission, glutamatergic 12/543 0.02574892 

 BP GO:0048232 male gamete generation 34/543 0.03108224 

 BP GO:0007276 gamete generation 39/543 0.03735384 

 CC GO:0034702 ion channel complex 23/562 0.01432234 

 CC GO:0034703 cation channel complex 19/562 0.01432234 

 CC GO:1902495 transmembrane transporter complex 24/562 0.01432234 

 

  



 

 

Table 3: Top 10 most significant GO terms from enrichment analysis of DMPs. 

Using all selected DMPs in all signatures. 

 
Ontology ID Description GeneRatio 

Adjusted p 

value 

 BP GO:0016043 cellular component organization 5977/16538 6.9304E-05 

 BP GO:0071840 cellular component organization or biogenesis 6164/16538 6.9304E-05 

 BP GO:0007399 nervous system development 2237/16538 0.00149203 

 BP GO:0051179 localization 6254/16538 0.01290062 

 BP GO:0022008 neurogenesis 1546/16538 0.01352787 

 BP GO:0032502 developmental process 6000/16538 0.02559775 

 BP GO:0030182 neuron differentiation 1294/16538 0.02559775 

 BP GO:0051234 establishment of localization 4851/16538 0.02559775 

 BP GO:0048699 generation of neurons 1435/16538 0.02636818 

 BP GO:1901564 organonitrogen compound metabolic process 6131/16538 0.02727857 

 

Using DMPs selected in more than five signatures. 
 

Ontology ID Description GeneRatio 
Adjusted p 

value 

 BP GO:0007399 nervous system development 1482/9330 9.017E-23 

 BP GO:0048856 anatomical structure development 3431/9330 3.9082E-21 

 BP GO:0032502 developmental process 3678/9330 2.9784E-20 

 BP GO:0007275 multicellular organism development 3148/9330 2.2164E-18 

 BP GO:0048731 system development 2840/9330 3.0198E-18 

 BP GO:0048468 cell development 1279/9330 3.0198E-18 

 BP GO:0009653 anatomical structure morphogenesis 1645/9330 3.6223E-17 

 BP GO:0022008 neurogenesis 1025/9330 1.8849E-15 

 BP GO:0048699 generation of neurons 956/9330 3.9628E-15 

 BP GO:0030182 neuron differentiation 868/9330 8.1588E-15 

 

 


