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Abstract 

The current work investigates the prospect of detecting live cell-cycling polyploid cells 

(in osteosarcoma through endocycling) based on their label-free scatter and images. 

Human polyploid cells are cells that carry multiples of their diploid DNA content. In 

many types of tumours, this DNA irregularity makes these cells one of the triggers 

behind genome instability, particularly when such cells commit to a ploidy cell cycle. 

Studies conducted on viable polyploid cells are often limited by classic fluorescent 

stoichiometric DNA labels for detection. These labels are only appropriate for end-

point assays; thus prompts the need for label-free detection methods. In the current 

work, polyploidy in osteosarcoma populations has been induced via drug treatment 

with the reversible topoisomerase inhibitor ICRF-193, where the generation of a rare 

endoreduplicating population can be enriched through different drug treatment doses 

and regimen. Different flow cytometer platforms are then used to detect and measure 

this cell cohort using label-free parameters of interest: the forward and side scatter on 

conventional flow cytometry (CFC), and brightfield and darkfield images on imaging 

flow cytometry (IFC). The current work showed that both the forward and side scatter 

intensity (area) measurements can be used in the detection of the target polyploid cells 

with low diploid contamination (approximately 0.4% of the original diploidy 

population) through automated clustering analysis on the data collected on the CFC 

platforms. For label-free image data collected on IFC, six supervised machine learning 

models were able to classify up to 75% of the original target cells accurately, where as 

low as 0.3% of the diploidy population were mislabelled as target cells. The work also 

recommended the detection specifications of the target cells, as well as protocols for 

sample handling, sample controls, and data analysis methods to facilitate the 

reproducibility of the findings on any flow cytometric platform. 
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1.1 Introduction 

This thesis investigates non-invasive detection methods of cell-cycling polyploid cells 

in human osteosarcoma (bone cancer) via flow cytometry. Polyploid human cells are 

cells that possess multiples of their normal diploid (i.e. two set of chromosomes or 2N) 

DNA set, and their presence can promote cancer relapses. Flow cytometry is a high 

throughput technique for single cell analysis via laser light scatter and fluorescence 

emission. The label-free parameters it measures on its conventional instruments are 

the small angle forward scatter and the large angle (perpendicular to the forward 

direction) side scatter, as well as the brightfield and darkfield images of the cells on 

imaging flow cytometry. In this chapter, we first present the research motivation, 

where we define polyploid cells and discuss their impact on cancer development. Next, 

the research problem section discusses the current limitations in polyploid cell 

detection, where the intended research approach is also presented. This is then 

followed by a brief background on light scatter and the potential scatter sources found 

in cells. Next, the research hypotheses and objectives are presented. Lastly, the chapter 

concludes by presenting the overall structure for the rest of the thesis chapters. 

1.2 Research motivation 

The genomic heterogeneity observed in human osteosarcoma, and in fact many 

cancers, is one of the obstacles affecting its treatment advances [1]–[3]. The presence 

of cancer cells with highly irregular DNA content, such as polyploid cells, is 

considered one of the factors that promote further genome complexity. Polyploidy can 

occur naturally in mammalian cells for different purposes such as organ development, 

as well as to form cell barriers between the embryo and the mother’s blood supply [4], 

[5]. When they are observed in tumours, however, these cells can show characteristics 

that contribute to cancer treatment evasion as well as tumor development and relapses, 

through delayed growth or active irregular cell cycling [4], [6], [7]. Specifically, 

polyploid cells that show further resistance, via continuing the cell cycle through a 

ploidy mitotic phase, are suspected of increasing genome instability in cancers [1], [8]. 

Therefore, this work will examine and target polyploid cells in osteosarcoma cell line 

U-2 OS (ATCC HTB-96), which is a human cell line commonly used to understand 

chromosomal instability due to its high aneuploidy (irregular chromosome count) rate. 
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For example, osteosarcoma U2-OS cell line has been observed to mostly resist cell 

death via developing a polyploid phenotype when exposed in vitro to ICRF-193 [9], a 

drug that reversely inhibits DNA Topoisomerase II (thus not allowing cells to divide 

or progress from the second growth [G2] phase to the mitotic [M] phase during cell 

cycle). Investigating the long-term impact of drug-resistant polyploid cells within 

tissues may not be easily feasible with the current standard detection methods for high 

DNA content in live cells, as will be discussed in the next section. 

1.3 Research problem and approach 

Studies on drug-induced alterations in cell cycle distributions, such as the generation 

of polyploidy cohorts, employ stoichiometric DNA binding fluorescent labels, which 

enables the quantification of DNA at the single level. However, such methods are only 

appropriate for end-point assays contrary to long term continuous studies. For long 

experiments on live cells, fluorescence labelling choices can be limited when it comes 

to colour compatibility with other labels emitting in the visible light, or due to a 

potential phototoxicity [10] or cytotoxicity [11]. This extends to recently developed 

DNA labels that have not been researched enough to assess their impact on cells, e.g. 

some have been found to introduce degrees of cytotoxicity when they first claimed 

none [12], [13]. Overall, it is believed that any labels designed for DNA quantification 

could inevitably negatively impact the cells [13]. Consequently, a label-free method is 

highly desirable to distinguish polyploid cells from diploid cells, especially in live cell 

sorting applications intended for long term culture. Moreover, such methods would 

need to be accessible to different flow cytometric platforms the way common DNA 

fluorescent labels are.  

When it comes to label-free parameters, there is an observed tendency of polyploid 

cells to be larger than their diploid counterparts [1], [7], but it is yet to be assessed for 

cell detection or sorting. Moreover, evidence suggests that the internal structures of 

polyploid cells could be different from diploid cells beyond the possible cell content 

duplication [1]. General light scatter of cells (reviewed in the next section) could 

provide insight on such potential differences between the two cell classes, including 

size. Therefore, this work aims to experimentally investigate the prospect of 

identifying the drug resistant and actively cell cycling polyploid cells in osteosarcoma, 
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i.e. cells at the G2/M phase of the polyploidy cell cycle, through label-free cell scatter 

and imaging. This includes estimating the potential of said parameters in terms of cell 

purity or yield for cell sorting applications. For this purpose, a high throughput single 

cell analysis technique is employed, where different benchtop flow cytometers will be 

used for the cell characterisation and to assess the reproducibility of the findings. 

1.4 Background and literature review 

In the following subsections, we present a general background of light scatter in 

matter, and a review of previous works that had investigated light scatter sources in 

cells. 

1.4.1 Light scatter in matter 

Light travelling through particles within a medium undergoes extinction via absorption 

or scatter. This process is affected by the main elements in the scatter process, which 

are the incident light (its frequency and polarisation), the particles causing the scatter 

(their numbers, size, shape, composition, and orientation), and the medium around 

them [14]. 

When electromagnetic waves interact with matter, the electric field oscillates the 

electric charges within it in the same frequency as the incident wave. The original 

radiation is quenched, and secondary radiations of the same incident wavelength are 

generated from the resulting dipole moments to make what we observe as the scattered 

light. Any energy alterations introduced are regarded as an absorption. In the case of 

scatter by single particles, one could describe said particles as consisting of small 

segments, e.g. molecules or atoms, whose oscillations result in secondary emissions. 

These emissions superpose to produce the scattered light, which varies in intensity 

from one direction to another [14], [15]. The variations come from the phase shift 

introduced by the different positions of the small segments relative to each other and 

the overall shape of the particle. The superpositions of all the phase-shifted waves 

produce the direction-dependent maxima and minima commonly seen in scatter profile 

graphs. These phase shifts are reduced when the size of the particle becomes very small 

relative to the incident wavelength, producing an isotropic scatter profile. On the other 
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hand, they become apparent when the particle is comparatively larger, producing a 

varying scatter profile with constructive superpositions mainly towards the forward 

scatter as the size increases.  In the case of scatter by many particles, each one would 

become a source of incident radiation to the nearby particles beside the original 

radiation, so in scatter problems they are treated as coupled particles. However, if their 

number density is very small and they are spaced far enough, the particles are treated 

as individual scatter sources, and the overall scattered light is the summation of their 

intensities [14], [15].  

In light scatter problems, indirect problems are those where one attempts to identify 

the shape and characteristics of a particle based on its scatter. This type of problems is 

more difficult to solve than forward problems, which approach scatter analysis the 

other way around (i.e. observing the resulting light scatter of a known source). This is 

due to the amount of missing information or the physically challenging data to be 

collected such as the amplitude and phase of the scattered light [14]. Therefore, 

simulations of cell scatter often assume models of possible relevant scatter sources in 

an object, while analysis of experimental scatter results is often compared to such 

simulations or overlapped with the positions of suspected features in the respective 

darkfield images, as will be reviewed in the next section. 

1.4.2 Light scatter in cells 

 

Figure 1-1: incident light on a cell undergoing extension via scatter or absorption  
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In flow cytometry experiments (see Chapter 2), small-angle forward scatter is 

perceived to correlate to cell size while the large-angle side scatter correlates to cell 

granularity (see Figure 1-1). For cells with diameters of 3-30 µm, the detected side 

scatter intensity is observed to be lower than that of the forward (with a factor of 

approximately 103) [16]. Different cell features or organelles have been explored in 

literature as potential light scattering centres, such as the cell membrane, cytosol, 

nucleus, mitochondria, and lysosomes [17]–[20]. This was performed on isolated 

organelles or within the cell, and conclusions were made from zero/one-dimensional 

scatter measurements or two-dimensional scatter images, which are then compared to 

simulated ones or to the positions of the investigated organelles’ fluorescence [17]–

[21]. The forward scatter of modelled live and fixed (i.e. preserved but dead) cells was 

shown to be affected by the nuclear-to-cytoplasmic diameter ratios (N/C) of the cells 

only when said cells were larger than approximately 14 μm [16]. On the other hand, 

the same work showed that the side scatter direction was more sensitive than forward 

scatter detecting changes in the relative refractive index of N/C rather than changes in 

its size ratio. In a study on suspensions of isolated nuclei and mitochondria, the first 

were observed to scatter more towards the forward direction while the latter towards 

the side direction. In addition, the experiments concluded that size or shape of cells 

contributes less towards their side scatter [17]. This was also observed in another work 

[22], where the forward scatter was affected by changes in the relative refractive index 

between the cell’s cytosol and the surrounding medium. The same work had also 

experimented on suspensions of isolated nuclei. A positive correlation was observed 

between the nuclear side scatter and DNA content (or other possible nuclear structures) 

compared to simple increase in the size of the nuclei (which were modelled as 

homogenous spheres). In a recent work, a supervised machine-learning technique was 

used to classify the mitotic cell cycle phases for Jurkat cells using brightfield (which 

consists of transmitted light and some forward scatter) and darkfield (side scatter) 

images [23]. The work used Random Forest and Gradient Boosting algorithms in the 

classification, where Gradient Boosting, which performed better, ranked the 

granularity of the overall darkfield images as a top classifying feature for the different 

mitotic cell phases (different DNA content). It is worth mentioning that when it comes 

to the contribution of the overall side scatter of cells, it has been remarked by [22] that 
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the nuclei do not seem to be the only contributor within cells (estimated to be 

approximately less than 40%). 

On the other hand, contribution of approximately 90% of cell side scatter was 

attributed to the mitochondria in another study [18]. There, the light scatter of 

mitochondria was investigated via two-dimensional darkfield imaging of single 

normal and cancerous liver cells, and this large-angle scatter was observed to spatially 

correlate with the positions of the mitochondria within the cell. Side scatter images 

showed random distributions of intensity spots for the liver cancer cell. In comparison, 

these spots aggregated nearby the nuclei for the normal ones, and both of which were 

highly correlated to where the mitochondria fluorescence was disturbed [18]. This 

shows that variation in organelles’ aggregations seem to affect the side scatter as 

anticipated from the light scatter theory [14], [15], [18], [20]. This result was also 

shown via a three-dimensional simulation [20], where two different mitochondria 

distributions in the cytoplasm were modelled: a random one (associated with cancer 

cells), and another where they aggregated nearby the nucleus (as seen in normal cells). 

The results showed that the simulated three-dimensional side scatter intensity patterns 

were distinguishable between the two cases. Moreover, their forward scatter also 

seemed to be affected, suggesting that the presence of diverse aggregation networks 

may affect cell size-related interpretations from forward scatter data [20]. The near 

submicron mitochondria being considerably large to exhibit a Mie-like (forward 

dominant) scatter was also mentioned in reference [18], and was suggested to correlate 

to the morphology of the organelle’s network.  

On another note, imaging experiments on human cervical carcinoma cells SiHa and 

rat embryo fibroblast cells MR1 showed that lysosomes and internuclear structures, 

(beside other small structures) seem to be as significant as mitochondria to large-angle 

scatter [24]. They also showed how the polarisation of the incident light played a role 

in determining the significance of an organelle in terms of its contribution to the large-

angle scatter. This was observed in how the lysosomes’ contribution to the scatter 

changed compared to the mitochondria when incident light polarisation was changed 

from parallel to orthogonal (relative to the scatter plane). The orthogonally polarised 

light increased the scatter of the lysosomes. In either case, the lysosomes had larger 

side scatter than the mitochondria [24].   
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Evidence in the discussed literature suggests different variables that could potentially 

affect cell light scatter, including differences in the cell lines of normal or cancer cells, 

their malignancy, and their viability. Factors that in hindsight could provide an 

understanding of the studied cells without perturbing their functionality with harmful 

markers or labels. For the osteosarcoma polyploid cells, the subject of this work, not 

only could the increase in DNA content lead to larger cell sizes or nuclei, but it could 

also increase their metabolism [25], which could lead to increase in mitochondria 

numbers [18] as well as other organelles. Some parts of the nuclear structures could 

be missing as well in polyploid cells compared to their diploid cells [1]. All of these 

suggest that not only could label free scatter of polyploid cells assist in identifying 

these cells apart from their diploid ones, but it could also provide feedback on the inner 

cellular structures causing any potential difference in scatter. 

 

1.5 Research Hypotheses 

Based on the presented literature review of observed cell scatter sources we propose 

the following hypotheses for the current work: 

1. Cell-cycling-polyploid cohort populations in osteosarcoma can be detected via 

their high forward and side scatter intensity measurements relative to the 

diploid cells within heterogeneous samples. 

2. Cell classification with the brightfield and darkfield images can segregate cell-

cycling-polyploid cohort populations in osteosarcoma from the diploid cells 

within heterogeneous samples. 

The first hypothesis is tested in Chapter 4 while the second in Chapter 5. 

1.6 Research Objectives 

1.6.1 Primary research objectives 

Throughout the findings of this project, we aim to meet the following objectives: 
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1. Characterise the forward and side scatter of the ICRF-193 drug induced 

polyploid cells in osteosarcoma against the diploid cells in the sample (both as 

viable cells suspended in media) using benchtop flow cytometers, and state the 

optimum detection thresholds for the least diploid cell contamination. 

2. Utilise machine learning to apply cell classification of two-dimensional 

brightfield or darkfield images, collected on imaging flow cytometer, for the 

target polyploid, non-target polyploid, and diploid cells, as well as extract 

meaningful statistical readouts from the images, such as cell sizes. 

Both of which are addressed in Chapter 4 and Chapter 5, respectively. 

1.6.2 Secondary research objectives 

The approach of the current work involves handling the studied cells on different 

platforms. Therefore, the following secondary objectives aim to observe the quality 

and reproducibility of the results, as well as the analysis methods. 

1. Propose a protocol for the handling of the investigated biological samples that 

ensures reproducibility of the biology and stability of the scatter measurements 

across different platforms.  

2. Utilise recent automated cell population gating tools and optimise them as 

needed to unify the cell gating method (see section 2.5.3.2 in Chapter 2 for 

more) in the analysis for different platforms. 

3. Identify biology or scatter controls that can be referenced on various platforms 

to replicate the findings and/or perform a label-free sort of the target cells. 

4. Construct the label-free detection specifications for the target cells that could 

assist any commercial or non-commercial flow cytometer instrument or 

microdevice in the realisation of the thesis’s findings. 

The first and second objectives are addressed in Chapter 3. The third and fourth 

objectives are discussed mainly in Chapter 4 and Chapter 5, but also addressed 

throughout the rest of the thesis. All objectives are readdressed and discussed at the 

conclusion (Chapter 6) of the thesis. 



Chapter 1: Introduction 

 
10 

 

1.7 Thesis structure 

Following this chapter, Chapter 2 gives an overview on flow cytometry, the 

methodology of the current work. The overview intends to provide a foundation to 

understand the results, through discussing the different used instruments, their 

limitations with a reference to the thesis’s results, and the standard analysis 

approaches. This is followed by the first results chapter, Chapter 3, which is concerned 

with establishing the results reproducibility and standardisation protocols for the thesis 

experiments. Chapter 4 shows the results addressing the validation of the first 

hypothesis. Chapter 5 follows suit with the second hypothesis. Finally, the thesis 

overall discussion and conclusions are presented in Chapter 6, where we readdress the 

research hypotheses, objectives and findings, as well as the future work. 
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2.1 Introduction 

The hypotheses of the thesis are concerned with investigating the label-free parameters 

of the studied cells through laser light scatter as well as brightfield and darkfield 

images. This is conducted via flow cytometry (FC), a high throughput technique in 

which a light source illuminates or excites single particles within a focused stream. 

The resulting scattered or emitted photons are then collected and directed into 

detectors, where intensity pulses are converted into electrical signals to be measured 

and analysed for each passing particle. Optical flow cytometry can be categorised 

based on the detection method into two types, conventional flow cytometry (CFC), 

and imaging flow cytometry (IFC). In CFC, zero/one-dimensional detections are 

performed, where the total intensity of the scattered or emitted light is focused into a 

single point on a photon detector. In IFC, two-dimensional detections are achieved 

through brightfield, darkfield or fluorescence imaging on a high-resolution camera.  

On either type of platform, the success of experiments relies on good experimental 

design and well considered control measures. Data reproducibility and usability can 

be realised by standardising as many steps as possible across the different platforms. 

These include sample preparation protocols, acquisition settings, and data analysis 

methods. In this chapter, we discuss aspects of the flow cytometry instrumentation 

(section 2.2), experiment design (section 2.3 and 2.4), and data analysis (section 2.4), 

which highlight key similarities or differences regarding the used instruments in the 

current work. This understanding guides our data collection and analysis methods 

throughout the thesis. It also illustrates the shared potential of these instruments 

regarding our research objectives, as well as the expected limitations. For further 

background and insight on flow cytometry, resources such as Practical Flow 

Cytometry by Shapiro [1] are recommended. 

2.2 Instrumentation 

In this work, the investigation on cell scatter is performed on data collected via two 

CFC instruments, BD FACSCalibur and the digital BD FACSVerse (Becton 

Dickinson Inc., UK)., and via one IFC instrument, Amnis® ImageStream®X Mark II 

(Merck Millipore) (see Figure 2-1). In terms of hardware circuitry, FACSCalibur is an 
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example of analogue CFC instruments that are in use today, while FACSVerse is that 

of digital CFC instruments. CFC data could be said to give better statistical intensity 

readouts per cell and with a less complex system. On the other hand, the visualisation 

of the detected cells in IFC gives a better insight regarding the sources of the collected 

light as well as providing more parameters for analysis. 

 

Figure 2-1: A flow chart summarising the flow cytometry instruments in the current work in terms of 

detectors, operated illumination sources, signal amplification type, the detected parameters of interest 

(where label-free ones are in black), and the data file types (please refer to the relevant sections in this 

chapter for further details). 

The working principle of this method is mostly shared between all commercial flow 

cytometers. Nonetheless, consideration should be given to the inherent instrumental 

differences. As has been stated above, such understanding helps in the standardisation 
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steps of the experimental data collection and analysis across the different instruments. 

It also helps in recognising oddly behaving samples, anticipating differences, and 

correcting for errors. In this section, we present a brief description of the main parts of 

flow cytometers while referencing the used instruments as examples. This starts from 

when cells enter the analysers through their fluidic system, interact with the optics, 

and data conversion within their electronics. 

2.2.1 Fluidics 

The instrument’s fluidics is the first stage with which a sample interacts in flow 

cytometers, and it serves the purpose of shaping the sample into a focused stream 

before the illumination source for single particle analysis. This subsection briefly 

explains the process, then discusses how the relevant experimental settings are handled 

on the different instruments in the current work. 

Within the instrument, the fluidic sample is first pressurised then injected into the 

sheath fluid within the flow cell or flow chamber (see Figure 2-2). The relative speed 

and pressure between the sample and the sheath fluid is controlled to achieve 

hydrodynamic focusing, where the sample core flows in a single stream that does not 

mix with the surrounding fluid following laminar flow principles. Both fluids travel 

through a nozzle shaped cavity located at the end of the chamber, then into an optically 

transparent region for laser interrogation (which is made of quartz cuvette in the used 

CFCs). The speed and width of the sandwiched sample core is controlled by the 

relative pressure between the sheath fluid and the injected sample. While this pressure 

setting can be manually configured on flow sorters, it is fixed at pre-defined modes 

(also referred to as flow rates) by the manufacturer for most of the flow analysers such 

as the FACSCalibur and FACSVerse. 

The samples throughput rate can be controlled by the pre-set flowrate modes for 

various objectives. For example, low flowrates increase detection sensitivity through 

the slow interrogation time, which, if compromised, may affect the spread of the 

measured intensity peak distribution for samples, leading to high values of coefficient 

of variance (CV). Slow sample speeds also result in narrower sample cores that can 

reduce chances of coincident events (especially with smaller particles). On the other 
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hand, an overall short experiment time is desired when working with live cell 

suspensions to avoid affecting their health negatively, especially when they are 

labelled with cytotoxic probes such as the studied samples. Therefore, in the current 

work, higher flow rates (e.g. approximately 60 μL/min) are used for bead or cell 

samples wherever the detected intensity CVs are found to be insignificantly affected 

by the sample speed changes. However, for cell cycle analysis where proper DNA 

quantification is prioritised, we have maintained the recommended flowrate as per 

protocols (i.e. speeds not exceeding 300 cells/s). 

 

Figure 2-2: A scheme of the hydrodynamic focusing of samples in a typical FC analyser. 

In IFC, flowrate speed settings are associated with the desired image sensitivity for an 

experiment. On ImageStream, fixed pre-set speed modes are once again implemented. 

These help in managing the introduced complexity in IFC instruments that is 

associated with focus calibration in detection cameras. For example, manufacturer 

supplied speed beads are continuously mixed with the sample stream in ImageStream, 

where they are monitored to automatically adjust the camera focus and imaging 

synchronisation in real time. For our experiments, image quality is prioritised for 

subsequent machine learning analysis, so all samples are run on the lowest fluidics 

flowrate. 

Different instruments have different requirements regarding the acceptable volumes or 

recommended sample concentrations. In some studies, this may not be of much 
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concern, leading to no considerable changes to their sample preparation protocols. 

However, in our study, we have found that the sample requirement by ImageStream 

has introduced some challenges regarding keeping our sample preparation protocol 

standardised across all the used FC. The issue stems from how the instrument 

anticipates very condensed samples (~2x107/mL) in low volumes (20-200 μL), which 

does not align with the standard labelling protocols for DRAQ5, the used DNA label 

for cell cycle analysis of our studied live cells. As a result, some adjustments have 

been made to some of the sample preparation steps as would be discussed in detail 

(along with other challenges) in the methodology (section 5.2.1.3) of Chapter 5. 

2.2.2 Optics 

 

Figure 2-3: The a) detection directions and b) signal parameters extracted from the pulse generated 

from a passing cell in a typical CFC analyser. 

The optical system in commercial flow cytometers mainly consists of illumination 

sources, detectors, and optical elements for light collection, directing and filtering. In 

the following subsections, we highlight similarities and differences in the used 

instruments regarding the provided light sources and the resulting scatter and 

fluorescence emission. Light detectors are then discussed where we address some of 

their advantages and downsides, particularly those associated with our experiments. 
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2.2.2.1 Light sources, light scatter, and fluorescence emission 

Lasers are the main light source used for scatter illumination and fluorescence (FL) 

excitation in FC instruments. They are preferred for the job because of their coherent 

nature, which provides narrow spectral bandwidth in high intensities that is ideal for 

fluorescence excitation and detection. Most manufacturers provide wavelengths that 

are commonly used with fluoroprobes in biological experiments, such as the 488 nm 

blue laser used in the current work. Nonetheless, these instruments may have 

differences regarding how the laser light is delivered or shaped to interact with the 

samples. For example, the geometry of the laser beam at the focus point is elliptically 

shaped as 22 x 66 μm and 9 x 63 μm for the FACSCalibur and FACSVerse, 

respectively (where the shorter axis is parallel to the sample’s travelling direction; see 

b in Figure 2-3. Because power distribution in lasers is nonlinear, variability in the 

shape of the illumination beams could trigger responses that are relatively different 

within the experiment samples from one instrument to the other. This is of relevance 

to scatter results (which is highly dependent on the incident power, see Chapter 3 

section 3.3.2.2), especially that of particles with sizes comparable to that of the beam, 

as would be discussed in Chapter 4 (section 4.3.1.1). 

In the used CFC instruments, the forward scattered light (FSC) is detected by a 

photodiode with bandpass filter, where an obstruction bar is placed around the 0° 

direction (relative to the optical path) to block most of the transmitted light (see a in 

Figure 2-3). Around the 90° direction, the side scattered light (SSC) and the FL 

emission are collected and directed by beam splitters to be detected by photomultiplier 

tubes (PMT) supplied with the appropriate wavelength filters. Some of the used beam 

splitters can be polarised, such as the Brewster-angle beam splitter in front of the side 

scatter detector in FACSCalibur. On ImageStream, a different laser (785 nm laser) is 

used to create the 90° two-dimensional darkfield (DF) images (in place of the zero/one-

dimensional side scatter), but the same blue laser wavelength (488 nm) is available for 

fluorescence excitation. There, in place of forward scatter, a multi-colours LEDs 

illumination in a direction perpendicular to that of the other lasers is used to create 

two-dimensional brightfield (BF) images. All generated light is then collected to travel 

on the same optical path, passing by band-stop filters before being detected on high-

resolution CCD cameras (two cameras collection via a beam splitter is available on 
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our instrument). Illustrations of the optical paths for both FACSCalibur and 

ImageStream can be seen in Figure 2-4 b. 

 

 

Figure 2-4: Overview of the optical path for a CFC instrument such as the a) FACSCalibur (Becton 

Dickinson Inc., UK), and an IFC instrument such as the b) ImageStream (Merck Millipore). Figures are 

re-created from instruments manual as provided by their respective manufacturer. 

Albeit not the same, all instruments are equipped with suitable filters for the detection 

of the fluorescence of interest, which enables the associated sample preparation steps 

to be nearly standardised. 

2.2.2.2 Light detectors 

In commercial CFC, photomultiplier tubes (PMT) are typically used for the detection 

of side scattered light and fluorescence emission of incoming particles. These detectors 

capture well the wide range of the detected intensity between the fluorescent and non-

fluorescent samples as well as the weak intensities of the side scatter light with their 

high gain. Avalanche photodiodes (APD) are often used instead for forward scatter 

detection, which tends to generate higher intensity signals for the particle sizes that are 

commonly investigated on flow cytometers. For IFC instruments, charged coupled 

device (CCD) cameras are used instead to produce two-dimensional brightfield, 

darkfield and fluorescence images of samples.  
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In the following subsection, we discuss some detection problems we have observed 

that are mostly inevitable in the current work and thus regarded as methodology 

limitations. 

2.2.2.2.1 Saturation in detectors 

There are two main sources of high intensity differences in our investigated samples. 

The first is related to variability in the area or size of the light intensity source(s) within 

the particle, and the second is related to variability in the localised spot’s intensity. 

While both types can affect all detectors, we comment here on which type is observed 

the most with which detector (thus instrument) in our experiments.  

The first type of saturation can be found in the PMT detection of the polyploid cell 

samples that are labelled for DNA quantification. When labelled for their DNA, 

diploid and polyploid cell samples display variable nuclei sizes and intensities. 

Normally, researchers utilise logarithmic scaling (logarithmic amplification on 

analogue CFC) to record and view both dim or small intensity structures along with 

bright or large intensity structures on the same scale (e.g. as done in the current work 

with the GFP- cyclinB1 label readout). However, linear scaling is preferred for cell 

cycle DNA readout because it helps track the expected linear multiplication of DNA 

content during such an event. As a result, we have found that beyond the regular 

diploid cell cycle, we could only view the first polyploid cell cycle and half of its 

second one before the PMT detector saturates (see plot a in Figure 2-5). In this case, 

the dynamic range of the measured total DNA intensity per cell is limited by the 

voltage setting of the diploid DNA peaks, whose values increase in multiples when the 

polyploidy DNA peaks are detected. Lowering the voltage of the diploid DNA peaks 

can be done to visualise the higher intensity peaks through logarithmic scaling, but this 

may come at the cost of potentially introducing errors in the measurement for some 

CFC instruments (see section 2.2.3.1 for details), On the other hand, CCD cameras 

exhibit a much larger dynamic range when it comes to the measured total intensity of 

a given parameter per cell. In the example of total measured DNA, detection on CCD 

cameras can cover the second polyploid cell cycle in our samples properly (see plot b 

in Figure 2-5), where the dynamic range of the detected intensity is 12-bit per pixel. 

This is possible because the total intensity of the nuclei is calculated in CCD cameras 
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afterwards via adding up the pixel values of the imaged intensity areas. Therefore, the 

intensity integration measurement in CCD cameras can offer a larger dynamic range 

compared to PMT detectors, as long as the individual pixels are not saturated, which 

we will discuss next. 

 

Figure 2-5: Examples from the thesis on the type of observed detection saturation. The top scatter 

density plots of cell cycle readout show the first type of saturation observed on the a) PMT detectors of 

CFC instruments (FACSCalibur) where only half the second polyploidy (red gate) cell cycle is detected, 

unlike the b) CCD camera of the ImageStream that show them all. In the scatter plots, the shift in cell 

number density from high to low is represented by the colours red, yellow, green and blue, respectively. 

The three population round gates in the plots (a, b) are manually drawn (for illustration purposes and 

not for analysis), via referencing control samples (see section 3.2.3 in Chapter 3). The second type of 

saturation is observed on c) the localized pixel saturation of ImageStream images, such as those 

observed with the darkfield images of plain small or large beads (saturation represented by the red pixels 

in Ch12). The columns in c) refer to the brightfield, darkfield (1 mW), and an overlayed image of both, 

respectively. The top and bottom row images are for a 25 µm and 6 µm bead, respectively.  

The second type of saturation is often encountered in CCD cameras as they have lower 

localised intensity dynamic range compared to the other flow cytometer detectors, and 
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so they tend to struggle with pixel saturation. This is especially the case when it comes 

to scatter detection, i.e. darkfield images, of uniform particles such as our control 

scatter bead samples. In general, focused two-dimensional darkfield images of beads 

show high intensity spots where the laser beam enters and exists the beads (see images 

of c in Figure 2-5). This is due to the high sphericity and composition-uniformity of 

the beads, which then results into high reflectivity at these boundaries. In the CCD 

cameras of ImageStream, these high intensity spots have shown pixel saturation even 

when the scatter laser is operated at the lowest power setting (e.g. 1 mW). Therefore, 

this renders the usage of beads as scatter (or, in this example, darkfield images) 

controls inadequate on our IFC instrument. Nonetheless, scatter beads are routinely 

run in our IFC experiments (as done in the CFC ones) to observe the stability of the 

imaged brightfield intensities between the different experiments. It is worth 

mentioning that one may apply attenuating filters on the darkfield detection channel to 

reduce the saturation, but that could risk eliminating the dimly spotted patterns 

commonly seen in the darkfield images of our cells (whose intensity cover the entire 

pixel range of the CCD camera moving from diploid to polyploid cells at a laser power 

of 1 mW).  

2.2.3 Electronics 

Once the scattered or emitted photons hit the detectors, the electronic circuits handle 

the job of the pulse conversion and information extraction. Different instruments have 

their own approaches to how the detected signal is handled in the circuitry of the flow 

cytometer, but all essentially aim to provide similar readouts: height, width, or area of 

the detected pulse (refer to b in Figure 2-3). Nowadays, most CFC flow cytometers 

provide all three measurements, but on analogue CFC instruments, there could be 

limits on how many measurements are conducted per parameter (scatter or FL 

channel). For example, on FACSCalibur, users can measure the signal height for each 

parameter, but the circuitry limits measuring signal’s width and area to only one FL 

channel, which must be set before the data acquisition. Another major difference 

between digital and analogue CFC is concerned with the analogue signal amplification 

and digitisation. This is discussed in detail in the following subsection as it is an issue 

that can considerably affect the subsequent data analysis 
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2.2.3.1 Pulse digitisation and log transformation (analogue versus 

digital flow cytometers) 

Attention must be given to how or when a flow cytometer extract measurements from 

the analogue pulses of the events as they pass in front of the detectors. Older FC models 

perform all pulse measurement extractions (also known as parameters) within the 

instrument’s analogue circuitry before they are digitised for computer display and data 

storage. Depending on the parameters selected for acquisition, the detected pulse per 

channel is first passed through the appropriate circuits to have its height, width and/or 

area measured. Each measurement is then passed to an analogue-to-digital-converter 

(ADC), where the signal resolution depends on the bitrate. Fluorescence 

compensation, when desired during acquisition, is also handled within the instrument 

hardware. Such a compensation process, however, is irreversible because the raw 

uncompensated data is lost, making it impossible to fix any user-related compensation 

errors (thus it is preferred to apply any needed spectral overlap corrections afterwards). 

In FC, logarithmic scales (see section 2.5.3.1.2) are often used to display distributions 

of weak intensity signals on the same scale as that of high intensity ones. Such readouts 

are commonly observed with fluorescence labelling of cells as well as the scatter of 

small versus large particles. However, due to the lower bitrate of the ADCs in the older 

generation of flow cytometers (e.g. 10-bit on FACSCalibur), linear measurements of 

the pulse show very poor resolution of the weak signals when displayed 

logarithmically afterwards. Therefore, if a logarithmic scale display is desired for a 

given detection channel, linear-to-log transformation is first applied to the analogue 

signal before it is digitised. This, once again, results in the hardware log-

transformation being an irreversible process, where the original linear intensity readout 

cannot be retrieved. The log decades allowed per detection channel depends on the 

dynamic range capacity of the instrument and the bitrate of its ADC. Naturally, the 

process of log-transformation within the circuitry does introduce errors to the 

transformed measurements, mostly observed at the weakest and highest intensity 

decades [2]. Therefore, it is recommended, to adjust PMT voltages to centre the 

detected signals within the dynamic range of the scale wherever possible. It should 

also be noted that, while the acquired data files store the raw log-transformed data as 

they are, most flow cytometer data visualising programmes applies a reverse log-to-

linear transformation (see section 2.5.3.1.1) when it displays them to users. This also 
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may introduce some errors because of the inherently non-perfect original log-

transformation. Hence, it is best to keep the log-scale data visualisation when handling 

any analogue log-transformed data on older flow cytometers.  

One last thing to discuss regarding older models is their tendency to have limited 

number of measurements (height, width, or area) per detection channel. For example, 

on FACSCalibur, the main parameter extracted for all detection channels is the peak 

of the intensity pulse. The width and area of the pulse measurements can be measured 

only for one single fluorescence channel (this setting is not available for scatter 

channels), which the user must select before the data acquisition. This means that data 

filtering that requires the presence of at least two pulse measurements, such as that of 

coincidence events, could only be applied for this instrument on an appropriate 

fluorescence channel (e.g. the labelled nuclei in the current work). On such an 

instrument, scatter channels cannot be used for this purpose, which, otherwise, would 

have been a researcher’s first choice for the filtering of such doublet events. 

Modern flow cytometers perform signal digitisation in the instrument circuitry first 

before measurements are extracted. These flow cytometers tend to have ADCs with 

higher bit rate (e.g. 18-bit for FACSVerse), which allows better resolution of weak 

signals. This omits the need for any analogue log-transformation and all collected 

parameters are inherently linear regardless of the user’s choice of data display during 

the acquisition. In addition, colour compensation here is performed digitally via the 

acquisition software either during or after experimental collection. 

2.3 Controls in flow cytometry 

The validity of the conclusions made in research is dependent on the quality of the 

considered control samples and how they support the hypothesis. In FC, controls vary 

from those assessing the performance of the instrument to those related to the 

experiment design and objectives. The purpose of these controls is to ensure that most 

known experimental variables are accounted for, so concrete conclusions can be 

drawn. In this section we give an overview of the controls used in our work such as 

the quality, experiment, system and compensation controls. Further discussion can be 

found in each results chapter in the thesis. 
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Instrument testing controls, or quality controls (QC), refer to the manufacturer-

specified quality tests that must be run routinely to ensure the system is calibrated and 

performing to the standard. They come in the form of plain and fluorescent bead kits 

(provided by the manufacturer), and are usually run monthly, daily, before and after 

experiments, or according to recommended in-house protocols. 

Experimental controls are concerned with checking the validity of any applied 

treatment, which are represented in our work by the different sample types discussed 

in Chapter 3. The polyploidy of cells in our work is drug induced [3], thus it requires 

non-drug treated samples to observe the drug response against the regular biological 

status of the cells. This is discussed in depth also in Chapter 3, which describes the 

assessment of these controls through all the conducted experiments. Therefore, the 

experimental controls in our work can also be regarded as our biological controls. 

System controls refer to those that assist in the standardisation of experiment specific 

settings. In our study, these involve unlabelled cells as well as polystyrene beads to 

fine tune the scatter detection channel for any changes between experiments and/or to 

target cell side scatter as would be explained in later chapters. 

Lastly, compensation controls refer to those that help assess any potential spectral 

overlap between the detection channels and they are discussed in depth in the next 

section (2.4). 

2.4 Fluorescence compensation 

Spectral overlap between neighbouring detection channel on flow cytometers is often 

inevitable, and thus must be accounted for. Uncompensated cell data with huge 

spectral overlap could falsely consider unlabelled cells as significantly fluorescent 

cells in its respective fluorescence detection channel. This could lead to inaccurate 

interpretation of the actual data; hence proper fluorescence compensation should be 

applied wherever needed. This starts first by choosing the suitable colour panel of 

biomarkers to identify target populations, along with the associated excitation lasers, 

to running the needed compensation controls during the experiment (as mentioned in 

section 2.3) and correcting the data via applying appropriate compensation matrices. 

Many FC data analysis software help in automatic generation of compensation 
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matrices, but users are recommended to manually inspect them afterwards and 

manually optimise them if needed.  

When several flow cytometers are considered, it is also recommended to plan a flexible 

colour panel that can be run with the same sample preparation steps if data 

reproducibility over different platforms is to be examined. Commercial flow 

cytometers often carry similar wavelengths for the excitation lasers, such as the 488 

nm blue laser or a 633-642 nm red laser, as well as nearly similar bandpass filters for 

fluorescence detection in the green, yellow, and red wavelengths. This makes it 

possible to replicate experiments with a panel of limited colours on different 

instruments, but it could be challenging as the colour panel expands or different laser 

wavelengths are needed. For example, for the experiments on the current work, we 

only require two biomarkers (thus, two fluorescence detection channels) excited by the 

488 nm blue laser to biologically identify the polyploid cells apart from the diploid 

ones. One of these biomarkers is cyclin B1, whose levels increase gradually (starting 

from the end of the first growth [G1] phase) as the cell transition to the second growth 

(G2) phase of the cell cycle, where they peak at the G2/Mitotic (M) phase (see the y-

axis in plots a or b in Figure 2-5). The cell line in the current work is transfected with 

a green fluorescent protein (GFP) tagged cyclin B1, where GFP is generally regarded 

as a non-invasive label. Then to tell populations such as diploid cells at G2 apart from 

polyploid cells at G1, we use DRAQ5 to quantify the DNA in the nuclei of live cells 

(see the x-axis in plots a or b in Figure 2-5). DRAQ5™ is a cell-permeant DNA binding 

anthraquinone dye that intercalates between A-T bases of double-stranded DNA [4]–

[6]. In this work, it is used for its colour compatibility with GFP (it can be excited by 

the same blue laser as the GFP’s and it fluoresces in the red wavelengths. It is also 

used for its simple labelling protocol that minimises any extra stress inducing steps on 

the cells. This makes the biology findings easily reproducible on several CFC because 

the chosen panel reduces any significant spectral overlap in the detected data, resulting 

in practically no need for fluorescence compensation. 

However, even simple colour panels, such as ours, can be challenging if they require 

different sample preparation protocols because some flow cytometers do not strictly 

handle the samples in a similar manner. For example, the IFC ImageStream 

recommends sample concentrations that are much denser, and prepared in liquid 
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volumes that are much smaller compared to the ones followed in most CFCs such as 

FACSCalibur or FACSVerse. This required some changes to the regular labelling 

protocol of DRAQ5, as will be addressed later in Chapter 5 (see section 5.2.1.3). 

Lastly, it should be noted that most CFC data analysis does not consider scatter 

channels when building compensation matrices. This is based on the simple fact that 

when a single laser is required for both scatter and fluorescence excitation, it is not 

feasible for regular users on the CFC instruments to selectively block or filter out the 

resulting forward and side scatter while keeping their detectors running to catch any 

fluorescence spillover. For most CFC instruments, the scatter illumination lasers and 

their respective scatter detection channels are pre-determined in the instrument 

hardware, where the main excitation laser (commonly the 488 nm blue laser laser) is 

often used for this job. On the other hand, ImageStream, the used IFC, operates 

illumination wavelengths for the brightfield and darkfield images that are different 

from those of the lasers used for fluorescence excitation, so regular users could build 

up compensation matrices of all detection channels to count for any spillover. 

Therefore, in the current work, while the spectral overlap for fluorescence channels is 

not significant on the used CFC instruments, we did consider any increase in the scatter 

medians of the GFP expressing versus non-GFP expressing cells as a baseline for the 

statistical significance of the studied scatter (see section 3.3.2.2 in Chapter 3 for related 

discussion). For the experiments on IFC, the regular fluorescence compensation 

procedure has been applied. 

2.5 Data in flow cytometry 

This section discusses how cell data are handled digitally. This starts from what 

parameters can be controlled during data acquisition, to how it is stored and accessed, 

and lastly to how analysis is conducted. The section aims to highlight which methods 

can be standardised across the used flow cytometers as well as discuss any observed 

limitations and how they are handled in the thesis.  
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2.5.1 Data acquisition 

Flow cytometers provide real time measurements of the detected events. Therefore, it 

is common practice to first run some sample or control tubes to ensure that the flow 

cytometer is operating on the appropriate settings for the intended application before 

the desired data are acquired and saved. Users could also set up various collection 

gates of interests during the set-up stage to increase the number of meaningful data in 

their acquisition. In this section, we discuss some configurable options in the 

instruments used in this thesis that can affect the quality of the collected data. 

In analogue CFC instruments such as the used FACSCalibur, PMT voltage settings 

can be configured separately for each of the width, height, and area parameters for a 

limited number of FL detectors (none for the scatter detectors on FACSCalibur). In 

the current work, this is only considered for the DNA-DRAQ5 FL detector channels 

since DNA linear quantification can be used in doublet discrimination. Because it is a 

FL readout of the nuclei, there is generally less concern about the variation in physical 

cell size among the different samples (unlike the case with scatter generally as will be 

discussed next). However, the cells in our drug-treated samples tend to have irregular 

multiples of the regular DNA set. Therefore, doublet discrimination in such samples 

may not result in cleanly separated populations, compared to drug-free samples, which 

contain cells of regular DNA sets. 

In digital CFC instruments, area scaling is a detector-related setting that is commonly 

present for data acquisition. The setting allows users to configure the scaling factor 

between the pulse’s area and height measurement for the detection channels. For 

digital CFC instruments, users usually can control the PMT voltages (electronic gain 

for the FSC’s photodiode detector) only for the pulse’s height measurement, so the 

area scaling setting helps ensure that the other measurements (area and width) are 

within the dynamic range. The linear relationship between the area and the height of 

the pulse depends on the detector, thus the FSC detector has its own setting 

independent from those detected on PMTs. The scaling factor could also vary between 

samples depending on changes in the sheath flow speed or the size of the particles. 

When set up well (i.e. via achieving a 45° angle linearity), the resulting scatter plot 

could also be used for doublet discrimination (see Figure 4-4 in Chapter 4). Generally, 

default values for the area scaling setting are established by the acquisition software 
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based on QC tests that are routinely run using small beads (approximately 2-6 µm). 

However, this default scaling becomes inaccurate as the size difference of the 

experiment samples increases (relative to the QC beads), and users are then 

recommended to manually adjust (wherever configurable) the area scaling setting for 

each sample of different size [7]. For the cells studied in the current work, the 

suspended live cells (kept on ice) can vary in size from approximately 16±1 to 29±2 

µm depending on their position on the diploidy or polyploid cell cycle (see results in 

Chapter 5). Moreover, scatter detection is of importance to the current work, and any 

changes in the area scaling requires adjustment to the voltage settings of the concerned 

parameters. Changes in the voltage settings of the scatter channels between the 

different sample types in our experiments is not desired. As a result, the area scaling 

in the current work is set up (wherever configurable) based on the scatter and FL of 

the drug-free control cell samples, and is kept the same for the rest of the experiment 

(regardless of the cell size differences). 

For ImageStream, the IFC in this thesis, the regular operation of the instrument allows 

users to adjust the detected intensity peaks on the CCD cameras via changing the 

power of the illumination lasers. 

2.5.2 Data file types 

Before approaching the data analysis, it is essential to highlight some points regarding 

how the detected intensity signals are handled or stored digitally. This is especially 

significant when it concerns experiments conducted across several platforms, be it 

analogue or digital.  

The “Flow Cytometry Standard” or “FCS” is the standardised data file format for CFC 

(it is currently at FCS version 3.2). Most of the acquisition programmes in digital CFC 

export data in the FCS 3.0 format (introduced in 1997 [8]), while those in analogue 

CFC are still using the FCS 2.0 one (introduced in 1990 [9]). In either version, the FCS 

file consists of three main segments, which are the Header, Text and Data segments. 

The Header segment states the FCS file version and the byte offsets of the rest of the 

segments, while the Text segment contains the experiment’s metadata (in the form of 

main and optional keywords), and the Data segment contains the numerical values of 
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the acquired raw data. More details regarding FCS files and their different versions 

can be found on the official website of the International Society for Advancement of 

Cytometry (ISAC) and their related previous publications (https://isac-net.org/). 

Many commercial FC analysis programmes are designed to handle both FCS 2.0 and 

3.0 well without much user intervention. They also often facilitate FCS file conversion 

to updated versions, which makes FCS 2.0 files more accessible. However, some of 

the recently published analysis tools tend to expect FCS 3.0 files that are exported by 

digital CFCs. This could result in file reading errors and multiple bugs when dealing 

with FCS 3.0 converted files from older machines. Moreover, when further analysis 

by other means is desired or the data in the FCS files are exported in other non-FCS 

formats, the knowledge regarding the original FCS file version and the type of the raw 

data amplification per parameter becomes crucial. An example of the first issue is 

presented in the current work (see section 2.5.3.2 here, and section 3.2.3.2 in Chapter 

3), where updates to the published script of the tool had to be written to make the 

analysis on the FCS 2.0 files of our FACSCalibur data possible. Regarding the second 

issue, any non-FCS numerical data file exports were routinely associated with their 

respective metadata (e.g. amplification type, range) to ensure accurate representation 

and handling of the data. An example of that is the numerical data exports of the 

logarithmically amplified parameters in our FCS 2.0 files from the FACSCalibur 

(which is addressed in section 2.5.3.1.1).  

For IFC, there is currently no standardised file format for the imaged data (though 

recommendations have been proposed). The IFC in the current work, ImageStream, 

stores experiment data as raw image files (.rif) or compensated image files (.cif), which 

are mainly read and processed via the analysis software provided by the manufacturer. 

Nonetheless, because individual images can be exported in popular image file formats 

such as .tiff, this allows us to further study them via open-source imaging analysis 

tools as illustrated in Chapter 5. 

2.5.3 Data analysis 

In the following subsections we discuss some of the methods and approaches that are 

referenced throughout the thesis when it comes to data presentation or analysis. 

https://isac-net.org/).
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2.5.3.1 Data visualisation 

Most of the FC experiments are concerned with examining the existence and/or lack 

of markers of interest through their fluorescence emission. The collected cell 

intensities for each parameter are first visualised via traditional two-dimensional 

scatter dot plots, density plots, or frequency histograms. This visualisation step helps 

identify well-known distribution patterns, such as that of cell cycle in the current work, 

and apply population thresholds accordingly. In this section, we discuss aspects of the 

used data visualisation in the current work such as the common graph types, and the 

appropriate binning or scaling methods. 

Frequency count histograms are the default data presentation option per parameter on 

most FC data analysis software and they are the simplest to interpret. Representing the 

data of each parameter through probability distribution functions (PDF) could also be 

used instead to convey a similar reading. However, the visible bins in frequency count 

histograms help remind readers of the binning process that is being applied in the data 

visualisation (even on scatter plots) or even during its acquisition. Therefore, most of 

our single parameter visualisation is done via histograms. Histograms or PDFs are also 

plotted sometimes along the axes of scatter plots when multiple populations are 

graphed (e.g. Figure 3-5 in Chapter 3). In our results, we also use box plots to 

summarise statistics (i.e. mean, median, and the middle 50%) of individual histograms, 

but it should be noted that traditional box plots may not reflect multimodal 

distributions well. For such a job, violin plots could be used instead because they 

combine distribution density and box plots, but they are less commonly used and can 

appear overwhelming. Therefore, we will simply report box plots along with frequency 

histograms wherever we deem needed. 

In the current work, when it concerns data binning in frequency histogram for display 

purposes, the bin width is not fixed and is thus stated in figures’ captions wherever 

applicable. It should be emphasised that it is common for FC analysis software to use 

the binning or scaling choices of the single parameter histograms as the backbone for 

the data binning or scaling of the rest of available figure types. These options 

sometimes can be found in their exported numerical data (in other file formats).  
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Topics such as data binning and scaling in FC are well explained in previous review 

articles [10], so the following subsections echo their remarks with reference to our data 

and the used instruments. 

2.5.3.1.1 Data binning 

Binning refers to the process of assigning data to discrete categories or bins, which can 

be of uniform or variable widths. In FC, choices regarding data binning are mostly 

concerned with data display rather than statistical computations. This is briefly 

discussed here along with some exceptions that involves data transformation.  

Originally, all FC data are binned as the detected analogue signals are converted during 

the acquisition to digital ones, where the binning resolution is dependent on the 

instrument’s ADC. The binning resolution is often reduced further via analysis 

software to make the data visualisation sensible. For example, even a reasonably high 

events count, such as the 30K for some of our samples, is not sufficient to fill up all 

the 262,144 intensity channels (18-bit ADC) on the FACSVerse. In such a case, any 

intensity peaks or valleys would less likely be recognised unless the binning resolution 

is reduced to 1024 channels (10 bits) or 256 channels (8 bits).  

As pointed earlier, most FC analysis software compute data statistics on the stored raw 

data regardless of the user’s binning choice for the data display. However, 

logarithmically amplified data in analogue CFC instruments are often handled 

differently. For example, it is common for commercial FC acquisition or analysis 

software to apply a reverse transformation on the raw linearly-binned-but-log-

transformed data before computing statistics, where the file’s stored metadata are 

referenced for the transformation parameters. To illustrate further, the ADC in 

FACSCalibur first perform a 4-decade log amplification on the acquired signals before 

digitising them linearly into 1024 channels (10 bits). Analysis software would then 

transform these values into linear readings of 104 channels before reporting statistics 

on them. The transformation is usually done using the formula y = f2 × 10f1·x/R, where 

x is the raw channel number, y is the scaled value (also called relative brightness 

measurement), R is the range of the raw channel data (e.g. 1024 channels in 

FACSCalibur), f1 and f2 refer to the amplification’s decade number and the offset 
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value of the raw scale, and they can be extracted from the file metadata (e.g. values of 

f1 and f2 can be extracted from the keyword $PnE, which refers to the amplification 

type in the FC electronics for a given parameter n) [8], [9]. One should note that such 

formulas assume ideal logarithmic amplification of the instrument’s circuitry and does 

not count for any non-linear behaviour. Therefore, this data transformations can 

naturally introduce additional errors when applied on raw data [1], [2] (see section 

2.2.3.1). 

Binning in FC analysis software often follows the display scale, where linear binning 

maintains absolute bin widths while logarithmic one maintains relative bin widths. As 

a result, if two dim and bright intensity distributions of equal CVs are plotted in a 

histogram, their visible distribution widths may appear unequal on a linear scale but 

will appear equal on a logarithmic one. Further consequences of such binning methods 

are discussed in the following section. 

2.5.3.1.2 Data scaling 

Axis scaling is another point that should be highlighted in FC data presentation. Firstly, 

all intensity scales are in uncalibrated arbitrary units, and they are titled after their 

respective instrument’s specific detection channel as commonly practiced in FC 

research. In general, linear scales are often used to visualise cell scatter as well as FL 

channels where linear intensity peak duplication is anticipated, such as with DNA 

intensity profile. On the other hand, logarithmic scales are preferred to visualise FL 

channels most of the times, as it facilitates clear visualisation of both dim and bright 

populations on the same dynamic range. Caution should still be taken when reading 

linear data on a logarithmic scale via analysis software. In some occasions, the 

resolution of the histogram binning at the lowest intensity decade could surpass that 

of the instrument’s ADC, which then results in visual artifacts such as picket fencing 

[10]. In such examples, a linear and logarithmic hybrid scale could solve the problem 

such as the biexponential Logicle or HyperLog scales, which display pseudo linear 

scale on the near zero values then transition to pseudo logarithmic scale for the rest 

[11]–[13]. Nonetheless, most of our data are plotted in either linear or regular 

logarithmic scales because we have found that any observed artifacts are mostly 
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associated with low intensity noise channels where usually no biologically significant 

populations are present. 

2.5.3.2 Population gating: methods and gating strategy 

Population gating refers to the process of applying computed or user defined thresholds 

on the collected parameters to identify populations of interest, as well as improve the 

quality of the data before analysis is conducted. Data are often plotted first before 

decisions are made on the appropriate thresholds. Therefore, proper data compensation 

(see section 2.4) and visualisation (see section 2.5.3.1) are essential.  

The applied thresholds, also known as gates, can be done manually in various shapes, 

be it a line or a polygon, depending on the data fit. The gating thresholds can also be 

automated. This has been shown through various tools in the literature either via 

employing clustering algorithms, such as the k-means algorithm, or fitting curves on 

well-studied distributions, such as the Dean-Jett-Fox model [14] or the Watson 

pragmatic algorithm [15], which were designed to recognise diploid cell DNA peaks 

for statistical readouts (e.g. see a demonstration of the fits in Figure 3-1 in Chapter 3). 

The order of the single or multi parameter figures on which gates are applied is often 

referred to as the gating strategy or hierarchy. It is ideal to have a united gating strategy 

that can be applied to all the data collected from various platforms. Such 

standardisation helps reduce variety in the subsequent analysis, even more so if 

supplied in an automated manner. For example, bias in data filtering could be 

introduced through manual gating because opinions on the best boundaries and how 

they should be drawn could be affected by the individual’s expertise and/or in-house 

protocols. Therefore, to ensure similar application of the proposed gating strategy for 

our CFC data in the current work, we have utilised supervised automated data methods 

such as DAFi (Directed Automated Filtering and Identification of cell populations) 

[16] algorithm.  

DAFi [16] is an automated gating method for flow cytometry data written on several 

languages, including R. It enables users to apply unsupervised clustering algorithms 

such as k-means on all the data Then it applies user-defined rough gates to assign the 

resulting clusters (via their centroid position) to populations known by the user (see 
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Figure 2-6). Therefore, it utilises the potential of unsupervised methods to potentially 

find unknown data clusters, while making the results interpretable through the 

supervised filtering (i.e. parent populations are defined based on the user input). 

However, the original version was written to only expect FCS 3.0 files in the script 

handling of the parameters. It also works with the assumption that only log scale 

display (thus transform) is desired for FL parameters (which is not the preferred case 

for DNA profile readout). Therefore, we have introduced in this thesis some necessary 

code modifications and updates to the original DAFi gating script for R to increase its 

application flexibility as well as meet our analysis objectives (update highlights are 

presented in section 3.2.3.2 of Chapter 3).  

 

Figure 2-6: A simple scheme summarizing how the DAFi[16] gating programme works on flow 

cytometry data. The example shows application of a gate (yellow) via the k-means method on some 

measured parameters x and y.  a) A scatter plot of some example raw data is presented where it shows 

two clustered but ungated populations. b) The software applies a k-means clustering algorithm to 

generate centroids (red crosses) of k clusters for the raw data depending on user input (e.g. k=4). The 

software also takes user-defined rough gates (yellow rectangular) as input, to define the area of a single 

cluster of interest. c) The software combines all k-clusters whose centroid belong to the area of interest 

and outputs them as a single gated cluster (yellow), regardless of whether all the individual cluster points 

reside within or outside the user-defined gate boundary. 

Both the collected CFC and IFC data in this work share similar gating threshold 

approaches when it concerns selecting the diploid or polyploid cell populations 

through their fluorescence. However, because IFC deals with images, this naturally 

introduces a different approach to the data quality filtering steps in the gating 

hierarchy. Thus, the population gating in the IFC data of the current work is handled 

separately and via manual means. 
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2.5.3.3 Data interpretation 

In this section, we highlight some characteristics of FC data that must be considered 

during analysis. This includes the frequently witnessed data distribution type and how 

statistical significance is generally handled. Further comments regarding the relevant 

applied analysis methods for our data set are discussed in either the methodology or 

discussion sections for each results chapter throughout the thesis. 

As commonly seen with biological data, the population distributions of the detected 

scatter or FL signals in our samples tend to be skewed and not perfectly normal around 

their mean value. Therefore, robust statistics (e.g. the median reading instead of the 

mean) and non-parametric statistical tests are used to describe the data. Nonetheless, a 

normal population distribution can be assumed when describing those of statistical 

readouts pulled from samples of the same type. For example, the percentages of each 

cell phase in the DNA profile of control cells are expected to form normal distributions 

(see Chapter 3).  It is also worth mentioning that some of our data distributions could 

appear lognormal, i.e. the logarithmic transform of the data is normally distributed. 

Nonetheless, this will not be regarded in the statistical handling of our data because 

such a method could be considered inconclusive for FC data interpretation [17]. 

The current work is concerned with observing the scatter intensity changes in our cell 

samples. One should note, however, that some of the observed intensity shifts may not 

be biologically significant even if traditional statistical tests regard them as so. For 

example, when multiple readings are collected for the same sample on the same 

instrument around the same time, shifts in the intensity distribution between all the 

collections could still be observed and some statistical tests may flag them as 

significant. Such intensity shifts are common in FC data and their sources can be 

attributed to that of the instrument’s hardware noise, the sample preparation and 

handling procedure, or the intrinsic drifts found in all biological samples. While steps 

are taken to minimise any drifts wherever possible (such as conducting regular 

instrument calibration, and devising optimal sample preparation conditions), some 

statistically significant shifts could persist and affect the data interpretation. Therefore, 

it is important to establish a baseline for biologically non-significant intensity shifts 

for each parameter on each instrument and/or sample type (e.g. beads or cells). In our 

research, this is conducted via observing the intensity shifts of repeated measurements 
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of our control cell samples on the detection channels of interest. These are then used 

as the baseline intensity difference above which any intensity shifts would be regarded 

as biologically meaningful (example of similar methods can be found in the literature 

[18]). Determination of the baseline for biologically relevant intensity shifts also 

considers noise resulting from spectral overlap that cannot be compensated (see 

section 2.4). Bead samples are also routinely run along with cell samples on all 

instruments to monitor any instrument related noise throughout the experiments. 

Lastly, because PMT settings are set to keep the same peak positions per channel for 

control samples on every experiment, we have generally found no significant need in 

adding the extra step of data normalisation. Moreover, our experimental objectives are 

concerned mainly with studying the relative peak intensity values in the populations 

of interest, be it for scatter or FL channels, and not with their absolute intensity values. 

Though if considered, caution should be taken if scale normalisation is intended to be 

applied on data from several instruments all at once. This is due to the possible 

variability in the linear amplification performance of the detectors on the different 

instruments. This can be checked via running multi-peak control samples across the 

instruments and observing their relative peak separation. However, we do not 

recommend it for data that are originally log-transformed, such as those of the 

FACSCalibur. 

2.6 Summary 

In the current work, we have mainly used three types of flow cytometers to investigate 

the label-free characteristics of the target polyploid cells in Osteosarcoma. These are 

the conventional flow cytometers (CFC) FACSCalibur and FACSVerse, and the 

imaging flow cytometer (IFC) ImageStream. The chapter describes the instruments 

and the appropriate data collection and analysis methods through examining the 

aspects they share, their limitations, and inherent differences, with some examples 

from the thesis results. These topics are referenced in the results or discussions 

throughout the thesis. In addition, the presented discussion is expected to assist with 

any steps taken for the standardisation of experiment design or data replication on 

other flow cytometry platforms, whether they were benchtop or microdevices.  
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3.1 Introduction 

The thesis experiments seek to characterise the label-free parameters of cell-cycling 

polyploid cells in osteosarcoma cells (U-2 OS) through flow cytometry. The 

parameters of interest are the forward and side scatter intensities as well as the 

brightfield and darkfield images. However, it is essential to ensure first the stability 

and reproducibility of the fluorescent biology readout for the examined cell samples 

on any platform before discussing their label-free readout. This is particularly of 

importance, considering that the polyploidy in the current work is drug induced, and 

that the studied live cells can be fragile or sensitive to stress. The method of inducing 

polyploidy in the U-2 OS cell line with ICRF-193 has been explained in literature 

along with its underlying biology (where cells bypass mitosis after drug application) 

[1]. Nonetheless, the inherent non-rigid nature of cells means that perturbations in the 

biology readouts are possible. Such variations may then extend to their physical 

characteristics, thus impacting our investigation. 

Therefore, this chapter looks to outline the observed biological drifts in the studied 

control and drug-treated samples. These drifts can either be inherent, caused by the 

sample handling conditions or instrument noise. Thus, the chapter aims first to define 

the cell biology specifications for the different types of samples in this work. Next, it 

will define the optimal sample handling protocol that ensures that said specifications 

can be delivered each time regardless of the instrument or operator. These aims are 

directly concerned with the thesis’s 1st secondary objective, where such protocol is 

expected to help produce well-described and reproducible scatter data of the target 

cells throughout the thesis experiments, and for any work that wishes to replicate the 

study. The chapter also addresses the thesis’s 2nd secondary objective, where it 

explains the updates we have introduced to an existing gating method to help centralise 

the gating application of the data collected from different instruments. 

3.2 Methodology 

In this section, we outline the methodology of the experiments in this chapter, which 

is also referenced in the next chapter (Chapter 4). 
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3.2.1 Flow cytometry samples 

The flow cytometer samples consist of trypsinised suspensions of live cells in media, 

as well as beads used for calibration and a cross-platform reference. The subsections 

below introduce the cells first, then explain the sample preparation procedure.  

3.2.1.1 The U-2 OS cyclin B1-eGFP cells 

The osteosarcoma U-2 OS cell line (ATCCHTB-96) consist of epithelial cells obtained 

from the sarcoma of the tibia of a 15-year-old female back in 1964 [2]. The U-2 OS 

cells in this work are transfected to stably express cyclin B1-eGFP, where the model 

has been described previously [3]. Cyclins are a family of proteins that form complexes 

to regulate the cell cycle, where cyclin B1 is associated with the regulation of the G2/M 

phase. As mentioned previously (section 2.4 in Chapter 2), the levels of cyclin B1 

exhibit a slow increase at the end of G1 phase, reaching a peak at the exit of G2 

phase/entry of M phase, then dropping sharply when the chromatids separate 

(anaphase) near the end of the M phase [4]. The used cell model (U-2 OS cyclin B1-

eGFP) has been shown to cycle into polyploidy under drug ICRF-193 perturbation [1], 

where a similar procedure for sample preparation is described next. 

3.2.1.2 Samples preparation 

The cells are cultured in McCoy’s 5a medium with 10% Foetal Bovine Serum, 1% 

Glutamine, and 1% G418, and the culture is incubated under 5% CO2 concentration in 

air at 37°C. For experiments, plates of the cells are cultured in media over the span of 

four days (unless otherwise stated). To induce a considerable number of cell cycling 

polyploid cells, the cells are first cultured for 24 hours in 6-well plates or 75-T flasks, 

then treated with 2µg/mL ICRF-193 (bis[2,6-dioxopiperazine]). In the current work, 

the duration of the ICRF-193 treatment is either 24 or 48 hours. In the first case, the 

drug-treated media is washed after 24 hours have passed, then replaced with fresh 

media where cells are left to recover for 48 hours before being processed by a flow 

cytometer (sample type is referred to as 24T48R). In the 48-hour case, the same steps 

are followed, except it is a wash after 48 hours then recovery for 24 hours (referred to 

as 48T24R). Control cells are cells of the same culture that are not treated with any 



Chapter 3: The control, specifications, and handling of the biological samples 

 
44 

 

drug, but they receive the same wash or media change steps as the drug-treated 

samples. In other words, two types of control cell samples are prepared every time, but 

in this thesis, we will only report on the control cell sample for the 24-hour drug-

treatment. To monitor the drug response in an experiment and to identify the cell cycle 

phases, the samples are labelled with DRAQ5 (Biostatus Ltd, Shepshed, UK) at 20 μM 

to determine their DNA content. Cell viability is also monitored with DRAQ7 

(Biostatus Ltd, Shepshed, UK), but it is not reported in the current work. 

For instrument monitoring and setting calibration, unlabelled and labelled beads are 

run along with the cell samples. These are the unlabelled plain polystyrene beads kit 

of four sizes 4, 6, 10,15 μm (F-13838, Molecular Probes, Inc., USA), the 25 μm 

(Sigma-Aldrich Inc., UK), as well as the BD Calibrite™ 3-color kit (Becton Dickinson 

Inc., UK), which includes polymethylmethacrylate beads of approximately 6 μm 

labelled with either FITC or PerCP. For experiments on the CFC instruments, the 

unlabelled beads are diluted in DI water at 2 − 4 × 105 beads/mL, while the FITC and 

PerCP beads are diluted in BD FACSFlow sheath fluid (Becton Dickinson Inc., UK) 

at 1.5 − 2.5 × 106 beads/mL. 

3.2.2 Flow cytometers 

The samples in this chapter have been run through two different CFC instruments: the 

analogue (log-amplification) BD FACSCalibur and the digital BD FACSVerse 

(Becton Dickinson Inc., UK). Both machines illuminate the cells in the flow with a 

488 nm argon-ion laser, at 15 mW (a specification, and 13-15 mW actual reported 

power; gaussian beam spot of 22x66 μm) for FACSCalibur, and approximately 20 mW 

for FACSVerse (9x63 μm gaussian beam spot). Details on their working principle can 

be found in Chapter 2. For both instruments, the forward scatter is detected on a silicon 

photodiode with a 488/10 BP filter, while the side scatter and fluorescence are detected 

by PMTs. A scheme of the optical path for FACSCalibur can be found in Figure 2-4 

in Chapter 2, where the side scatter is detected with a 488/10 BP filter (passing through 

a brewster-angle beam splitter), CyclinB1-eGFP is detected on channel one (530/30 

BP), and DNA-DRAQ5 on channel three (670 LP), and the area and width 

measurements are turned on for channel three. The optical path is different for the 

FACSVerse as it uses an optical fibre to direct the collected scatter and emission to a 
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detector array with bandpass filters and longpass dichroic mirrors for each detection 

channel, arranged in a heptagon (except for forward scatter, which is detected at a 

different direction as per usual). For FACSVerse, the side scatter is detected with a 

488/15 BP (no mirrors), CyclinB1-eGFP on the FITC channel (527/32 BP after passing 

a 507 LP mirror), and DNA-DRAQ5 on the PerCP channel (700/54 BP after passing 

665 LP).  

3.2.3 Cell data gating 

The cell biological response to the drug treatment is assessed through monitoring the 

diploid and polyploid populations, which are identified via their fluorescence readout. 

The characterisation of cell scatter (Chapter 4) is also mainly based on the gated cell 

phases in the labelled samples. Therefore, in this section, we discuss the different 

gating methods and the gating strategy used for the cell data presented in this chapter 

(and any CFC cell data in the thesis), along with our approach for centralised gating 

application. 

3.2.3.1 Diploid DNA fitting models  

Automated fitting models that require no normalisation steps are useful when 

monitoring the diploid cell cycle readout in control samples across different platforms. 

Thus, for this purpose, we use here either of the Watson pragmatic model [5] or Dean-

Jett-Fox model [6] (mentioned previously in Chapter 2) to apply a fitting on the DNA 

profile of control samples. Both of these algorithms assume normal distribution fits for 

the G0/G1 and G2/M peaks. For S phase, the Watson’s applies a probability density 

fit, while the Dean-Jett-Fox’s applies a smooth curve fit via combining a normal 

distribution with a second-order polynomial curve. Figure 3-1 shows an example of 

both models fitting on a control sample done via FlowJo software (FlowJo, LLC, 

USA). 

Note that these fittings do not count the cyclin B1-eGFP readout, thus the gated diploid 

cell cycle phases here may differ in percentages from those performed on the two-

dimensional scatter plot of DNA-DRAQ5 versus cyclin B1-eGFP (see section 3.2.3.3). 
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Thus, these are not used in gating cell cycle phases for the analysis of label-free 

parameters in the next chapter. 

 

Figure 3-1: Example of a Watson (a) and a Dean-Jett-Fox (b) DNA profile fitting performed via FlowJo 

on the same control sample. The sample is collected via FACSCalibur on linear mode, then gated out 

of debris and doublets using our customised DAFi gating script on R. 

3.2.3.2 Automated gating with a customised version of DAFi 

gating on R 

For the CFC data in this thesis, unless otherwise stated, all the analysed cell cycle 

populations are gated through the application of a customised version, updated by this 

work, of the DAFi gating script on R [7] (briefly described in Chapter 2 section 

2.5.3.2). The updates were essential to make the script suitable for cell cycle analysis 

(linear scale reading of the DNA), as well as to enable it to handle data from different 

CFC instruments (e.g. analogue FCS2.0). Thus, the updates help standardise our gating 

application on the different used instruments, as per the thesis objectives. 

In order for DAFi to run, it requires two inputs: an FCS data file and a configuration 

text file. The configuration file contains information on the user-defined rough manual 

gates, which are constructed and optimised via data inspection on FlowJo. The 

coordinates of the gates are then normalised by the user to 200 (a requirement 

unchanged from original DAFi script) before they are input in the configuration file. 

This allowed us to gate several FCS files by referencing a single configuration file (or 
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more than one if an instrumental setting shift was too high to be covered by the rough 

gates). 

The highlights of the customised version of the DAFi gating on R are presented in 

Table 3-1. In this updated version, scale transformation on output data is applied based 

on the desired display scale for each parameter in an FCS 3.0 file. For the investigated 

parameters in this work, that will be applying logarithmic transformations before 

gating on the Area and Height measurements of cyclin B1-eGFP parameters, while no 

transformation is applied (i.e. linear) for the DNA-DRAQ5 measurements (width 

measurements are kept linear for all parameters, scatter is also kept linear for analysis 

convenience). For FCS 2.0 files, raw data are read as they are with no transformations. 

This is because raw data in FCS 2.0 are already hardware transformed based on the 

collection mode (logarithmic or linear) by the hardware (see Chapter 2 section 2.2.3 

for more). Within the script, the data binning is kept at 10-bits for FACSCalibur’s data 

but binned at 12-bits for FACSVerse’s. 

Update highlights Original DAFi on R Thesis customised DAFi on R 

Accepted FCS files FCS 3.0 FCS 2.0 and FCS 3.0 

User-defined gates Rectangle gates. 

Polygons (up to 6 vertices in 

current version, and it can be 

adjusted for more). 

K-means cluster size 

Single value  

(for all re-clustering events 

down the gating hierarchy) 

Different values allowed 

(for any re-clustering event 

down the gating hierarchy) 

Scaling 

• Applies log-transformation 

on all parameters except 

scatter and time 

• Axis scaling is fixed to  

12-bit (i.e. maximum 

channel number is 4096) 

• FCS 2.0: no scale 

transformation is applied 

(raw data are already 

hardware transformed, see 

Chapter 2 for more). 

• FCS 3.0: excludes PerCP 

channel for cell cycle 

analysis with DRAQ5 from 

log-transformation. 

• Axis scaling is user-defined. 

(It avoids resolution errors 

with low bit data) 

R version 4 test N/A. Compatible. 

Table 3-1: Highlights of the thesis customized update on the original DAFi [7] gating script for R. 

The output of the original DAFi script is a text file that contains the transformed data 

each along with information of its gating hierarchy. In our application, the output 
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consists of FCS 3.0 files of each gated population ready for analysis (available as a 

python script; see Appendix A). In this thesis, we have kept the transformed output as 

it is (i.e. exported FCS 3.0 files of filtered populations are not based on the raw data 

except for FCS 2.0). This explains the apparent linear scaling of most parameters 

displayed in the thesis, including those that are commonly read on a logarithmic scale 

for better visualisation (e.g. all axes in Figure 3-2 except for the DNA’s). For 

simplicity, the constructed FCS 3.0 files only consist of essential keywords that allow 

it to be read by most flow cytometry analysis programmes. Nonetheless, keywords can 

be customised by the user, for example, to put back information of relative brightness 

calculation for the original FCS 2.0 files hardware (see Chapter 2 section 2.5.3.1.1 for 

more). 

3.2.3.3 Gating strategy 

Unless otherwise stated and other than debris exclusion (where scatter is commonly 

used), all gating on the cell populations is based on the intensity measurements of the 

GFP and DRAQ5 fluorescence. This includes filtering for single cells, then for labelled 

cells or GFP reporting cells, and then finally the different cell cycle phases in each 

sample type are gated to identify the diploid and polyploid cells in the samples.  

Figure 3-2 illustrates these steps via examples of a control (drug-untreated) sample (a-

d in Figure 3-2) and drug- treated samples (d in Figure 3-2) on FACSCalibur. The 

figure shows the gating hierarchy for the studied populations, where automated gating 

is applied through the customised version of DAFi (plotted via FlowJo for display) 

(section 3.2.3.2). As plotted, the resulting gates show smooth boundaries based on the 

predictions of the k-means clustering algorithm. More about single cell gating can be 

found in Chapter 4 (Figure 4-2). The control drug-free sample (diploid majority) is 

referenced for establishing the overall diploid user-defined gate, while the 48T24R 

drug-treated sample (polyploid majority) is referenced for the overall polyploid ones. 

The overall diploid rough gate is then adjusted to consider the broader distributions of 

the DNA signal of the drug-stressed diploid cells in the 24T48R drug-treated sample. 

The rough gates for cell cycle phases are determined by referencing the relative 

increase of cyclin B1-eGFP signal, along with that of DRAQ5-DNA, for either the 

diploid or polyploid population. 
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Figure 3-2: General gating strategy followed in flow cytometric data analysis of all cell sample types 

labelled with DRAQ5-DNA and cyclin B1-eGFP. The first three scatter plots show data in density 

contour lines with dots as outliers (20 lines at 5% cells spacing). First, a) the whole cells cluster (black) 

is separated from debris (grey) based on forward scatter versus side scatter. Next, b) single cells (black) 

are identified via plotting the DRAQ5 pulse width against its area. The cell cycle readout is then plotted 

with DRAQ5-DNA against cyclin B1-eGFP where we first filter for c) labelled cells (black) and exclude 

GFP non-reporting (grey) cells. The same parameters are re-used to finally filter for d) cell phases. In 

d) the columns refer to sample type (control, 24-hour, or 48-hour drug-treated). The first row shows a 

gating of the parent diploid (blue) and polyploid (red) populations, while the second row shows gating 

of their subpopulations. All gating is performed using our customised DAFi gating script on R, where 

the figure examples are collected on FACSCalibur on logarithmic mode for scatter and cyclin B1-eGFP. 
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3.2.4 Data analysis 

Whenever data pooling in a single (or more) platform is needed, care should be taken 

on whether some samples can be grouped together. For example, for FACSCalibur, 

we do not group in our analysis any logarithmically amplified parameters with those 

that are linearly amplified. This is because of the potential instrument errors that could 

be present in the log amplification by the analogue circuits (see section 2.2.3 in Chapter 

2). However, this does not affect the parameters for the biology readouts, which are 

consistent in the thesis in terms of data collection modes (linear circuits for DNA 

content, and logarithmic ones for GFP). Therefore, in all sections of this chapter, we 

do group samples that are different in terms of scatter-mode collection while favouring 

consistency in its biological-sensitive conditions, e.g. similar wait time in DRAQ5 

(mostly <45 minutes), or any other condition of interest.  However, if an observation 

is made based on scatter intensities, only similar scatter-mode collections are grouped 

together, such as those reported in section 3.3.2.  

Lastly, unless normality can be assumed, the median, the robust standard deviation 

(RSD), and robust coefficient of variance (RCV) values are used to describe the data 

(which are commonly reported by flow cytometry software such as FlowJo, see 

equations 3-1 and 3-2). As previously stated in Chapter 2, these measurements take 

into account the skewness commonly observed in the data distributions, and are less 

affected by outliers, unlike normal distribution statistics, which are based on the mean 

(i.e. an average measurement that can be sensitive to outliers). The RSD is calculated 

based on the percentile values around the median such that 1 RSD ≈ 34.13%, the 

equivalent of one standard deviation in a normal distribution.  In the current work, 

when comparing results from repeated measurements to verify the reported biology, 

the analysis is performed on some relevant descriptive statistics of the measured 

intensity distributions, such as the mean value or standard deviation of the different 

cell cycle phases. In other words, unless otherwise stated, the entire intensity channel 

distributions are not fed into the statistical tests (reasons explained in section 2.5.3.3 

in Chapter 2). All presented statistical test results have been produced with either 

FlowJo or IBM SPSS Statistics (IBM Corp., UK). 
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𝑅𝐶𝐷 =
(84.13𝑡ℎ𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 − 𝑚𝑒𝑑𝑖𝑎𝑛) + (𝑚𝑒𝑑𝑖𝑎𝑛 + 15.87𝑡ℎ𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒)

2
, 3-1 

𝑤ℎ𝑒𝑟𝑒 84.13𝑡ℎ𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 − 15.87𝑡ℎ𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ≈ 68.26% 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎.  

𝑅𝐶𝑉 =
(84.13𝑡ℎ𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 − 15.87𝑡ℎ𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒) 2⁄

𝑚𝑒𝑑𝑖𝑎𝑛
 × 100% . 3-2 

3.3 Results 

As mentioned previously, there are different factors that contribute to variations 

observed on repeated experiments of live cell samples. Some of them are based on the 

experiment environment such as the temperature in which samples are kept before 

processing, their wait time in tubes, the instrument performance of that day, or the 

operator preparing the cell samples. Other factors are related to the cell sample’s 

intrinsic nature that may affect the production of regular portions of target cells, such 

as the possible impact of cell age or cell culture confluency. The amount and health of 

the target cells can also be affected by drug-related factors during the experiment 

culture such as the prepared drug dose or the drug application duration. 

Control experiments have been conducted to stabilise and minimise effects of said 

factors on the studied cells’ biology. These observations will help ensure the 

reproducibility of the results on different instruments. 

The experiments in this section can be split in three categories: control and 

specifications of the cell sample, control and specifications of the sample delivery, and 

general sample data reproducibility. The first covers effects of cell age and drug 

treatment on the production of target cells, while the one for the sample delivery covers 

the experimental-environment-based factors mentioned above. Lastly, sample 

reproducibility discusses the reproducibility of the biology on a single platform or 

more. 

3.3.1 Control and specifications of the cell samples 

This subsection first discusses some of the perturbations observed in the fluorescence 

cell cycle readout of control cells, which can be attributed to intrinsic or drug-related 

stimuli, or general cell growth conditions. Next, it defines the cell cycle specifications 

for the drug-treated samples that will be referenced throughout the thesis. The biology 
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perturbations for the control samples are assessed statistically in the reproducibility 

section 3.3.3.1. 

For the first part, we check how cell age may affect the cell cycle readout per 

experiment for the cultured cells. The experimental data in this research have been 

collected throughout this project, where new cells are cultured routinely for 

consecutive 2-3 months. Thus, checking this factor is critical to the stability of the 

study’s results. In the results, cell age is expressed in terms of the passage number of 

the original cell cultured, where a passage number refers to the count of the 

subculturing events (continued from that of the thawed cells). 

 

Figure 3-3: Time trend of the cell populations sizes in drug-free control samples collected on 

FACSCalibur from 7 cell passages (one experiment each). GFP and non-GFP refer to cells that are 

reporting or non-reporting of cyclin B1-eGFP, respectively, which were gated via the customised DAFi 

script. G0/G1, G2/M, S, diploid (their sum), and polyploid are the cell cycle phases extracted either via 

Watson (a) or Dean-Jett-Fox (b) fitting models for cell cycle. 

Cells in different cell cycle phases have been monitored over time for control cell 

samples (i.e. drug-free samples), to establish the expected cell cycle behaviour, 

without adding the drug treatment as another variable. This is plotted in Figure 3-3, 

where the cell cycle readout is estimated via either the Watson or Dean-Jett-Fox 

models. In total, the presented data set consists of measurements of labelled samples 

from 7 cell passages (one experiment each). The figure shows how the fitting of each 

model can estimate the readout of the DNA cell cycle (expressed in solid lines) 

differently, e.g. low G2/M and high S phase estimates in Watson’s versus higher 

G0/G1 phase estimates in Dean-Jett-Fox’s. The dashed lines refer to the GFP reporting 
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cells (green) versus non-reporting ones (black), which are gated via our customised 

DAFi script and plotted for each model as a reference.  

Overall, neither model estimation showed any considerable changes (e.g. over 10%) 

in cell cycle over the span of 22 passage numbers. We took notice of two points at 

which some changes in the line trend have been observed, which are at passage 

numbers 20 and those above 30. For the first point, the experiment samples were 

cultured from a stock culture confluency of 50% (while the rest from approximately 

70-80%), which is a variable that is generally well-known to potentially affect cell 

growth rate [8]. For the two measurements at the later passage numbers (34 and 36), 

these belong to a 48-hour in well plate cell cultures (i.e. instead of the usual 4-day in 

culture in the rest of the experiments). This is also another variable that could impact 

cell growth rate and makes it incomparable to the rest. No changes have been observed 

in the cells expressing the GFP label throughout the reported 22 passage numbers. In 

general, keeping a steady cell cycle measurement ensures that we have no changes in 

the input samples for the drug-treatment, thus we can expect similar drug-response 

output each time. Therefore, it can be inferred that cell age is not a concern to the 

biology reproducibility of the samples as long as cells are cultured in the same 

conditions (i.e. regarding stock confluency or culture duration), or at least for the 

reported time period. In our work, no data were collected for cell passages beyond the 

reported duration. 

In the second part, we check the drug response through the cell cycle readouts in drug-

treated samples. This is used to define the target cell sample specifications that will be 

observed on different platforms. These numbers could be affected by the drug dose 

(fixed for the current work at 2 μg/mL) or dose application period (either 24 or 48 

hours). The top pie chart in Figure 3-4 (a) shows the mean percentages of relevant 

populations in cell samples that have been treated with the drug for 24 hours. This has 

been constructed from samples labelled with both DRAQ5 and GFP from three 

experiments (where approximately 20K cells were analysed each after excluding 

doublets and GFP-nonreporting cells). The 24-hour drug-treatment has reduced the 

percentage of diploid cells to be 57±0.4% of the entire population, unlike control cells 

that have a majority of diploid cells at 97±1% (based on DAFi gating on the same 

samples in Figure 3-3). The polyploid cells at the G2/M phase of cell cycle or at the 



Chapter 3: The control, specifications, and handling of the biological samples 

 
54 

 

second ploidy cell cycle (i.e. the target cells that have shown resistance of the drug 

through a continuous cell cycle) make up approximately 10% of all the analysed single 

cells (highlighted in a red rectangle in Figure 3-4).  

 

Figure 3-4: Specifications of the target cells (highlighted in red rectangles) and the overall cell cycle 

presented as average percentages in the prepared cell samples that underwent ICRF-193 drug treatment 

for 24 (a) or 48 hours (b), and allowed 48 or 24 hours recovery, respectively. The figure presents a 

hierarchy of cell populations, starting from the inner circle with cells gated according to the nature of 

cell cycle (diploid or polyploid), and the outer circle representing their cell cycle phases. For each chart, 

all percentages are relative to the total number of gated singlets GFP-reporting cells (approximately 

20K cells per experiment), which were taken from three repeats (passage numbers were 14, 16 and 22). 

Error margins aren’t reported in the graph. 
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The percentage of the target cells can be improved by leaving the cells for one more 

day in the drug (a total of 48 hours). It results in approximately 23% of cells at the 

G2/M+ phase of the polyploidy cycle, as the overall polyploid cell population 

increases from less than half to be approximately 86% of the cell sample as shown in 

b in Figure 3-4. 

In general, we have observed low numbers of cells clustering at the S phase within 

parent populations of low overall density, e.g. less cell density at S phase in the diploid 

population of the 48T24R drug-treated samples (see d in Figure 3-2). Because such 

cells are more dispersed and less clustered around each other, a k-means clustering 

method may struggle to assign a centroid for these cells within their user-defined cell 

gate (instead, they could be assigned to centroids within neighbouring cell phase 

gates). As a result, the (k-means based) automated gating with DAFi may still miss 

some of these S phase polyploid cells and count them as G0/G1 phase polyploid cells. 

We have kept it as it is in the reported Figure 3-4, because the bias in the automated 

method appears nearly similar. Moreover, we are mainly concerned with monitoring 

the overall diploid versus polyploid populations when checking drug-response, as well 

as our target cells. Therefore, we only adjust the input of the configuration files for the 

automated gating when these populations are not finely gated, or if an overall gating 

error exists.  

All in all, while Figure 3-4 may not be taken as absolute measures of cell phase 

proportions, these can still be referenced in monitoring general cell sample 

specifications provided that the same gating method is used for any analysed new data. 

Lastly, we briefly mention that consideration has been taken whenever new materials 

are acquired during the study. For example, newly prepared drug aliquots are tested 

against previous ones first before further experiments are conducted, to ensure stability 

of the prepared dose. 

3.3.2 Control and specifications of the sample delivery 

This section discusses some external sources that may affect the results of fluorescence 

(and subsequent scatter) measurements during the sample data collection. In other 

words, we discuss variations observed in the results that could be attributed to a change 
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in the studied sample’s biology due to stress imposed by external sources directly or 

indirectly. In addition, we discuss variations that are attributed to purely instrumental-

based effect such as the instability in the power of the illumination laser. 

3.3.2.1 Sample wait time in room temperature versus on ice (5oC) 

Here, we look at the proper storage or handling conditions for the live biological 

samples in the current work during experiment sessions. Proper conditions are those 

that allow minimum irregularity in the measured cell scatter or biology. The variables 

studied are those of time: 0.5-2 hours (to accommodate sample transport time 

whenever needed), and of temperature: room temperature (RT) (21-23oC) versus 

slowing the sample’s biology via keeping them on ice (5oC). This is done in a single 

experiment setting to exclude effects of other external variables. The parameter 

measurements that will be looked at are the forward and side scatter intensity collected 

in linear signal amplification mode on FACSCalibur for approximately 30K cells gated 

out of debris. Specifically, changes in the shape and size of the scatter distributions 

will be observed, as they can be taken as indications of unstable biology or overall 

sample quality (i.e. increase of cell aggregations). The control sample (for changes in 

either temperatures or time duration) will be a freshly prepared (wait time < 20 

minutes) sample at RT (common procedure in all cell sample preparations). 

In Figure 3-5, the population profiles of the cells that were kept in RT for more than 

one hour (orange and red) appear different from that of the fresh control sample in 

green. On the adjacent histograms, a second intensity peak can be seen emerging at 

higher forward scatter intensity channels for these samples. This is unlike the control 

sample’s, which shows single peak scatter distribution. Higher forward scatter 

intensity can be attributed to increase in cell sizes, thus a potential increase in cell 

aggregations for samples of the same phenotype. Because the live cell samples in the 

current work can be fragile to external stress, especially when drug-treated, we 

generally avoid the application of any extra steps that could minimise aggregations 

such as size filtering. Other than reducing the analysis yield, aggregations can 

generally impact the quality of the rest of the cells. Thus, any handling conditions that 

increase aggregations are less desirable. For side scatter, the values of the RCV in all 

samples show larger distribution spreads across the higher intensities as cells wait 



Chapter 3: The control, specifications, and handling of the biological samples 

 
57 

 

longer in RT. This is an indication of increased cell granularity that can be attributed 

to cell death, which is naturally a non-desired outcome.  

On the other hand, the sample kept on ice (blue), for the same time duration as the 

orange RT sample (i.e. 1.7 hour), shows a similar intensity cluster shape (i.e. no 

additional peaks) as that of the fresh sample, albeit shifted. The RCV values of the side 

scatter intensities in both the fresh and on-ice samples are the same (30.6%), compared 

to the more spread RT sample (at 45%). This suggests that during a relatively long 

wait time there has been no concerning changes in the cell scatter, hence its biology. 

 

Figure 3-5: Effect of wait time and temperature on delivery of live cell samples displayed as contour 

plots (20 lines at 5% cells spacing). Adjacent histograms are also added for the forward scatter 

(horizontal) and side scatter (vertical) intensities. Data were collected on FACSCalibur on linear mode. 

In either case, whenever possible, it is generally recommended that live cells be 

analysed as soon as they are prepared. Otherwise, keeping them on ice for up to 2 hours 

is an acceptable threshold regarding preserving their scatter and health for the 

experiments in the current work. This threshold is mainly for DNA-unlabelled 

samples, because cell health and viability for DNA-DRAQ5 labelled samples tend to 
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decrease with time (due to DRAQ5’s irreversible binding to the cellular DNA). It 

should be noted that the current work does not investigate any potential long-term 

effects on cells preserved on ice for such long periods, which may impact cell health 

if they are brought back for culture. 

On a related note, we have found that any extra centrifuging steps during sample 

preparations, mainly for DNA-DRAQ5 labelled samples, can impact the cell cycle 

readout significantly. This was noted via the broadening of the cell cycle profiles of 

control samples, and the appearance of cell fragmentation (<2N DNA populations) in 

the drug-treated samples (data not presented). Thus, reducing any mechanical stress 

during the sample handling is overall recommended. 

3.3.2.2 Instrument performance 

Here we discuss observations we have made regarding the instrument performance 

stability that can affect the cell analysis. Specifically, we will discuss the 

uncontrollable illumination power fluctuations that can be encountered in some flow 

cytometers. 

The recommended instrument-specific Quality Control (QC) tests have been run 

routinely in the duration of the experiments discussed in this thesis. Nonetheless, 

passing QC tests is not always an indication on the stability of the instrument 

performance during the experiment session itself. Therefore, labelled and unlabelled 

calibration beads have been run as well before and after each experiment session to 

monitor the stability of the measurements throughout the experiment.  

The real-time power readings of the illumination laser are only available on some flow 

cytometers like the FACSCalibur, and they are not stored in metadata of the exported 

data files. It is also not a common practice in the FC field to keep track of them. In FC 

studies, where researchers are mostly interested in the FL readout of biological 

samples, this type of observations tend to be less of a concern. This is because of the 

tendency for some of the biological FL emissions to be less sensitive to small 

illumination power shifts (e.g. shifts of sub milliwatts). On the other hand, cell scatter 

can be thought of as a mirrors system, where the intensity of the output light is directly 
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affected by the intensity of the input. Thus, minimal power shifts can be detected on 

sensitive detectors like the PMT on flow cytometers. 

To illustrate this point, we discuss here the measured scatter intensity shifts we have 

observed for the labelled and unlabelled calibration beads that were run before and 

after experiments. During which, the real-time illumination power readings for each 

sample have been recorded and averaged, and readings have been collected over 4 

consecutive days. Figure 3-6 shows how small fluctuations in the illumination power 

on FACSCalibur correlate to observable peak shifts in the scatter of the calibration 

beads. For the scatter data set in the figure, these shifts are considered statistically 

significant (p < 0.01) when applying the chi-square test on the entire scatter 

distribution (via FlowJo). For the same illumination power shifts, shifts in intensity 

have also been observed in fluorescent calibration beads, but not much so with the 

fluorescent readout of the biological samples (data not shown). 

 

Figure 3-6: Shift in the median intensity channel in the side scatter of four polystyrene beads against 

the shifts in observed illumination laser power. Scatter data are collected over different days on 

FACSCalibur using same detector settings (logarithmic amplification mode, transformed to linear 

before calculating shifts). Error bars are based on the standard error. 

Fluctuations in illumination power as low as observed in Figure 3-6 can theoretically 

cause detectable reduction on the PMT of the scatter signal, and we have observed that 

experimentally as well. Stability in the detection of light scatter is a topic of concern 

in this thesis. Nonetheless, it is not practically possible to separate the effect of power 

shifts from those of other noise sources in the instrument. For example, shifts in the 
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detected bead intensities have also been observed in the side scatter measurements 

collected on two different days with the same observable power and detector settings 

(data not shown). This suggests the existence of another noise source, a detection-

circuitry-based one, that is statistically significant. 

Therefore, regardless of the suspected source of noise, the data in Figure 3-6 can help 

in counting for such noise factors by providing us with the baseline for significant 

intensity channel shift. In other words, any observed intensity shifts in the control 

beads’ measurement will also be used to define the threshold for a meaningful 

statistically significant intensity shift in experiment analysis (i.e. an intensity channel 

difference is considered meaningful if shift > threshold, otherwise it is dismissed as a 

potential instrument noise (shift < threshold) even if they were statistically significant). 

Naturally, shifts observed in the control cell samples (be it for FL or scatter channels) 

are also considered with those of beads when establishing the baseline for significance 

in intensity shifts. 

3.3.3 Reproducibility 

Reproducibility refers to the ability to repeatedly acquire our reported observations 

and results following the specified methodology. For this work, it can be looked at in 

two ways. The first one is reproducibility of the biology itself within a single platform, 

which also helps observe the tolerable drifts in the biological sample specifications. 

The second is reproducibility of said sample across multiple platforms. This refers to 

successfully meeting the biological sample specifications presented by the previous 

steps on other platforms. For both, we validate this through applying statistical tests 

on repeated measurements of the drug-free FL labelled cell samples, as they are the 

biological control for the FL measurements of all cell samples in our experiment 

design (similar to how beads are the control samples for the scatter measurements). 

3.3.3.1 Biological sample reproducibility  

In this section, we examine the reproducibility of the sample biology as described 

through cell cycle readout. A reproducible and stable cell biology acts as a foundation 
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for reproducible and stable drug-response as well as label-free readouts throughout the 

thesis experiments. 

This has been touched upon earlier in section 3.3.1 where the specifications for the 

different cell samples in this work were defined through the observed relative 

population sizes of the different cell cycle phases. Here, we expand on that by testing 

the significance of any perturbations observed in repeated measurements of control 

cells on a single platform. However, as mentioned in the Methodology section, we will 

present here descriptive statistics (instead of the entire data distribution) of only some 

selective features of the measured parameters. 

A total of 9 measurements (variables) are drawn from five out of the seven experiments 

previously presented in section 3.3.1 (where the experiments of the two late passage 

numbers are excluded). We also add three more experiment repeats, so a total of nine 

(n=9) different readings on the FACSCalibur for each variable. We have chosen to use 

those extracted from the Dean-Jett-Fox model because they are closer to the cell cycle 

estimations of our DAFi gating (e.g. both estimated S phase populations to be less than 

G2 phase ones, unlike the Watson model [see Figure 3-3  and Figure 3-4]). The 

variables are summarised in Table 3-2 for the nine experiments. Other than the cell 

phase proportions, these include the diploid DNA peaks linearity (i.e. ratio of G2/G1). 

This is calculated from the mean channel values for the G0/G1 and G2/M peaks, 

predicted by either of the Watson or Dean-Jett-Fox fittings, for each data point. 

feature mean (%) SD (%) exact p-value (2-tailed) 

GFP 86.6 2.9 0.294 

No GFP 13.4 2.9 0.294 

G1 42.2 3.0 0.700 

S 33.7 2.7 0.977 

G2 22.1 2.2 0.588 

G2/G1 1.83 0.02 0.201 

Table 3-2: Summary of a selection of features representing the biological DNA readout of control 

samples collected from 9 repeated FACSCalibur experiments. Reported significance is the exact p-

values corrected for ties. 

Our null hypothesis for this test is that the distribution for each of the nine variables, 

as acquired through several sample collections, follows a normal distribution. To test 

the hypothesis, we run the non-parametric one-sample Kolmogorov-Smirnov test via 

the SPSS software. The test results (also in Table 3-2) showed that none of the 
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variables deviated from the normal distribution (i.e. p-value > 0.05), thus we can retain 

the null hypothesis. From which, we can conclude that the reported biology drifts in 

the cell biology are not statistically significant to the reproducibility of the biology on 

this instrument. Results are also checked with other normality tests such as Shapiro-

Wilk’s (i.e. all variables reported p-values > 0.05). 

3.3.3.2 Sample reproducibility across platforms 

Reproducibility across platforms is tested through repeated experiment days with 

control cell samples, which have been cultured with the same conditions and run on 

the same day on two different CFC instruments, FACSCalibur and FACSVerse.  

The purpose of the analysis performed here is to answer the question of whether there 

is any statistically significant difference between the regular cell biology reported by 

each platform. This is done through testing the hypothesis that the mean values of each 

measured variable are the same for both instruments. Here we use the same nine 

variables introduced in the previous section (3.3.3.1), but through three experiment 

repeats on either instrument. Because the test sample size is only n=3 for each variable 

(corresponding to one result from each day), the normality assumption cannot be held. 

Therefore, we use the non-parametric version of the independent samples t-test, which 

is the Mann-Whitney U test. 

A summary of the results is presented in Table 3-3 and it shows that all the samples’ 

features have scored p-value > 0.05, i.e. retaining the null hypothesis, with only the 

G2/G1 linearity reporting a statistically significant difference between the two 

machines.  

feature total mean (%) total SD (%) asymptotic p-value (2-tailed) 

GFP 85.5 0.5 0.754 

No GFP 14.5 0.5 0.754 

G1 34.2 4.7 0.251 

S 38.6 2.5 0.251 

G2 24.3 3.0 0.917 

G2/G1 1.84 0.01 0.005 

Table 3-3: Summary of a selection of features representing the biological DNA readout of control 

samples collected from 3 repeated experiments on FACSCalibur and FACSVerse. Reported 

significance is the asymptotic (approximated) p-values. 
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Generally, cells in the G2 phase of the cell cycle are expected to have double the DNA 

contents of that of cells in the G1phase, i.e. the ratio of G2 on G1 would ideally equal 

2 for human cells. For the reported three parallel experiments, the diploid peak 

linearity had mean values of 1.83 and 1.85 for the FACSVerse and FACSCalibur, 

respectively. Because both are set at the same flowrate during collection, we believe 

that this difference is instrument based, and not a consequence of a biological change 

or potential under-labelling. Naturally, a larger sample set would confirm these 

assumptions. This is supported by how the reported values earlier (Table 3-2) show 

that the G2/G1 linearity for FACSCalibur is more disperse when more data were 

collected, with a mean (1.83±0.02) that approaches the one reported for FACSVerse 

here.  

In conclusion, we can state that the reproducibility of the cell sample biology across 

the two platforms has been achieved as relevant sample specifications have been met 

without any significantly meaningful differences. 

Lastly, it is worth mentioning that using DNA QC kits (e.g. using Chicken erythrocyte 

nuclei [CEN] or calf thymocyte nuclei [CTN]) can help monitoring DNA peaks profile 

linearity and resolutions on different instruments. However, these are not considered 

in the control sample panel for the current work because of logistical constraints. In 

addition, the bimodal DNA profile for our control diploid cell samples is sufficient to 

observe any instrument changes, just as has been reported here.  

3.4 Biological sample handling protocol 

Based on the chapter’s results, and as an answer to the 1st secondary objective of the 

thesis (see Chapter 1), we outline here our biological sample handling protocol for the 

rest of the experiments in this thesis. In general, the proportion of cell phases in the 

cell-cycle readouts can be affected by the cell culture confluency, be it in stock culture 

or in an experiment’s plates. This could impact the percentage of the diploid and 

polyploid populations in the drug-treated samples. Thus, we recommend monitoring 

this factor if a steady cell population numbers is desired, and to have a better 

assessment of the drug-response (where underdosing can affect the outcomes as well). 

During experiments, non-ideal circumstances for cell survival and data stability may 
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be encountered such as cells spending long period of time at room temperature and 

risking changes in their biology. Therefore, all cell samples will be put on ice (~5oC) 

to slow their biological activity, after they are prepared or incubated for any labelling. 

For long flow cytometer experiments (such as those on the IFC), it is recommended to 

process DRAQ5-labelled samples first before the unlabelled samples due to the 

cytotoxicity of DRAQ5, which can impact cell health negatively with time [9]. In 

addition, during the cell preparation itself, it is desirable to minimise any additional 

external stress such as multiple centrifuging steps. To monitor potential instrument 

noise, we recommend running suitable bead samples on all detection channels before 

and after the session (in addition the initial QC tests). These should help establish the 

baseline for meaningful statistical significance in the detections (along with the drifts 

observed in control cell samples). Whenever samples are run on new instruments, a 

parallel one should be run on a different instrument to ensure that the cell biology 

readout is well-known and within the desired specifications (defined in the previous 

sections). This protocol should assist any future works aiming to replicate the thesis 

results with the studied live cell samples, be it for label-free detection or sorting, on 

benchtop FC instruments or even microfluidic devices. 

3.5 Summary 

This work is concerned with studying label-free parameters of the cell-cycling 

polyploid cells. Nonetheless, it is crucial to ensure first that any such observation is an 

actual characteristic of the target cells, and not a natural drift of the sample biology or 

a noise in the instrument. Therefore, this chapter addressed these concerns by 

showcasing our control measures where experiments were conducted to observe 

different relevant variables in the cell experiments, and how they may affect the 

samples. Next, the desired biology specifications of the cell samples were defined 

through repeated measurements on a single platform. Then, reproducibility of these 

results has been observed on two CFC instruments. The automated DAFi gating 

method has also been optimised for the current work to assess in the centralisation of 

cell cycle analysis on the diploid and polyploid cell populations. The chapter 

concluded by summarising the findings through proposing a cell sample handling 
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protocol that aims for stable and reproducible cell sample specifications on any 

platform. 
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4.1 Introduction 

The first hypothesis of the thesis states that cell-cycling polyploid cells in 

osteosarcoma can be detected through their high forward and side scatter intensities in 

heterogenous samples of diploid cells. This is postulated based on the understanding 

that polyploid cells tend to be larger in size and organelle numbers, which may 

contribute, on top of other potential physiological changes [1], [2], to increases in cell 

scatter, as discussed in Chapter 1. In the previous chapter, we have mentioned that 

when osteosarcoma cells are treated with a DNA topoisomerase II drug, such as ICRF-

193, some cells become polyploid (acquiring twice or more the regular diploid genetic 

content) as they undergo endoreduplication, i.e. DNA multiplication without cell 

division [3]. We have also illustrated the common detection method of the polyploid 

cells, which relays on fluorescence labelling of the DNA content; a method that is not 

compatible with long-term studies on live cells.  

In this chapter, we aim to experimentally test the first hypothesis. The chapter also 

aims to provide scatter-based detection specifications for the target cells, which can 

help in target cell sorting on commercial systems. Firstly, the forward and side light 

scatter is characterised for the entire cell sample. This is done by studying the scatter 

of the cells in different cell cycle phases for both drug-free and drug-treated samples. 

Next, scatter detection thresholds of the target cells are recommended by referring to 

the discussed relative scatter intensity changes between the different phases, as well as 

that of a standard reference. Lastly, the efficiency of said method will be estimated via 

applying an automated data gating method to find the cell-cycling polyploid 

population out of the collected flow cytometer results.  

All results are based on experiments collected on the FACSVerse (rescaled to 12-bit 

channels) using the same materials and methods as those presented in Chapter 3 

(section 3.2). Unless otherwise stated, the displayed results are concluded from three 

repeats of the cells scatter experiment, where stability of the sample biology and 

sample delivery are observed according to the conditions established in Chapter 3.  
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4.2 Light Scatter characterisation of the osteosarcoma cells 

This section looks at the characteristics of the forward and side scatter of the studied 

U-2 OS osteosarcoma samples, including the target cell-cycling polyploid cells. The 

characterisation is performed through comparison with a control sample, which is 

drug-free, i.e. a sample that consists mostly of diploid. In addition, through 

fluorescence, cells are divided into their respective diploidy or polyploidy G0/G1, S, 

and G2/M cell cycle phases. This helps us identify our target cells, the cell-cycling 

polyploid cells, (denoted as cells at the G2/M+ of the ploidy cell cycle), to examine 

their scatter properties.  

In the first subsection, we look first at the overall (forward and side) scatter of control 

samples against that of the drug-treated ones, where polyploid cells make up half or 

more than half the entire sample. In next subsection, we look closely at the overall 

scatter of diploid cells in both control and drug-treated samples. Similarly, we discuss 

in the following subsection the forward and side scatter of polyploid cells, including 

the target cells. We start it by looking at the overall scatter of diploid versus polyploid 

cells within the drug-treated samples. Then we check how the scatter changes 

throughout the cell cycle phases. We also look at how the height and width 

measurements of the detected light scatter pulse contribute to the pulse’s area for both 

the forward and side scattered light, and how this relates to utilising both scatter 

directions in the detection of polyploid cells. 

4.2.1 Overall scatter of whole cell samples at different stages of drug-

treatment 

The first result plot at which researchers commonly look during a flow cytometry data 

collection session is the dot plot of the forward and side scattered laser light. It is 

mostly used for debris exclusion, but also can be used to observe any irregularity in 

the cell sample (as illustrated in Figure 3-5 of Chapter 3). In the following subsections, 

we look at this data plot to observe how the presence of various doses of polyploid 

cells (different stages or durations of the drug-treatment) make notable changes to the 

overall scatter of samples. In addition, we also address the potential effect of DRAQ5, 

the DNA label that is used here to classify the cells in their respective position of the 
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cell cycle. Lastly, we look at doublet exclusion via scatter, as commonly practiced in 

flow cytometry. 

4.2.1.1 Light scatter of DRAQ5-unlabelled samples 

In this section, we present the three different types of the cell samples whose biology 

was discussed in Chapter 3: a drug-free control, a 24-hour drug-treated cells that were 

allowed to recover for 48 hours after drug wash, and a 48-hour drug-treated cells with 

24-hour recovery. We have also added a fourth sample: a 24-hour drug-treated cells 

that were given no recovery time, to represent the intermediate stage in treatment 

between the first and second samples (listed previously). Unlike the two other drug-

treated samples, this fourth sample is still under the drug arrest at G2/M phase. In other 

words, its cell cycle readout shows that the cells are either at the diploidy G2/M phase 

or polyploidy G0/G1 phase (both have same DNA count) [3].  All the presented 

samples in this section are DRAQ5-free, to observe their scatter without the potential 

stress of the label.  

The scatter profiles of these samples are presented as density plots in Figure 4-1, where 

the colours red, yellow, green and blue, represent the shift from regions of high to low 

cell concentration, respectively. To examine further the changes in the forward and 

side scatter for each sample, the scatter profiles are replotted in a single figure (see 

Figure 4-2), where the intensity histograms are co-presented for both forward and side 

scatter.  

From the figures, we first have the control (diploid) osteosarcoma cells setting mostly 

in a dense population at the relatively lower end of the intensity scale (see a in Figure 

4-1, and green population in Figure 4-2). This changes in the next sample (24-hour 

drug with no recovery), where the overall light scatter shifted up in intensities for both 

the forward and side directions (see b in Figure 4-1, and blue in Figure 4-2). Such 

observed scatter shifts seem to agree with the equivalent transition in biology 

introduced above.  Further notes regarding this scatter result are discussed in section 

4.2.3.3. 
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Figure 4-1: Forward and side scatter intensity dot plot of four samples: a) drug-free control, b) 24-hour 

drug treated with 0 recovery time, c) 24-hour drug treated with 48-hour recovery, and d) 48-hour drug 

treated with 24-hour recovery time. All samples are taken from a one-day experiment, and plotted after 

cleaning out a portion of the debris. 

Next, cells are released from the one-day drug treatment and allowed to recover for 

two days (c in Figure 4-1, and orange in Figure 4-2). Even though the scatter intensity 

peak shifts back (from the second sample’s) towards that of the diploid cells, the 

intensity medians remain close to that of the one-day drug-treated with no-recovery 

sample (blue). In addition, the intensity distributions for both forward and side scatter 

show larger robust coefficient of variance (RCV) values with a tail that extends over 

higher intensity channels. 

In the last sample (d in Figure 4-1, and red in Figure 4-2), cells are kept in the drug for 

two days then left to recover for one day. For such a sample, a bimodal intensity 

distribution forms for both forward and side scatter, where the first intensity peak 

mostly overlaps with the scatter intensity peak for the control diploid sample, and the 

second peak is nearly twice as high. 

These observations show that as the number of polyploid cells increases in a sample, 

the cells’ scatter changes and starts to spread over higher intensities. In later sections 
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of this chapter, this gradual shift in scatter intensities is noted as cells move from 

diploidy to polyploidy through different phases of cell cycle. 

 

Figure 4-2: Forward and side scatter intensity dot plot of four samples: drug-free control, 24-hour drug 

treated with 0 recovery time, 24-hour drug treated with 48-hour recovery, and 48-hour drug treated with 

24-hour recovery time. Figure also displays adjacent forward and side scatter histograms, where 

frequency is scaled by the mode value for each sample. 

Lastly, the results also suggest that the area measurement of the detected light scatter 

pulse in either direction, forward and side, could serve as a good candidate in the 

detection of our target cells. 

4.2.1.2 Effect of DRAQ5 labelling on cells scatter 

Because the current work handles live cells, DRAQ5 is used for the DNA labelling to 

identify the live cell-cycling polyploid cells and study their corresponding scatter. 

Beside following the measures established in the previous chapter to ensure stability 

of the sample biology, the DRAQ5 labelling protocols have been observed in terms of 

conducting experiments as quickly as possible (see section 3.4 in Chapter 3). 

Nonetheless, it is worth noting how the scatter profile of DRAQ5-labelled samples 

seem to shift towards higher intensities compared to a DRAQ5-free (data not 

illustrated).  
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Statistical tests may be used to comment on the significance of observed intensity 

shifts. However, as previously established, with intensity data in flow cytometry, these 

tests often give false significance to drifts in data that are sampled from the same 

population. Therefore, significance in intensity channel shifts for both forward and 

side scatter could be set up based on the maximum intensity drifts in the light scatter 

of diploid cells in a control sample (along with those observed in control beads. See 

section 3.3.2.2 in Chapter 3). Peak separation resolutions can be calculated where the 

spread of the intensity peaks is also considered. 

Based on such measures, the shift in the DRAQ5-labelled samples could be considered 

significant, which then suggests the presence of potentially physiological changes in 

the labelled cells that affect their scatter. Nonetheless, these shifts do not seem to affect 

the shape of the overall scatter distributions that we can already observe in DRAQ5-

free samples (section 4.2.1.1). Therefore, it can be assumed that the scatter results 

investigated in the rest of the chapter using DRAQ5-labelled samples can also be 

observed in the DRAQ5-free ones. 

4.2.1.3 Light scatter and single cells 

 

Figure 4-3: An illustration that shows three types of detected DNA-content fluorescence pulses (left) 

for cells travelling horizontally. The pulse parameters (width, height, and area) are then unlisted in 

doublet events exclusion via two types of scatter plots (right). 
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In the previous chapter, doublet events are recognised and excluded from the analysis 

through plotting the area-height or width-area of the DNA-content fluorescence 

(DRAQ5) pulse as illustrated in Figure 4-3. 

For label-free samples, a similar gating strategy using the forward scatter intensity 

channel is often followed in flow cytometry. In the case of drug-free control samples, 

cells are expected to have tighter size spreads (excluding mitotic cells). Therefore, 

linearity in their area (A) versus height (H) scatter signal readings can be observed 

(See Figure 4-4, a), allowing for single cells to be gated. 

 

Figure 4-4: Dot plots of the pulse area versus height of the forward scatter intensity for a drug-free 

control (a), and a 24-hour drug treated sample with 48-hour recovery (b). The red rectangle is a rough 

single cells gate where the gate angle is set based on the control sample’s singlet population. All samples 

are taken from a one-day experiment, and plotted after debris exclusion (see Figure 3-2 in Chapter 3). 

However, in the case of drug-treated samples, the scatter A-H linearity settings held 

true for the diploid cells provide no clear distinction between the singlets and doublets 

(See Figure 4-4, b). Because scatter is the main interest of this work, the laser power 

and photomultiplier tube settings for the scatter channel are not changed between 

samples to attempt any corrections for the A-H linearity. Such observation can be of 

value on its own to understanding the scatter of polyploid cells. Further notes regarding 

the width and height parameters of the measured scatter of polyploid cells are 

addressed in section 4.2.3.4. A wide and rough scatter-based singlets gate could be 

applied to the drug-treated samples guided by the linearity angle of a diploid control, 

as illustrated in Figure 4-4. Nonetheless, for our scatter characterisation in the current 
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work, we have mainly relied on the DNA fluorescence for doublets exclusion to 

minimise such noise for the analysis. 

4.2.2 Light scatter of diploid cells 

While the diploid cells are not the main interest of this research, they serve as the 

scatter control or cell standard, to which any abnormalities in polyploid cells are noted. 

In this section, we first look at the overall scatter of diploid cells in drug-free samples 

(green population in Figure 4-5), against the diploid cells that are drug-stressed, such 

as those in the 24-hour drug-treated samples with 48-hour recovery time (blue 

population in Figure 4-5).  

 

Figure 4-5: Forward and side scatter intensity dot plot of diploid cells for a drug-free versus a 24-hour 

drug-treated with 48-hour recovery samples (both are DRAQ5-labelled). Samples consist of combined 

data from three experiment repeats over different days. Figure also displays adjacent forward and side 

scatter histograms, where frequency is scaled by the mode value for each sample. 

As illustrated in the adjacent histograms in Figure 4-5, significant shifts can be 

observed in the mean intensities for both the forward and side scatter of the drug-

stressed diploid cells towards higher values. This can be expressed by the observation 

that approximately 6% and 45% of the drug-treated diploid cells had higher forward 
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and side scatter intensities, respectively. In addition, the RCV of the drug-stressed 

diploid distribution increased by 5.7±0.6% and 6.5±0.6% for forward and side scatter, 

respectively, compared to the drug-free control sample. From these results, it can be 

seen that the scatter of diploid cells, especially in the side direction, changes when they 

undergo the drug-induced stress. We can relate this observation to that of the previous 

chapter’s, where the diploidy cell cycle of drug-treated cells show broader DNA 

content peaks than those of normal diploid cells. Combined together, it can be 

suggested that diploid cells with drug-induced genome irregularity may have different 

physiological properties than those of normal cells, which results in the observed 

increase in their light scatter intensities, especially that of large angle scatter. 

It should be noted that the generated adjacent histograms on the dot plot figures used 

in this chapter are scaled based on the mode of the respective population for 

visualisation purposes. This is done to help the reader see all the distributions clearly 

and to follow any shifts in the mean intensity between the overlapping populations. 

However, this display choice may falsely exaggerate the percentage of the non-

overlapped cells, such is the case with the forward scatter histogram in Figure 4-5, 

where the non-overlap region may look comparable to the side scatter’s, when in 

reality the former is much smaller.  

Lastly, we comment on the relative scatter changes of the cell cycle phases within 

diploid cells of drug-free and drug-treated samples. Figure 4-6 (green) shows gradual 

scatter mean shifts towards higher intensities for the drug-free control, as its cells cycle 

starting from the G0/G1 phase, then duplicate their DNA in the S phase, and divide in 

the G2/M phase. A high degree of scatter intensity overlap can be observed as well for 

these tightly packed distributions. For diploid cells in drug-treated samples (Figure 4-6 

blue), the first notable observation is the increase in the RCV values of the scatter 

distributions, similar to the ones observed in the parent population (Figure 4-5). Due 

to that, the shift in the intensity means between G0/G1 phase and S phase is less 

significant. The figure also helps to illustrate the observed increase in the overall 

scatter intensity of the drug-treated samples. 
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Figure 4-6: Box plots of the forward (a) and side (b) scatter intensity pulse area channels for diploid 

cells shown in their G0/G1, S, and G2/M cell cycle phases for a drug-free control (green), and a 24-

hour drug-treated with 48-hour recovery samples (blue). Both samples are DRAQ5-labelled and consist 

of combined data from three experiment repeats over different days. The line inside the box refers to 

the median, the red diamond indicates the mean, and the box encloses 50% of the events. The upper 

(lower) whisker is at the smaller (largest) of the maximum (minimum) scatter value and Q3 + 1.5IQR 

(Q1– 1.5IQR). 

4.2.3 Light scatter of polyploid cells 

In this section, we look at the light scatter intensity properties of the cells that have 

transitioned to the polyploidy cell cycle. Firstly, the overall scatter of the polyploid 

cells is compared to that of the diploid cells from the same 24-hour drug-treated 

samples with 48-hour recovery. Next, for the same samples, the diploidy and 

polyploidy cell cycles are broken down to their respective cell phases to observe the 

trend of light intensity shifts across them all. The following section brings attention to 

how the previous observation compares to that of the light scatter of newly formed 

polyploid cells, i.e. polyploid cells in samples that are 24-hour drug-treated with no 

recovery. Lastly, the contributions of the event pulse widths and heights to that of the 

areas is discussed for both forward and side scatter. This helps understand the 

significance of the area measurement of the two label-free parameters in the detection 

of polyploidy cells. 
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4.2.3.1 Light scatter of overall diploid versus polyploid cells 

The main interest of the chapter is to test whether the potentially high light scatter of 

polyploid cells can be used to differentiate them from diploid cells. Section 4.2.1.1 

gives a first impression on the validity of the hypothesis through the high shifts in the 

scatter of the overall sample control versus drug-treated samples. In this section, we 

look closely at three collections (pooled) of scatter results for fluorescence-classified 

diploid and polyploid cells. 

 

Figure 4-7: Histograms (top) and box plots (bottom) of the forward (a, c) and side (b, d) scatter intensity 

pulse area channels for both diploid and polyploid cells. The data are acquired from 24-hour drug-

treated samples with 48-hour recovery collected over three days on the FACSVerse. The line inside the 

box refers to the median, the red diamond indicates the mean, and the box encloses 50% of the events. 

The histogram bins are 32 and 8 channels wide for forward and side scatter, respectively. The sample 

sizes for the 3-day pooled data are approximately 29K cells for the diploid cells and approximately 24K 

cells for the polyploid cells. The scatter scales are cropped for better data display. 

In Figure 4-7 box plots, the polyploid cells show a significant shift in the median of 

the signal area parameter for both the forward and side scatter intensities. A 

considerable population separation can be observed in top histogram plots of Figure 

b)  a)  

c)  d)  
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4-7. For the forward scatter, the overlapped region covers approximately 17% of the 

data total, where approximately 78% of the polyploid cells had higher scatter 

intensities than 87% of the diploid cells. For the side scatter, the overlapping 

encompasses 14% of the data total, where approximately 85% of the polyploid cells 

had higher scatter intensities than 88% of the diploid cells. For these figures, it can be 

seen why the scatter distribution becomes bimodal in samples that have higher 

polyploidy concentration, e.g. 48-hour drug-treated samples with 24-hour recovery 

(section 4.2.1.1). 

Adapted from chromatography, the separation of the two peaks can be expressed by 

the resolution  𝑅 , which takes into account the intensity peak widths 𝑊  when 

estimating the separation degree of the peak intensity channels 𝐼 , where 𝑊  for a 

normal distribution is four times the standard deviation 𝝈. 

 
𝑅 =

𝐼2 − 𝐼1

0.5(𝑊1 + 𝑊2)
 , 𝑤ℎ𝑒𝑟𝑒 𝑊𝑖 = 𝟒 𝝈𝒊, 𝒊 = 𝟏, 𝟐   𝑎𝑛𝑑  𝐼2 > 𝐼1 4-1 

In equation 4-1, an 𝑅 value of 1.0 means a peak separation of one 𝑊 wide for two 

normally distributed peaks of equal heights and widths. To put it in another perspective, 

an 𝑅 value of 0.5 is nearly equivalent to the minimum resolvable objects according to 

Rayleigh criterion for resolution in imaging, where the first minimum of the one 

object’s diffraction pattern is at the maxima of the other objects beside it. 

For our application of equation 4-1, robust metrics are used for the scatter intensity 

peaks 𝐼 of the diploid and polyploid cells (i.e. median peak instead of mean, and the 

robust standard deviation (RSD) instead of 𝝈 ). This resulted in 𝑅 = 0.47  and  

𝑅 = 0.55 for forward and side scatter peaks, respectively. The baseline on what is the 

minimum accepted resolution depends highly on the impurity tolerance for the 

applications down the line. In later sections, we will illustrate the impurities expected 

when refer to these scatter results for the polyploidy detection in drug-treated samples. 
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4.2.3.2 Light scatter of cell-cycling polyploid cells in drug-treated 

samples 

At different cell phases within the polyploidy cell cycle, a gradual increase in the 

median of light scatter intensities can be observed (Figure 4-8) in the drug-treated 

sample. 

 

Figure 4-8: Box plots of the forward (a) and side (b) scatter intensity pulse area channels for the cells 

of different diploidy (blue) and polyploidy (red) cell cycle phases. The data are acquired from 24-hour 

drug-treated samples with 48-hour recovery collected over three days on the FACSVerse. The line 

inside the box refers to the median, the red diamond indicates the mean, and the box encloses 50% of 

the events. The box notches around the median, wherever visible, extend to ±1.58 IQR divided by the 

square root of the sample size, where IQR = Q3 – Q1. The upper (lower) whisker is at the smaller 

(largest) of the maximum (minimum) scatter value and Q3 + 1.5IQR (Q1– 1.5IQR). 

This observation is similar to the one discussed in section 4.2.2, except that it shows 

even higher RCV values in the scatter intensity when cells move to the polyploid cell 

phases. Both previous and current observations indicate the presence of a positive 

correlation between the light scatter of the osteosarcoma cells and their DNA content 

(𝑟𝑠 = 0.82 and 𝑟𝑠 = 0.88, for the overall forward and side scatter, respectively), which 

can be explored experimentally as a detection parameter for the ploidy cells. 

Setting at the highest light scatter intensities (relative to the cell sample) are our target 

cell population, the cell-cycling polyploid cells at the G2/M phase along with the 

polyploid cells that transitioned to a second ploidy cycle. From the box plots, more 

than approximately 75% of the cell-cycling polyploid cells have higher forward and 
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side scatter intensities than the diploid cells of the same sample. Considering the 

relative rarity of these cells within one-day drug-treated samples, such high yield value 

gives us a positive impression about the potential of using scatter light for the detection 

and sorting of the target cells with high purity against diploid cell contaminants. 

4.2.3.3 Diploid versus polyploid cells in 24-hour drug-unwashed 

sample 

In the previous sections, the results showed the changes of light scatter as cells move 

through the different phases in the diploidy and ploidy cell cycle. They also show 

increase in scatter between the most scattering phase in the diploidy cell cycle (G2/M 

phase) and the least scattering one the polyploidy cycle (G0/G1 phase). This last 

observation, however, depends on the time at which the scatter is measured in a drug-

treated sample. 

 

Figure 4-9: Box plots of the forward (a) and side (b) scatter intensity pulse area channels for the G2/M 

diploid and G0/G1 polyploid cells in a 24-hour drug-treated sample with zero recovery time, collected 

on the FACSVerse. The line inside the box refers to the median, the red diamond indicates the mean, 

and the box encloses 50% of the events. 

To illustrate this, the cell scatter is measured after exactly one day of drug treatment, 

i.e. without giving the cells enough time to recover and cell-cycle. At this stage, the 

sample has a majority of cells that are either arrested at the diploidy G2 phase or have 

just transitioned to the G0/G1 polyploidy cells, but not yet committed to the ploidy 

cell cycle. In Figure 4-9, the forward and side scatter of these two populations is 

presented. Unlike the results from the previous section (Figure 4-8), the polyploid cells 
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in the G0/G1 phase have indistinguishable side scatter intensity profile from that of 

the diploid cells at G2, and a nonsignificant forward scatter shift. 

This result suggests that during the drug-arrest, the cell shapes, sizes, and contents in 

both of the studied cell phases are most likely of similar nature due to the recent 

transition of the polyploid cells from the diploidy cell cycle. In other words, it suggests 

that polyploid cells develop high forward and side scatter sources only after they are 

released from the drug and allowed to grow and proliferate. 

4.2.3.4 Light scatter pulse height for forward and side scatter in 

the polyploid cell detection 

All the light scatter comparisons presented in the previous sections are based on the 

detected pulses’ area measurement. From those results, it is inferred that both forward 

and side scatter serve as good candidates for label-free detection of the cell-cycling 

ploidy cells. Generally, the pulse area measurement is often recommended because it 

gives a better assessment of the overall brightness of the scattered intensity light for a 

particle in the flow stream. Depending on the laser beam spot shape, size and gaussian 

power distribution, a large particle that is twice as big and bright as a small particle 

could record a lower intensity peak height. In this example, the area measurement that 

incorporates information of the pulse duration, i.e. width, could help reveal the actual 

brightness difference between such two particles [4]. Nonetheless, for some cases, the 

area measurement may still not be sufficient to represent the detection between 

platforms with different illumination exposures (see discussion in section 4.3.1.1 for 

more). Overall, it is best to examine all the available measurements of a detected pulse 

to have a better understanding on the reported parameter. Figure 4-10 shows the same 

diploid versus polyploid cell populations from the FACSVerse data in section 4.2.3.1, 

but in terms of the height and width of the scatter intensity pulses. 

For forward scatter, the strength of the area pulse measurement in polyploid cell 

detection seems to relay on the pulse’s width. In Figure 4-10 (a, c), the forward scatter 

signal widths show a peak resolution of 𝑅 = 0.50 between the diploid and polyploid 

distributions, which corresponds to an overlap of approximately 16%. In comparison, 

the forward scatter signal heights (b, d in  Figure 4-10) have a lower diploid-polyploid 
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peak resolution (𝑅 = 0.26), which corresponds to a larger population overlap of 

approximately 29%. The area measurement of the forward scatter in section 4.2.3.1 

informs us that the polyploid cells have considerably brighter scatter than the diploid 

cells. However, if only the height measurement is used, the forward scatter of 

polyploid cells may not be enough to be considered for their label-free detection 

against diploid cells.  

 

Figure 4-10: Histograms (top) and box plots (bottom) of the forward scatter intensity pulse widths (a, 

c) and heights (b, d) for both diploid and polyploid cells. The data are acquired from 24-hour drug-

treated samples with 48-hour recovery collected over three days on the FACSVerse. The line inside the 

box refers to the median, the red diamond indicates the mean, and the box encloses 50% of the events. 

On the other hand, Figure 4-11 (b, d) shows that the height measurements of the side 

scatter’s intensity pulses provide a higher resolution between the peaks of the diploid 

and polyploid cells 𝑅 = 0.42 , i.e. an overlap of approximately 21%. The width 

measurement (a, c in Figure 4-11) behaves similarly to that of the forward scatter 

because the event detection on the instrument is triggered by the forward scatter’s 

signals. 

b)  a)  

c)  d)  
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Figure 4-11: Histograms (top) and box plots (bottom) of the side scatter intensity pulse widths (a, c) 

and heights (b, d) for both diploid and polyploid cells. The data are acquired from 24-hour drug-treated 

samples with 48-hour recovery collected over three days on the FACSVerse. The line inside the box 

refers to the median, the red diamond indicates the mean, and the box encloses 50% of the events. 

These observations may explain why the side scatter seems to be the better detection 

parameter for polyploid cells, than the forward scatter on zero-dimensional CFC 

instruments, i.e. instruments that only measure the height for the pulse of the scattered 

light intensity such as the FACSCalibur (data not presented). As previously discussed 

in the literature review section (1.4.2) of Chapter 1, the forward light scatter for cells 

correlates with larger cellular structures such as the cytoplasm or the nucleus, while 

the side scatter correlates with the smaller structures inside the cells. Depending on the 

laser beam size relative to the cell, the individual small side scatter sources within cells 

may have better chances at being fully illuminated with high power at the same time 

when the cell passes through the laser spot (see Figure 4-13), compared to a potentially 

partial illumination of the cell body for forward scatter. This then could explain how 

the height measurement of the side scatter intensity can give better diploid-polyploid 

b)  a)  

c)  d)  
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peak separation than that of the forward scatter, even without relying on the width 

measurement for a better overall intensity readout. However, the finding does not 

exclude the possibility that, when uniform illumination of the entire cell area is 

guaranteed, the peak signal of the forward scatter sources within the cells may still 

appear less significant than the side scatter’s in detecting polyploid cells. 

Lastly, it should be mentioned that the saturation in the high intensity channel of the 

width measurement of side scatter in Figure 4-11 is a limitation of the instrument 

setting for the experiment. As previously mentioned in Chapter 2 (section 2.5.1), the 

area-height scaling setting on FACSVerse is different for both forward and side scatter 

channels (where the latter’s is associated with that of other fluorescence channels). 

While linearity has been observed as much as possible for this setting on both channels, 

channel saturation such as the one observed in the width channel of side scatter in 

Figure 4-11 is hard to avoid when the area scaling of the cells in the DNA fluorescence 

channel is favoured for doublets exclusion.  

4.3 Light scatter for the detection of cell-cycling polyploid cells 

This section utilises the previous results to find the cell-cycling polyploid cluster 

through their forward and side scatter. First, scatter controls are discussed for the 

detection of the target cells, particularly polystyrene beads for side scatter. The 

detection thresholds defined through such controls are then used in the automated cell 

data clustering of target cells. This is performed using the customised DAFi 

programme of this thesis, aiming to mimic a sorting experiment for either high yield 

or purity of target cells. The findings are expected to analytically verify whether the 

target cells can be recognised apart from the diploid cells within a heterogeneous 

sample. 

4.3.1 Scatter controls for the detection of cell-cycling polyploid cells 

As illustrated in Figure 4-2, the overall scatter profiles of the cell samples show broad 

distributions that extend over to high intensities when polyploid cells are present. 

Ideally, one would use a uniform reference sample that is an exact replicate of the 

target cells in terms of size, shape, refractive index distribution, and granularity. This 
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would increase the reproducibility of the scatter detection thresholds regardless of any 

instrument-specific differences, such as those related to the optical system (e.g. laser’s 

spot size, wavelengths, or the numerical aperture of the collection lens), or to data 

processing (e.g. whether the detected events are processed as pulse height-only versus 

all three pulse measurements). However, such requirements for a reference sample are 

very difficult to realise, especially when dealing with cells of abnormal physiology 

such as the human osteosarcoma cell-cycling polyploid cells.  

Therefore, one could simply refer to the scatter of drug-free cell control samples to 

define the thresholds above which the polyploid cells could be detected (Figure 4-2). 

This is similar to the concept of sorting with FL positive or negative peaks, albeit with 

scatter, the thresholds will be applied on a continuous distribution of single population, 

and not on discrete populations. It should be noted, however, that setting a sorting gate 

at the scatter boundary of such control cells does not count for the expected increase 

of diploid cell scatter in drug-treated samples (see Figure 4-5). Thus, contamination of 

drug-stressed diploid cells in the sorted drug-treated sample could be higher than 

potentially desired. 

For finer gating on the target cells, another approach for defining scatter controls is to 

utilise beads with high refractive indices, such as polystyrene beads, as standard 

samples for the target cell detection, particularly for side scatter. Through analysis on 

the collected data, the used label-free polystyrene beads kit has shown potential as side 

scatter threshold references for target cell detection. Figure 4-12 shows an example of 

side scatter data collected on FACSVerse for the diploid (blue) and polyploid (light 

red) cells against that of unlabelled polystyrene beads (shades of purple and pink). 

From the figure, we can see that the side scatter area measurement of drug-treated 

osteosarcoma cells can roughly be covered on FACSVerse with the resulting scatter 

of the 4-15 µm polystyrene bead kit, which is the “Flow Cytometry Size Calibration 

Kit” from Molecular Probes, Inc. (F-13838, refractive index of 1.591 at 590 nm). In 

this example data, the 10 µm beads could be used to set a finer detection threshold to 

roughly find the median of the entire polyploid intensity distribution, which also 

approximately sets at the starting tail of the target cells’ distribution (dark red). 
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Figure 4-12: Histogram of the side scatter intensity pulse area for diploid and polyploid cells against 

polystyrene beads of five sizes: 4, 6, 10, 15, and 25 μm. The data are acquired from 24-hour drug-treated 

samples with 48-hour recovery collected over three days on the FACSVerse. Populations are manually 

gated. 

Depending on the application, researchers may favour the target cell yield over purity 

in sorting and vice versa. Therefore, another example of a finer gate, in the example 

data, is to reference the valley between the side scatter peaks of 10 µm and 15 µm 

beads as a threshold for minimum diploid contamination with target cells. Therefore, 

large polystyrene beads can serve as reference candidates for the side scatter detection 

of the cell-cycling polyploid cells. However, it should be noted that their forward 

scatter may not be as suited for a scatter reference of the investigated osteosarcoma 

cells even with the largest bead. For example, polystyrene beads as large as 25 μm 

(Sigma-Aldrich Inc., UK) had forward scatter intensities that were less bright than the 

smallest viable cell in the heterogenous cell samples on either CFC instrument (data 

not presented), even though their side scatter intensity can be higher than that of the 

largest cells (see Figure 4-12). 

4.3.1.1 Instrument-based limitations for scatter controls 

One point to emphasise regarding scatter, whether of cells or beads, is that it is highly 

reliant on the instrument, such as its illumination size at the focus, or its detection 

system. The internal composition of beads cannot be equated to a cell’s, even if they 

produce the same overall scatter sum as that of cells. As a result, instrumentation 
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differences could cause the studied cells to have a scatter at different intensities relative 

to the scatter of a beads kit. In other words, polystyrene beads as side scatter references 

for the target cells should be optimised for each instrument if needed, as the detected 

relative side scatter of each instrument may not be comparable. 

To illustrate further, Figure 4-13 shows example results (histograms at the bottom) of 

the relative side scatter height measurements between the same polystyrene beads kit 

and osteosarcoma cells, as collected from either FACSCalibur (left) or FACSVerse 

(right). From the figure, we can see that the side scatter peaks of the cells were lower, 

relative to beads, for FACSVerse compared to FACSCalibur. As a result, bead-based 

side scatter thresholds for target cell detection on FACSCalibur will be different. This 

is believed to be a consequence of the different laser spot shapes between the two 

machines, as illustrated in Figure 4-13 (top). The scheme shows an example of how 

the largest cross-section of the same cell can be read differently by the FACSCalibur 

(a laser beam width of 22 μm along the flow direction) and the FACSCalibur (a laser 

beam width of 9 μm along the flow direction). In general, narrow beam widths along 

the direction of the flow are preferred in FC platforms to increase the resolution against 

doublet event detections. However, this comes at the cost of decreasing the 

simultaneous exposure area of objects that are larger than that beam width. This 

especially affects cells, whose side scatter sources can be the small organelles within 

it, thus resulting in a compromised pulse peak measurement due to the uneven 

illumination (see Figure 4-13, top). 

For the FACSVerse, the side scatter reported by peak measurement of cells appears 

shifted for to the lower intensities relative to beads, compared to the readings of area 

(Figure 4-12). This shows the importance of using area measurement on FACSVerse, 

as it adjusts the peak measurement with that of width’s, where FACSCalibur does none 

for scatter channels. Nonetheless, the height measurement on FACSCalibur is a result 

of a broader cell illumination, thus it may be closer to representing the actual relative 

difference between the cells and the beads (if seen under a full-coverage and uniform 

illumination). Even if the area measurement on the FC instruments were to sample the 

entire detected intensity pulse (i.e. using an integrator, instead of correcting the height 

with width), we believe that a beam shape difference could still affect the detected side 

scatter of cells relative to that of uniform spheres between instruments. 
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Figure 4-13: A scheme (top) illustrating the difference in laser beam widths across the flow direction 

between the FACSCalibur (left) and FACSVerse (right) as the potential cause for the observed shifts in 

a histograms (bottom) of the detected height measurements of the side scatter for the cells relative to 

polystyrene beads. Populations are manually gated. For the top scheme, the direction of the side scatter 

(SSC) detection is indicated, where the illustrated beam is incident into the plane of the page.  

Lastly, we would like to note that, while the figure illustrates an example of a cell, the 

same can be said for beads of diameters higher than the beam width. In other words, 

this reasoning explains the less resolved distributions of the beads with diameters 

above 6 μm on FACSVerse, compared to their distributions on FACSCalibur. On the 

other hand, the distributions of the 4 and 6 μm beads can be seen overlapping in a 
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similar degree for either instrument. This is assumed to be a result of their varying 

travelling position within the fluidic stream core, relative to the collection lens’s focal 

plane. In fact, the same reason is assumed here to be behind the observed high RCV 

values for the side scatter intensities of all beads compared to their forward scatter’s. 

In conclusion, instrument variations, be it arising from the optics, fluidics or 

electronics, need to be counted for when scatter data reproducibility is desired on 

different instruments. This is especially important when referencing high refractive 

index beads as a side scatter standard, where preliminary experiments may be needed 

per platform to optimise the beads set for the target detection. 

 

4.3.2 Automated target cell cluster detection using a customised DAFi 

gating for R 

In this section, we mimic a sorting experiment setting through automated clustering 

methods, where the cluster application is guided by the scatter thresholds as an input 

for the customised DAFi gating programme for R of this thesis. Threshold optimisation 

depends on whether either yield or purity of the target cells is prioritised. Here, we 

present examples of both, where we apply such thresholds on the collected data of a 

DRAQ5-labelled 24-hour drug-treated with 48-hour recovery sample from 

FACSVerse. For both examples, only two scatter gates are applied, which are the 

whole cells gate (a in Figure 3-2 in Chapter 3), then a rectangular gate whose lower 

boundaries are defined by the proposed forward and side scatter thresholds. The steps 

are then repeated but with omitting either of the two scatter directions, to assess their 

potential effect on the overall filtering process. 

For high yield filtering of target cells, we utilise control samples as a reference for 

suitable thresholds. Such thresholds are more suitable for actual sorting experiments, 

because control samples can verify and adapt to any potential instrument setting 

changes (during the sorting session). Based on the discussion in the previous section, 

two samples are referenced here to set up the scatter detection thresholds for the cell-

cycling polyploid cells. For the forward scatter, the drug-free sample is referenced by 

setting a detection threshold at the median + 3RSD of its overall scatter (i.e. a gate 
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above approximately 99.85% of the drug-free diploid cells). For side scatter, the 10 

μm beads are referenced by setting a detection threshold at its scatter median value. 

This resulted in a filtered population that is approximately 37% of the original sample 

with cells re-classified as presented in Figure 4-14 (a). The classification presented in 

the charts is based on the true label of the filtered cells, so debris (approximately 20% 

of the filtered sample) and GFP non-reporting cells were excluded from the results in 

Figure 4-14. In this example, the scatter-based filtering resulted in a nearly 100% 

filtering of all the assigned target cells in the original sample with a purity of 

approximately 45%, where near 54% of the filtered sample were other types of 

polyploid cells. All in all, only approximately 1% of the cells were diploid 

contaminants (which represents approximately 0.4% of the original diploid 

population). Thus, this showcases that forward and side scatter intensities have a great 

potential for label-free polyploidy detection and sorting. When omitting either of them 

(see b, c in Figure 4-14), we can see that the diploid contamination is highly affected 

by the presence of a side scatter threshold, as the contamination rises to approximately 

5% when it is omitted. Furthermore, using the forward scatter only to filter target cells 

reduced their purity, as it allowed more of other polyploid cells (near 42% of their cell 

population in the original sample) to contaminate the target cell gate. In conclusion, 

filtering with only side scatter (area measurement) reference beads can be sufficient in 

a label-free gating of target cells. On the other hand, referencing only the forward 

scatter (area measurement) of drug-free control cells can be utilised for gating on 

overall polyploid cells (with a yield of approximately 85% of the overall polyploid 

cells in the original sample). 

For high purity filtering of target cells, the scatter analysis of the target cells is 

referenced where thresholds were set on the 25th percentile on both forward and side 

scatter. Note that this does not necessarily mean the yield of the filtered outcome would 

be 75%, because this is done with DAFi gating, which does not apply strict cut-offs 

like the case with manual gates. Instead, the resulting yield was 85% (naturally for 

both or either parameter’s results). The results when both parameters are used (Figure 

4-14, d) showed a purity of approximately 68%, and a diploid contaminant of 

approximately 0.1% (representing approximately 0.02% of the original diploid 

population). They also showed that only near 14% of the non-target polyploid cells in 

the original sample were filtered as target (making approximately 32% of the filtered 
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cell, as per chart). We also see that, for the same percentile on either scatter parameter, 

the k-mean clustering of DAFi gated more of the non-target polyploid cells when only 

the forward scatter is used (Figure 4-14, e), thus reducing its target cell purity. On the 

other hand, using only side scatter to filter for the target cells nearly had no change 

from the filtered cells using both directions (Figure 4-14, f). As a matter of fact, 

thresholds could be pushed further for higher purity if desired. Such process would 

need to be optimised, considering that it could result in higher yield of doublets as 

contaminants, which is discussed next. 

The scatter-based thresholds discussed in this section did not consider a third scatter 

gate to filter out doublet events. This is due to how the scatter of singlet events is less 

resolved in drug-treated samples (see Figure 4-4). In both examples discussed here, 

there were approximately 20% and 26% doublet events (estimated via DNA-DRAQ5 

gating) in the filtered target population for high yield and purity, respectively. Because 

these cells are not imaged data, we cannot validate how much of these events were 

diploid cell aggregations.  

Another point to highlight is the fact that sorting recovery in actual experiments can 

be affected by the size of the target cells in the original sample. Enriching the target 

cells in the original sample (e.g. through drug dose), could help increase the recovery 

rate of healthy cells post sort. The target cell recovery and the effects of doublet 

contamination could only be assessed through an actual sorting experiment; thus they 

cannot be considered in our analytical estimates. 

Lastly, we would like to emphasise that the label-free detection of target cell is 

generally dependant on the design of the optical system in an instrument and the 

sensitivity of its detectors for either scatter direction. To illustrate further from our 

results, the standard photomultiplier tubes on the CFC instruments could observe the 

intensity peak shifts in the side scatter between the populations of interest. Their 

forward scatter detectors (avalanche photodiodes) did the same for the forward scatter, 

except with a weaker peak resolution. Because the sensitivity for either detector type 

is generally different, our results do not necessarily mean that the intensity 

measurements of forward scatter are absolutely less significant. 
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Figure 4-14: Results of applying scatter-based thresholds to target the cell-cycling polyploid cells with 

high yield (a-c) or purity (d-f), via customised DAFi for automated gating. The top charts (a, d) show 

when thresholds from both forward and side scatter are applied, then with only forward (b, e) or side 

(c, f) scatter. The scatter-based filtered cells are first gated afterwards for singlets and then their cell 

cycle readout is expressed as percentages of the total GFP-reporting population. The results are 

presented in a hierarchy of cell populations, starting from the nature of cell cycle (diploid or polyploid), 

and then their respective cell cycle phases, where target polyploids are highlighted with a red rectangle. 
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4.4 Summary 

In this chapter, we have experimentally characterised the cell scatter of heterogeneous 

samples of diploid and polyploid cells. We have also analytically validated the 

hypothesis that the cell-cycling polyploid cells in osteosarcoma can be detected via 

their high forward and side scatter intensities in mixed samples of diploid cells. This 

has been performed by first characterising the forward and side scatter of the 

osteosarcoma cells at different drug-treatment stages via flow cytometry. A diploid-

polyploid peak separation of 𝑅 = 0.47  and 𝑅 = 0.55  has been observed for the 

forward and side scatter intensity (pulse area) on FACSVerse, respectively. In addition, 

a positive corelation has been observed between either forward or side scatter and the 

cell DNA content through the different cell cycle phases. In this chapter, we have also 

identified some scatter controls for the detection of target cells, such as polystyrene 

beads. Based on these results, thresholds on the area measurements of the forward and 

side scatter for either high yield or purity of the target cells have been recommended 

and discussed. For the high yield objective, the scatter thresholds utilised both of the 

drug-free control sample and polystyrene beads as forward and side scatter references, 

respectively. The high purity thresholds were based on the scatter characterisation of 

the cells, which showed that nearly 75% of the target cells had higher scatter than the 

diploid cells. Next, automated clustering of the target cells have been performed on 

the data from a one-day drug-treated sample on FACSVerse using the customised 

DAFi programme of this work. This resulted in approximately 45% and 68% purity in 

the classified target cells via the thresholds set for high yield and purity, respectively. 

In both cases, the diploid cell contamination was equal to or less than 1% of the 

classified cells. When aiming for high yield, thresholds based on side scatter alone 

(collected via PMTs) can be sufficient in detecting the target cells with the least diploid 

contamination or high target purity, while thresholds based on forward scatter can be 

used for general polyploid identification. The chapter also highlighted how the width, 

height, and area parameters of the detected scatter pulses may impact the diploid-

polyploid peak separations. 
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5.1 Introduction 

The second hypothesis of the thesis states that the label-free brightfield (BF) and 

darkfield (DF) cell images can be used to classify cell-cycling polyploid cells in 

osteosarcoma apart from their diploid cells. This has been hypothesised for the same 

reasons mentioned in the previous chapter, i.e. samples containing polyploid cells tend 

to be observably different in shape or size compared to diploid majority samples. To 

assess this hypothesis, we utilise imaging flow cytometry (IFC) in the detection of our 

target cells. As described previously, IFC instruments, such as ImageStream, collects 

high-throughput cell image data, which provides increased dimensionality compared 

to data collected on conventional flow cytometers (CFC). A high cell image count with 

uniform illumination also serves as suitable data input for machine learning-based 

analysis. Therefore, supervised machine learning (ML) classifiers are used here to test 

our hypothesis. In particular, we reference a ML data analysis pipeline that has been 

recently introduced for ImageStream data [1], [2], as it employs open source methods 

for managing, extracting, and analysing cell image features. 

In this chapter, we also discuss our labelling protocol for DRAQ5 that we have drafted 

to work around the limitations introduced by the sample preparation requirements of 

ImageStream. These limitations prevent us from following the standard DRAQ5 

labelling protocol for CFC instruments [3], [4], thus affecting our ability to replicate 

the cell cycle readout via DRAQ5 as observed on CFC instruments.  

The chapter first presents the methodology in section 5.2, which consists of four main 

steps. The DRAQ5 labelling protocol for cell cycle analysis on ImageStream is 

addressed in subsection 5.2.1.3. The results are then presented and discussed in section 

5.3, where we first address the chapter’s second hypothesis through cell size 

measurements, an example of a statistically relevant readout pulled directly from the 

brightfield images (section 5.3.1). Then we examine the results of the label-free ML 

classification (section 5.3.2) and present our conclusions. 

5.2 Methodology 

For this chapter, we can describe our method in four main steps (Figure 5-1): IFC data 

acquisition, image quality check and cell population gating to determine the ground 
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truth, pre-classifier image processing, and finally performing the cell classification via 

different ML models. These steps are described in detail below. In addition, we also 

discuss in section 5.2.1.3 our DRAQ5 labelling protocol for cell cycle analysis on 

ImageStream, which is needed to achieve well-resolved DNA fluorescence peaks for 

the samples.  

 

Figure 5-1: A summary of the main four steps, along with the used hardware or software, which have 

been followed to perform an image-based label-free detection of cell-cycling polyploids in 

Osteosarcoma. 

5.2.1 Acquisition of data via imaging flow cytometry 

The first step in testing the hypothesis is to acquire the label-free (brightfield and 

darkfield) images of our target cells. These images are intended to be used in the 

training or the testing of the supervised ML classifiers. The following subsections 

explain the instrument set-up and the cell sample preparations. In addition, we address 

here our optimisation experiments to the standard DRAQ5 labelling protocol for cell 

cycle, which are essential to biologically define our target cell while still 

accommodating the sample preparation requirements of the imaging flow cytometer. 
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5.2.1.1 Imaging flow cytometer 

Fluorescence and label-free images of the cells have been collected using Amnis® 

ImageStream®X Mark II (Merck Millipore) imaging flow cytometer. The experiment 

settings are managed via Amnis® INSPIRE software, where instrument calibration is 

performed before each experiment, and each collected sample data is exported as a 

raw image file (.rif). For the illumination system, the 488 nm laser (for fluorescence 

excitation) was set at 100 mW, while the reported brightfield (multi-colours LEDs) 

power was within 30-33 mW. The darkfield 785 nm laser was set at the lowest power 

(1 mW) to help minimise pixel saturation in our sample (which carry a variety of cell 

sizes). The high-speed CCD camera magnification was set at 40x (with a numerical 

aperture of 0.75, a resolution of 0.5 µm/pixel, a view field of 60 x 128 μm, and 4 µm 

field depth). The fluidics were set at the lowest speed option for higher sensitivity (with 

a reported focused core size of 10 µm wide, and a speed of 66 mm/s). Brightfield 

images were collected on channel one (457/45 BP), CyclinB1-eGFP images on 

channel two (528/65 BP), DNA-DRAQ5 images on channel five (702/85 BP), and 

darkfield images on channel twelve (765/40 BP) (refer to Chapter 2 for the 

instrument’s optical path image).  

5.2.1.2 Cell samples and sample preparations 

For this chapter’s experiments, we worked with the same three cell sample types as 

previously described (see Chapter 3): drug-free control samples, 24-hour drug-treated 

with 48-hour recovery samples, and 48-hour drug-treated with 24-hour recovery 

samples. 

Our cell samples are first prepared in the same steps and conditions as the ones 

previously described for the experiments conducted on the CFC instruments (see 

Chapter 3, section 3.2.1). ImageStream requires samples to be suspended in 20-200 

μL at a recommended concertation of 2.0x107/mL. To meet ImageStream’s 

requirements for high sample concentration, these cells are cultured in high numbers 

using multiple 75-T flasks. The same cell experiment culture is also used for a parallel 

experiment on an CFC instrument to ensure the stability of the cell cycle readout (see 
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section 3.4 in Chapter 3). Next, samples are collected and suspended in 150 µL media 

each, where the final cell concentration depends on their type (see section 5.2.1.3). 

With our cells, we have found that the acquisition rate drops often during a long session 

run despite how much volume is left in the samples. Retrieving said samples in the 

middle of sessions to manually mix or vortex it seems to also cause a loss in cell 

numbers. Therefore, each sample volume has been split into three further tubes (50 µL 

each) to increase the acquisition’s efficiency, where the resulting three data files are 

then merged into one during analysis. 

5.2.1.3 DNA labelling with DRAQ5 for cell cycle analysis of live 

cells on ImageStream 

In literature, DRAQ5 labelling on ImageStream is usually used to locate the nucleus, 

so diluted DRAQ5 labelling is sufficient. However, in our case, identifying diploid 

cells (regular DNA count) and polyploid cells (high DNA count) to build up the ground 

truth of the ML classifiers requires a sufficient DRAQ5 probe binding to the DNA of 

each cell. When applied to our samples on ImageStream, the standard DRAQ5 

labelling concentration for cell cycle (20 μM at ~4x105 cell/mL) has been found 

inadequate for several reasons. For one, an extra centrifuging step following the 

labelling would naturally be required to readjust the final cell concentration for the 

ImageStream session. However, the studied live cells have been found to be sensitive 

to such external stress, resulting in noisy cell cycle profiles with high <2N aneuploidy 

populations. On the other hand, applying the 20 μM DRAQ5 concentration to the final 

(high) cell concentration directly will lead to insufficient labelling of the sample that 

could barely resolve it from unlabelled samples. Therefore, we present here our 

optimisation steps to the standard DRAQ5 labelling protocol for cell cycle analysis. 

This will help produce well-resolved DNA intensity peaks on ImageStream for the live 

diploid and polyploid cells in our samples.  

The first step is to determine the maximum cell concentrations that can be processed 

without affecting the health of the cells within the condensed sample volume. Such 

concentration is first determined for the sample type with the largest cell sizes (i.e. 

more susceptible to cell aggregations) in the experiment. The concentrations for the 
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rest of the sample types are then adjusted accordingly to keep the DNA content weight 

equal between all three sample types. In our experiments, the optimised cell 

concentrations were 4.2x106/mL, 2.8x106/mL, and 2.0x106/mL, for drug-free control, 

24-hour drug treated, and 48-hour drug-treated samples, respectively. 

The second step is to optimise the maximum recommended DRAQ5 labelling 

concentration for cell cycle by the standard protocol (20 μM), without compromising 

the quality of the sample or the instrument. Through some preliminary tests, we have 

found that an 80 μM DRAQ5 concentration with the proposed cell concentrations 

produces well-resolved DNA peaks on ImageStream, similar to those observed in CFC 

(see Figure 2-5 in Chapter 2). This concentration, however, appears to be at the lower 

limit of sufficient labelling. In addition, while there are no reported upper limits to 

applicable DRAQ5 concentrations, the standard protocols do draw attention to the 

probe’s cytotoxicity with time. They also report its tendency to stain the inner tubes of 

the instruments, which may lead to cross contamination, thus the standard protocols 

do recommend observing reasonable DRAQ5 concentrations (along with proper 

cleaning procedures) [3]. Therefore, we recommend further future tests to determine 

the tolerance degree of DRAQ5 labelling for cell cycle analysis of live cells on 

ImageStream. 

Lastly, we would like to highlight the fact that our ability to reproduce well-resolved 

cell cycle readouts on ImageStream does not necessarily mean that we have 

reproduced the same biology seen on CFC. This stems from the observed tendency of 

uneven cell sampling on ImageStream during the long experiment sessions. Therefore, 

a parallel experiment on a CFC instrument was run each time to observe the stability 

of the drug treatment response in the cell samples. 

5.2.2 Image quality check and population gating via image analysis 

software 

The second step in the methodology is to perform top level image analysis on the 

collected .rif files. This is done via IDEAS® (Amnis, USA, ver 6.2.187), the image 

analysis software for ImageStream, where numerical measurements of cell 

morphology and fluorescence features are extracted. In the following subsections, we 
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discuss first our gating hierarchy based on the relevant features for refining the quality 

of the collected images. Regarding identifying cell population of interests, we also 

explain the difference in our approach for cell cycle gating from the previous chapters, 

which helps prepare the data for the next steps. 

5.2.2.1 Gating for single cells and image quality 

Figure 5-2 shows our gating hierarchy for all cell samples, before cells are assigned to 

their respective cell cycle phases. By default, ImageStream refers to the brightfield 

channel for particle detection and lens focus calibration. Therefore, brightfield images 

are often referenced first to look for single cell populations (i.e. as usually done with 

forward and side scatter on CFC), and for focused images. Single cells are determined 

first via plotting the aspect ratio measurement of the detected objects against their area 

(Figure 5-2, a). Due to their spheric shape in suspension, singular osteosarcoma cells 

will display higher aspect ratio than their doublets and will have higher area than 

ImageStream’s calibration beads. 

Next, focused cell images are determined via the gradient root mean square (gradient 

RMS), the intensity, the contrast, and modulation measurements of the brightfield 

images (Figure 5-2, b and c). The gradient RMS gives an indication of cell image 

sharpness via looking at the average slope changes in the intensity profile (i.e. higher 

values of gradient RMS correlate with focused images). The same applies to the 

contrast and modulation (modulation = [max pixel - min pixel] / [max pixel + min 

pixel]) features, which help filter out streaked images (due to error in camera’s speed 

tracking) as well as some apoptotic looking cells. Next, the circularity feature 

measurement is used to remove highly cropped images, as well as any apoptotic cells 

with blebbing membranes (Figure 5-2, d). Apoptotic cells also tend to show nuclear 

fragmentation. Therefore, we filter next for cells expressing the full fluorescent labels 

(Figure 5-2, e), then quantify any segmentation in the DNA images (Figure 5-2, f). 

Naturally, the gate is optimised to include viable mitotic cells. 
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Figure 5-2: Gating hierarchy for image quality and cell viability check on ImageStream using 

brightfield (a-d) and fluorescence (e-f) images. These gates inspect the data for single (a),  

focused (b and c), viable (c, d, e, and f), non-cropped, (d), and fluorescently labelled cells (e), for the 

subsequent gating of the diploid and polyploid populations. The gating is performed via the image 

analysis software IDEAS, where the graph axes show the default title of each used image feature. 
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By this stage, we have referenced two user-defined object masks created via IDEAS’s 

mask fitting functions masks (see Figure 5-3). The first mask is defined based on the 

brightfield images by setting the adaptive erosion coefficient in IDEAS’s adaptive 

erode mask function to 90. Erosion is the process of deleting pixels from the edges of 

a mask, and the adaptive erosion coefficient in IDEAS refers to the percentage of the 

remaining pixels of the original mask (which is here the brightfield image default mask 

[M01]). This was found to conform to the cell shape better than IDEAS’s default 

masks, which tend to exaggerate cell size. This can be seen in the mask displayed on 

the cell image in Ch02 in Figure 5-3 (figure shows the default combined mask [MC], 

but the same can be said about the brightfield default mask [not illustrated]). The 

second mask is created to locate the DRAQ5-labelled cell nuclei by setting the 

threshold mask function’s intensity to 70%. 

 

Figure 5-3: An example of a cell’s brightfield (BF), CyclinB1-eGFP, DNA-DRAQ5, and darkfield 

(DF) images collected via ImageStream. The second row shows the same images but with the different 

mask fittings (highlighted in blue) that are used to calculate image features on IDEAS. These include 

IDEAS’s default combined mask (MC), as well as our two user-defined object masks that we use for 

stricter cell boundaries (brightfield image) and locating the nucleus (DNA image). The picked example 

is a cell at the S phase of the polyploidy cell cycle in a 24-hour drug-treated with 48-hour recovery 

sample. 

Lastly, histograms of the raw intensity pixel for all the channel images of are checked 

against any saturation before passing the filtered cells to the cell cycle analysis stage, 

discussed in the next section. 

                                                                     

                   



Chapter 5: Image-based label-free detection of cell-cycling polyploid cells in Osteosarcoma 

 
104 

 

5.2.2.2 Gating for cell cycle and further cell analysis 

The cell cycle gates are applied in the same direction followed in the previous chapters, 

except that the gating is performed manually, and it also takes note of the cells located 

at the boundary between the diploid and polyploid cell populations. Because of natural 

biology drifts, it is difficult to determine with high certainty to which population these 

cells belong. Therefore, these cells will not be used in the training of the ML classifiers.  

 

Figure 5-4: Cell cycle scatter plots showcasing the difference in DNA intensity spread between the 

drug-free (green) and drug-stressed (blue) diploid cells, relative to the polyploid (red) cell population. 

a) Shows the diploid (blue) and polyploid (red) populations in a drug treated sample. The same drug-

treated polyploid population is plotted again in b), where gated diploid cells from a drug-free (green) 

sample are referenced. Gating is performed via the image analysis software IDEAS, where the y-axis is 

the CyclinB1-eGFP intensity (a.u.) detected on channel 2, and the x-axis represents the DNA-DRAQ5 

intensity (a.u.) detected on channel 5.  

To illustrate, Figure 5-4 shows the diploid (blue) and polyploid (red) populations in 

drug-treated samples, in reference to the diploid cells in drug-free ( Figure 5-4, green) 

samples. In the current work, we prioritise the certainty in defining the target cell-

cycling polyploidy population against the diploid cells. Therefore, for cell cycle gating, 

we first place a boundary between the two populations via referencing the 48-hour 

drug-treated samples (polyploid cells majority). Next, we reference the drug-free 

control samples (diploid cells majority) to draw the diploid cells gate that will define 

the diploid cell candidates for the classification’s training set. While excluded from 
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the training set, any diploid cells that belong to the overlapping region (mostly from 

drug-treated samples) will be considered later in the final classification step. 

After all cell classes are biologically identified, TIFF images are generated and 

exported via IDEAS to train and test the ML classifiers in the next step. 

5.2.3 Pre-classification image processing and features extraction 

In this step, two actions are performed: the first is to tile the exported raw images from 

the previous step into cell montages, and the second is to import the montage images 

into the open-source image analysis software CellProfiler (Broad Institute, Inc., ver 

4.0.7) for cell segmentation and extraction of morphological features. 

CellProfiler is mostly suited to process images with multiple cells commonly seen in 

microscopy, as opposed to single cell images from IFC. Therefore, the first step aims 

to speed up CellProfiler’s processing time for the thousands of cell images in our data 

(during the second step). For our application, 15x15 cell montages have been produced 

via MATLAB [1] with a cell unit measuring at 120x120 pixels, to accommodate the 

various cell sizes in our sample without cropping them (an example of a tiled image is 

provided in Supplementary Figure B-1 in Appendix B). 

In the second step, we use CellProfiler to segment the cells, and extract morphological 

features, which are categorised in the software as: area and shape, intensity, 

granularity, radial distribution, and texture (texture step size is 3 pixels). This step also 

covers any needed background normalisation within the feature calculation procedure 

of CellProfiler, where the feature lists and description are provided by the software 

documentation [5]. The original method’s CellProfiler pipeline [1] has been mostly 

followed here, except that we only use one primary object mask (based on brightfield 

images) for feature extractions of both brightfield and darkfield images. Other than 

reducing processing time, this helps minimise bugs arising in the next analysis tool 

(CellProfiler Analyst), which does not handle well classification of features extracted 

via multiple primary object masks. 

It should be noted that all the features extracted from the images in this step are solely 

used for the subsequent classification step, and not to infer exact measurements on the 
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cells (especially area-based ones). This is due to the tendency of the used CellProfiler 

object mask to exaggerate the cell boundary fitting (see cell mask highlighted in red 

boundary in c, Figure 5-5). However, because the same mask is referenced in the 

analysis of both brightfield and darkfield images, the overfitting helps to ensure proper 

coverage of all relevant parts of the cell in either image. We assume this would have 

no meaningful effect on the following classification, as this aspect of the mask fitting 

does not appear to be biased towards a particular phenotype.  

  

Figure 5-5: An example of a brightfield image of a G2/M diploid osteosarcoma cell from a 24-hour 

drug-treated with 48-hour recovery sample, showing it with a) no mask , with b) our user-defined cell 

mask on IDEAS (highlighted in blue), and c) the used CellProfiler pipeline’s mask (outlined in red). 

The reported cell sizes in the results of this chapter (section 5.3.1) are based on the 

area feature measurement extracted via IDEAS, where our user-defined cell mask 

tends to be more accurate in terms of locating cell boundary upon visual inspection 

(mask highlighted in blue in b, Figure 5-5). 

5.2.4 Label-free classification via machine learning 

The performance of the ML classifiers relies on choosing a non-biased and well-

defined ground truth for each cell class, as well as suitable ML algorithms for the 

classification, and the tunning of its hyperparameters. For this step, we import our data 

into the open-source image analysis software CellProfiler Analyst (Broad Institute, 

Inc., ver 3.0.3), where we build the training set and perform the cell classification. The 

following subsections describe our criteria for the training set, along with other details 

regarding the used ML algorithms and the models’ evaluation.  

5.2.4.1 Training set criteria and the chosen label-free features 

To test the hypothesis of this chapter, we have defined a 3-class training set as follows: 

1. Diploid cells, 2. G0/G1 and S Polyploid cells, and 3. G2/M+ Polyploid cells (i.e. 

      c  
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our target cells). Once again, the plus sign in the G2/M polyploid phase refers to 

polyploid cells that transitioned to a second ploidy cell cycle (i.e. cells whose G0/G1 

phase has >8N DNA content) (see Figure 5-6 for the three cell classes positions in the 

cell cycle). 

The training set was built using 600 randomly selected cell images (200 for each class), 

which were equally pulled from two different experiment results. To avoid 

oversampling the original samples, the training set for each class was built from the 

sample type in which the said cell class is abundant. For example, the 24-hour drug-

treated samples were used to select the training set for the diploid cell class. The other 

two polyploid classes were trained from the 48-hour drug-treated samples. In our 

approach, we did not refer to the drug-free samples to train the diploid cells because 

these samples have not been exposed to the drug stress. It is also worth mentioning 

that, biologically speaking, the second class may contain cells that have just 

transitioned from a diploidy state to a ploidy one. Such cells may appear 

indistinguishable physically, be it externally or internally. Therefore, we expect this 

cell class to be the least resolved among the three classes. 

 

Figure 5-6: Scatter plot of the cell cycle readout for a 24-hour drug-treated with 48-hour sample 

showing the three cell classes used for the label-free ML classification. The cell classes are 1. Diploid 

cells (blue), 2. G0/G1 and S polyploid cells (orange), and 3. G2/M+ polyploid cells (red). Highlighted 

in black are the diploid cell populations that will not be used in the sampling of the training set, due to 

their close proximity the polyploid cell population. 

In defining our ground truth for the ML model training, we have followed three 

criteria. The first is to verify that the ML classifiers show low bias towards cells 
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belonging to different experiment days. This is checked via running preliminary ML 

classification tests on control cells from either experiment, where we look for chance-

like performance. The second is to have the selection process avoid cells from the 

uncertain subpopulations previously defined in section 5.2.2.2 (populations 

highlighted in black in Figure 5-6). The third is to ensure that the training set has equal 

proportions of each population fed into it wherever possible (summarised in Figure 

5-7). For example, the diploid cell class was built with nearly equal proportions of 

G0/G1, S, and G2/M diploid cell populations. On the other hand, the G2/M+ polyploid 

cell class consists of 50% of the G2/M polyploid cells and 50% of the >4N polyploid 

cells (40%, 20% and 40% of which are G0/G1, S and G2/M cell phases, respectively), 

because the latter type is under-represented in the original samples. In addition, the 

size of the training set (600) was selected based on the abundance of the least enriched 

cell phase (e.g. polyploid cells in the S phase in the third class, see Figure 5-7). 

Lastly, the training set is checked for any apoptotic-looking cells that may have 

escaped the initial image quality screening (e.g. cells with small degrees of plasma 

membrane blebbing that were not detected via the cell quality check steps on IDEAS, 

see Supplementary Figure B-2 in Appendix B). 

 

Figure 5-7: Diagram summarising how the 3-class training set is sampled for our label-free machine 

learning classification of the cell-cycling polyploids (i.e. G2/M+ polyploid cells) in Osteosarcoma. 
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5.2.4.2 Label-free classification and results evaluation  

In our ML classifiers, we have tested the same ML algorithms used by H. Hennig et 

al. [2] in their label-free classification of mitotic cells using CellProfiler Analyst, 

which are the Random Forest (RF) and the Gradient Boosting (GB) classifiers. Both 

tree-based algorithms are appropriate for this type of analysis, and have performed 

well in previous works [1], [2]. We also test the performance of four more ML 

classifiers supported by CellProfiler, which are: Support Vector Machine (SVM, 

herein abbreviated as SV), Logistic Regression (LR), K-nearest Neighbours (KNN, 

herein abbreviated as KN), and Multi-layer Perceptron (MLP). The classifiers were set 

to ignore cell features that are irrelevant to the analysis such as those related to cell 

location in the montage, and cell orientation. 

The classification results are evaluated by looking at the recall values for the overall 

(or per class) classification of each model. The recall value assesses the classification 

sensitivity, and it is similar in principle to the yield measurement used to assess a 

sorting performance. The recall is calculated from the confusion matrices of each 

classification, which refer to tables summarising the prediction performance of each 

class against its true label. In the classification of a given class, true positives (TP) and 

true negatives (TN) refer to the accurately predicted positives and negatives (where 

positives are data that belong to the said class, while negatives are those that do not). 

Similarly, false positives (FP) and false negatives (FN) are the inaccurately predicted 

data. The recall metric for a class looks at the prediction power in assigning the correct 

label to each cell (recall = TP/[TP+FN], i.e. true positives/actual total of the label). 

Other metrics that are commonly reported in ML classifications such as the precision 

(purity) or accuracy are not reported here because they are dependent on the size of 

the true classes in the data set. 

Model evaluation also includes commenting on the potential significance of input 

features in the classification. This is done through the leave-one-out method, where a 

feature module is omitted from the model training and data scoring each time. In 

ensemble decision tree models (such as RF and GB), there are several approaches to 

estimate the importance of input features after the model is trained and the trees are 

built. Inherently, the tree branching in these models is based on a measure of impurity 

at each node, so it is common to find a readout on overall feature importance reported 
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along a trained tree-based model. While it is the easiest to retrieve, this readout tends 

to overestimate features with high cardinality, thus it will not be reported either. 

5.3 Results and Discussion 

Label-free brightfield and darkfield images of the live U-2 OS osteosarcoma cell 

samples have been collected from two-experiment repeats on ImageStream, and the 

results are discussed in the following subsections.  

Th first section looks at the reported cell sizes from the brightfield images, as area-

related features show promising potential for the label-free identification of our target 

cells. In addition, cell size or shape can naturally correlate with other feature 

measurements such as those of intensity, which has been shown to have the capability 

of identifying the target polyploid cells in mixed samples of diploid cells (see Chapter 

4). 

We discuss in the second section the results of the 3-class classification of the 

brightfield and darkfield images for all collected cell samples. We then report on the 

performance of the six tested ML models and their ability to find our target G2/M+ 

polyploid cells against diploid cells in samples. 

5.3.1 Osteosarcoma cell size measurements via brightfield images 

We report here the observed sizes of the studied cells at different stages of the cell 

cycle. Similar to the previous chapter, comparisons will be made on the whole diploid 

and polyploid populations, as well as their subpopulation (G0/G1, S, and G2/M cell 

cycle phases). All the measurement in this section have been performed on IDEAS 

using our user-defined mask for the brightfield images (see section 5.2.2.1). The data 

from two experiment repeats are combined then size measurements are plotted and 

compared in either box plots or histograms. Cells that fall in uncertain gates (described 

in section 5.2.2.2) are included based on the general cell cycle population to which 

they were assigned. Cell sizes will be expressed here in either area or diameter 

measurements. On IDEAS, area is calculated first by adding up the pixels belonging 

to a cell’s brightfield image mask. This is then converted into squared micrometres 

based on the used magnification (where it is 1 pixel = 0.25 µm2 for a magnification of 
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40x). The diameter measurement is calculated in the software from the area 

measurement by assuming a circular shape for the masked area. 

5.3.1.1 Cell size measurement of diploid cells 

Using a box plot (Figure 5-8), we compare here the interphase cell cycle populations 

in diploid cells from drug-free samples (green), and the diploid cells from 24-hour 

drug-treated with 48-hour recovery samples (blue). The plot helps immediately spot 

the increase in the diameter medians (horizontal line inside) in the drug-stressed cells 

when compared to the cells with no drug treatment. For the drug-free diploid cells 

(nearly 24K cells in total), the diameter medians for G0/G1, S, and G2/M phases were 

16±1, 17±1, and 18±1 µm, respectively. For the drug-stressed diploid cells (nearly 11K 

cells in total), the diameter medians for both G0/G1 and S phases was 19±2 µm, and 

21±3 µm for G2/M phase. The G0/G1 and S phases in drug-treated samples (be it for 

diploid or even polyploid cells) having highly overlapped distributions has also been 

observed with the scatter intensity measurements in the previous chapter. 

 

Figure 5-8: Box plot of the cell diameter measurements extracted from the brightfield images of the 

osteosarcoma diploid cells at different cell cycle phases (G0/G1, S, and G2/M) for a drug-free control 

(green), and a 24-hour drug-treated with 48-hour recovery samples (blue). Both samples are DRAQ5-

labelled and consist of combined data from two experiment repeats on ImageStream. The x-axis is 

categorial, showing repeated set of the cell cycle phases for each sample in a different colour, and the 

y-axis refers to the measured diameters expressed in distributions along the y-axis. The line inside the 

box refers to the median, the red diamond indicates the mean, and the box’s height encloses 50% of 

the events. 
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As noted from the cell diameter measurements, the diploid cells that have been 

exposed to the drug environment (then allowed to recover) do exhibit larger cell sizes 

compared to drug-free diploid cells. This has been seen in the previous chapter through 

both the forward and side scatter intensity readings. Therefore, it suggests that cell size 

shifts in the drug-stressed diploid cell is one of the factors affecting the previously 

reported increased intensity values. 

The importance of this observation comes from how it could affect any subsequent 

analysis on the cells, be it for sorting or classification purposes. For example, this result 

suggests that if we were to train a ML model to classify diploid and polyploid cells 

using a training set sampled from a drug-free sample, then chances are the model may 

mislabel many diploid cells in drug-treated samples and classify them instead as 

polyploid cells. In fact, this may also extend to polyploid cells in drug-free samples. 

In other words, such polyploid cells may get mistaken for drug-stressed diploid cells 

as they also exhibit different cell sizes than drug-induced polyploids. However, in the 

case of the latter, the rarity of polyploid cells the drug-free samples (especially cell-

cycling polyploid cells) makes it difficult to draw any meaningful analysis on them. 

Nonetheless, it remains true that a gradual increase in cell size is observed in drug-free 

samples as the DNA content increases with the change of cell position in cell cycle 

(green boxes in Figure 5-8). Polyploid cells in drug-free samples can then be assumed 

to reflect similar gradual increase in cell size (as also observed with drug-induced 

polyploid cells later in section 5.3.1.2.2). Therefore, the rest of the analysis in the 

following sections will be based on diploid versus polyploid cells in drug-treated 

samples. 

5.3.1.2 Cell size measurement of polyploid cells 

In this section, cell size variation in diploid and polyploid cells from drug-treated 

samples are reported. We first look at both populations as a whole, then we observe 

the changes through cell progression in the cell cycle. The latter should also highlight 

our target cells and how the compare, size-wise, to the rest of the sample. 
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5.3.1.2.1 Size measurement of overall diploid versus polyploid 

cells 

Figure 5-9 summarises cell size measurement in terms of diameter (a) and area (b) for 

the overall populations of diploid (blue, nearly 11K cells in total) and polyploid (red, 

nearly 27K cells in total) cells in drug-treated samples. Both measurements show shifts 

of cell size in polyploid cells towards higher values.  

 

Figure 5-9: Cell diameters box plot (a) and area histogram (b) of the osteosarcoma diploid (blue) and 

polyploid (red) cells from drug-treated samples (DRAQ5-labelled). These were extracted from the 

combined brightfield image data collected over two days on ImageStream. For the box plot, the x-axis 

is categorial, showing each phenotype in its assorted colour, and the y-axis refers to the measured 

diameters expressed in distributions along the y-axis. The line inside the box refers to the median, the 

red diamond indicates the mean, and the box’s height encloses 50% of the events. 

At the intersection of the area measurement histograms, approximately 88% of the 

polyploid cells could be seen to report higher area measurements than approximately 

85% of the diploid cells. Using the peak resolution formula from the previous chapter 

would give us 𝑅 = 0.68, which is not far off the values we found previously with the 

scatter intensity measurements. It is worth mentioning, that this resolution metric 

seems to be sensitive to the size of the polyploid population and its drug-treated sample 

type. For example, if only the polyploid population from the 24-hour drug-treated 

sample is compared to its diploid population (nearly 8K cells), the resolution will be 

𝑅 = 0.52. This is not truly representative of the overall polyploid population, because 

the 24-hour drug-treated samples tend to mostly have cells in the G0/G1 phase of the 
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first ploidy cell cycle. Therefore, the polyploid cells from the 48-hour drug-treated 

samples are needed for a proportionate representation. 

If a circular shape is assumed for the suspended cells, this will give us diameter 

medians of approximately 19±2 and 27±3 µm, for diploid and polyploid cells, 

respectively. 

These results suggest that the supervised ML models will most likely utilise the area-

related or area-dependant features to classify the diploid population with high 

precision (because it belongs to its own class in the classification). 

5.3.1.2.2 Size measurement of cell-cycling polyploid cells in 

drug-treated samples 

Continuing from the previous section, we examine here the cell size variation in 

subpopulations within drug-treated samples. This includes examining how the target 

cells, i.e. cell-cycling polyploid cells (at G2/M+ phase), fair in size against diploid 

cells of the same sample, thus addressing the feature’s potential in the classification of 

cell target images. 

Similar to the previous two sections, the cell size for different subpopulation of the 

diploidy (blue) and polyploidy (red) cell cycles from drug-treated samples is expressed 

via diameter measurement box plots in Figure 5-10. The diameter medians for G0/G1, 

S, and G2/M phases of diploid are the same as those reported in section 4.2.2. For the 

polyploid cell population, the diameter medians for G0/G1, S, and G2/M+ phases were 

25±3, 27±3 and 29±2 µm, respectively.  

These measurements support the chapter’s hypothesis as they show (via cell size here) 

how label-free (brightfield) images provide significant information in identifying our 

target cell-cycling polyploid cells against diploid cells. They also suggest that a size-

based threshold could be implemented (in a comparable manner to the previous 

chapter’s) to identify the target cells against the diploid ones. However, this is based 

only on direct area or diameter measurements on the brightfield images, and not on the 

bigger ensemble of features that can be extracted from either brightfield or darkfield 

data. If we are to allow the decision making to branch further with the rest of the 
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features in a ML model, then we could expect the predictions’ power to increase for 

our target cells. 

 

Figure 5-10: A box plot of the cell diameter measurements extracted from the brightfield images of 

the osteosarcoma diploid (blue) and polyploid (red) cells at different cell cycle phases (G0/G1, S, and 

G2/M) for a 24-hour drug-treated with 48-hour recovery sample. These were extracted from combined 

brightfield image data of DRAQ5-labelled samples collected over two days on ImageStream. For the 

box plot, the x-axis is categorial, showing each phenotype in a different colour, and the y-axis refers to 

the measured diameters expressed in distributions along the y-axis. The line inside the box refers to 

the median, the red diamond indicates the mean, and the box’s height encloses 50% of the events. 

In Figure 5-10, an increase in the RCV values can be observed in cell phases starting 

from drug-stressed diploid cells at the G2/M phase moving upward, suggesting 

increased size variability (and potentially classification noise) among the drug-treated 

polyploid cells. The target cell population, G2/M+ polyploid cells, has the largest cell 

size in the sample, with more that approximately 75% of its cell having larger 

diameters than diploid cells. Consequently, we can expect a supervised ML model to 

detect less diploid contamination in our target cells based on such area-related features. 

On the other hand, the polyploid cells at the G0/G1 and S phases are likely to be the 

least resolved cell classes, with more chances to be mistaken as the target polyploid 

cells than the smaller diploid cells. These observations do help in expecting the 

minimum prediction power of a supervised ML model trained and tested on our label-

free cell image data, which are shown next. These findings are also similar to those of 

scatter from the previous chapter, except in ML classification we cannot control the 

output yield (or recall here) by the learners.  
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Lastly, if thresholds based on size (or diameter here) are to be used, we can see that 

between the overall diploid cell population with median at approximately 19±2 µm 

and the target cell’s at 29±2 µm, we would need a size detection resolution of at least 

2 µm to gate 75% of the original target cell with minimum contamination from the 

original diploid population (less than 0.2%, by setting a threshold at the diploid’s 

median+3RSD, i.e. approximately 25 µm here). 

5.3.2 Image-based label-free machine learning classification of cell-

cycling polyploid cells 

The hypothesis of this chapter is tested here via running supervised ML models on 

nearly 280 numerical features (see section 5.2.3) extracted from the brightfield and 

darkfield cell images. As previously stated in the methods (section 5.2.4), the data are 

first trained using six different ML algorithms to look for three phenotypes: diploid 

cells, G0/G1 and S polyploid cells, and our target cells, the G2/M+ polyploid cells. 

The ML models have been trained with cells (a total of 600 cells), then used to classify 

cells from both the training set and new unseen data of all three sample types in our 

work (a total of approximately 100K cells). In the following subsections, we first 

discuss the results of when features from both images are used together in the 

classification. Next, we discuss when either image type is used on its own, along with 

the potential effect of each feature module on the classification. 

5.3.2.1 Classification results using all features of the brightfield 

and darkfield cell images 

Figure 5-11 summarises the classification results for the six tested models based on 

the label-free features extracted from the brightfield and darkfield images.  

When classifying the cells using brightfield and darkfield images together, all six 

models scored above 75% in the overall classification recall (Figure 5-11, a), with KN 

and LR being the weakest performers with nearly 6% difference from the top 

performer, the GB model. However, these overall scores are less informative regarding 

our topic of interest, which is the segregation power between the diploid cells versus 

the cell-cycling polyploid cells. When it comes to the classification of both populations, 
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all ML models had correctly labelled an average of approximately 70% of the target 

cell-cycling polyploid cells (Figure 5-11, b), and 90% for the diploid cells (Figure 5-11, 

c). Even though the prediction recall for target cells was variable between the weakest 

and strongest ML performer (from approximately 68% to 75%), the mislabelling of 

diploid cells as target cells was only approximately 0.7% or 0.3%, respectively, of the 

original diploid population for all models (Figure 5-11, b). The same is true for the 

predicted diploid cell class, where mislabelling target polyploid as diploid cells was as 

low for all six models (Figure 5-11, c).  

 

Figure 5-11: Plots summarising the classification performance using the brightfield (BF) and darkfield 

(DF) images via the reported recall scores. Plot (a) compares the average recall scores of the overall 

cell classifications using all extracted features from the BF and DF images together or individually. For 

classification with all features from both BF and DF images, the figure also shows the predicted numbers 

for our populations of interest: (b) cell-cycling polyploid cells and (c) diploid cells. The used six 

supervised ML models are the Gradient Boosting (GB), K-nearest Neighbours (KN), Logistic 

Regression (LR), Multi-layer Perceptron (MLP), Random Forest (RF), and Support Vector Machine 

(SV). 
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These results show that classification with brightfield and darkfield images with any 

of the models can significantly recognise the difference between these cell two 

populations, thus supporting the chapter’s hypothesis. Any mislabelling of other types 

of polyploid cells as the target cells (Figure 5-11, b) is tolerable in our experiment 

design, so the performance of these ML models can be considered successful for our 

objectives. Nonetheless, we recommend the tree-based GB and RF algorithms in the 

label-free classification of the target cells due to their consistent good performance, 

especially the GB when it comes to the darkfield images, which is consistent with 

results from previous works on similar applications [2]. 

5.3.2.2 Classification results using either brightfield or darkfield 

cell images and input features importance 

When it comes to classification using either only the brightfield or darkfield images, 

the overall perofmance for all model (Figure 5-11, a) saw nearly no effect when the 

darkfield images were omitted. On the other hand, omitting brightfield images resulted 

in a drop of approximately 5% in the overall recall values acrosss most models, with a 

drop of more than 10% for the KN model, while the LR one showed the least change. 

Other than the type of the used image, one of the main differences between the features 

we extracted from the brightfield and darkfield images is the cell’s overall area and 

shape measurments. This feature module is directly related to the cell body described 

by brightfield images. Thus, it is not computed for darkfield images as they show 

instead a granular pattern without a definitive cell boundary (see Figure 5-3). However, 

before we discuss the impact of the indivisual feature modules, we first address how 

well the models perfom when the brightfield and darkfield images are used indivisually 

to predict our populations of interest. 

In Figure 5-12, dropping either of the darkfiled or the brightfield images from the 

classifcations showed no significant changes in the capablity of all models to recognise 

that the defining features of the majoirty of the cell-cycling polyploid cells are different 

from those of the diploid cells, and vice versa. This, once again, supports the research 

hypothesis on that regard. One notable difference, however, can be seen in the increase 

of the mislabelling of other polyploid cells as target polyploid cells when only the 

darkfield images are used (Figure 5-12, b). This explains the previously mentioned 
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drop in the overall recall values for the darkfield compared to the other image sets 

(Figure 5-11, a). This agrees with the side scatter performance from the previous 

chapter, knowing that darkfield images are the same in principle except that they are 

two-dimensional.  

 

Figure 5-12: Plots showing the classification performance in terms of predicting the diploid and target 

cell-cycling polyploid cells, when all features extracted from either the brightfield (BF) (a, c) or the 

darkfield (DF) (b, d) images are used. The used six supervised ML models are the Gradient Boosting 

(GB), K-nearest Neighbours (KN), Logistic Regression (LR), Multi-layer Perceptron (MLP), Random 

Forest (RF), and Support Vector Machine (SV). 

Next, we use the leave-one-out approach to report on feature importance in Figure 

5-13. When classifying with brightfield images (Figure 5-13, a), there appears no 

major effect on the overall prediction performance when either feature module is 

dropped. This applies to their area and shape features, which were the only module 

missing from the darkfield images. However, in the previous results section, we saw 

how cell size is a good estimator for the studied cells. This suggests that there is a high 
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corelation between the brightfield feature modules, or at least for some of them. 

Intuitively, brightfield captures transmitted light and some forward scatter. For cells 

that are highly transparent in visible light, it can be seen how measurements of 

intensity for example can correlate with cell size. A small dip in the performance of 

some models is seen when the intensity feature module is dropped, but it does not 

appear significant when compared to the one observed in darkfield images next.  

 

Figure 5-13: The overall classification recall scores for the brightfield (BF) (a) and the darkfield (b) 

images against the type of feature modules used as a input. The used six supervised ML models are the 

Gradient Boosting (GB), K-nearest Neighbours (KN), Logistic Regression (LR), Multi-layer Perceptron 

(MLP), Random Forest (RF), and Support Vector Machine (SV). 

For darkfield images (Figure 5-13, b), we can see a noticeable drop in the classification 

performance across all models only when the intensity feature module is omitted. 

Radial distribution does measure intensity as well, but omitting it had no such negative 

effect. These suggest that the darkfield image classification is highly reliant on the 

overall intensity of the cells rather than the intensity distribution within. This then 

implies that the significant intensity shifts observed in the side scatter of diploid and 

polyploid cells (Chapter 4) are most likely the result of a proportionate increase in the 

side scattering organelles within the polyploid cells, rather than it being a localised 

change in intensity unique to the polyploid cells. It is worth mentioning that increasing 

the step size for the texture measurements on CellProfiler (1.5 µm in the reported 

results) appeared to negatively reflect on the classification performance. Nonetheless, 

these findings do not exclude the potential significance of texture or granularity related 
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features that may not have been well-represented by the low detection resolution of 

the machine. 

Lastly, we would like to clarify that some of the features calculated by the CellProfiler 

could appear repetitive when it comes to analysing images of healthy cells of the same 

cell line, especially their brightfield images. For example, measuring the intensities at 

the edge of cells could be meaningful in other applications with different cell lines or 

with FL images. However, for our application, this feature is highly correlated with 

the perimeters measured by the area and shape module. In other words, ML methods 

do not necessarily pick on intuitively meaningful features in the input data. The high 

collinearity in the features could also explain how the LR model was on the weakest 

side of the performers when it comes to brightfield images, but one of the highest 

performers in darkfield images (which have less collinearity). 

5.4 Summary 

In this chapter, we have experimentally validated the second hypothesis of the thesis 

that states that label-free brightfield and darkfield images can be used in the 

classification of cell-cycling polyploid cells in osteosarcoma against diploid cells. This 

has been done through supervised machine learning (ML) models using six algorithms 

on the cell image data collected via ImageStream. The models were set to classify cells 

collected from two-experiment repeats into three classes: diploid cells, G1 and S phase 

polyploid cells, and G2/M+ phase polyploid cells (i.e. the target polyploid cells). All 

models show high classification resolution between the two classes of interest, where 

less than 1% of either diploid or cell-cycling polyploid cells were mistaken for each 

other’s predicted class. In terms of overall classification, the brightfield images scored 

higher recall values than the darkfield images. The results also show that classification 

of darkfield images can be negatively affected when the intensity feature module is 

omitted. For the used ML models, the Gradient Boosting (GB) tended to be the overall 

strongest performer when using brightfield and darkfield images together or 

separately. The chapter also reported from the brightfield images the observed cell size 

differences between the target cells (a median diameter of 29±2 µm) and the drug-

stressed diploid cells (19±2 µm). Based on which, a size detection resolution of at least 

2 µm was recommended to detect approximately 75% of the original target cells with 
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minimum diploid contamination. The overall results suggest that that area and 

intensity-based features in images can be adequate in identifying the target cells from 

the diploid cells. However, ML based analysis can provide good assessment of the 

hundreds of extracted image features when it comes to meeting the desired 

classification objectives. They could also minimise the misclassification of non-target 

polyploid cells, where less than 20% of such cells in the original sample were 

misclassified as target. Lastly, the chapter highlighted in the methods the limitation of 

the standard labelling protocol of DRAQ5 for cell cycle analysis on ImageStream, and 

presented our proposed steps to optimise it. 
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6.1 Introduction 

In this thesis, we presented our experimental and analytical work that discussed the 

detection of cell-cycling polyploid cells in osteosarcoma through their label-free 

parameters on flow cytometry. The thesis started with stating the research problem, 

hypotheses, and objectives in Chapter 1. In Chapter 2, we gave an overview on flow 

cytometry, which is the high throughput single cell analysis technique used in the 

current work, along with a reference to our results to help explain the important 

concepts and any method limitations. This was followed by Chapter 3 where we 

established the control environment of the thesis experiments, while Chapter 4 and 

Chapter 5 discussed our characterisation results of the cell label-free parameters on the 

CFC and IFC, respectively. In the following sections, we present the thesis overall 

discussion, conclusions and main findings, as well as the future work and 

recommendations. 

6.2 Overall thesis discussion and conclusions 

6.2.1 Thesis hypotheses and primary objectives: results highlights and 

discussion 

Through our experimental and analytical results, we have validated both of our thesis 

hypotheses via showing that the label-free scatter or imaging features can be used to 

identify cell-cycling polyploid cells against diploid cells.  

For the first hypothesis and primary objective, we have shown that the high forward 

and side scatter intensities of target polyploid cells can be used to identify them in 

drug-treated samples with very high yield (approximately 85-100%) and low diploid 

contamination (approximately 0.02-0.4% of the original diploid population, depending 

on the thresholds). This was done through analysis on data collected from experiments 

on CFC instruments, where overall results showed that more than 75% of the cell-

cycling polyploid cells had higher forward and side scatter intensities than the diploid 

cells (area measurement on the FACSVerse). Scatter thresholds were then constructed 

based on these results (along with those of scatter control references) to perform 

scatter-based automated clustering to find the target cell population. The clustering 



Chapter 6: Overall thesis discussion, conclusions, and future work 

 
125 

 

results showed that the purity of the target cells can be optimised by the side scatter of 

the cells, while forward scatter (area measurement) can be used for general polyploid 

detection. In addition, the results also showed that the difference in the observed 

intensity between the diploid and polyploid populations is mainly a consequence of 

the width and peak measurements of the forward and side scatter signals, respectively. 

For the second hypothesis and objective, supervised machine learning (ML) 

classification with six different algorithms showed that the brightfield and darkfield 

images can be used in the classification of target cells against diploid cells. The image 

data were collected from IFC experiments conducted on ImageStream, while the 

feature analysis and classification were done through CellProfiler. All tested ML 

models were able to classify the target cells with a high prediction recall (yield) 

(approximately 68-75%), where nearly 0.3-0.7% of the diploid cells in the original 

samples were mislabelled as target cells. While both image types were effective where 

the hypothesis is concerned, the results showed that the brightfield images had a better 

overall classification performance than the darkfield images. The classification results 

also showed that brightfield images were minimally affected by omission of individual 

feature modules, whereas the predications of darkfield images were affected when the 

intensity feature module was ignored. From the brightfield images, the measured 

median diameters were 29±2 µm for the target cells, and 19±2 µm for the overall 

diploid population in the drug-treated samples, which suggests that a minimum 

detection resolution of 2 µm would be needed to detect 75% of the target cells with 

approximately 0.2% misclassifications of diploid cells as target. The findings do 

suggest that direct measurements related to cell size or overall intensity from the 

images could provide sufficient ground for the target cell detection without the 

complexity of the ML analysis. Nonetheless, the said analysis can help evaluate the 

overall performance of the large number of extracted features, as well assess any 

assumptions about the contributions of the various features to the desired detections. 

It can also minimise the classification overlap of the target cell with other non-target 

cells (to nearly 20%). 

In conclusion, all the four explored label-free parameters showed their capability of 

detecting the target cell-cycling polyploid cells against diploid cells. We presume that 

both forward scatter and the brightfield images benefited from their capability to assess 
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the size changes between the cells, along with the changes in transmitted light for 

brightfield images. For side scatter and darkfield images, both showed sensitivity to 

the overall intensity measurement between the two population of interest, which 

seemed to scale with the perceived size changes between them. The findings also 

suggest that polyploid cells only assume such high scattering features or significant 

size changes after they commit to a polyploidy cell cycle. The sources for which are 

assumed to scale from their previous diploidy state, be it in terms of cell content or 

overall shape. Nonetheless, the findings are limited by the resolution of the used 

detectors (especially the CCD cameras), so it is possible for unique scatter patterns to 

exist between the two phenotypes in higher resolution. It is also possible that the 

observed scatter sources within the cell may be biologically different between the 

phenotypes, despite sharing the same overall scatter intensity distributions. 

It should be noted that both hypotheses were assessed through DRAQ5-labelled 

samples to help recognise each population for the scatter analysis, but the labelling 

was found to introduce overall scatter intensity shifts. Nonetheless, we expect the 

analysis results to apply to label-free samples, as well. This is because the overall 

relative shifts observed between the different sample types when they were labelled, 

were also observed between them when they were label-free. Another point to 

highlight is that the study assessed the polyploid detection against drug-stressed 

diploid cells. While a shift between the scatter and sizes of the drug-free versus drug-

stressed diploid cells was observed, we similarly assume here that our findings 

(regarding the ploidy-diploidy resolution) will still apply in drug-free samples, except 

with some possible overall shifts.  

6.2.2 Thesis secondary objectives: results highlights and discussion 

Beside the main research objectives, the work in this research investigated several 

aspects relating to the experimental control measures, results reproducibility, and the 

robustness of the analysis methods. These were presented in the form of four 

objectives, which are discussed below. 

Regarding the first objective, we have presented in Chapter 3 (section 3.4) a general 

guideline for the handling of the cell samples to ensure reproducibility of the biology 
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across the different platforms. We also showed how sensitive scatter measurements 

can be to potential instrumental noise or the illumination power, and presented our 

approach regarding assessing meaningful intensity shifts (section 3.3.2.2). Some 

optimisation steps to the standard DRAQ5 labelling protocol were necessary to make 

our biology readout achievable on ImageStream (see section 5.2.1.3 in Chapter 5). 

DRAQ5 is commonly used in ImageStream to visualise the nucleus of live cells rather 

than quantify the DNA. Some works that employed it for cell cycle analysis did so in 

low concentrations [1], which were not sufficient for cell cycle analysis on 

heterogeneous samples of actively-cycling human diploid and polyploid live cells (i.e. 

the studied cell sample). Nonetheless, more optimisation experiments on the proposed 

protocol are recommended to serve wider applications. More specifically, the tolerance 

degree of the DRAQ5 labelling concentrations could be optimised in terms of 

providing sufficient and stable DNA labelling for cell cycle labelling without affecting 

the instrument through cross contamination. In section 5.2.1.3 in Chapter 5, we also 

discussed other instrument-based limitations that hindered the cell cycle readout 

reproducibility on ImageStream, thus requiring for each of its experiments a parallel 

one on a CFC instrument. 

For the second objective, we have unified the gating analysis approach on the data 

collected by CFC instruments through supervised automated gating tools. This was 

done through a customised version of DAFi [2] gating script on R updated by this 

work, which introduced more flexibility such as handling non-transformed gating for 

cell cycle analysis, as well as accepting FCS files from either analogue or digital CFC 

instruments (see section 3.2.3.2 in Chapter 3). 

For the third objective, we have identified the drug-free cell samples and a set of 4-25 

µm polystyrene beads (see section 4.3.1 in Chapter 4 for more) as scatter reference 

samples for the detection of cell-cycling polyploid cells. We have noted, however, that 

beads as scatter sample standards are more suited for CFC instruments because of the 

high pixel saturation in the darkfield images on ImageStream (see Chapter 2 section 

2.2.2.2.1). We also noted that the peaks of the side scatter intensity for the reference 

polystyrene beads can be perceived differently, relative to the cells, by the different 

CFC instruments depending on their optics (see section 4.3.1.1). The spread in their 

intensity distributions was also suspected to be sensitive to their travelling position 
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within the focused stream. All of which should be taken into consideration when 

conducting scatter experiments across platforms of different systems in terms of optics, 

fluidics, or electronics. In literature, there have been efforts to define a standardised 

scatter unit to calibrate the scatter channels in different flow cytometers, such as the 

scatter cross section [3], [4]. However, this approach is suited for objects in the 

submicron regime because large particles (even those uniform in composition such as 

beads) do not exhibit linearity between size and scattered light over all angles. Even if 

linearity were to be applicable, objects with sizes comparable to the laser beam widths 

or larger would have variable scatter cross sections due to the uneven exposure. For 

cells, this can be complex to compute due to the presence of intracellular structures 

and their variability between the different phenotypes. Uneven exposure of large cells 

could also make it less practical to use tuneable hydrogel particles to create optical 

replicates of target cells (in terms of overall refractive index or embedded organelles) 

[5]. For one reason, this would require a deeper investigation on the scatter sources 

within the target cell and their distributions (see section 6.3.1 in future works). For 

another, replicating possibly unique organelle distributions within cells may not be 

feasible, thus may require different manufacturing procedures of said particles per 

instrument. Therefore, in our application, we generally recommended the referenced 

polystyrene bead sizes kit as a starting control set for the side scatter detection of cells, 

subject to optimisation with different bead sizes per instrument. 

The last objective is concerned with defining the specifications for a scatter-based or 

image-based label-free detection of the target cells on any platform. From our findings 

and the previous discussions, we echo our remarks that such specifications can highly 

be dependent on the instrumentation of said platform. For example in terms of optics, 

this can be affected by the illumination exposure (e.g. light wavelength, spot size, and 

power), collection angles or the resolution of the detectors. In terms of fluidics, this 

can be the size of the focused core or its tolerance to any turbulence sources. The thesis 

discussed an example of the effect of such variations in the instruments through the 

aforementioned beads controls, where the scatter intensity peaks of cells appeared 

shifted relative to beads scatter between two CFC instruments, the FACSCalibur and 

FACSVerse (see section 4.3.1.1). Overall, we have observed that the measured label-

free parameters on FC instruments for diploid and polyploid cells result in continuous 

distributions with a single or double peaks, depending on the enrichment degree of 
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either phenotype (see Figure 4-2 in Chapter 4). For detection specifications aiming for 

the least diploid mislabelling within the target cell population on any platform, we 

recommend the following reference samples or resolution targets for the studied label-

free parameters. For forward scatter, we highlight the width measurement, rather than 

peak intensity, for the target cell detection. For such measurement, the detectors should 

be able to resolve a size difference of at least 2 µm for cells (based on which, the cell 

offset, perpendicular to the optical path, should be less than 5 µm from the detection 

centre). Side scatter generally produces weaker signals compared to forward scatter 

for particles above the submicron (less than the forward’s by a factor of 103 [6]). For 

it to be able of target cells detection, we suggest a system with optics and detectors 

capable of resolving the side scatter peak intensities of the tested 4-25 µm polystyrene 

beads set (see beads specification in section 3.2.1 in Chapter 3, Figure 4-12 in Chapter 

4, and the discussion in section 4.3.1.1). For either of the brightfield or darkfield 

images, the special resolution of the detection camera affects the resolution of the 

measured size or total intensity. Therefore, once again, we recommend a resolution of 

at least 2 µm/pixel (where the system calibrated images on ImageStream had a 

resolution of 0.5 µm/pixel in the current work). 

6.3 Future work and recommendations 

We present here directions for potential future works along with our recommendations. 

These are listed in three sections based on the area of interest that they could serve. 

6.3.1 Scatter sources in osteosarcoma cells  

The thesis conclusions suggest that the observed side scatter differences between 

diploid and polyploid cells are likely a consequence of a size scaling of the latter. 

Nonetheless, further investigation may provide better insight on this readout. The 

presented work was limited by the low resolution of the IFC. As a result, some 

information regarding the distributions of the observed granularity within the cell 

darkfield images may have been lost. Therefore, we recommend imaging the cells with 

high resolution microscopy. General image inspections also suggested that regions 

occupied by the nuclei (whenever it was found in focus, see Figure 5-3 in Chapter 5) 

tended to be dimmer than other locations in the cells. Further inspections with careful 
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region masking could provide results that help expand on the overall topic of side 

scatter sources in cells. Naturally, attention should be paid to the used illumination 

light characteristics (e.g. wavelength, power distribution, or polarisation), as the 

resulting scatter could vary in response. 

6.3.2 Cell data analysis in flow cytometry 

Based on the tested analysis methods, we discuss here two possible directions for cell 

data analysis optimisation in flow cytometry. The first is concerned with the handling 

of CFC data from different instruments. We believe that centralised gating analysis 

could benefit from automated gating tools such as DAFi with further improvement. 

For example, the number of input configuration files could be minimised on DAFi by 

including compatible normalisation steps before gating. This could be in the form of 

automated cluster recognition and gates shift correction based on a reference control. 

The second is regarding supervised ML analysis on IFC data. The published analysis 

pipeline for cell classification via CellProfiler Analyst [1], [7] provides a helpful open-

source tool that could serve various application. However, its data management can be 

less user friendly, and its analysis output provides limited flexibility to evaluate the 

classification performance. For example, the pipeline entails some expertise in SQL 

and Regular Expression to manage the databases and help clean the input for the 

classifiers. There also exists some restrictions in handling the input features for the 

classifier tool. Therefore, we do suggest for works interested in deeper analysis to 

utilise different tools or directly scripting their ML model tests for better control on 

the outcomes.  

6.3.3 Label-free detection or sorting of polyploid cells 

As part of the thesis objectives (section 6.2.2), we have proposed a couple of measures 

that could assist in the detection or sorting of the cell cycling polyploid cells on any 

platform. The studied label-free detection of polyploid cells could also be attractive 

for less complex detection or sorting platforms such as microfluidic devices, provided 

that they carry well-defined detection systems that can meet the minimum 

recommended detection resolutions (see section 6.2.2). In microfluidic devices, light 

detection can be performed with on-chip integrated sources and detectors [8], [9]. For 
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some of these systems, cell focusing (or sorting) may utilise negative dielectropherises 

instead of hydrodynamic focusing. This method could require extra steps to optimise 

the relevant parameters, such as the relative electrical permittivity of cells and media 

(not covered by the thesis). 

When it comes to experimental sorting of rare cells such as the cell-cycling polyploid 

cells, one generally needs to consider steps for enriching their low numbers for a better 

sorting yield, recovery, and purity. This can be done through increased drug dose, as 

was followed in the current work. However, we do recommend reducing the intended 

sorting yield for the target cells to minimise the diploid cell contamination in processed 

24-hour drug-treated samples (see section 4.3.2 in Chapter 4 for more). Sorting 

experiments should also consider potential diploid contamination from doublet events. 

The thesis results showed that doublets exclusion via scatter could be less resolved in 

diploid-polyploid heterogeneous samples (compared to resolving them via the DNA 

label). Therefore, the quality and the handling of the prepared samples should be 

observed to minimise cell aggregations (see also the recommended sample handling 

protocol in section 3.4 in Chapter 3).  

For the sort of live osteosarcoma cells, preliminary experiments are recommended to 

confirm that the live cell suspensions do maintain their cell phase status throughout 

the sorting. While putting cells on ice could slow their biology, these cells may 

experience some inevitable changes in the environment temperature (e.g. inside the 

sorter or during DNA labelling incubation post sort). The suspension media or buffer 

may also experience concentration changes. All these factors could affect any 

subsequent sorting validation. Sorting on fixed cells instead of live ones could be 

performed first, to test the capability of the used instrument in performing the label-

free sort with the intended yield, recovery, or purity rates (without worrying about the 

changing biology). For such case, however, any morphological changes in the cells 

due to the fixing process should be noted beforehand and characterised for the used 

instrument. 

For benchtop flow cytometry sorters with fluorescence detection, adding a non-toxic 

labelled parameter to the scatter sorting thresholds, such as cyclin B1-eGFP, could 

help target the cell-cycling polyploid population. However, this could impact purity 

by excluding other potentially interesting polyploid cells (e.g. cells at the G0/G1 phase 
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of the second ploidy cell cycle), while possibly still preserving the original diploid 

contamination (as they tend to be cells at the G2/M phase of the diploidy cell cycle, 

see Figure 4-14 in Chapter 4). 
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Appendix A 

A python script to automate the conversion of the filtered populations text file by DAFi 

to FCS 3.0 files  

# STEP 0: import needed libraries 
import cytoflow as flow 
import pandas as pd 
import tkinter as tk 
from tkinter.filedialog import askopenfilenames 
import os 

# STEP 1: open a window dialog for the user to choose the desired DAFi txt file(s) 
root = tk.Tk() 
root.withdraw()# To hide the root window 
 
# Each element in the list represents one file path. 
files_path_list = askopenfilenames(filetypes = [("TXT Files",".txt")], initialdir="/",  
                                  title='Please select the DAFi txt output file(s) to be split and converted:') 

# STEP 2: read the txt file(s) as pandas dataframe, each element in the list represents one data set. 
files_raw_list = [pd.read_csv(file_path, delimiter="\t") for file_path in files_path_list] 

#Optional: check that you have imported the first or first two elements correctly by viewing their first 5 lines 
for i in range(len(files_raw_list)): 
    print(files_raw_list[i].head()) 
    print("=========================================================================") 

#STEP 3: Next we loop to create individual subpopulations. 
files_data_subsets_dicts = {} 
for i in range(len(files_raw_list)): #this takes each original txt file. 
    #use the max value of Population col to decide how many populations u r generating first 
    range_max_pop_ID = files_raw_list[i]['Population'].max() + 1 #This allows copying original sample as pop0 
    subset_name = "" 
    data_subsets_dicts = {} 
    for ID in range(range_max_pop_ID): 
        #plus 1 above ensures max as a value is included, otherwise it does 0 to max-1 
        subset_name = "pop{}".format(str(ID)) 
        print(subset_name) #this is just to check the key names for each subset is working. 
        #first exclude the whole sample (aka pop0) 
        if ID == 0: 
            data_subsets_dicts[subset_name] = files_raw_list[i] 
        else: 
            #now filter for all subsets, where an event is part of a subset when TRUE = 0 (FALSE = 1, that's based 
on DAFi) 
            data_subsets_dicts[subset_name] = files_raw_list[i][files_raw_list[i][subset_name] == 0] 
    files_data_subsets_dicts[i]= data_subsets_dicts 
    data_subsets_dicts = {} #so on exist it is an empty temp dict. 

#optional:  check you imported the first or first two elements correctly by viewing their first 5 lines 
for file_key in files_data_subsets_dicts: 
    for subset_key in files_data_subsets_dicts[file_key]: 
        print(files_data_subsets_dicts[file_key][subset_key].head()) 
        print("=========================================================================") 
    print("=========================================================================") 
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#Applying modifications on the values of the subset_keys (i.e. subsets) for each file_key (i.e. file) in the files 
dict   
for file_key in files_data_subsets_dicts: 
    #get pop1 col index from any subsets in it 
    pop1_col_index = files_data_subsets_dicts[file_key]["pop1"].columns.get_loc("pop1") #just calls for the 
1st subset 
    for subset_key in files_data_subsets_dicts[file_key]: 
        #choose all cols before pop1 for the current subset_key, then re-write the current subset_key in one line   
        files_data_subsets_dicts[file_key][subset_key] = files_data_subsets_dicts[file_key][subset_key].iloc[:, 

0:pop1_col_index] 

# check you imported the first or first two elements correctly by viewing their first 5 lines 
# This helps check the size of the filtered subpopulations where size represented as (# of events, # of 
channels in FCS) 
for file_key in files_data_subsets_dicts: 
    for subset_key in files_data_subsets_dicts[file_key]: 
        print(files_data_subsets_dicts[file_key][subset_key].head()) 
        print(type(files_data_subsets_dicts[file_key][subset_key])) 
        print("shape/size of ", subset_key, " is ", (files_data_subsets_dicts[file_key][subset_key]).shape) 
        print("=========================================================================") 
    print("=========================================================================") 

 

# STEP 4: create multiple empty Cytoflow experiments datatype (for each file) with the desired (empty) 
channels. 
 
# we are making individual experiments instead of tubes, to allow for possibility of some files having 
different channels. 
files_data_ex_dict = {} 
for file_key in files_data_subsets_dicts: 
    files_data_ex_dict[file_key] = {subset : flow.Experiment() for subset in files_data_subsets_dicts[file_key]} 
 
# Next you need to add channels with no data to the empty experiments, so they can be smoothly added by 
to the metadata 
#for i in range(len(data_list)): 
#    for channel in data_list[i].columns: 
#        ex_list[i].add_channel(channel, data=None) 
 
for file_key in files_data_subsets_dicts: 
    for subset in files_data_subsets_dicts[file_key]: 
        for channel in files_data_subsets_dicts[file_key][subset].columns: 
            files_data_ex_dict[file_key][subset].add_channel(channel, data=None) 

#Optional: check that you have created the correct number of empty experiments in the list. 
for file_key in files_data_subsets_dicts: 
    if len(files_data_subsets_dicts[file_key].keys()) == len(files_data_ex_dict[file_key].keys()) : 
        print("Everything is fine! You can keep going!") 
        # If this was one script, I would put here the rest of the code. 
    else : 
        print("ERROR! The length of the empty experiments list does NOT equal the number of imported csv 
files!") 
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# STEP 5: You have to add conditions that define the tube(s) as it is a required argument in the export 
function. 
 
for file_key in files_data_subsets_dicts: 
    for subset in files_data_subsets_dicts[file_key]: 
        files_data_ex_dict[file_key][subset].add_condition("Subset", "object") 

# STEP 6: add the events of your tube to the experiment. 
# you also will fill each conditioned tube with a value for its condition(s) to identify it. 
 
for file_key in files_data_subsets_dicts: 
    for subset in files_data_subsets_dicts[file_key]: 
        files_data_ex_dict[file_key][subset].add_events(files_data_subsets_dicts[file_key][subset], {"Subset" : 

subset}) 

 

# Optional: check how conditions mostly are defined in one of the data files here. 
print(files_data_ex_dict[0]["pop1"].data.dtypes) 

#Optional: print the data to double check they filled up fine 
# also checks the current metadata (which isn't much except for the channels' names as keys) 
for file_key in files_data_ex_dict: 
    for subset in files_data_ex_dict[file_key]: 
        print("shape/size of ", subset, " is ", (files_data_ex_dict[file_key][subset].data).shape) 
        print(files_data_ex_dict[file_key][subset].data.head()) 
        print("**************************") 
        print(files_data_ex_dict[file_key][subset].data.tail()) 
        print("**************************") 
        print(files_data_ex_dict[file_key][subset].metadata) 
        print("=========================================================================") 
    print("=========================================================================") 
    print("=========================================================================") 

#STEP 6: prepare the file names and saving location for the FCS files generated next 

# Make a list of original file names: 
filenames_list = [os.path.splitext(os.path.basename(files_path_list[i]))[0] for i in range(len(files_path_list))] 
 
# Optional: print to check name example to be used below 
print(filenames_list) 
 
# Do the same but for directories (in this example script, this does not do much because we only call one 
directory). 
directory_list = [os.path.split(files_path_list[i])[0] for i in range(len(files_path_list))] 
print(directory_list)  
 
#Also list the desired DAFi gate names for ease 
#NOTE: This also assumes same gating hierarchy for all input files. 
subsets_names = ["FULL", "Whole_Cells",  
                 "Singlets_D5", 
                 "GFP", "No-GFP", 
                 "Diploids",  
                 "Polyploids",  
                 "G0-G1_Diploids", "S_Diploids", "G2-M_Diploids", 
                 "G0-G1_Polyploids", "S_Polyploids", "G2-M_Polyploids", "G0-G1_Polyploids2" 
                ] 
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“”” 

We need Next to add at least the standard metadata to our FCS file to be created. 
The scripts of the Cytoflow functions named "export_fcs" and "fcswrite", show that they already count for 
some of the standard keywords such as $BEGINSTEXT, $ENDSTEXT, $BEGINANALYSIS, $ENDANALYSIS, 
$BEGINDATA, $ENDDATA, $BYTEORD, $DATATYPE, $MODE, $NEXTDATA, $TOT, and $PAR. In other words, 
we don't need to input them manually, thus they are commented off in the codes below. The functions are 
set to always choose $DATATYPE: F, $BYTEORD as '4,3,2,1', and $MODE as L. If one wishes to change these 
fo    goo      o , th   th        to b   h  g   f o  w th   th      pt of th  “f  w  t ” fu  t o . 
 
In addition, based on the data imported from the input csv file and the metadata range you input yourself for 
the channels, these functions will also automatically fill in some other FCS standard metadata such as PnN, 
PnB, PnR. 
 
Even though the functions are made to basically cover writing the main keywords in the accepted format, we 

may need to input any other FCS file keywords (e.g. $BTIM ) in the metdata dictionary key "fcs_metadata", in 

case the functions gave errors. 

Some extra notes: 
In the current versions of FlowJo, remember if you opened the DAFi transformed FCS file along with its 

original one (where both share the same channel names), FlowJo may assume the default display of the axis 

range based on the first FCS file you import. For example, if the first FCS file has a range of 2^12, that's what 

will be displayed regardless of whether the second file is higher (e.g. 2^18) or not.  

 

 

 

For next step, the current code treats each sample/tube as being almost identical in terms of supposed range 

etc, but you can fix it. 

This is the same for the input metadata, where some are recommended to be input individually in a list 
above or  extracted from the original file names. 
””” 
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# STEP 7: add required metadata to each file's experiment! 
# Set the channel range according to the input data 

ch_r = 4096.0 #set at 4096.0 with FSC3 for original DAFi (1024.0 with FCS2 in the thesis customised version) 
 
for file_key in files_data_ex_dict: 
    counter = 0 
    for subset in files_data_ex_dict[file_key]: 
        files_data_ex_dict[file_key][subset].metadata['ignore_v'] = [] # metadata that are added by Cytoflow's 
import files, so done manually here. 
        files_data_ex_dict[file_key][subset].metadata['name_metadata'] = '$PnN' # same as previous comment. 
        for t, channel in enumerate(files_data_ex_dict[file_key][subset].channels): 
            files_data_ex_dict[file_key][subset].metadata[channel] = {'type': 'channel', 'fcs_name': channel, 
'range': ch_r} 
        files_data_ex_dict[file_key][subset].metadata['fcs_metadata'] = {files_path_list[file_key]:  
                                                                         {'$EXP': 'Basmah Almagwashi (BA)',  
#                                                                          '$BTIM': '13:11:00', '$DATE': '22-Oct-2019', '$ETIM': '13:13:00', 
                                                                          'CF_File': 'These are DAFi-filtered subsets converted to FCS3.0 via 
python - BA', 
                                                                          'Subset ID': subsets_names[counter] 
                                                                         }} 
        counter = counter + 1 
 
#Optional: show that our changes have been added successfully on the first experiment as an example. 

print(files_data_ex_dict[0]["pop1"].metadata)  

 
# STEP 8: export now as FCS3.0 files, which is based on the conditions you had for each sample/tube. 

# This defines the sample type; here it assumes all imported files (for a set of txt DAFi files) are same sample 

type 

sample_name = "24T48R_CON_D5" 

 
#Specify in "by" the conditions you are choosing and in "subset" their values 

for file_key in files_data_ex_dict: 
    counter = 0 
    for subset in files_data_ex_dict[file_key]:         
        try: 
            flow.ExportFCS(base = 
("{0}_"+sample_name+"_{1}_{2}").format(filenames_list[file_key],"{0:0=2d}".format(counter),subsets_name
s[counter]), path = directory_list[file_key],  
                       by = ["Subset"], subset = ('"{0}" in 
Subset').format(str(subset))).export(files_data_ex_dict[file_key][subset]) 
            counter = counter + 1 
            pass 
        except: 
            #exception is often raised by flow's export when there is an empty subpopulation in DAFi 
            #so count the loop and continue to next iteration without any fcs3 exports 
            counter = counter + 1 
            continue 
         
# This outputs an FCS 3.0 file for each subpopulation in the DAFi text input. 
#There is a possibility that these files won't open on some specific BD software like Diva because they may 

have their own required keywords. 
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Appendix B 

 

Supplementary Figure B-1: Example of brightfield cell images tiled (15 x 15) via MATLAB for 

analysis on CellProfiler. The example shows polyploid cells at the G2/M phase. 

 

 

Supplementary Figure B-2: Two brightfield image examples of unhealthy cells that are excluded upon 

visual inspection from the selection of the machine learning training set. Both examples are polyploid 

cells at the G1 phase. 
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