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Abstract. 3D face reconstruction from a single image is a challenging
problem, especially under partial occlusions and extreme poses. This is
because the uncertainty of the estimated 2D landmarks will affect the
quality of face reconstruction. In this paper, we propose a novel joint 2D
and 3D optimization method to adaptively reconstruct 3D face shapes
from a single image, which combines the depths of 3D landmarks to
solve the uncertain detections of invisible landmarks. The strategy of our
method involves two aspects: a coarse-to-fine pose estimation using both
2D and 3D landmarks, and an adaptive 2D and 3D re-weighting based on
the refined pose parameters to recover accurate 3D faces. Experimental
results on multiple datasets demonstrate that our method can generate
high-quality reconstruction from a single color image and is robust for
self-occlusions and large poses.

Keywords: Face reconstruction · Occlusion · Joint 2D and 3D · Coarse-
to-fine · Re-weighting.

1 Introduction

Human reconstruction from images, especially for faces, is an important and
challenging problem, which has drawn much attention from both academia and
industry [15, 24]. Although existing face reconstruction methods based on mul-
tiple images have achieved promising results, it is still a tough problem for a
single input image, especially under partial occlusions and extreme poses.

3D Morphable Model (3DMM) [6, 14] is a popular and simple linear para-
metric face model. Some methods [1,32,33] achieve 3D face reconstruction from
a single image using convolutional neural networks (CNN). To fit 3DMM to a
facial image with self-occlusions or large poses, Zhu et al. [37] and Yi et al. [34]
take a 3D solution to reconstruct the face with 3D landmarks. However, these
methods ignore the effect of 2D landmarks for visible parts which are more accu-
rate. Moreover, lack of enough 3D face datasets with ground-truth for training
limits the performance of these learning-based methods. By contrast, traditional
optimization-based methods [18,20,29] are more flexible to fit the 3DMM model.
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But these methods heavily depend on accurate 2D landmark detection, and tend
to generate poor or incorrect face reconstruction for facial images with occlusions.
To address the occlusion problem, Lee et al. [23] and Qu et al. [26] discard the
occluded landmarks, but their methods lack constraints of complete landmarks.
To fix 2D landmark correspondence errors caused by face orientation or hair oc-
clusion, Zhu et al. [36] and Luo et al. [20] propose landmark marching methods
to update silhouette vertices. However, they need to manually label 68 land-
mark vertices, which is laborious and time consuming. Due to the lack of depth
information, these traditional methods are still hard to correctly reconstruct in-
visible areas, and hence difficult to deal with extreme poses, e.g., 90◦ side faces.

Fig. 1. 3D face reconstruction results from
single images using our method.

Inspired by recent work on 3D
landmark detection, we use the depth
information of 3D landmarks together
with 2D landmarks to resolve the in-
herent depth ambiguities of the re-
projection constraint during 3D face
reconstruction by joint 2D and 3D
optimization. 2D landmarks give the
pixel positions of facial silhouettes
based on the input image, while 3D
landmarks give the depth positions of
the facial silhouettes. It is hard to
decide which detected landmarks are
more believable. In order to effectively combine 2D and 3D landmarks, we pro-
pose a 2D and 3D re-weighting method to adaptively adjust the weights of 2D
and 3D landmarks. In addition, instead of solving pose parameters directly, we
design a coarse-to-fine method for accurate face pose estimation. Our method
does not need manual intervention, and is robust to extreme poses and partial
occlusions. Experimental results demonstrate that our method outperforms the
state-of-the-art methods on AFLW2000 [37] and MICC [4] datasets, especially
for non-frontal images. Fig. 1 shows some 3D face reconstruction results using
our method.

Our main contributions are summarized as follows:

– Joint 2D and 3D optimization. We formulate the 3D face reconstruction
problem in a unified joint 2D and 3D optimization framework. To our best
knowledge, our method is the first optimization method using both 2D and
3D information for face reconstruction. Our method is fully automatic and
robust to extreme poses and partial occlusions.

– Coarse-to-fine pose estimation. To obtain accurate pose parameters for
face reconstruction, we propose a coarse-to-fine scheme using both 2D and 3D
landmarks. We generate a coarse pose estimation by fitting the 3DMMmodel
with the silhouettes of 2D landmarks and obtain a refined pose estimation by
replacing the invisible 2D landmarks with the corresponding 3D silhouettes.

– Adaptive 2D and 3D re-weighting. We propose an adaptive 2D and 3D
re-weighting scheme to adaptively adjust the weights of 2D and 3D land-
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marks according to the acquired pose estimation. Among them, 2D land-
marks are sufficiently accurate for visible areas, and the depth information
of 3D landmarks will improve the detection accuracy for invisible areas. For
example, the weights of 2D landmarks should be increased under small poses
while the weights of 3D landmarks should be increased under large poses.
To achieve this, we provide two adaptive weight adjustment schemes to deal
with small-pose and large-pose, respectively.

2 Related Work

Over the years, many methods solve the face reconstruction problem caused by
self-occlusions or head rotations with multiple images. Although these methods
achieve promising results, the requirement of multiple inputs limits their prac-
tical applications. It is more prospective and challenging to reconstruct a 3D
face from a single image. In this section, we review the related work on 3D face
reconstruction from a single image.

2D and 3D Face Alignment. Most of early face alignment methods can
only roughly detect the 2D face landmarks, until the emergence of new techniques
based on cascaded regression [9, 13, 37]. This kind of methods largely improves
the accuracy of 2D face alignment methods and performs well on the LFPW [5]
and 300-W [28] datasets. With the development of convolutional neural networks
(CNNs), Sun et al. [30] propose to acquire 68 facial landmarks by a CNN cascade
method. Multi-task learning and attribute classification are combined with CNN
to obtain better results [35]. However, these methods are mainly effective for
near-frontal faces. Some methods are proposed to solve 3D face alignment [21,37]
that works better on large poses. Bouaziz et al. [7] propose an algorithm of
2D/3D registration based on RGB-D devices. Yi et al. [10] take an image and
2D landmarks as inputs and use a 2D-to-3D network to learn the corresponding
3D landmarks, which can detect both the 2D landmarks and 3D landmarks.

Single-view 3DMM-based Face Reconstruction. 3D Morphable Model
(3DMM) is first proposed by Blanz and Vetter [6], and improved to have ex-
pression parameters by using 3D FaceWarehouse [11]. 3DMM has a wide range
of applications due to its flexibility and convenience by adjusting parameters
to present different face shapes and expressions. Given a single color image,
optimization-based methods [19,23]estimate the 3DMM face by constraining the
data similarities of facial landmarks, lighting or edges. Recently, learning-based
approaches [31]have been proposed to deal with the single-image reconstruc-
tion problem. Tran et al. [33] propose a regression-based method to refine the
3DMM parameters, and Kim et al. [22] design deeper networks to obtain more
discriminative results. Yi et al. [34] propose an end-to-end method including
a volumetric sub-network and a parametric sub-network to reconstruct a face
model, which separates the identity and expression parameters. However, lack of
enough 3D face datasets with ground-truth for training limits the performance
of these learning-based methods.
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Landmark Updating Method. To fix the landmark fitting error caused
by large poses and self-occlusions, Lee [23] and Qu et al. [26] propose to dis-
card invisible landmarks, but these methods cannot make full use of landmark
constraints. Asthana et al. [3] propose a look-up table containing 3D landmark
configurations for each pose, but this method depends on pose estimation and
need to build a large table in unconstrained environment. Zhu et al. [36] first
propose a landmark marching method which intends to move the 3D landmarks
along the surface to rebuild the correspondence of 2D silhouette automatically.
Zhang et al. [20] update the silhouette landmark vertices by constructing a set
of horizontal lines and choosing among them a set of vertices to represent the
updated silhouette. A common disadvantage of their approaches is that they
need to manually label many landmarks, which takes a lot of time and effort.
Moreover, when the deflection angle becomes larger, the detected 2D landmarks
of the invisible face part will be less accurate. Even if the silhouette is updated,
the methods do not work well for large-pose images with a deflection angle larger
than 60◦.

In this paper, we propose a novel automatic 3DMM-based face reconstruction
method from a single image by joint 2D and 3D optimization, which is robust
to extreme poses and self-occlusions.

3 Method

It is difficult to accurately detect 2D landmarks along the face silhouette under
large poses or partial occlusions, but 3D depth information of the face provides
strong constraints even for invisible landmarks. Therefore, our method solves
the face reconstruction problem under large poses or partial occlusions by joint
2D and 3D optimization. Figure 2 illustrates the pipeline of our method. Our
method reconstructs a 3D face model from a single image based on 3DMM [6].
For an input image, we first detect the 2D and 3D positions of the 68 landmarks
using an efficient detection method [10] that provides both 2D and 3D landmarks
for the same image.

Traditional pose estimation methods are difficult to accurately obtain the
face pose due to the errors in detection of 2D landmarks in the occluded re-
gions. We propose a coarse-to-fine pose estimation scheme using both 2D and
3D landmarks. In the coarse step, we estimate Euler angles using the left and
right silhouette landmarks respectively, and then choose the maximum value
as the initial pose. In the refined step, 68 landmarks are updated by replacing
the 2D landmarks of the invisible silhouette landmarks with the corresponding
3D landmarks. In order to make full use of 3D depth information and 2D posi-
tion information, we propose to automatically adjust 2D and 3D weights with
an adaptive re-weighting scheme. We regard the pose estimation and adaptive
re-weighting as a bundle to reconstruct the 3D face geometry.

3.1 3D Morphable Model

3DMorphable Model is a 3D face statistical model, which is proposed to solve the
problem of 3D face reconstruction from 2D images. In this work, we merge the
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Fig. 2. The pipeline of our method: 1) 2D and 3D landmark detection; 2) Coarse-to-
fine pose estimation: Coarse pose estimation includes 68 2D landmarks (the occluded
silhouette landmarks are shown in green and the estimated coarse pose with mean face
is shown in the input image), and the pose is refined by combining them with the
estimated 3D silhouette landmarks (the occluded 3D silhouette landmarks are shown
in green and the estimated refined pose with mean face is shown in the input image);
3) Adaptive 2D and 3D re-weighting: λ2d and λ3d are 2D and 3D weights, respectively.
2) and 3) are regarded as a bundle to achieve 3D face reconstruction.

Basel Face Model (BFM) [25] and the Face Warehouse [12] with non-rigid ICP [2]
to construct our 3DMM. It is a linear model based on Principal Components
Analysis (PCA) which describes the 3D face space as

M = m̄+ Γshaα+ Γexpβ, (1)

where M represents a 3D face, m̄ is the mean shape, Γsha is the principal axes
corresponding to face shapes coming from BFM [25] and α is the shape param-
eter. Γexp is the principal axes corresponding to face expressions coming from
Face Warehouse [12] and β is the expression parameter. The collection of pose
parameters is PΠ,R,t, where R is a 3× 3 rotation matrix constructed from rota-
tion angles (pitch, yaw, roll) and t is a 3× 1 translation vector. The projection
matrix Π is formulated as

Π = s

[
1 0 0
0 1 0

]
, (2)

where s is the scale factor. The 2D projection of the 3D face model with weak
perspective projection [8] is represented as

l2d(α, β) = ΠR (m̄+ Γshaα+ Γexpβ) + t. (3)

3.2 Joint 2D and 3D Optimization

Traditional face reconstruction methods depend on the detected 2D landmarks
which have low accuracy for non-frontal images, especially for very large poses. In
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order to solve the problem of inaccurate detection of 2D silhouette landmarks in
non-frontal images, we propose a joint 2D and 3D optimization method. Specifi-
cally, we propose a coarse-to-fine pose estimation method using both 2D and 3D
landmarks, and then iteratively optimize them with the projected 3D vertices.
In order to handle various rotation angles, we propose an adaptive reweighting
method.

We solve the fitting process by joint 2D and 3D optimization and take the
shape and expression prior terms into a hybrid objective function. We formulate
it as a nonlinear least squares problem:

Efit (α, β, PΠ,R,t) = λ2dE2d (α, β, PΠ,R,t)

+λ3dE3d (α, β, PΠ,R,t) + Ep (α, β) , (4)

where λ2d and λ3d are 2D and 3D weights, respectively. E2d (α, β, PΠ,R,t) and
E3d (α, β, PΠ,R,t) are the alignment energies based on regressed 2D and 3D land-
marks, respectively, which will be elaborated in Section 3.2. Ep (α, β) is a prior
term of both shape and expression, which will be explained in Section 3.2.

We first initialize the shape parameter α and expression parameter β with
zeros, and then use our coarse-to-fine pose estimation method to estimate a
coarse pose and a refined pose. Based on the pose estimation, we finally solve
the optimization problem to obtain shape and expression parameters iteratively.
After each iteration, we get a new model with the updated shape and expression
parameters, and then re-estimate pose parameters. This process iterates four
times in our experiments, which is sufficient to converge in practice.

Coarse Pose Estimation We estimate a coarse pose Pc by computing Euler
angles using the 2D landmarks of the left or right silhouettes and the rest 51
landmarks respectively. There are 17 detected 2D face silhouette landmarks,
which are divided into three parts according to the locations: left (1 to 9), middle
(10), and right (11 to 17). If the Euler angle calculated by the left silhouette Pl is
greater than that by the right silhouette Pr, it means that the head orientation
is to the left, and vice versa. We regard the max value Pc = Pl or Pc = Pr as
the final face pose direction on the Y axis.

Refined Pose Estimation To resolve the inevitable depth ambiguities of 2D
re-projection constraint, we add 3D constraint to improve the accuracy of pose
estimation. First, we project the mean face model onto the image plane to ac-
curately capture the invisible 2D silhouette landmarks. Then, we replace the in-
visible 2D silhouette landmarks with the corresponding estimated 3D landmarks
by the method [10]. Finally, we update the 68 landmarks and fit the parametric
face model with our input image to get the refined pose parameters Pref . We
regard the refined pose estimation as the initial value for the optimization, and
in the next iteration, we will update pose parameters as PΠ,R,t.
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2D and 3D Fitting with Adaptive Re-weighting For each input image,
we detect the 2D and 3D landmarks {L2d,i ∈ R2}1≤i≤68 and {L3d,i ∈ R3}1≤i≤68

using an efficient detection method [10]. The 2D fitting constraint E2d is defined
as

E2d (α, β, PΠ,R,t) =

68∑
i=1

∥l2d,i(α, β)− L2d,i∥22 , (5)

where l2d,i(α, β) is the 2D projection coordinates of the i-th vertex of the 3D
face model, as defined in Section 3.1. L2d,i is the i-th detected 2D landmark. We
solve the 3DMM parameters by minimizing the Euclidean distances between the
detected landmarks and the 2D projections of 3D points. We further incorpo-
rate the 3D depth information into the optimization to solve the ambiguities of
invisible face area, by proposing a 3D alignment term as follows:

E3d (α, β, PΠ,R,t) =

68∑
i=1

∥l3d,i(α, β)− (L3d,i + t′)∥22 , (6)

where l3d,i(α, β) is the 3D position of the i-th face landmark, and L3d,i is the
i-th detected 3D landmark. t′ ∈ R3 is an auxiliary variable that transforms the
L3d,i to the global coordinate system. The pose parameters and the optimization
method are the same as E2d. In order to effectively combine the 2D and 3D
landmarks, we propose an adaptive weighting method:

Wλ =

{
1 2|yaw|

π ≥ ε
0 otherwise,

(7)

where ε is set to 0.5, which means that we regard a 45◦ angle as the boundary
of head rotation for large pose and small pose. Wλ = 1 means large pose, and in
that case, the 3D weight and the 2D weight are calculated as

λ3d =
2|yaw|

π
, λ2d =

(
1− 2|yaw|

π

)
· w, (8)

where w is set to 0.5. Otherwise, if Wλ = 0, which means that the pose angle is
less than 45◦, the 3D weight and the 2D weight are calculated as

λ3d =
2|yaw|

π
· w, λ2d = 1− 2|yaw|

π
. (9)

The pose estimation and adaptive re-weighting are regarded as a bundle to
achieve 3D face reconstruction.

Shape and Expression Priors We expect that each of the shape and expres-
sion parameters follows a normal distribution with zero mean and unit variance.
The shape and expression prior terms are defined as

Ep (α, β) = λαEprior (α) + λβEprior (β) , (10)
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where Eprior (α) and Eprior (β) are shape and expression priors, respectively. λα

and λβ are their corresponding weights. The shape prior is calculated as

Eprior (α) = (λ2d + λ3d)

Nα∑
i=1

(
αi√
δαi

)2

, (11)

where Nα is the number of shape parameters, αi is the i-th shape principal
component, and δαi is the eigenvalue corresponding to the principal component.
The expression prior is similarly defined as

Eprior (β) = (λ2d + λ3d)

Nβ∑
i=1

(
βi√
δβi

)2

. (12)

4 Experimental Results

In this section, we first introduce the datasets and metrics in Section 4.1. Then,
we perform an ablation study to analyze the effects of different components of
our approach in Section 4.2. Finally, we compare our method with several state-
of-the-art methods quantitatively and qualitatively in Section 4.3. More results
can be found in the supplementary material.

4.1 Datasets and Metrics

We conduct our qualitative experiments on AFLW2000 [37] dataset, which is a
large-scale face database including multiple poses and perspectives. The MICC
dataset [4] contains 53 videos with various resolutions, conditions and zoom
levels for each subject. In order to demonstrate the effectiveness for partial oc-
clusions and extreme poses, in ablation study, we select 106 non-frontal images
with left or right view direction (53 images per case) in the Indoor-Cooperative
videos for each subject to demonstrate the effectiveness of our each component
quantitatively and qualitatively. During the comparison, the reconstructed face
is aligned with its corresponding ground-truth model using the Iterative Closest
Point (ICP) method [27], and we calculate the reconstruction errors for the face
part by cropping the model at a radius of 85mm around the tip of nose. 3D Root
Mean Square Error (3DRMSE) is used to measure the model quality:√∑

i

(X−X∗)
2
/N, (13)

where X is the reconstructed face (after cropping), X∗ is the ground truth, and
N is the number of vertices of the 3D model cropped from the reconstructed
face.

4.2 Ablation Study
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3.598 1.549 1.161GT

Input image 2D 2D+3D 2D+3D+P+W

10mm

0

2D+3D+W

1.203

GT 2.665 1.429 1.208 1.172

GT 3.210 1.388 1.202 1.169

GT 2.303 1.223 1.1674.208

Fig. 3. Qualitative results on the MICC
dataset [4]. 2D: 2D fitting method, 2D+3D:
joint 2D and 3D fitting method, W: adaptive
re-weighting, P: pose refinement.

To prove the performance im-
provement of our method for par-
tial occlusions and extreme poses,
we select 106 non-frontal images
with left or right view direction
(53 images per case) for each sub-
ject from the MICC dataset [4] as
our test dataset in this section.
The visual results of different vari-
ants are shown in Figure 3. The
reconstruction errors are color-
coded on the reconstructed model
for visual inspection, and the av-
erage error is given below each
case. It can be seen that it is
difficult to recover an accurate
model with only 2D landmarks
due to lack of the depth infor-
mation. Combining 3D landmarks
with the corresponding 2D land-
marks can largely improve the re-
construction accuracy. Adaptive
re-weighting further improves the
performance. The most satisfac-
tory result is achieved by adding
the coarse-to-fine pose estimation
method.

4.3 Comparison

Qualitative Evaluation In order to prove the reliability of our method, we
compare our method with four state-of-the-art face reconstruction approaches,
3DDFA [37], PRN [17], MMFace [34] and DECA [16], on the AFLW2000 [37],
300VW-3D [10] and MICC [4] datasets. Because MMface [34] does not publish
the code, we only make a qualitative comparison with this method by using the
images provided in their paper. Figure 4 illustrates the qualitative evaluation
results compared with these methods. In order to show the reconstruction results
consistent with MMface [34], we reduce the transparency of the model to overlay
on the image, which can better observe the correctness of the eyes, mouth, nose,
and face shape of the model compared with the input image. It can be seen that
3DDFA [37] can reconstruct fine models but the results are all similar to the mean
face and lack the consistency with the image. PRN [17] can estimate accurate
face orientation but fails to reconstruct fine facial geometry. MMFace [34] cannot
recover the contour well, e.g., the third image. DECA [16] has the same problems
as MMFace [34], e.g., the first image. Our method estimates better poses and
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reconstructs more accurate face models, benefitting from our coarse-to-fine pose
estimation and joint 2D and 3D optimization with adaptive re-weighting.

Fig. 4. 3D face reconstruction results of differ-
ent methods.

Table 1. Comparison of 3D
face reconstruction on MICC
dataset [4].

Method Frontal Non-frontal

3DDFA [37] 2.244 2.379
PRN [17] 2.086 1.934
DECA [16] 2.996 3.017
Ours 1.819 1.770

Quantitative Evaluation To evaluate the performance on different cases, we
choose the MICC dataset [4] as our test datasets. Table 1 shows quantitative re-
sults compared with 3DDFA [37], PRN [17] and DECA [16] on the test datasets.
As shown in this table, our method achieves smaller 3DRMSE than the other
methods.

5 Conclusion and Discussion

Fig. 5. Examples of fail-
ure cases.

In this paper, we propose a novel method to solve the
challenges of face reconstruction from a single image
under partial occlusions and large poses. First, we pro-
pose a coarse-to-fine pose estimation method, which
divides pose estimation into two steps to improve the
accuracy. Second, we propose a novel joint 2D and 3D
optimization method with adaptive re-weighting. Our
pose estimation and the 2D and 3D weight adaptation
are considered as a bundle, and solved by a joint op-
timization algorithm. Experimental results on public
datasets demonstrate that our method can reconstruct
more accurate face geometry consistent with the im-
ages even for occlusions or extreme poses, compared
with the state-of-the-art methods.

Figure 5 shows some failure examples using our method due to wrong es-
timation of 2D and 3D landmarks for occlusion cases. In the future work, we
will try to improve the accuracy of landmark detection with the help of face
reconstruction iteratively. Also, we will try to combine our optimization method
with learning-based prior or representation.
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31. Thies, J., Zollhöfer, M., Stamminger, M., Theobalt, C., Nießner, M.: Demo of
face2face: real-time face capture and reenactment of rgb videos. In: Proc. SIG-
GRAPH ’16, pp. 1–2 (2016)

32. Tran, L., Liu, X.: Nonlinear 3D face morphable model. In: Proc. IEEE Conference
on Computer Vision and Pattern Recognition. pp. 7346–7355 (2018)

33. Tuan Tran, A., Hassner, T., Masi, I., Medioni, G.: Regressing robust and discrim-
inative 3D morphable models with a very deep neural network. In: Proc. IEEE
Conference on Computer Vision and Pattern Recognition. pp. 5163–5172 (2016)

34. Yi, H., Li, C., Cao, Q., Shen, X., Li, S., Wang, G., Tai, Y.W.: MMFace: A multi-
metric regression network for unconstrained face reconstruction. In: Proc. IEEE
Conference on Computer Vision and Pattern Recognition. pp. 7663–7672 (2019)

35. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-
task learning. In: Proc. European Coferencen on Computer Vision. pp. 94–108.
Springer (2014)



Monocular 3D Face Reconstruction with joint 2D and 3D constraints 13

36. Zhu, X., Lei, Z., Yan, J., Yi, D., Li, S.Z.: High-fidelity pose and expression normal-
ization for face recognition in the wild. In: Proc. IEEE Conference on Computer
Vision and Pattern Recognition. pp. 787–796 (2015)

37. Zhu, X., Zhen, L., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: A 3D
solution. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition
(2016)


	Monocular 3D Face Reconstruction with Joint 2D and 3D Constraints

