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Abstract—Cloud computing provides on-demand access to
computational resources while outsourcing infrastructure and
service maintenance. Edge computing could extend cloud com-
puting capability to areas with limited computing resources, such
as rural areas, by utilizing low-cost hardware, such as single-
board computers. Cloud data centre hosted machine learning
algorithms may violate user privacy and data confidentiality
requirements. Federated learning (FL) trains models without
sending data to a central server and ensures data privacy. Using
FL, multiple actors can collaborate on a single machine learning
model without sharing data. However, rural network outages
can happen at any time, and the quality of a wireless network
varies depending on location, which can affect the performance
of the Federated Learning application. Therefore there is a need
to have a platform that maintains service quality independent of
infrastructure status. We propose a self-adaptive system for rural
FL, which employs the Greedy Nominator Heuristic (GNH) based
optimisation to orchestrate application workflows across multiple
resources that make up a rural computing environment. GNH
provides distributed optimization for workflow placement. GNH
utilises resource status to reduce failure risks and costs while
still completing tasks on time. Our approach is validated using
a simulated rural environment – composed of multiple decen-
tralized controllers sharing the same infrastructure and running
a shared FL application. Results show that GNH outperforms
three algorithms for deployment of FL tasks: random placement,
round-robin load balancer and simple greedy algorithm.

Index Terms—Computing continuum, federated learning,
serverless computing.

I. INTRODUCTION

Cloud computing enables on-demand access to computa-
tional resources, delegating the maintenance of the infrastruc-
ture and services to an external provider. However, cloud ser-
vice providers are increasingly used to build Internet of Things
(IoT) applications which require low latency and privacy-
preservation. These requirements are particularly significant
in rural applications due to limitations in bandwidth available
to support data communication and access to power to support
large scale data centers. As the number of devices deployed
in rural settings increases—e.g., in instrumented and precision
farming and agricultural robotics—the limited Internet connec-
tivity and performance can disrupt connectivity to the cloud.
Edge computing provides a possible solution, extending the
cloud to the low-cost hardware (e.g., single-board computers
(SBCs)) deployed in rural settings.

Edge computing can effectively reduce latency between
edge devices and cloud systems while also protecting data
privacy as data and processing can stay at the edge. IoT

applications are implemented as workflows comprised of ser-
vice functions that may be executed across geo-distributed
computing resources—from edge devices to the cloud. Coor-
dinating such geographically distributed execution is complex
as individual functions often fail or exceed deadlines. This
results in delays, data loss during function migration, and
higher costs.

Traditional machine learning algorithms combine data in a
single location, generally a data center, which may violate user
privacy and data confidentiality rules [1]. Also, the increasing
cost of on-demand GPU encourages customers to deploy
their own private GPU cluster [2]. Federated learning (FL)
is a machine learning technique that trains models without
transferring data to a central server, instead generating a model
based on locally captured data. FL enables multiple actors to
collaborate on the development of a single machine learning
model without sharing data, which addresses critical issues
such as data privacy and limited network infrastructure. We
propose a self-adaptive system to support the use of FL in
rural applications.

In our previous work, we described the Greedy Nominator
Heuristic (GNH) [3], a distributed optimization algorithm
for supporting function placement within a cloud-edge en-
vironment. GNH relies on redundancy in service functions
and supports failure tracking on the connected computational
resources. This is done to overcome the effect of resource
failure and minimise the cost of supporting resilience by
determining the number of replicas needed to overcome the
effect of resource failures. A MapReduce-based mechanism
is used to find and rank suitable locations (in parallel) for
function replica placement. GNH has been validated with a
real-world smart city application that monitors and manages
surface water flooding data through the use of a centralized
resource controller [4]. The results show that GNH is an
efficient placement mechanism and supports proactive fault
tolerance mechanisms. GNH has not, however, been evaluated
in rural settings with unreliable network connectivity and
mobile computing nodes as outlined in this work.

Internet outages in rural areas can occur at any time of
day. Maintaining service quality regardless of infrastructure is
critical. Furthermore, mobility has an impact on application
performance because the quality of a wireless network varies
depending on location. The requirements for FL workflows can
also vary depending on the type of data being collected and
the complexity of functions used in the workflow. A function



with a longer execution time, for example, may require more
reliable computing resources to avoid reallocation and next
task delay, such as in an FL context, where one workflow’s
output can be scheduled as an input to another. As a result,
GNH must be evaluated in an environment composed of
decentralized controllers sharing the same infrastructure and
running a shared AI application.

The main contributions of this paper are as follows: (i) a
scheduling strategy to support federated learning. The strategy
makes use of resource properties to schedule and deploy appli-
cations; (ii) an adaptive system for rural AI applications using
an intelligent scheduling system able to adapt to changing
conditions; and (iii) evaluation of our approach via simulation,
capturing intermittent connectivity and use of different system
component behaviours. The rest of this paper is structured as
follows: Section II includes a description of the the federated
learning scenarios we consider. Section III describes the pro-
posed adaptive system, and Section IV explains the simulation
tools used in the validation process. Section V presents the
experiment setup and includes an analysis of results. Before
the conclusion section, related work is discussed in Section VI.

II. WEED SPECIES CLASSIFICATION & PRECISION
AGRICULTURE

With increasing availability of data capture and analysis
technologies (from specialist sensors to satellite-based data) to
support agriculture, “precision agriculture” generally refers to
the use of various information sources to improve the outcome
of processes employed in farming and food production. This
can include improving awareness of variation in soil and crop
conditions, adapting fertilizer distribution and types to varying
soil conditions across an agricultural field, automatic guidance
of agricultural vehicles and implements, route guidance for
autonomous machinery, product traceability and provenance
(often associated with and the set of processes associated with
“farm to fork”), on-farm research, and software for the overall
management of agricultural production systems. Apart from
field crop production, precision agriculture technologies have
been applied successfully in viticulture and horticulture and
in livestock production/ management, as well as pasture and
turf management1. In this work we focus on one aspect of
precision agriculture, namely identification and management
of weeds – a time and labour intensive process.

Automatic weed control has the potential to significantly
boost agricultural productivity. With efficient weed targeting,
automatic weed control systems reduce labour costs while
potentially lowering herbicide usage. Therefore, improving the
effectiveness of weed control can be extremely beneficial.
Successful agricultural robotics development should reduce
losses while increasing output.

Autonomous weed spraying requires machine learning
methods to process images (often in real time) and determine
which areas contain weeds. To build these models we used the

1https://www.science.org/doi/full/10.1126/science.1183899

Raspberry Pi Jetson Nano
Aggregate Models 22.33s 139.81s
Image Pre-processing 0.33s 0.48s
Evaluate Model 37.16s 170.60s
Compare Accuracy 0.10s 0.12s
Model Tuning 178.16s 212.8s

TABLE I
BENCHMARKING SERVICE FUNCTIONS ON SBC PLATFORMS

Images Images Images Images

Local Model
Local Model Local Model
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Global Model

Fig. 1. Aggregating learned models across robots using Federated Learning

DeepWeeds [5] dataset: an image-based weed species recogni-
tion dataset. We used this dataset to train a weed classification
model using an off-the-shelf deep learning model, ResNet.
We then modified the training algorithm to use an online FL
approach, which continuously adapts the model as new images
are added to the system.

The federated learning approach uses hierarchical model
aggregation, similar to FEDn [6], where a robot uses locally
captured data to train a model. Models from individual robots
can then be combined to improve accuracy – i.e. all of
the models are aggregated into one single, global model.
Individual models with low accuracy can be discarded during
the creation of a global or intermediate model. Figure 1 shows
our approach when applying hierarchical federated learning
to a collection of robots – operating as edge devices in this
application.

A. DeepWeeds Dataset

DeepWeeds [5] is an open dataset containing images of
various weed species from the Australian Rangelands. The
dataset includes 17,509 images capturing eight different weed
species across eight different locations. ResNet-50 [7], which
is accessible in TensorFlow/ Keras with pre-trained weights.
The weights of the original models were trained using the
ImageNet dataset [8].

B. Applications Workflows

Machine learning pipeline activities, including data prepa-
ration, training/tuning, validation and model aggregation, are
necessary in FL applications. The model architecture is kept
locally on each edge node in our application scenario. The
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model weights are distributed as part of the task placement
procedure. The robots utilize the same workflow function
composition to create an intermediate model. The sole dis-
tinction between the Global and Intermediate Models is that
the Global Model is constructed by aggregating the weights
of the intermediate models, while the Intermediate Model is
constructed by aggregating the weights of the local models.
Figure 2 shows the workflow used in the hierarchical federated
learning process.

We modified the training procedure in Section II-A to make
it suitable for incremental fine-tuning, which results in the
generation of the local model. The key difference between
incremental learning and classical machine learning is that it
does not require a large training set prior to the learning pro-
cess, but rather training instances can emerge and be generated
over time [9]. This is appropriate for IoT and service-based
activities in edge computing, where data is analyzed as it is
generated, and requires the incremental training phase to be
completed within a time constraint/ deadline. Each function in
the workflow can be described as follows:

1) Image Pre-processing: this step involves processing
an image and preparing it for training or validation
purposes. This method is used to transform the data to
the 224x224 image size format required by the deep
learning model.

2) Model Tuning: this step involves fine-tuning the learn-
ing model (a neural network) and includes the use of
weights from previous models as initialization, leading
to the development of a new model trained on the weed
image data set.

3) Model Aggregation: involves calculating the average of
the weights in all neural network models.

4) Validation: a trained model is tested with a new set of
data.

5) Comparing Accuracy: this function takes as input
the results of the validation outcomes, comparing the
accuracy of the old and new models. The most accurate
model will be saved as the global model.

C. Robot Mobility

We consider multiple autonomous robots that must complete
tasks across an agricultural field, with an intention to optimise
field coverage by determining a movement trajectory. The
movements of these robots are governed by a random walk
approach aiming to cover the field [10] in minimal time, whilst
also completing the required tasks to a high accuracy. The
use of a truncated random walk approach, which generates
step lengths that follow a predetermined distribution and fall
within a specific range, improves the efficiency of the search
process [10]. The robot’s movement affects the quality of
data communication that can made to field-side units or to
a cloud platform. The quality of communication declines as
the robot advances farther from the computing resources (i.e.
those resources that are not directly hosted on the robot). This
emulates network latency in a mobile edge device.

D. Application Requirements

Rural AI applications require a platform that is both reliable
and able to adapt to changes in the infrastructure. The follow-
ing describes a set of Rural AI application requirements:

Operation during system failure: The application must
continue execution in the event of a partial network &
computational resource outage. Fault tolerance ensures that
the system continues to function by avoiding the assignment
of tasks to a failed component. The task scheduler should
minimise use of resources that are more prone to failure.

Adapt to rural areas conditions: Rural locations might
suffer from internet outages at any time of the day, requiring
a mechanism to maintain a connection to the service that is
hosted on an external system. It is also important to maintain
service quality within a pre-defined threshold despite the state
of the infrastructure.

Mobile edge device: Mobility affects application execu-
tion performance and the type of data that can be exchanged
over a wireless network. The location of the robot impacts the
types and size of data, and latency that can be supported.

Meeting FL workflow requirements: Different FL work-
flows may differ in their computational requirements. For
example, a workflow function with a longer comparative



execution time may necessitate the use of more dependable
computing resources to avoid resource reallocation and the
resulting delay in task completion. The result of one workflow
can be scheduled to be the input to another process in FL, for
example, if the workflows are interdependent.

Protecting data privacy: The edge network should have
the capacity to protect data privacy. Since a single application
failure might have an adverse effect on the speed at which
others execute, it is necessary when switching from one
services instance to another that data privacy requirements are
adhered to.

III. ADAPTIVE EDGE-CLOUD INFRASTRUCTURE

At the core of adaptive systems is a closed-loop process.
Adaptation loops are composed of several processes, including
observation and action. Adaptation management consists of a
series of processes for implementing and collecting observa-
tions, as well as analyzing and monitoring those observations,
planning modifications, and deploying/ actuating change. The
four phases of autonomic control are as follows: (1) data
collection, (2) analysis, (3) decision-making, and (4) action.

Data collection entails monitoring the deployment process
and recording the state of system components, such as the
capacity of the processing node over time, in order to detect
and decide on the appropriate response (learning or immediate
reaction) to changes in the environment.

Analysis is the process of determining how data will be used
during the decision-making process. For instance, calculating
the risk of failure of a particular component and using this
to support scheduling and function placement. This phase
may also include updating and encoding decision variables
associated with the placement decision.

Decision-making typically includes a strategy or algorithm
that generated the decision based on the data collected and
analyzed. Between the time it takes to plan actions (decision-
making) and the time it takes to act—e.g. deploy a prede-
fined service—the environment can change. As a result, the
decision-making component should respond to changes in the
environment (re-optimize or perform dynamic optimization)
and avoid maintaining the initial decision (optimization using
static data).

Action executes the decision as part of the active loop. This
may involve managing a series of events in order to execute
the action determined during the decision-making phase. For
instance, utilizing data streaming and computational tools. We
make use of Parsl and FuncX to deploy application requests.

A. Parsl

Parsl [11] is a parallel scripting library for Python, de-
signed for high-performance and distributed environments.
Parsl relies on its DataFlow Kernel (DFK) to manage data
exchange between service functions in a workflow and can
be used to orchestrate individual Python functions across
multiple geographically distributed locations. Parsl implements
a modular runtime model using which different executors can
be configured to execute tasks on computational resources. We

use executors to represent different locations. Service functions
are implemented as Parsl apps. The DFK is informed of the
app’s desired execution location at runtime by specifying the
appropriate Parsl executor in the app decorator. Invoking
a Parsl app returns a future reference which can then be
polled for results once results are available. Futures allows
non-blocking, asynchronous execution of the function while
providing a reference that can be passed to other functions,
and establishing a dependency between functions. Further,
this model allows other processing to continue while the task
execution is still in progress. Building on Parsl, funcX [12]
is a federated function-as-a-service platform enabling high-
performance, distributed serverless applications.

B. Placement Strategy

Rural applications deployed on edge computing resources
have limitations that are not present in traditional systems,
many of which have a negative impact on Quality of Ser-
vice (QoS). For example, nodes may be unreliable, causing
functions to fail to meet deadlines or simply fail outright;
edge infrastructure is more prone to additions, removals or
relocations (i.e., mobile device); and exploring a large search
space for possible deployment locations is impractical. Place-
ment strategy decides where and when to place applications
in a manner that fulfils application deployment objectives
and requirements. This decision-making may need to address
conflicting metrics during scheduling, e.g. when service repli-
cation (to enhance reliability and availability) conflicts with a
need to minimize deployment costs and avoid overwhelming
backend systems. This requires placement strategies that are
aware of backend capacities and capabilities and that can be
guided by application-defined priorities. Application place-
ment takes into account privacy and security constraints. This
keeps sensitive data securely contained at the edge. Rapid
and scalable decision-making will provide fast response times
and low end-to-end latencies (e.g., for selective harvesting or
precision-spraying at scale).

We use the Greedy Nominator Heuristic (GNH) [3] to
solve the placement problem. GNH relies on redundant virtual
function deployment and failure tracking. GNH replicates each
function at numerous locations based on predicted completion
time, risk of failure and cost of deployment. We employ
a MapReduce-based approach in which Mappers search for
potential placement locations concurrently and the Reducer
then ranks these locations, then selects the best placement.

The rural AI requirements described in Section II-D lead to
the following three objectives addressed by GHN: minimising
overall workflow makespan, reducing risk of non-completion
(i.e. supporting workflow resilience) and minimising cost by
reducing the number of replicas needed to achieve resilience.
We define each objective as follows.

• Makespan is the total completion time of the workflow
execution across distributed resources; this is the primary
goal of the scheduler.



• Risk is measured by the likelihood of failure to complete
within the deadline. This is regarded as a proactive fault-
tolerance mechanism designed to reduce service outages.

• Cost is determined by the number of resources used
to deploy the workflow. As rural areas have access to
limited computational resources and network bandwidth,
reducing resource use also minimises network traffic
congestion on the infrastructure. Redundant deployment
lowers the risk of failure but increases the cost. As a
result, the number of redundant copies of functions must
be balanced with the capacity of the available resources
and the cost of deployment on these resources.

Greedy Nominator Heuristic (GNH): The proposed place-
ment strategy aims to optimise on three key metrics: (i) reduc-
ing end-to-end latency, (ii) ensure continued operation during
failure,(iii) minimising the number of worker nodes required
to execute the distributed application. The platform uses GNH
to determine the placement location of functions. GNH uses
function replication and failure monitoring to tolerate partial
failures during run-time; this is done in two phases nomination
and announcement.

Nomination phase: the decision variables are divided into
a number of concurrent processes, with each process acting
as a nominator. A process is an instance of a program that
generates a partial decision, which results in the nomination
of a collection of k-resources to deploy a service function. All
nominators are running in parallel.

Announcement phase: out of the nominees only k are
announced as winners and execute the function. k-winners
have the lowest latency, the lowest failure rate and host a func-
tion that is part of the application workflow. The number k is
based on identifying MaxReplicas where (MaxReplicas =
1 + ⌈(1 − i

n+1 )m⌉), where n represents the number of time
slots (sequences) in the workflow, where ‘i’ is a specific
sequence or slot. The sequences are time windows where
independent functions can run in parallel. Redundancy is
achieved through the deployment of a number of replicated
functions, as illustrated in Figure 3. The initialized functions
(i.e., those that are executed early in the process) have the most
replicas, MaxReplicas. As we move through an application
composed of n functions, this value drops, as presented in
Figure 3. A key assumption is that in a workflow, functions
that execute first are more significant, as their failure will lead
to failure of the complete workflow (due to data dependencies
captured in the workflow graph). Consequently, functions that
occur early in the workflow have a greater number of replicas.

Based on [3], the optimisation problem can be formulated
as minimisation of C, R and O (based on symbols in table II).

C =
∑
j∈F

∑
k∈L

Tj,k · yj,k · xj,k (1)

R =
∑
j∈F

∑
k∈L

Riskj,k · xj,k (2)

O =
∑
k∈L

ok (3)

Fig. 3. The location of the function in the workflow influences how many
replicas are creating – resulting in a funnel-shaped workflow structure using
the MaxReplicas formula. Functions at the earlier stages of a workflow
have a greater number of replicas.

Symbol Description
F The set of all functions in the workflow
D The set of pairs representing dependencies between functions
A The graph of the workflow, which is A = (F,D)
L The set of all locations that execute functions
i The sequence of function f i

j in the workflow
j The type of the function f i

j
k The index of Location lk
Tj,k Processing time for fj in location lk
xj,k Binary variable: function f i

j is executed on location lk
yj,k Binary variable: Tj,k contributes to longest path
ok Binary variable: location lk is used by the application
E The set of all placed paths of A
Riskj,k Risk of executing fj in location lk
MaxReplicasi,j The maximum replicas for f i

j
m Constant to adjust maximum possible replica
rk The number of failures per allocations
M The longest path in the application,

M = {T1,1, T2,1, . . . Ti,j},M ∈ E

TABLE II
NOTATION USED IN GNH FORMULATION

Where objective function C (formula 1) is the total com-
pletion time, and objective function R (formula 2) is the total
risk of application A completing successfully. The number
of locations used to execute A, including redundancy, is
represented by objective function O (formula 3).

C. System Architecture

Robots host computational infrastructure to execute func-
tions, which can be used to analyze, optimize, configure and
maintain specific application requests (e.g. identify weeds,
identify soil conditions, pick fruit, etc). Application software
can range from image processing functions that execute on
images captured by a co-hosted camera, to communication
functions that are able to interact with other robots and field
side units. A robot has limited on-board processing capability
and needs to interact with nearby infrastructure or a cloud



data centre to offload complex tasks that cannot be processed
locally.

A controller component houses the utility software, which
can be divided into two main categories: Online Optimizer
and Resource Monitoring, as illustrated in Figure 4. An appli-
cation’s workflow is specified as a Directed Acyclic Graph
(DAG). In a DAG, each node represents a single service
function that the controller is capable of deploying in the
scheduling process. Identifying where a functions is executed
is determined by a controller and the application scheduler.

Field-side units are generally single-board computers to
which mobile robots offload some of their service functions
and data. Hence, the computational capacity hosted on a robot
acts as a “worker node” in the edge computing layer, combined
with field-side units that serve as an external platform for stor-
ing and accelerating additional resources for computationally
intensive tasks. The resources provided by field-side units are
used to compute service functions and the robot handles task
allocation. It selects a suitable unit to process the next function
in the DAG after receiving all data from the previous field-side
units.

A function execution unit (referred to as the controller
above) is hosted on a robot and makes use of Parsl [11] to
access the resources of the field-side units throughout the edge
infrastructure. It is based on a master-worker architecture for
communication, where the controller hosted on a robot is the
master.

We consider five main steps in the application deployment
process: receive application request, decide where to place
it, run the application, monitor its state and update decision
variables based on the status of the deployment. When the con-
troller receives the request, it configures the decision-making
parameters and the deployment components in advance of any
use. The execution then proceeds to iterate through all of
the workflow’s service functions. The decision-making pro-
cess will determine placement. Deployment components then
execute the decision via Parsl. The monitoring component will
track the execution of the function and report on the outcomes
of the execution to the controller. Additionally, the monitoring
components is able to record the robot’s communication with
the field side units. Using data from the monitoring process,
the decision-making components can determine the placement
of the next function to be executed.

IV. SIMULATION

In the simulation we consider intermittent connectivity be-
tween a robot and field-side units, and varying computational
capacity on the robot. Both of these parameters influence the
offloading decision made by the robot. Our simulation is able
to capture the dynamic nature of these parameters.

A. Failure Model

This section describes the failure model that was used in
this study, indicating when each processing node (i.e., field-
side unit) experiences a failure or a recovery event. We use
field-side unit failure to model and validate the performance

TABLE III
SIMULATION PARAMETERS

Variable Number/Ranges
Field-side units (RPi) 100
Robots (RPi) 10
MTTF (250 - 500 s)
MTTR (20 - 100 s)
Random walk steps (1 - 10 steps)

of the scheduler making use of federated learning; however,
we do not include software defects caused by a faulty service
function implementation in this model.

If a field-side unit does not respond to requests submitted
by a robot within a time threshold, this is considered as task
failure. This lack of response adds to the time it takes to restore
the field-side unit, which is specified as the recovery time. The
Mean Time To Failure (MTTF) is the average time that the
system is up and running, and the Mean Time To Recovery
(MTTR) is the time until the field-side unit becomes available
again to process tasks (MTTR). The mean time between two
failures is calculated as the sum of MTTF and MTTR (MTBF).

Every field-side unit has a repeating timer known as the
MTBF-clock, which indicates when requests arrive at a field-
side unit. The arrival time of the function request in the
field-side unit, according to MTBF-clock, will determine
whether the allocated field-side unit has failed or succeeded.
Deploying a function successfully means that the function
began execution and was completed within the field-side
unit’s MTTF period. Failure of function deployment, on the
other hand, indicates that the function execution overlapped
with the MTTR period of the field-side unit’s MTBF-clock.
Figure 5 shows service functions that were submitted over
three different MTBF-clock periods [3].

B. Random Walk and Link Delay

The robot’s movement is modelled as a stochastic process
that advances through a random walk. The simulation consists
of a small number of random steps, with each iteration of
the simulation projecting the robot’s coordinates onto a 2D
plane/ grid. The quality of communication degrades as the
robot advances farther from the field-side unit. This emulates
varying network latency in a mobile edge device. A pseudo-
random number generator is used to influence the choice of
step made by a robot on a 2D grid at every simulation step.

Robots and field-side units in the 2D plane are randomly
initialized when the simulation begins. locations in 2D plane
represented as (x, y) coordinates. The robots move, whereas
the field-side units remain stationary. A random walk begins
with the selection of a random number of steps to be taken.
The number of steps is [1–10]. After deciding on the steps,
each step can be north, south, east, or west. For example, if the
robot moves to the north, it will add (0, 1) to its location. After
the walk, the simulation calculates the distance between the
robots and each field-side unit. The distance value is used to
determine the quality of a connection as follows: quality = 1 -
distance/unreachable. The point at which the connection delay



Fig. 4. The proposed adaptive controller architecture

Fig. 5. The execution of a service function at a field-side unit, with completion
times taking account of Mean Time To Failure (MTTF) and Mean Time
to Recovery (MTTR). Arrival and completion times influence successful
completion of a task.

Fig. 6. A robot is performing a random walk, which affects the quality of
the connection to a field-side unit.

exceeds a pre-defined threshold (indicating that connection has
been lost) is considered unreachable (we set this to 3 times
the average delay observed between field-side units at opposite
ends of the field). The time to send data over the network in
an ideal situation is link time = data size/link speed. In the
simulation, link delay is calculated using link delay = link
time/quality. When the quality is set to 1.0, the wireless link
uses its entire capacity, and operating at maximum available
speed. Increasing the value results in a shorter latency.

V. EVALUATION

In the following sections we describe the experimental setup
used to validate our work and our results. We evaluated the
proposed adaptive system in a simulated environment, where
the field-side units have failure models that affect system
performance. Variable network connectivity and disruption is
simulated by dynamically varying the quality of the network
link connecting the robot to the field-side units. The per-
formance measurements include execution time, failure risk/
resilience, and cost of deployment.

A. Experimental Setup

We evaluate GHN using a Raspberry Pi model 4B. The
simulation generates application requests dynamically, 3000 of
which train a local model and 300 of which aggregate models
to generate a global model. It also varies resource availability
and failure profile using a clock mechanism divided into
two periods: (i) a failure event (MTTR) and (ii) normal
resource operation (MTTF). We run several scenarios and
compare GNH to random placement (RP), use of a simple
Greedy algorithm, and Round-Robin load balancing (RR). The
simulation produces records containing application request
arrival times and workflow compositions. The deployment of
workflows is constrained by a deadline, which is the expected
completion time defined by the user. During evaluation, the



Fig. 7. Success rate for each algorithm – Tuning Model refers to the locally
generated machine learning model

expected and actual completion times are compared to the
deployed states. If the deadline has passed, the workflow
deployment is considered a failure. Each field-side unit has
a failure model parameter that is chosen at random from a
pre-defined range. On a single day, application requests are
distributed uniformly. This simulates data streams generated
at infrastructure controllers.

The experiment runs as follows: first, components for mon-
itoring, deployment, decision-making and request generation
are set up. This is followed by iterating through all of the
requests, and selecting a controller at random to handle each
function. As each controller may be located at a different
location on the agricultural field, the response time will be
affected based on the distance between the robot and the field-
side unit. The controller needs to determine which functions
are executed on the robot, and which need to be offloaded to
the field-side unit. Following the deployment of each function,
a random walk with steps ranging from 1 to 10 will be
performed. Failure rate records are updated after each function
placement to assist decision-making components improve the
accuracy of the outcome. Finally, the workflow deployment
states are saved by the monitoring component.

B. Results

Figure 7 shows the success rate of each algorithm. Most
of the requests supported using GNH were completed ahead
of schedule, with the simple Greedy method achieves the
second best performance with a 58% success rate. It is worth
noting that both GNH and Greedy are heuristic-guided search
algorithms. In terms of success rates, RR has the worst perfor-
mance followed by RP. Over half of all RR and RP requests
were completed after the deadline. Randomization has a good
chance of outperforming strict sequential execution in terms
of overall performance. The heuristic function determines how
long and how much each deployment will take. Greedy, despite
being informed, has a much higher failure rate than GNH.
GNH outperforms the simple Greedy approach in terms of
performance because it selects multiple field units in case

Fig. 8. The average completion time of tasks under each placement strategy

Fig. 9. Average cost – based on the number of locations utilized

one fails. As a result, all global Model Aggregation requests
were completed in less time than expected, while only 96%
of Tuning Models requests took longer than expected. GNH
completes more work in less time because redundant functions
are used.

The failure of a function increases the completion time, as
shown in the Figure 8. GNH is the best on average; it is 53sec-
onds faster than Greedy in Tuning Model execution and 8.6
seconds faster in global model aggregation execution. When
compared to RR and RP, GNH can save up to 67 seconds for
model tuning and 29 seconds for model aggregation.

GNH deploys 4.06 field-side units on average, as seen in
Figure 9. The only advantage of the other approaches over
GNH is that they use fewer field-side units per deployment,
in case the workflow size is less than GNH’s MaxReplicas,
Tuning Model is a case in point, because the average number
of resources used are twice the size of the workflow. The
workflow of global model aggregation is made up of five
functions. As the random placement can still sometimes use
the same resource for two functions, RP uses 4.89 resources
on average. Whereas the Greedy algorithm uses 1.11 field-side



units on average, this means that if the resource is considered
reliable in the first function deployment, it will be used again.

VI. RELATED WORK

Multi-robot systems: Operation control strategy for a
multi-robot system is either centralized or decentralized [13].
Conesa-Munoz et al. [14] described a platform with centralized
strategy for managing the multi-robot system workflow from
a base station. The robots in the system can be either aerial or
ground vehicles. By fully automating the integration of both
types of platforms, this combination enables autonomous tasks
in large outdoor areas. The entire workflow was automated,
with no human intervention required except as required by
Spanish law for safety reasons. In the case of a decentralized
cooperative control of heterogeneous robot groups. Tanner et
al. [15] coordinate the interaction of two heterogeneous groups
of mobile agents in discrete time. A group of ground vehicles
and a group of unmanned aerial vehicles interact using time-
invariant, nearest-neighbor rules. A Lyapunov analysis is also
used to ensure that ground vehicles track the centroid of the
ground group.

Drones/aerial vehicles collect environmental data as part of
their plan, while ground units are tasked with carrying out the
operation in farming areas. All of the vehicles are controlled
by a Mission Manager, which is linked to a Base Station
computer. In the Operation Manager, each aerial and ground
unit is assigned a planner. The Operation Manager sends data
to a planner, which then divides the fields into tiny grids
based on orientation and image resolution. A Harmony Search
Algorithm is used to generate the best plan for flying units to
cover the entire region [16]. Ground planners distribute tasks
among ground vehicles using a meta-heuristic optimization
strategy. When creating this planning tool, both location and
power consumption were considered. The ground planner
determines the best path for each ground vehicle to take to
cover an operating area.

Simulation: In simulation-based experiments, the random
walk method of swarm robots is used to quantify the area
search efficiency [10]. The search efficiency is increased by
employing a truncated random walk method that generates step
lengths that conform to a specified distribution and fall within
a specified range.

Plant datasets: Computer vision technologies have at-
tracted significant interest in precision agriculture in recent
years. The scarcity of public image datasets remains a crucial
bottleneck for fast prototyping and evaluation of computer
vision and machine learning algorithms [17]. The Open Plant
Phenotype Database [18] is a publicly accessible dataset for
plant detection and classification. The dataset includes 7,590
RGB images of 47 different plant species. Each species is
cultivated under three different growth conditions to provide
a high degree of visual diversity. Furthermore, the individual
plants have been tracked over time. The dataset is accom-
panied by two experiments for detecting plant instances and
classifying plant species. DeepWeeds [5], Australia’s first large
public multiclass image dataset of weed species, enables the

development of robust classification methods for robotic weed
control. DeepWeeds includes 17,509 tagged images of eight
nationally significant weed species found in northern Australia.
The classification performance on the dataset was evaluated
using the Inception-v3 and ResNet-50 deep learning models.
These models had classification accuracy of 95.1 percent and
95.7 percent, respectively. ResNet-50 performance in real-
time, with an average inference time of 53.4 ms per image.

Federated Learning FEDn [6] is a hierarchical FL frame-
work designed to address the scalability and resilience issues
commonly found in FL systems. With the framework’s em-
phasis on horizontally scalable distributed deployments, FEDn
makes local development easier.

VII. CONCLUSION

Edge computing, which employs low-cost hardware such
as single-board computers (SBCs) in proximity to the data
capture source, has the potential to extend cloud computing
to regions with limited computing infrastructure, such as
rural areas. We describe a software platform using Parsl and
funcX to execute machine learning applications to support
precision agriculture. The approach is demonstrated using
the DeepWeed data set, but can be generalised to a number
of other similar agritech. applications. We consider a robot
operating on an agricultural field having variable data transfer
latency to one or more field-side unit(s) and a cloud data
centre. Our approach considers how offloading decisions can
be made by a controller on the robot, taking account of variable
failure rate of field-side units.

Use of cloud-hosted centralized machine learning methods
can be expensive and risk user privacy and data confidentiality.
Using the federated learning (FL) approach, multiple SBCs
(each hosted on a robot) can collaborate on the same machine
learning model without transmitting data to the cloud, ensuring
data privacy and security. Nonetheless, the quality of a wireless
network varies greatly from location to location, especially in
rural areas, which may have an impact on the performance of
the FL application. The Greedy Nominator Heuristic (GNH)
is used to manage deployment of a set of functions (as a
workflow) on our proposed self-adaptive rural FL platform.

Using metrics makespan, risk and cost, we have shown that
GNH outperforms three competing algorithms for federated
learning deployment. During local model generation, we found
that GNH was completed ahead of schedule, outperforming
the simple greedy approach (second best) by 65.52%. GNH,
on the other hand, outperformed a greedy search by 14.94%
for generating global model. Furthermore, the results show
that GNH is the best approach out of the three in terms of
balancing the number of field-side units used and the number
of redundant deployments of service functions, particularly as
we increase the number if functions in a workflow. Finally,
because GNH has a low number of deployment failures,
the workflow placement decision made by GNH has the
shortest execution time of all the decision-making algorithms
considered.
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