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Abstract
With the goal of determining strategies to maximise drug delivery to a specific site in the body, we developed a mathematical 
model for the transport of drug nanocarriers (nanoparticles) in the bloodstream under the influence of an external magnetic 
field. Under the assumption of long (compared to the radius) blood vessels the Navier-Stokes equations are reduced, to a 
simpler model consistently with lubrication theory. Under these assumptions, analytical results are compared for Newtonian, 
power-law, Carreau and Ellis fluids, and these clearly demonstrate the importance of shear thinning effects when modelling 
blood flow. Incorporating nanoparticles and a magnetic field to the model we develop a numerical scheme and study the 
particle motion for different field strengths. We demonstrate the importance of the non-Newtonian behaviour: for the flow 
regimes investigated in this work, consistent with those in blood micro vessels, we find that the field strength needed to absorb 
a certain amount of particles in a non-Newtonian fluid has to be larger than the one needed in a Newtonian fluid. Specifi-
cally, for one case examined, a two times larger magnetic force had to be applied in the Ellis fluid than in the Newtonian 
fluid for the same number of particles to be absorbed through the vessel wall. Consequently, models based on a Newtonian 
fluid can drastically overestimate the effect of a magnetic field. Finally, we evaluate the particle concentration at the vessel 
wall and compute the evolution of the particle flux through the wall for different permeability values, as that is important 
when assessing the efficacy of drug delivery applications. The insights from our work bring us a step closer to successfully 
transferring magnetic nanoparticle drug delivery to the clinic.
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1 Introduction

Currently, the main approaches in cancer therapy include 
surgery, chemotherapy, radiotherapy, and hormone therapy 
(Bahrami et al. 2017). The first is invasive while the latter 
three are non-specific. Hence, their efficacy is not only low 
but sometimes the cure can be more aggressive than the dis-
ease itself. In the late 1970s, magnetic drug targeting, which 

consists of injecting and steering magnetic drug carriers 
through the vessel system towards disease locations using 
an external magnetic field, was proposed as an alternative 
and more efficient treatment for tumors (see Pankhurst et al. 
(2003) and references therein). At present, there are many 
promising studies, both in vivo and in vitro (Alexiou et al. 
2005; Muthana et al. 2008; Wang et al. 2017) but, to our 
knowledge, only a few successful trials on human patients 
have been carried out (Lübbe et al. 1996; Wilson et al. 2004; 
Lemke et al. 2004). All studies demonstrate that magnetic 
forces can attract particles in the region near the magnet but 
there is a lack of knowledge on how to quantify and optimise 
the accumulation of particles (Fiocchi et al. 2019).

Describing the movement of particles subject to a mag-
netic field in the bloodstream is a relatively difficult task 
due to the interplay of magnetic and hydrodynamic forces 
acting on the particles and the inherent difficulty of solv-
ing the Navier-Stokes equations. One further difficulty 
is to accurately model and simulate the non-Newtonian 
behaviour of blood. Experiments show that for low shear 
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rates ( ∼1 s−1 ), the viscosity can be as high as 10–11 mPa s 
while for shear rates in excess of 1000 s−1 , it tends to an 
asymptotic value of 3–4 mPa s (Yamamoto et al. 2020; 
Fournier 2017). To simplify calculations, previous studies 
consider blood as a Newtonian fluid (Grief and Richard-
son 2005; Richardson et al. 2010; Yue et al. 2012; Boghi 
et al. 2017) or as a non-Newtonian power-law fluid (Nacev 
et al. 2011; Cherry and Eaton 2014; Lunoo and Puangmali 
2015; Rukshin et al. 2017). Grief and Richardson (2005) 
and then Richardson et al. (2010) developed a continuum 
model for the motion of particles subject to a magnetic 
field, both using a Newtonian flow model for blood. In 
Grief and Richardson (2005) it was shown, via a simple 
network model, that it is impossible to specifically tar-
get interior regions of the body with an external magnetic 
field; the magnet can be used only for targets close to the 
surface. In Richardson et al. (2010) the boundary layer 
structure in which particles concentrate was analysed. 
Using a similar approach, Nacev et al. (2011) simulated 
particle behaviour under the influence of a magnetic field 
using a power-law assumption for the blood flow. Cherry 
and Eaton (2014) developed a comprehensive continuum 
model for the motion of micro-scale particles using a value 
for the viscosity determined from fitting experimental data 
(Brooks et al. 1970) to model blood shear thinning, and 
used the model to investigate magnetic particle steering 
through a branching vessel.

A structural difference within the models developed in 
the literature lies in how particles are described. Instead 
of describing particle distribution in blood as a continuum 
and using a diffusion equation to study the evolution of the 
particle concentration, several studies consider particles as 
discrete elements and track the trajectory of each individ-
ual particle (Yue et al. 2012; Boghi et al. 2017; Lunoo and 
Puangmali 2015; Rukshin et al. 2017; Freund and Shapiro 
2012; Ye et al. 2018). Yue et al. (2012) implemented a sto-
chastic model for the transport of nanoparticle clusters in 
a Hagen-Poiseuille flow to find an optimal injection point. 
Using a similar approach, Rukshin et al. (2017) developed 

a stochastic model to simulate the behaviour of magnetic 
particles in small vessels. Lunoo and Puangmali (2015) 
used a generalized power-law model to investigate the 
parameters which play a crucial role in magnetic drug tar-
geting, showing how difficult it can be to keep small par-
ticles in the desired region. Recently, Boghi et al. (2017) a 
numerical simulation of drug delivery in the blood in the 
coeliac trunk was performed.

In the present work, we analyse the forces and parameters 
involved in the process of magnetic drug delivery and high-
light the importance of considering realistic non-Newtonian 
models for blood flow and the motion of the nanoparticles in 
it. It is crucial to consider the non-Newtonian behaviour of 
the blood to predict if particles are able to reach the desired 
area. A mathematical model in a two-dimensional channel is 
introduced in Sect. 2. In Sect. 2.1, we explain how choosing 
an oversimplified constitutive law for the fluid in the vessel 
or an incorrect value for the viscosity in the centre of the 
channel can lead to significant errors. In Sect. 3 we dem-
onstrate how magnetic forces act on particles depending on 
their size. Numerical simulations illustrating the influence 
of key parameters are presented in Sect. 4. We draw our 
conclusions in Sect. 5.

2  Governing equations for non‑Newtonian 
blood flow

As illustrated in Fig. 1, we approximate the vessel as a long 
and thin rectangular channel, consistent with the size of 
vessels in the human body (see Table 1). The particles are 
injected at the inlet of the vessel and their motion is driven 
by the field generated by an external magnet located at the 
bottom of the domain and by the drag force on the particles 
due to the blood flow.

Blood-containing nanoparticles can be considered as a 
nanofluid. Typically, its motion is governed by the Navier-
Stokes equations coupled to an advection-diffusion equation 
for the concentration of particles in the fluid (Myers et al. 
2017). The Navier-Stokes equations describing the flow of 

Fig. 1  Sketch of the injection of magnetic nanoparticles in a vessel, in the presence of red blood cells and subject to a magnetic field
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an incompressible nanofluid in a vessel subject to an external 
magnetic field are

where �F is the fluid velocity, � is the fluid density, p is pres-
sure, � is the extra-stress tensor and Fmag the magnetic force 
acting on the fluid.

In this work, we consider the nanofluid, composed of 
blood and nanoparticles, to be a dilute mixture. This allows 
us to make two assumptions which substantially reduce the 
complexity of (1)–(2). Firstly, the density of the nanofluid, 
� , which typically depends strongly on the particle concen-
tration (MacDevette et al. 2014; Myers et al. 2017), can be 
considered approximately constant and equal to the density 
of blood. Secondly, given that blood has a negligible mag-
netization (Alimohamadi and Imani 2014) and its overall 
character is found to be paramagnetic (Voltairas et al. 2002), 
the magnetic field only acts on the nanoparticles. Since we 
are considering a dilute mixture, the capacity of nanoparti-
cles to modify the flow rheology is negligible and therefore 
we can assume Fmag ≈ 0 in (1)–(2). Due to these assump-
tions, the flow equations (1)–(2) are effectively decoupled 
from the mass conservation (advection-diffusion) equation 
that will describe the concentration of particles within the 
vessel (see Sect. 3).

2.1  Blood as a non‑Newtonian fluid

Bodily fluids, such as blood, saliva, and eye fluid are invari-
ably non-Newtonian. In particular, blood is a concentrated 
suspension of particles in plasma, which is mainly made of 
water. The three most important ‘particles’ that constitute 
blood are: red blood cells (RBCs), white cells and platelets. 
RBCs, which are the most numerous, are mainly responsible 

(1)�

[
�uF

�t
+ uF ⋅ ∇uF

]
= −∇p + ∇ ⋅ � + Fmag,

(2)∇ ⋅ uF = 0,

for the mechanical properties of blood (Formaggia et al. 
2009). In fact, their tendency to form (and then break down) 
three-dimensional microstructures at low shear rates and to 
align to the flow at high shear rates cause the blood’s shear 
thinning behaviour, characterized by the monotonic decrease 
of the viscosity that tends to some limit for very high shear 
rates (Fournier 2017). In the case of blood, the structures 
lead to significant changes in its rheological properties and 
several models have been developed during the past 50 years 
in order to capture the complexity of this behaviour (some 
examples can be found in Ballyk et al. (1994); Chien (1970); 
Cho and Kensey (1991); Huang and Fabisiak (1976); Kalivi-
otis et al. (2018); Sherwood et al. (2014)). However, none of 
those models has been universally accepted.

In mathematical terms, we define a fluid as non-Newto-
nian if the extra-stress tensor cannot be expressed as a linear 
function of the components of the velocity gradient. The 
more general relation between the stress and rate-of-strain 
tensors can be written as

where 𝜂(�̇�) is the viscosity, �̇ = ∇� + ∇�T and

is the generalised shear rate. When 𝜂(�̇�) is constant the New-
tonian model is recovered. A purely shear-thinning fluid will 
exhibit a monotonic decrease in viscosity with increasing 
shear rate. Practical fluids are more likely to exhibit a con-
stant viscosity beyond certain high and low values of shear 
rate called ‘Newtonian plateaus’. In between, a nonlinear 
viscosity relation links the two plateaus.

The aim of this section is to compare different types of 
simple, non-Newtonian fluid models. In particular, we will 
compare the Newtonian model with the power-law model, 
the Carreau model and the Ellis model. In Tables 2 and  3 
we summarize the expressions for the viscosity and shear 
stress for each model and the corresponding parameter val-
ues, respectively. Note that under the assumption of flow 
in a long thin channel, we will significantly simplify the 
governing equations (Sect. 2.2). The shear stress relations in 
Table 2 are consistent with this reduction. In the power-law 
model m is constant. If np < 1 the fluid is pseudoplastic or 
shear thinning and if np > 1 it is dilatant or shear thickening; 
for blood np = 0.357 < 1 . If np = 1 we retrieve the Newto-
nian expression. In the Carreau model � is a constant and 
�0 and �∞ are the limiting viscosities at low and high shear 
rates, respectively. In the Ellis model �0 is the viscosity at 
zero shear and �1∕2 is the shear stress at which the viscosity 
is �0∕2 . The latter model does not include a high viscos-
ity plateau, however for most practical situations such high 
strain rates are never reached and so this plateau value is 

(3)� = 𝜂(�̇�)�̇,

(4)�̇� =

[
1

2

(
𝜕ui

𝜕xj
+

𝜕uj

𝜕xi

)(
𝜕ui

𝜕xj
+

𝜕uj

𝜕xi

)]1∕2
,

Table 1  Typical values for the various types of vessels in the human 
body: average length (L) and radius (R), estimation of the average 
number of a specific vessel in the circulatory system (N)

All values are adapted from Formaggia et al. (2009)

Vessel L (m) R (m) N

Aorta 0.4 1.25 × 10−2 1
Artery 0.1 1.5 × 10−3 159
Arteriole 7 × 10−4 2.5 × 10−5 5.7 × 107

Capillary 6 × 10−4 4 × 10−6 1.6 × 1010

Venule 8 × 10−4 1 × 10−5 1.3 × 109

Vein 0.1 2.5 × 10−3 200
Vena cava 0.22 1.5 × 10−2 2
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not relevant. In the case of standard blood flow we do not 
anticipate high shear rates.

In Fig. 2 we compare the behaviour of the four models, 
using the parameter values in Table 3. For moderate shear 
rates it is clear that the Ellis and Carreau models show good 
agreement but differences emerge as the shear rate increases 
above �̇� ≈ 1.6 s −1 . In attempting to compensate for the pla-
teau values of the power-law model seems to be inaccurate 
over the whole range of shear rates.

In the next section, using the above models we determine 
the velocity profiles and demonstrate the importance of choos-
ing the right model for blood transporting nanoparticles under 
the influence of an external magnetic field.

2.2  Nondimensionalisation and simplification 
of flow equations

Expressing Eqs. (1)–(2) in components, the governing equa-
tions for the fluid become

(5)
�u

�x
+

�v

�y
= 0,

(6)
�u

�t
+ u

�u

�x
+ v

�u

�y
= −

1

�

�p

�x
+

1

�

[
��xx

�x
+

��yx

�y

]
,

which are subject to the no-slip conditions

(7)
�v

�t
+ u

�v

�x
+ v

�v

�y
= −

1

�

�p

�y
+

1

�

[
��xy

�x
+

��yy

�y

]
.

(8)u = 0 , v = 0 at y = ±R ,

Table 2  Newtonian and non-
Newtonian viscosity models 
and corresponding shear stress, 
assuming �̇� ≈ |𝜕u∕𝜕y|

Model Viscosity Shear stress

Newtonian � = constant �yx = �
|||
�u

�y

|||
Power-law 𝜂p(�̇�) = m |�̇�|np−1 �yx = m

|||
�u

�y

|||
np

Carreau
𝜂c(�̇�) = 𝜂∞ + (𝜂

0
− 𝜂∞)

(
1 + 𝜆2�̇�2

) nc−1

2

�yx = �∞ +
(
�
0
− �∞

)(
1 + �2

|||
�u

�y

|||
2
) nc−1

2 |||
�u

�y

|||
Ellis

�e(�) = �
0

(
1 +

||||
�

�1∕2

||||
�−1)−1

�e(�yx) = �
0

(
1 +

|||
�yx

�

|||
�−1

)−1

Table 3  Typical parameter 
values for the blood flow 
equations for each model, taken 
from Johnston et al. (2004); 
Myers (2005); Fournier (2017)

Quantity Symbol Value Units References

Newtonian viscosity � 0.0035 Pa s (Johnston et al. 2004)
Power-law viscosity m 0.035 Pa s (Myers 2005)
Power-law exponent np 0.357 No. (Myers 2005)
Carreau coefficient � 3.313 No. (Fournier 2017)
Carreau viscosity at low shear rates �

0
0.056 Pa s (Fournier 2017)

Carreau viscosity at high shear rates �∞ 0.0035 Pa s (Fournier 2017)
Carreau exponent nc 0.357 No. (Fournier 2017)
Ellis viscosity at low shear rate �

0
0.056 Pa s (Myers 2005)

Ellis shear stress at �
0
∕2 � 0.026 Pa (Myers 2005)

Ellis exponent � 3.4 No. (Myers 2005)

Fig. 2  The viscosity/shear rate plot on the logarithmic scale for the 
power-law (red dotted-dashed line), the Carreau (black solid line) and 
the Ellis models (green dashed line). The light grey dashed lines rep-
resent the limiting viscosities �0 and �∞ (colour figure online)
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and to the symmetry condition

To determine the order of magnitude of the terms in Eqs. 
(5)–(7), we proceed to non-dimensionalise. We define the 
non-dimensional variables

In (5) we can balance the terms by setting V = �U , where 
𝜀 = 2R∕L ≪ 1 (since the blood vessels are long and thin). 
Hence, the non-dimensional continuity equation becomes

Choosing P = LT∕2R and assuming steady-state, we can 
write

Assuming 𝜌𝜀U
2

T
≪ 1 and neglecting terms of O(�) or smaller 

in (12)–(13), the resulting governing equations, in dimen-
sional form, are

which is a much simpler system of equations, consistent with 
lubrication theory (Ockendon and Ockendon 1995).

2.3  Comparison of four viscosity models

To determine the most accurate model describing blood 
flow, we now compare the fluid velocity profiles obtained 
for the four viscosity laws summarised in Table 2. In all 
cases, we consider a Hagen-Poiseuille flow in a channel, 
which is driven by a constant pressure gradient, Δp∕L , and 
has a constant volumetric flow rate, Q. The results quoted 
below follow from the models in Myers (2005) for flows 
driven by a pressure gradient and a moving bottom surface, 
where we set the velocity of the surface to zero. To switch 

(9)
�u

�y
= 0 at y = 0 .

(10)
x = Lx̂, y = 2Rŷ, u = Uû, v = Vv̂, p = Pp̂, 𝜏 = T𝜏 .

(11)
𝜕û

𝜕x̂
+

𝜕v̂

𝜕ŷ
= 0.

(12)
𝜌𝜀U2

T

[
û
𝜕û

𝜕x̂
+ v̂

𝜕û

𝜕ŷ

]
= −

𝜕p̂

𝜕x̂
+ 𝜀

𝜕𝜏x̂x̂

𝜕x̂
+

𝜕𝜏ŷx̂

𝜕ŷ
,

(13)
𝜌𝜀U2

T

[
û
𝜕v̂

𝜕x̂
+ v̂

𝜕v̂

𝜕ŷ

]
= −

𝜕p̂

𝜕ŷ
+ 𝜀2

𝜕𝜏x̂ŷ

𝜕x̂
+ 𝜀

𝜕𝜏ŷŷ

𝜕ŷ
.

(14)
�u

�x
+

�v

�y
= 0 ,

(15)
�p

�x
=

��yx

�y
,

(16)
�p

�y
= 0 ,

to the current vertical coordinate y from that used in Myers 
(2005) we set z = (y + R)h∕(2R) . The position of the turning 
point in the flow, z = zm = h∕2 , then corresponds to y = 0.

The Newtonian model: The solution for the Newtonian fluid 
is obtained by solving Eqs. (14)–(16) where the shear stress 
is specified in Table 2. From Eq. (16), the pressure does not 
vary with y. Hence, integrating (15) twice with respect to 
y and using the boundary conditions (8)–(9) we obtain the 
well-known parabolic profile

where the relation between �p∕�x and Q is determined using 
that Q = ∫ R

−R
u dy = constant (Myers 2005).

The power-law model: Proceeding similarly to the Newto-
nian case, the velocity for a non-Newtonian power-law fluid 
with the corresponding shear stress from Table 2 becomes

The main disadvantage of this model is that the viscos-
ity � ∝ 1∕(�u∕�y) → ∞ since �u∕�y = 0 at y = 0 which is 
unrealistic.

The Carreau model: Choosing the Carreau model for the 
viscosity (see Table 2), the equations of the flow (14) and 
(16) are coupled with (15), which takes the form

This expression cannot be integrated analytically for u(y), 
so we solve it numerically via the in-built bvp5c function 
in Matlab.

The Ellis model: Choosing the Ellis model from Table 2, the 
velocity of the fluid can be expressed analytically as

To compare the four models and their velocity fields we take 
typical parameter values from the literature (Table 3). The 
viscosity depends on temperature, so for the whole paper we 
use parameters consistent with a typical body temperature, 
37 ◦ C. We assume a micro vessel with a radius R = 20 µm 

(17)u(y) =
3Q

4R3

(
R2 − y2

)
,

(18)u(y) =
Q

R

2np+1

np

(
2np + 1

2np + 2

)(
R

np+1

np − |y|
np+1

np

)
.

(19)
�p

�x
=

�

�y

⎡⎢⎢⎣
�∞ +

�
�0 − �∞

��
1 + �2

����
�u

�y

����
2
� nc−1

2 ����
�u

�y

����
⎤⎥⎥⎦
.

(20)

u(y) =
1

�0

�p

�x

[
R2 − |y|2

2
+

(
1

�

�p

�x

)�−1
R�+1 − |y|�+1

� + 1

]
.
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and the volume flux is Q = 8 × 10−13 m3/s, consistent with 
average velocity measurements in capillaries or small arte-
rioles (Wang et al. 2016). For our simulations, we will 
use a reference length several times larger than the radius, 
L = 500 µm.

The velocity and corresponding viscosity profiles for blood, 
obtained from the four different models, are compared in Fig. 3a 
and b, respectively. We observe that although the difference in 
velocity profiles is small for all models, the corresponding vis-
cosities can differ significantly. The Ellis and Carreau models 
show good agreement in both velocity and viscosity. In the liter-
ature, the Carreau model is generally preferred due to its ability 
to predict both Newtonian plateaus. However, for in vivo blood 
flow it is unlikely that the high shear plateau will be reached 
suggesting that the Ellis model provides an adequate alternative 
approximation. This is an important observation since the Ellis 
model yields an analytical expression for the flow. This not only 
provides a better understanding of the factors affecting the flow 
but also considerably simplifies the numerical study. In Sect. 3.1 
we will verify that the Carreau and Ellis models provide similar 
results for the nanoparticle distribution. The Newtonian model 
has a constant viscosity and the power-law model cannot predict 
the Newtonian plateaus. Given that the motion of the magnetic 
particles is dependent on the viscosity of the fluid it travels 
through it is clear that both Newtonian and power-law models 
are not appropriate for modelling blood.

3  Nanoparticle motion in a non‑Newtonian 
flow subject to an external magnetic field

The behaviour of the concentration of magnetic nanoparti-
cles in the bloodstream is obtained following the continuum 
model developed by Grief and Richardson (2005). The gov-
erning equation describing the motion of magnetic particles 
in the blood stream is an advection-diffusion equation for the 
particle concentration c(x, y, t):

where uF is the fluid velocity (as discussed in the previous 
section), up is the particle velocity and Jdif f = −D∇c is the 
diffusion flux.

The diffusion is due to Brownian motion and shear-
induced diffusion and hence D = DBr + Dsh . Shear-induced 
diffusion arises due to the fact that the RBCs suspended 
in plasma collide with each other causing random motion 
with a diffusive character. As recently demonstrated by Liu 
et al. (2019, 2018) via a lattice-Boltzmann multiscale simu-
lations, the diffusion due to the Brownian motion in the case 
of nanoparticle transport in a small vessel can be important 
and, in some cases, even the predominant diffusion process. 
In particular, for nanoparticles smaller than 100 nm they 
found that DBr∕Dsh ≫ 1 , that is Brownian diffusion is domi-
nant for particles of this size range (Liu et al. 2018). Using 
the Stokes-Einstein equation for the diffusion of spherical 
particles through a shear thinning fluid (Fournier 2017), we 
can write the Brownian diffusion coefficient as

where kB is the Boltzmann constant, T is the absolute tem-
perature and a is the particle radius. On the other hand, the 
shear-induced diffusion contribution can be approximated by

where Ksh is a dimensionless coefficient that depends on 
the blood cell concentrations and rRBC is the red blood cell 
radius. The coefficient Ksh is difficult to measure but the 
value used in Table 4 is considered representative in the 
literature (Grief and Richardson 2005). Hence,

(21)
�c

�t
+ ∇ ⋅

[
(uF + up)c

]
= ∇ ⋅ Jdif f ,

(22)DBr =
kBT

6𝜋 𝜂(�̇�) a
,

(23)Dsh = Ksh

(
rRBC

)2
�̇� ,

(24)Jdif f = −D∇c = −

(
kBT

6𝜋 𝜂(�̇�) a
+ Ksh

(
rRBC

)2
�̇�

)
∇c.

Fig. 3  Comparison of a velocity 
u(y) and b viscosity �(y) profiles 
for the Newtonian (dotted line), 
power-law (dashed-dotted line), 
Carreau (solid line) and Ellis 
model (dashed line)

(a) (b)
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The particle velocity is found by balancing hydrodynamic 
and magnetic forces. Using the definition of the Stokes drag, 
representing the hydrodynamic force on a spherical particle 
of radius a moving through a viscous fluid, we have

The particles reach equilibrium velocity when FSt balances 
the magnetic force Fmag and this leads us to the expression

To exert a magnetic force on magnetic nanoparticles in the 
vessels, a magnetic field gradient is required at a distance. 
We can define the magnetic force �mag on a single particle 
in a magnetic field � as

Nacev et al. (2011) have shown that for a magnet held at a 
long distance compared to the width of the vessel, we can 
assume the magnetic force is approximately constant in the 
vertical direction which avoids the need to solve Maxwell’s 
equations. Richardson et al. (2010), for example, use a con-
stant value for the magnetic force given by

where Υ is the magnetite volume fraction and Bg is the 
gradient magnetic field. This is what we assume in this 
work. We consider a constant magnetic force acting per-
pendicular to the flow, i.e. �mag = F0 � . Therefore, in com-
bination with (26) we obtain that up = (0, vp(y)) where 
vp = −F0∕(6𝜋a 𝜂(�̇�)) . Finally, since the vertical fluid veloc-
ity is negligible, utot = (uF(y), vp(y)) and D = D(y) , the con-
centration Eq. (21) becomes

We assume that the particles can flow out of the vessel 
through the walls with a certain vascular permeability � . 
This results in Robin boundary conditions at the top and the 
bottom of the channel, of the form

(25)FSt = 6𝜋a 𝜂(�̇�)up .

(26)up =
Fmag

6𝜋a 𝜂(�̇�)
.

(27)�mag = (� ⋅ ∇)�,

(28)F0 =
4

3
�a3��ΥBg,

(29)
�c

�t
+ uF

�c

�x
+

�(vpc)

�y
= D

�2c

�x2
+

�

�y

(
D
�c

�y

)
.

where � is the unit outward normal vector at the vessel walls.
As predicted by Richardson et al. (2010) via matched 

asymptotic expansions, the parameter � plays an important 
role in determining the position of the particles deposited 
onto the vessel wall. In fact, their outer solution shows how 
small values of the permeability are responsible for the for-
mation of a boundary layer region in the immediate vicinity 
of the wall where the advective flux balances the diffusive 
flux and the thickness of the vessel wall prevents particles 
from flowing out and this may hamper the proposed treat-
ment. In this work, a reference value of � = O(10−6) is cho-
sen (Lim et al. 2020).

Assuming that particles enter the channel due to an injec-
tion of 3 s duration in the vicinity of x = 0 , we have

where the concentration cin(y, t) describes an injection in the 
central region of the vessel (see Appendix A).

At the channel outlet

However, this outlet boundary condition is irrelevant since 
particles never reach the outlet of the vessel in our simu-
lations. The initial particle concentration in the channel is 
zero, hence c(x, y, 0) = 0.

3.1  Simulation of the nanoparticle concentration

To solve (29) numerically, we first nondimensionalise the 
equation (see Appendix B). Then, we use an explicit Euler 
scheme in time, with first-order upwind approximations for 
the advection terms and central differences for the second 
order derivatives (see Appendix C for more details on the 
numerical scheme). The velocity uF is presented in Sect. 2.3, 
where the Newtonian and Ellis fluid models yield analyti-
cal expressions for uF while the Carreau model velocity is 

(30)
(
utotc − D∇c

)
⋅ � = � c on y = ±R ,

(31)uFcin(y, t) =
(
uFc − D

�c

�x

)
on x = 0 ,

(32)
(
uFc − D

�c

�x

)
= 0 on x = L .

Table 4  Parameter values 
chosen for the advection-
diffusion equation

Quantity Symbol Value Units References

Blood cell radius rRBC 4.2 × 10−6 m (Grief and Richardson 2005)
Shear diffusion coef. Ksh 5 × 10−2 No. (Grief and Richardson 2005)
Reference concentration c

0
1 mol m −3 (Nacev et al. 2011)

Particle radius a 15 × 10−9 m (Grief and Richardson 2005)
Boltzmann constant kB 1.38 × 10−23 m2 kg s −2 K −1 (Fournier 2017)
Temperature T 310.15 K (Fournier 2017)
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determined numerically. The vertical particle velocity vp is 
calculated via Eq. (26), with a constant value of the magnetic 
force F0 . Advection terms, as usual, will dominate where 
the flow rate is non-negligible but the diffusive contribution 
becomes important near the wall of the vessel, where the 
fluid has nearly zero velocity (see discussion on boundary 
layers in Appendix B). For the simulations shown in the next 
section, we use a square unit domain with a resolution of 400 
nodes in the x and y directions. The time step, Δt , is suitably 
chosen to satisfy the stability requirements of the scheme.

At the beginning of the process, there are no particles 
in the vessel, that is c(x, y, 0) = 0 , but at t = 0 we inject a 
concentration of particles cin(y, t) at the central region of the 
boundary x = 0 . To avoid the numerical difficulty associated 
with an abrupt change in concentration at this boundary, we 
assume that the concentration cin(y, t) progressively increases 
with time until it reaches a maximum value, c0 , at t = 3 s 
(see Appendix A).

3.2  Mesh convergence

Here we provide the results of a spatial and temporal con-
vergence study before presenting numerical predictions 
based on the numerical scheme given in Appendix C. Fol-
lowing the notation from Appendix C, all variables used in 
this subsection are dimensionless. The reference numeri-
cal approximation, cref , is generated on a fine mesh with 
nx = 400 and ny = 400 grid points in the x and y directions, 
respectively, with nxΔx = nyΔy = 1 , and time step Δt4 where 
Δtk = Δt0∕2

k−1 , k = 1,… , 4 , and Δt0 = 0.2 × 10−5 . Let Mn 
denote the mesh with (25 × 2n)2 cells with n = 1,… , 4.

To investigate convergence with respect to mesh size, the 
l2-norm of the difference between the numerical approxima-
tions on meshes M4 and Mn is computed for n = 1,… , 3 at 
the end of the simulation t = 0.8 . This is denoted by En . 
Since the concentration at the lower boundary y = −1∕2 
is important in our study, we also compute the l2-norm at 
this boundary denoted by Elb

n
 . These measures of the error 

are tabulated in Table 5. They confirm second-order con-
vergence of the numerical approximation with respect to 
mesh spacing as shown in the final column where the rate 
of convergence pn is computed using pn = log2(En∕2∕En).

The influence of mesh size on the evolution of the average 
nanoparticle flux through the bottom boundary is shown in 
Fig. 4 in dimensional units for the Ellis model with magnetic 

force F0 = 0.5 × 10−14 N. Also shown in Fig. 4 is an applica-
tion of Richardson extrapolation based on extrapolating the 
approximations computed on meshes M2 , M3 and M4 . This 
demonstrates convergence of this quantity with mesh refine-
ment with enhanced accuracy obtained through the use of 
Richardson extrapolation.

Next, we investigate convergence with respect to time 
step. In this temporal convergence study we use the finest 
mesh M4 and compute the l2-norm of the difference between 
the numerical approximations obtained using time steps Δt4 
and Δtk for k = 1,… , 3 at time t = 0.8 . These measures of 
the error are tabulated in Table 6. They confirm first-order 
convergence of the numerical approximation with respect 
to time step as shown in the final column where the rate of 
convergence pk is computed using pk = log2(Ek∕Ek−1) .

4  Results and discussion

We first analyse the effects that the different fluid models 
have on the motion of the particles in the bloodstream. 
As demonstrated in Sect. 2.1 the power-law model gives 

Table 5  Convergence analysis with respect to mesh size

nx = ny Δx = Δy En Elb
n

pn

50 0.02 0.0176 0.0182 –
100 0.01 0.0052 0.0051 1.7577
200 0.005 0.0012 0.0012 2.1621

Table 6  Convergence analysis with respect to time step

k Δtk Ek Elb
k

pk

1 0.2 ⋅10−5 5.6478⋅10−7 2.6025⋅10−7 –
2 0.1 ⋅10−5 2.8232⋅10−7 1.3011⋅10−7 1.0004
3 0.05 ⋅10−5 1.4114⋅10−7 6.5055⋅10−8 1.0002

Fig. 4  Influence of mesh size on the evolution of the average nano-
particle flux through the boundary y = −R for the Ellis model with 
magnetic force F0 = 0.5 × 10−14 N. Also shown is an application of 
Richardson extrapolation
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unrealistic values for the viscosity and therefore the results 
for this case will not be discussed. The results presented 
here, correspond to numerical simulations of Eq. (29) apply-
ing an injection for three seconds at x = 0.

4.1  Nanoparticle migration in Newtonian blood 
flows

Figure 5 shows the evolution of the concentration of nano-
particles in the vessel under the influence of a magnetic force 
F0 = 0.5 × 10−14 N when the Newtonian approximation for 
blood is considered. The panel on top represents the veloc-
ity field, utot . Since the velocity of the particles depends on 

the viscosity of the fluid and the Newtonian flow assumes 
a constant value, � then vp = F0∕6�a� , the changes in the 
velocity field are only due to the parabolic profile uF(y) and 
only in the y-direction. Furthermore, we observe how the 
particles near the vessel wall experience a much smaller drag 
force with respect to those at the center of the vessel (i.e., 
the horizontal component of the velocity is smaller near the 
wall than at the center) and, therefore, will react strongly to 
the magnetic force and deviate from the typical parabolic 
behaviour of the fluid. The colour maps show snapshots 
of the concentration of particles at five different times. We 
observe that the particles entering the bloodstream from the 
vessel inlet are immediately driven to the lower wall of the 

Fig. 5  Snapshots of the concentration of magnetic nanoparticles, 
c∕c0 , in a capillary vessel at five different times ( t = 1.6 s, t = 3.2 
s, t = 4.8 s, t = 6.4 s, t = 8 s), using the Newtonian model for blood 
flow and with a constant magnetic force equal to F0 = 0.5 × 10−14 N. 
The top panel represents the velocity field (Eq. (17)). Other parameter 
values as in Table 3

Fig. 6  Snapshots of the concentration of magnetic nanoparticles, 
c∕c0 , in a capillary vessel at five different times ( t = 1.6 s, t = 3.2 s, 
t = 4.8 s, t = 6.4 s, t = 8 s), using the Carreau model for blood flow 
and with a constant magnetic force equal to F0 = 0.5 × 10−14 N. The 
top panel represents the velocity field (see Eq. (19)). Other parameter 
values as in Table 3
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vessel, where some of them will permeate the vessel wall. At 
t = 6.4 s and t = 8 s, we observe the formation of a boundary 
layer where particles accumulate in the immediate proxim-
ity of the wall (e.g., at t = 8 s large values of c appear near 
x = 0.2 ⋅ 10−3 m, at the lower boundary of the vessel), as 
theoretically predicted in Richardson et al. (2010).

4.2  Nanoparticle migration in non‑Newtonian 
blood flows

In Figs. 6 and 7 the analogous plots to those of Fig. 5 are 
shown for the Carreau and the Ellis models, respectively. As 
expected, both models yield very similar particle concentra-
tions. However, in contrast to the Newtonian case, not all 

the nanoparticles are forced out at the lower boundary. This 
change in behaviour may be attributed to the high viscos-
ity values characterising the non-Newtonian models in the 
vicinity of y = 0 (see Fig. 3b), due to which the particles find 
it difficult to escape this ‘central’ region. Since the vertical 
velocity is proportional to 1∕� , in the Newtonian model the 
vertical velocity is significant and much larger than the cor-
responding one for the Ellis and Carreau models where the 
higher viscosity values lead to significantly lower vertical 
velocities in the ‘central’ region. Near the boundaries the 
viscosity of the Ellis and Carreau models takes a similar 
value to the Newtonian fluid and, hence, so does the vertical 
velocity. This may be observed from the velocity profiles 
shown in the top panels. The differences found in the con-
centration maps from Figs. 5, 6, 7 are mainly caused by the 
changes in the viscosity between models and clearly demon-
strate that a Newtonian fluid model severely overestimates 
the effect of the magnetic force on the nanoparticles.

Note the advection term in (21) is the dominant mecha-
nism for nanoparticle transport in all fluid models studied 
(see discussion in Appendix B), but diffusion also contrib-
utes to the observed reduction in concentration, as particles 
spread out. This can be observed in all three cases (Figs. 5, 
6, 7) where the colored central region increases size with 
time. Actually, diffusion allows some reduced number of 
nanoparticles reach the upper vessel wall (see, for instance, 
panels for t = 6.4 s in Figs. 5, 6).

Fig. 7  Snapshots of the concentration of magnetic nanoparticles, 
c∕c0 , in a capillary vessel at five different times ( t = 1.6 s, t = 3.2 s, 
t = 4.8 s, t = 6.4 s, t = 8 s), using the Ellis model for blood flow and 
with a constant magnetic force equal to F0 = 0.5 × 10−14 N. The top 
panel represents the velocity field (Eq. (20)). Other parameter values 
as in Table 3

Fig. 8  The average particle flux at the lower wall for the Newtonian 
and Ellis models versus time with magnetic force F0 = 0.5 × 10−14 N 
(solid and dashed lines, respectively), and the Ellis model for a dou-
bled force, F0 = 1 × 10−14 N (dash-dotted line)
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4.3  Varying the strength of the magnetic field

Having demonstrated that the non-Newtonian models are 
more realistic, we now aim to find a value of the magnetic 
force F0 capable of driving the same number of particles to 
the lower wall of the vessel as the Newtonian fluid, for the 
same capillary vessel length and radius as in previous simu-
lations. For doing so, we analyse the average particle flux 
crossing the lower vessel wall as a function of time, which 
is computed using c|y=−R via

Since the Ellis and Carreau models provide similar results, 
for simplicity we use the Ellis model as a representative non-
Newtonian fluid. In Fig. 8 we present the evolution of the 
average particle flux (33) with time for the Newtonian (solid 
line) and Ellis (dashed line) fluids taking F0 = 0.5 × 10−14 N. 
We also simulate a third case corresponding to the Ellis fluid 
(dash-dotted line) with a magnetic force F0 = 1 × 10−14 N, 
i.e., a magnetic force two times larger. As expected, the 
average flux for the Ellis fluid with F0 = 0.5 × 10−14 N is 
much lower than the Newtonian fluid for the same magnetic 
force. For instance, at t = 8 s the average flux for the Ellis 
fluid is 41% lower than the Newtonian one. However, by 
doubling the strength of the magnetic field, we observe that 
the flux for the Ellis model gets closer to the Newtonian 
case with F0 = 0.5 × 10−14 N. To facilitate the comparison 
between these two cases, we numerically integrate the cor-
responding curves over the total simulation time, obtain-
ing 2.4977 × 10−7  mol/m2 and 2.4992 × 10−7  mol/m2 for 
the Newtonian with F0 = 0.5 × 10−14 N and the Ellis with 
F0 = 1 × 10−14 N fluid, respectively. Hence, increasing the 
magnetic force to F0 = 1 × 10−14 N is enough to attract the 
same number of particles to the lower vessel wall in the 
chosen simulation time.

In Fig. 9, we present the particle concentration maps for 
the Ellis model with F0 = 1 × 10−14 N. By comparing them 
with those in Fig. 7, we observe that the number of particles 
pushed to the lower boundary is clearly larger, consistent 
with the higher average flux of particles shown in Fig. 8. 
Since increasing F0 increases the vertical velocity, the for-
mation of the boundary layer in the vicinity of the lower 
wall, where the y-advection term is dominant, is even clearer 
than in Fig. 7.

4.4  Sensitivity under changes of the vessel wall 
permeability

We note that different tissues may have different permeabili-
ties, and recent experiments indicate effective permeability 
values of the order of 10−6 m/s or smaller in tumors (Lim 

(33)� ⟨c⟩ = �

L ∫
L

0

c�y=−R dx .

et al. 2020). As shown in Fig. 10, a decrease in the perme-
ability in our model results in a consistent decrease in the 
particle flux. Also shown in Fig. 10 is a sensitivity analy-
sis with respect to the physically meaningful value of the 
permeability, i.e., � = 1 ⋅ 10−6 m/s. Increasing or decreas-
ing this reference value of the permeability by 10% with 
respect to the reference value � = 1 ⋅ 10−6 m/s generates a 
change in the particle flux of around 5% at the end of the 
simulation ( t = 8 s). This demonstrates that the results are 
robust with respect to small changes to the value of vascular 
permeability.

Fig. 9  Snapshots of the concentration of magnetic nanoparticles, 
c∕c0 , in a capillary vessel at five different times ( t = 1.6 s, t = 3.2 s, 
t = 4.8 s, t = 6.4 s, t = 8 s), using the Ellis model for blood flow and 
with a constant magnetic force equal to F0 = 1 × 10−14 N. The top 
panel represents the velocity field (equation (20)). Other parameter 
values as in Table 3



 Microfluidics and Nanofluidics           (2022) 26:74 

1 3

   74  Page 12 of 15

5  Conclusions

We have formulated a model that describes the motion of 
magnetic nanoparticles in a blood vessel subject to an exter-
nal magnetic field to optimize magnetic drug targeting. The 
model consists of a system of nonlinear partial differential 
equations formed by the Navier-Stokes equations for the 
flow of blood and with an advection-diffusion equation for 
the concentration of nanoparticles. We consider Newtonian 
flow and three different non-Newtonian flows. Assuming a 
long two-dimensional vessel, the equations are significantly 
reduced and the system is then solved via analytical and 
numerical techniques.

We have accounted for all the forces involved in this phys-
ical process, combined with realistic choices for the param-
eter values. It has been shown that, to correctly simulate 
the delicate balance between hydrodynamic (Stokes drag) 
and magnetic forces in the vessel, it is crucial to choose an 
appropriate non-Newtonian model for blood.

The first part of this paper examines the non-Newtonian 
behaviour of blood and the importance of choosing an appro-
priate model for the fluid viscosity. The Newtonian approxima-
tion proved to be inaccurate while the more commonly used 
power-law model exhibits an unbounded value for the viscos-
ity at the centre of the vessel. The Carreau and Ellis models are 
both found to be good models for simulating blood behaviour, 
and they lead to very similar predictions for the velocity of the 
fluid. However, the Ellis model has a distinct advantage in that 

it permits an analytical expression for the fluid velocity, so we 
focus on it for this reason.

In the second part, magnetic nanoparticles were introduced 
in the flow. With such small particles both advection and dif-
fusion effects can play an important role. The key result of 
the paper is that a Newtonian model predicts greater particle 
motion than an Ellis or Carreau model under the same external 
magnetic force. Specifically, for one case examined, a mag-
netic force had to be applied in the Ellis fluid that was twice 
as large than in the Newtonian fluid for the same number of 
particles to be absorbed through the vessel wall. These results 
show that models based on a Newtonian fluid can drastically 
overestimate the effect of the magnetic field and therefore we 
conclude that to accurately model nanoparticle drug targeting 
in realistic clinical situations the non-Newtonian behaviour of 
blood needs to be accounted for so that a sufficiently strong 
magnetic field is applied.

In future work, the model can be improved by imposing 
pulsatile flow, including the elasticity of the vessels due to 
the change in pressure and also by solving in more complex 
geometries. Furthermore, it can be combined with detailed 
experimental studies to optimize the delivery of drugs to spe-
cific regions.

Appendix A: Initial injection

To reproduce the injection of nanoparticles in the vessel we 
assume that the concentration of particles entering the vessel 
follow the distribution

(34)
cin(y, t) =

f (t)

4
erfc

[
M

2R

(
y −

R

3

)]{
1 + erf

[
M

2R

(
y +

R

3

)]}
c0 ,

Fig. 10  Evolution of the average nanoparticle flux through the bound-
ary y = −R as a function of time for F0 = 1 × 10−14  N and three 
different permeabilities using the Ellis model. The shaded area rep-
resents the sensitivity of the nanoparticle flux for variations of the 
permeability within a 10% around � = 1 ⋅ 10−6 m/s

Fig. 11  Profiles of cin at four different times (from bottom to top: 
t = 0.75   s, t = 1.5   s, t = 2.25   s and t = 3   s). In our simulations 
M = 20
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which ensures that the injection is made in the central region 
of the channel, occupying approximately one-third of the 
vessel diameter. The parameter M controls the steepness of 
the error functions, and the time evolution is provided by

allowing a progressive increase of particles with time, 
reaching the maximum c0 at t = 3 s. The function cin satis-
fies the initial condition c(x, y, 0) = 0 and prevents jumps at 
the boundaries y = ±R , since cin → 0 for y → ±R , thereby 
avoiding numerical instabilities. See profiles in Fig. 11.

Appendix B: Nondimensionalisation 
of the diffusion equation

Using the non-dimensional variables (10) and introducing 
new ones

into (29) we obtain

where U = max(uF) , W = max(vp) and D̄ = max(D) , vary 
slightly depending on the model of fluid chosen. As a ref-
erence, for the Newtonian fluid with F0 = 0.5 × 10−14 N, 
we have U = 7.5 ⋅ 10−4  m/s, W = 5.13 ⋅ 10−6  m/s and 
D = 1.37 ⋅ 10−10 m2/s. The length scales are L = 500 � m 
and 2R = 40 �m.

Rearranging the terms and choosing �t = L∕U to balance 
the time derivative with the advection term we obtain

where � = W∕U and Pe = 2RU∕D is the Péclet number. Pe 
depends on the model chosen. The time scale �t represents 
the average time taken by a particle to pass through the ves-
sel in the absence of a magnetic field (e.g., in the Newtonian 
case �t = 6.67 s). According to our choice of scales and the 
values in Table 4, O((�Pe)−1) ≈ 10−1 depending on the fluid 
chosen, while � = O(10−2) . Hence, both terms on the right-
hand side of (38) are small. Therefore, the advective terms 
are dominant and when analysing them, it is important to 
understand the order of magnitude of the fraction �∕� . In 
particular, we can distinguish three regions in the domain 
(symmetric with respect to the center of the vessel): a central 
region where O(𝛿) < O(𝜀) , which is the broadest one where 

(35)f (t) =

{ 1

3
t if 0 ≤ t ≤ 3 s ,

0 otherwise ,

(36)
t = 𝛿t t̂, c = c0 ĉ, uF = UûF, vp = Wv̂p, D = D̄D̂,

(37)

c0

𝛿t

𝜕ĉ

𝜕t̂
+

Uc0

L
ûF

𝜕ĉ

𝜕x̂
+
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𝜕ŷ

(
D̂
𝜕ĉ
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,

(38)
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+ ûF

𝜕ĉ

𝜕x̂
+

𝛿
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𝜕x̂2

)
+

𝜕

𝜕ŷ

(
D̂
𝜕ĉ

𝜕ŷ

)]
,

the drag force dominates over the magnetic force; a second 
region where O(�) ≈ O(�) where both advective terms bal-
ance; finally, very near to the wall of the vessel, we can find 
a narrow boundary layer where O(𝛿) > O(𝜀) (Stokes drag 
is very small) and vertical motion due to the magnetic field 
dominates.

The boundary conditions at the vessel wall are

where h = �∕W  . At the vessel inlet

Finally, at the outlet we have

which does not affect the results since the simulations are 
always stopped when the particles are still far from reaching 
the vessel outlet. This ensures that nanoparticles only leave 
the vessel through absorption at the boundaries y = ±1∕2 
during our simulations.

Appendix C: Finite difference scheme 
for the diffusion equation

We drop the hats in (38)-(41) and define

The choice of the direction of the upwind step is made 
considering that the solution of the velocity of the fluid is 
always non negative and the direction of the vertical veloc-
ity is always negative (since we have positioned the magnet 
below the vein). Then, equation (38) can be approximated as

where DT
j±

1
2

 are evaluated by the arithmetic mean.

We also need to specify the boundary conditions at x = 0, 1 
and y = ±1∕2 . On the wall of the vessel, that is the upper and 

(39)v̂pĉ −
1

Pe 𝛿
D̂
𝜕ĉ

𝜕ŷ
= ±hĉ on ŷ = ±

1

2
,

(40)ûFĉin = ûFĉ −
𝜀

Pe
D̂
𝜕ĉ

𝜕x̂
on x̂ = 0 .

(41)ûFĉ −
𝜀

Pe
D̂
𝜕ĉ

𝜕x̂
= 0 on x̂ = 1 ,

(42)
cn
i,j
∶=c(xi, yj, t

n), uFj
∶=uF(yj), vpj∶=vp(yj),

DTj
∶=D(yj).

(43)

cn+1
i,j

− cn
i,j

Δt
+

�

�
uFj

(
cn
i,j
− cn

i−1,j

Δx

)
+

(
vpj+1c

n
i,j+1

− vpjc
n
i,j

Δy

)
=

�

Pe
DTj

(
cn
i+1,j

− 2cn
i,j
+ cn

i−1,j

Δx2

)
+

1

�Pe
DT

j+
1
2

(
cn
i,j+1

− cn
i,j

Δy2

)

−
1

�Pe
DT

j−
1
2

(
cn
i,j
− cn

i,j−1

Δy2

)
,



 Microfluidics and Nanofluidics           (2022) 26:74 

1 3

   74  Page 14 of 15

the lower side of the rectangle, we approximated conditions 
(39), through the three-point backward difference formula

and the three-point forward difference formula

for i = 1,… , nx . Similarly, the boundary conditions at the 
vessel inlet and outlet are approximated again through the 
three-point difference formulas

for j = 1,… , ny.
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