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Abstract: Machine tools, as an indispensable equipment in the manufacturing industry, are widely 
used in industrial production. The harsh and complex working environment can easily cause the 
failure of machine tools during operation, and there is an urgent requirement to improve the fault 
diagnosis ability of machine tools. Through the identification of the operating state (OS) of the ma-
chine tools, defining the time point of machine tool failure and the working energy-consuming unit 
can be assessed. In this way, the fault diagnosis time of the machine tool is shortened and the fault 
diagnosis ability is improved. Aiming at the problems of low recognition accuracy, slow conver-
gence speed and weak generalization ability of traditional OS recognition methods, a deep learning 
method based on data-driven machine tool OS recognition is proposed. Various power data (such 
as signals or images) of CNC machine tools can be used to recognize the OS of the machine tool, 
followed by an intuitive judgement regarding whether the energy-consuming units included in the 
OS are faulty. First, the power data are collected, and the data are preprocessed by noise reduction 
and cropping using the data preprocessing method of wavelet transform (WT). Then, an AlexNet 
Convolutional Neural Network (ACNN) is built to identify the OS of the machine tool. In addition, 
a parameter adaptive adjustment mechanism of the ACNN is studied to improve identification per-
formance. Finally, a case study is presented to verify the effectiveness of the proposed approach. To 
illustrate the superiority of this method, the approach was compared with traditional classification 
methods, and the results reveal the superiority in the recognition accuracy and computing speed of 
this AI technology. Moreover, the technique uses power data as a dataset, and also demonstrates 
good progress in portability and anti-interference. 

Keywords: operating status recognition; energy data-driven; deep learning; machine tools;  
fault diagnosis 
 

1. Introduction 
Intelligent computer numerically controlled (CNC) machine tools are necessary 

pieces of equipment for the furthering the development of modern productivity [1]. Ac-
cording to incomplete statistics, the number of machine tools in China has exceeded 8 
million [2]. A CNC machine tool is a complex system integrating mechanical, electrical, 
hydraulic and other technologies. At the same time, some studies have shown that the 
complexity of the system structure leads to the cascading of its failures. Even if the failure 
rate of one component is low, the overall failure rate of the system increases exponentially 
due to the scale effect of complex systems. This renders maintenance of machine tools 
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increasingly difficult. The fault diagnosis of machine tools in operation plays an irreplace-
able role in ensuring the running quality of machine tools, especially in maintaining the 
level of machining accuracy [3]. Therefore, improving the fault diagnosis capability will 
significantly improve the life cycle of the machine tools, and has become a central focus 
within relevant industries and academia. When a machine tool fails, it is necessary to iden-
tify the time of failure and the failed energy-consuming unit as soon as possible. Fu et al. 
[4] found that this time accounted for 80–90% of the total fault diagnosis time, which was 
not conducive to subsequent fault diagnosis. 

The OS of the machine tools is influenced by their energy-consuming units. By accu-
rately recognizing the OS of the machine tool, it is possible to accurately analyze the en-
ergy-consuming units that are working at any time. This reduces the time required for 
locking the time point and location of the fault, which plays an important role in improv-
ing the efficiency of system fault diagnosis and represents preparatory work for fault di-
agnosis. Existing research shows that the operating state (OS) of a machine tool can be 
divided into cutting, starting, standby, etc., [5,6]. This paper uses the power curve of the 
XK713 milling machine operating process, as shown in Figure 1. The energy-consuming 
units contained within the power of each OS can be visually observed. For example, in the 
cutting state, almost all the energy units of a machine tool are running, such as the spindle 
drive system, feed drive system, lubrication and cooling system, etc., and only three en-
ergy units are in a standby state. When the machine tool fails, by determining the OS of 
the machine tool, the energy-consuming unit where the failure is located can be identified. 
However, due to the instability of the machining site and the accuracy of the measuring 
instruments, it is difficult to establish a specific model to accurately recognize the OS of 
the machine tool. For example, the load factor is a key factor in calculating the energy 
consumption in the cutting state, which needs to be obtained by fitting the experimental 
data of additional sensors, which is difficult to apply in actual power production [7]. To 
this end, a deep learning method with power data is proposed to recognize the OS of 
machine tools in this paper, which solves the problems of large amounts of machine tool 
data and a complex working environment, and demonstrates good recognition accuracy 
and generalization ability. 
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Figure 1. Power curve of the XK713 machine tool process. 

The rest of the paper is structured as follows. Section 2 describes the related work for 
the OS recognition of a machine tool. Section 3 introduces the methodology of the pro-
posed approach, based on the general framework establishment, whereby the three main 
steps, namely power data acquisition, OS recognition with deep learning technology 
ACNN and model validation are also studied. In Section 4, a case study is applied to verify 
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the feasibility and superiority of the proposed method. Then, conclusions and further re-
search directions are outlined in Section 5. 

2. Literature Review 
An essential basis for this study is to classify and recognize the OS of a machine tool. 

In general, the OS is a term to describe the series of activities of machining tools [8,9], and 
can be divided into five stages, namely Starting status (S1), Standby status (S2), Idling of 
the spindle status (S3), Air cutting status (S4) and Cutting status (S5) [10]. With a defined 
boundary of OS, several researchers focus on the energy-consumption nature of machine 
tools and their energy-consuming units. Oliver et al. divided the OS of a machine tool into 
the steady state and transient state, and estimated the energy consumption of the spindle 
and feed axis with these states [11,12]. Lv et al. established a spindle acceleration state 
model of CNC lathes based on a calculation of the moment of inertia for the spindle drive 
system [13]. Martin et al. conducted an experimental study to investigate the energy char-
acteristics required for obtaining the power models of CNC machine tools through an ex-
perimental study [14]. These studies provide the fundamental theory for this work. 

When the boundaries and energy-consumption characteristics of OS are determined, 
the power thresholds can be set to recognize the OS of a machine tool. There are two main 
approaches for power threshold acquisition in the existing studies. One is to measure the 
key parameters of the OS energy consumption, and the other concerns calculation of the 
power thresholds in each OS by using the parameters [15]. Hu et al. designed a spindle 
speed experiment to obtain the non-load power factor, which was used to calculate the 
power thresholds of S4 [16]. As a key parameter for S5, the load-loss coefficients during 
the machine tool service process (MTSP) were calculated by using a data-fitting approach, 
and the data were collected from the torque sensor, power sensor and power meters in 
the machining experiment [17]. Benjamin et al. proposed a Gaussian threshold method to 
adjust the judgment threshold for different machine tool OS recognition [18]. Liu et al. 
designed a machining experiment of the machine tool spindle drive system, and calcu-
lated the load-loss coefficients [19]. The aforementioned power-threshold approaches pro-
vide strong support for understanding the energy-consumption characteristics of OS and 
the complex relationship with energy-consuming units, which contribute to the study of 
OS recognition in this paper. Unfortunately, most of the threshold methods require instal-
lation of additional sensors in the processing system, but are difficult to widely implement 
in actual industrial production processes and also lack generalizability. 

The other is to establish the multi-period energy-consumption model of energy units, 
where the power thresholds of OS could then be obtained by summing the results of these 
models. Due to the complex structure of machine tools, the energy-consumption models 
of the feed drive system [20,21], spindle drive system [22,23] and fluidic systems [24] were 
established. He et al. combined the colored timed object-oriented Petri net (CTOPN) and 
the virtual component method to establish the dynamic characteristic model of multiple 
energy sources of CNC machine tools [25]. Jia et al. established a kinetic energy-consump-
tion model [26]. The above two models are based on the energy consumption of the basic 
actions of machine tools, and the energy consumption of the OS can be obtained by the 
addition of the two values of consumption. The above approaches often depend on a large 
number of experiments to improve the recognition accuracy, and are inconvenient for im-
plementation and operation in actual production. Furthermore, the number of energy 
units is increasing due to the continuous structural improvements of machine tools, and 
the above approaches are often labor-intensive and computationally costly. 

Traditional machine tool fault diagnosis mainly uses signal processing and machine 
learning techniques. The signal processing techniques used in machine tool fault diagno-
sis mainly include time-domain analysis [27], frequency-domain analysis [28] and time-
frequency analysis. Wavelet Analysis [29], short-time Fourier transform (STFT) [30] and 
empirical mode decomposition are commonly used methods in the time-frequency anal-
ysis of machine tool signals. In recent years, the convolutional neural network (CNN) has 
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been used in the field of image recognition. Great achievements have been achieved in 
this domain, which can be extracted from the original complex and robust multi-dimen-
sional features that are extracted from raw data [31,32], so that the established model has 
higher accuracy and robustness. Wan et al. [33] proposed an improved two-dimensional 
LeNet-5 network for monitoring and identification of rolling bearing faults. Shi et al. [34] 
use the DCNN algorithm to identify the effective operating state of the machine tool. In 
the above methods and models, the adaptive feature extraction of original data by CNN 
only considers the multi-dimensional characteristics of the data, and does not consider the 
problems of data generalization and gradient explosion, which result in losses of original 
data feature information. Rohit et al. [35] use a modified AlexNet in conjunction with the 
Grasshopper Optimization Algorithm (IGOA) to diagnose faults present in gearboxes and 
to correct the faulty gear. In addition, after the classification process, performance evalu-
ation is performed on various performance indicators. Existing deep learning [36] meth-
ods are processed and optimized to improve its performance. However, due to the con-
straints of experimental conditions, the evaluation cost is higher, and large deep convolu-
tional networks such as VGGNet and ResNet-18 that use more memory and parameters 
(140 M) have not been adopted [37]. 

Therefore, this paper proposes a data-processing method based on WT, which only 
needs to collect power data during operation of the machine tool, and the collection 
method is convenient and fast. Further, the proposed method does not require the use of 
additional hardware measurements. It can be used as a general method to determine the 
current OS of various machine tools, thus ensuring its practical application in manufac-
turing enterprises. Finally, the paper adopts an ACNN model with more hidden layers, 
which employs multiple GPU operations [38] and an advanced activation function ReLU, 
capable of extracting deeper features from the data. 

3. Materials and Methods 
3.1. General Framework 

The general framework of the proposed approach includes three main stages, power 
data collection and processing, recognition model establishment and model validation, as 
shown in Figure 2. 

CNC machine tools Data acquisition

Window function noise reduction

Wavelet transform to extract features

Matrix evaluation

 ACNN structure construction

Recognition result

 Images as the input 
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Result analysis and comparison

1.Data Collection and Processing
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Figure 2. The general framework of the proposed approach. 
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• Power data collection and processing. The purpose of this stage is to obtain the input 
of ACNN, which mainly includes three parts: power data acquisition, power data 
preprocessing and feature extraction. 

• Recognition model establishment. In this stage, an AI recognition model for OS of 
machine tools is established with ACNN. Then, the adjustment approach for hy-
perparameters of ACNN is also studied to improve the recognition performance. 

• Model validation. To illustrate the feasibility of the above model, a confusion matrix 
approach is employed to verify the recognition accuracy. 

3.2. Power Data Collection and Processing 
3.2.1. Power Data Collection and Preprocessing 

The dataset in this study comes from the Green Manufacturing Laboratory of Wuhan 
University of Science and Technology. We use the power tester to collect the power data 
of the entire processing process of the milling machine XK713 from start to finish, that is, 
the three-phase current signal during processing, and then display it on the host com-
puter. In order to avoid the influence of a single number of processing machines on the 
test and to increase the stability of the acquisition environment, the entire test process was 
carried out on 20 machine tools of the same model. A total of 400 blank milling tests were 
performed. 

In addition, it should be noted that there are various sources of noise present in the 
original current signal, which may cause serious interference to the main components of 
the current signal and reduce the quality of the data set. In order to improve the signal-
to-noise ratio, this paper uses a rectangular window function to smooth the original data. 
Considering the power curve of the OS of machine tools, the sine function could be used 
as the time-domain prototype formula of the filter window, as shown in Equation (1). 

sin(2 )πfxy
πx

= , (1) 

where, f  is the cut-off frequency of filter, which is used to describe a special frequency 
of the frequency characteristic index; x  is the current signal value collected; y  is the 
signal value after filtering and transformation. 

In addition, due to the time-series characteristics of the current signal, the time-do-
main formula of the filter window is constructed with Equation (2). 

1sin(2 ( ))
2( ) ( ) 1( )

2

Lπf i
X k x i Lπ i

−
−

⇒ ⋅
−

−
, (2) 

where, L  represents the window function width; i  represents the sample value se-

quence number, and [0, 1]i L∈ − ; ( )X k  is the filter sequence; ( )x i  is the current 
sampling point. L  and ( )x i  depend on the step size and sampling frequency and are 
the key to smooth denoising of the raw data. 

3.2.2. Feature Extraction 
The correct input form of the ACNN is a prerequisite to ensure the reasonable use of 

the entire model. Time-domain characteristics can reflect the timely and dynamic pro-
cessing of the machine tool and the trend and characteristics of signal changes during 
processing. Therefore, the continuous WT approach is employed to extract features of the 
processed signal to time-frequency images, and these images can be used as input for the 
ACNN. The continuous WT function is shown in Equation (3). 
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1( , ) ( ) ( )t τψ α τ f t ψ dt
αα

∞

−∞

−
= ⋅ ⋅∫ , (3) 

where, ( , )ψ α τ  is the wavelet function; α  is the scale factor; τ  is the translation factor 
and ( )f t represents the commonly used piecewise function, and is the collected current 
signal in this paper. 

Subsequently, the wavelet time-frequency images are stored in .jpg format, and 
resized to the pixel-based dimensions of 227 × 227, which can be used as input for the 
ACNN. 

3.2.3. Data Augmentation 
The time-frequency diagram of the processed current signal is intercepted. Next, 5 

different categories of sample images are generated (corresponding to 5 OS, respectively), 
each group of 400 images, a total of 2000 images. 

In order to improve the adaptability and generalization of the network model, this 
study uses random rotation, horizontal and vertical flipping, adjusting brightness, satu-
ration and contrast and adding Gaussian blur to the obtained images to expand the dataset 
[39]. The number of augmented datasets is 8 times that of the original, with a total of 16,000 
pictures. Examples of time-frequency pictures under different expansion methods are 
shown in Figure 3. In order to ensure a balanced sample size, 2000 images of different 
categories were randomly selected from each type of samples, totaling 10,000 images. Ac-
cording to the ratio of 8:2, they are divided into a training set (8000 pictures) and test set 
(2000 pictures). 

a.Original image b.Rotation c. Flip horizontal d. Flip vertical

e.Brightness f. Saturation g. Contrast h. Gaussian blur  
Figure 3. Example of machine tool OS images after data augmentation. 

3.3. Recognition Model Establishment 
3.3.1. Network Construction 

The AlexNet Convolutional Neural Network (ACNN) is an improved algorithm of 
the traditional Convolutional Neural Network, which uses training techniques such as the 
ReLU activation function, overlapping pooling, dual GPU training, data augmentation 
and dropout, and satisfies the requirements of power data processing [40]. The ACNN 
was firstly proposed in the Large-scale Visual Recognition Challenge (ILSVRC 2012) [41], 
which is a deep convolutional neural network based on the classic LeNet5 and the tradi-
tional BP neural network [42], with the network construction shown in Figure 3. 
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Now, we are ready to describe the overall architecture of our ACNN. As shown in 
Figure 4, the convolutional layer has a total of five layers (C1-C5), and the fully connected 
layer has a total of three layers (FC1-FC3). 

...

9216

...

4096

...

4096

Softmax
1000

 
Figure 4. Overall framework for the improved network. 

The input data of the first layer (C1) is the original 227 × 227 × 3 image, which is 
convolved by a 11 × 11 × 3 convolution kernel, and the moving step size is 4 pixels. (This 
is the receptive field of adjacent neurons in the kernel map [43] distance between centers). 
The second convolutional layer (C2) takes as input the (response normalization and pool-
ing) output of the first convolutional layer and filters it with 256 kernels of size 5 × 5 × 48. 
The input data of the second layer is the pixel layer output by the first layer. In order to 
facilitate subsequent processing, the left and right sides and the upper and lower sides of 
each pixel layer should be filled with 2 pixels [44]; Operations are then performed on dif-
ferent GPUs. Each set of pixel data is convolved with 5 × 5 × 48 convolution kernels, and 
a total of 256 kernels of size 5 × 5 × 48 are used to filter them. The third, fourth and fifth 
convolutional layers (C4, C5) are connected to each other without any intermediate pool-
ing or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 × 
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The 
fourth convolutional layer has 384 kernels of size 3 ×3 × 192, and the fifth convolutional 
layer has 256 kernels of size 3 × 3 × 192. Fully connected layers have 4096 neurons each. 

The last three layers are the fully connected layer (FC), which is employed to expand 
the multi-dimensional matrix data generated by the convolution of the last convolution 
layer into one dimension, and predict each category. 
(1) Convolutional layer 

The main goal of the convolutional layer is to extract features from the input image. On 
the convolutional layer, multiple convolution kernels are used to convolve the input image, 
and after adding paranoia, a series of output feature maps can be obtained through a non-
linear activation function. This layer has characteristics of local connection and weight shar-
ing, both of which reduce the complexity of the model and reduce the number of parame-
ters. Among them, taking the convolution of a single GPU of the C1 convolution layer as an 
example, the convolution process of AlexNet is shown in Figure 5 and Equation (4). 
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11×11×3 convolution 
kernel, Stride: 1

227×227×3 55×55×48  
Figure 5. The process of Convolution. 

1( )
j

l l l l
j i ij j

i M
X f X w b−

∈

= ⋅ +∑ , 
(4) 

where, 
l
jX
 is the element of the second layer; jM

 is the fourth convolution area of the 

j-layer feature map; 
1l

iX −

 is the element in it; 
l
ijw

 is the weight matrix corresponding to 

the convolution kernel; 
l
jb

 is the paranoid term. f is the activation function ReLU. 
(2) Pooling layer 

The main function of the pooling layer is to reduce the dimension of the feature map 
while maintaining the invariance of the feature scale to a certain extent. Pooling layers 
reduce the number of parameters and computation by gradually reducing the size of the 
representation space to control overfitting. Pooling layers usually take a convolutional 
layer as input. The pooling process is shown in Figure 6 and Equation (5). 

3×3 filter
Stride: 2

55×55×48
27×27×48

 
Figure 6. The process of Pooling. 

1( ( ) )l l l l
j j i jX f down X b−= +β , (5) 

where, down() is the subsampling function; 
l
jβ  is the weight of the j-feature map of the 

l-layer; 
l
jb

 is the bias of the j-feature map of the l-layer. 
(3) Fully Connected layer 

After the input image is alternately propagated through multiple convolutional lay-
ers and pooling layers, the fully connected layer network is used to classify the extracted 
features. In the fully connected layer, the one-dimensional feature vectors expanded by 
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all feature maps at the input are obtained by weighted summation and passing through 
the activation function. The calculation process is shown in Equation (6). 

1( )k k k ky f w x b−= + , (6) 

where, k is the serial number of the network layer; yk is the output of the fully connected 
layer; xk−1 is the expanded one-dimensional feature vector; wb is the weight coefficient; f is 
the activation function. 
(4) Regularization 

Due to the high complexity of deep learning models, large-scale training data are 
critical for model robustness. However, in the tool wear monitoring problem, it is difficult 
to obtain large-scale training data. Therefore, this paper introduces ReLU [45], LRN [46], 
and Dropout [47] into the ACNN model training to regularize the network. 
• Nonlinear activation function ReLU. Its gradient descent is always 1, which can ef-

fectively prevent the problem of gradient disappearance and shorten the training 
time. This operation can be represented by Equation (7). 

max( ) ( 0, )f x x= , (7) 

• Local Response Normalization. Local response normalization (LRN) creates a com-
petition mechanism for the activity of local neurons, rendering the response values 
increasingly large, thus inhibiting other neurons with smaller responses, enhancing 
the generalizability of the model. 

• Dropout. Randomly deleting some neurons through a defined probability, while 
keeping the number of neurons in the input layer and output layer unchanged, and 
update the parameters. Repeat these operations in the next iteration until the end of 
training. Dropout can effectively prevent overfitting of neural networks. 

3.3.2. Network Training and Parameter Adjustment 
The parameters and regression layer feature weights in the ACNN model need to be 

learned through model training, and thus the model needs to be trained through training 
data to obtain the optimal parameters in the model. The difference between the predicted 
value and the true value for a particular sample is defined as loss. Here, the authors choose 
to use an Adaptive moment estimation (Adam) [48] to minimize the SoftMax categorical 
cross-entropy loss function, the loss function is defined as Equation (8). 

2 2 . . .
N

i1 i1 i i iM iM
i=1

1Loss = - y lny y lny y lny
N

′ ′ ′+ + +∑ , (8) 

where, N represents the number of samples; M represents the number of classes; y’ repre-
sents the predicted output value; y displays the actual value. 

Model predictions where the model has been tested against a given test dataset by 
collecting power signals. During testing, there are some hyperparameters for stochastic 
gradient descent for training convolutional neural networks. In the proposed ACNN 
model, two main hyperparameters are investigated to improve the recognition accuracy. 
• The initial learning rate [49]. The initial learning rate controls how well we adjust the 

network weights and error convergence based on the gradient of the loss. 
• Batch size [50]. The stochastic gradient descent method is used in training convolu-

tional neural network, and its batch size affects computer memory utilization and 
training oscillation which represents the number of training examples in a single 
batch. The batch size limits the number of training samples before each weight up-
date. 
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3.4. Model Validation 
The ACNN is essentially a deep learning-based classifier, the classified performance 

of which could be verified with the data classification validation models [51]. In this pa-
per, the confusion matrix is used to evaluate the classified performance of the ACNN. 

For the classification task M , the number of samples is ( 2000)N N = , 
1 2{ , , . . . , }LC C C C=  is the classifier set (i.e., ACNN), and the ( 1)L L =  classifiers are 

used to test in the samples N  respectively. The confusion matrix ( 1, 2, . . . , )kC k L=  of 
each classifier is obtained, and the confusion matrix of the kth classifier kC  is shown in 
Equation (9): 

1,1 1,2 1,

2,1 2,2 2,

,

,1 ,2 ,

k k k
M

k k k
M

k k
i j

k k k
M M M M

N N N

N N N
C

N

N N N

 
 
 

=  
 
 
  





  



, (9) 

where, the elements in the i -th row and the j -th column represent the number of the i
-th class identified as the j -th class by the classifier kC  in the sample. If i j= , it means 
that the classifier can correctly recognize the number of samples, so the diagonal elements 
represent the classifier kC . 

The number of correct classifications, and the off-diagonal elements represent the 
number of misclassifications by the classifier kC . If, ideally, both the recall and precision 
of the classifier are 100%, then the off-diagonal elements of the confusion matrix are all 0, 
and only the diagonal elements are non-zero. 

In this study, the accuracy rate (Accuracy, %) was used to evaluate the performance 
of all different OS classification models, and the misclassification of five OS was analyzed 
by confusion matrix. The accuracy is the ratio of the number of correctly classified samples 
to the total number of samples, which is calculated as Equation (10) 

100%TP TNAccuracy
TP TN FP FN

+
= ×

+ + +
, (10) 

where, TP, FP, FN, and TN are the statistics of the classification of different OS by the 
classification model in the confusion matrix, respectively. Among them, TP is the number 
of samples judged as positive in the positive class, FP is the number of samples judged as 
positive in the negative class, FN is the number of samples in the positive class judged as 
the negative class, and TN is the number of samples in the negative class judged as the 
negative class. When performing classification tasks, the number of real categories of sam-
ples to be predicted is regarded as the number of positive samples, and the sum of all 
other categories is the number of negative samples. 

4. Case Study 
4.1. Experimental Conditions 

In this paper, a face milling experiment with the milling machine XK713 is designed 
to verify the proposed model and approach. In this case, the WT1800 power tester is used 
to measure three-phase current signal during machining, and the different machining pa-
rameters (cutting speed n , feed amount vf  and back cut amount pa ) are also set up to 
illustrate the generalization ability of the proposed approach. 

Test environment for ACNN model training: hardware includes Intel(R) Core(TM) 
i7-6500U CPU@2.5GHz processor with 20 GB of memory and an NVIDIA GeForce RTX 
940M graphics card. Software includes operating system Ubantu22.04 (64-bit), program-
ming language Python3.9, Deep learning framework Pytorch1.12.0, general computing 
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architecture CUDA10.2 and GPU acceleration library CUDNN8.5.0. The main processing 
equipment and parameters are shown in Figure 7 and Table 1, respectively. 

 
Figure 7. Equipment used at the experimental site. 

Table 1. Main parameters of cutting activity. 

Activities Tool Diameter n /(r/min) vf /(mm/a) pa /(mm) cuttingL /(mm) airL /(mm) 
1 12 800 225 1.5 600 200 
2 12 450 150 6 464 32 
3 12 450 150 2 600 45 
4 12 950 262.5 0.2 582 56 
5 12 950 262.5 6 324 28 
6 12 600 187.5 2 159 72 
7 12 600 187.5 2 159 72 

4.2. Results and Discussion 
4.2.1. Results 

With the proposed WT approach, the time-frequency analysis results for different OS 
current signals of the XK713 are obtained, and the time-frequency images for each state 
are shown in Figure 8a–e, respectively. It can be seen that there are obvious differences in 
the time-frequency images of the current signals for the five OS, and the time-frequency 
images can be used to recognize the OS of XK713. 

  
(a) (b) 
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(e) 

Figure 8. The variance curve of the detail signal D3 obtained by wavelet decomposition of the W-
phase electric current signal. (a) S1 state wavelet decomposition time-frequency image; (b) S2 state 
wavelet decomposition time-frequency image; (c) S3 state wavelet decomposition time-frequency 
image; (d) S4 state wavelet decomposition time-frequency image; (e) S5 state wavelet decomposition 
time-frequency image. 

To study the tuning method of two hyperparameters, namely initial learning rate and 
batch size, the Adam optimizer was used to set different initial learning rates and batch 
sizes to train the model, and the effects of different parameters on the accuracy of the 
model were compared and analyzed. The variation trend of the accuracy of the test set 
with the parameters is shown in Figure 9a,b. 

−5×Inital learning Rate(×10-5)
 

(a) 
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(b) 

Figure 9. The effect of hyperparameters on accuracy and loss. (a) The effect of initial learning rate 
value on accuracy value and loss; (b) The effect of batch size value on accuracy and loss. 

Considering the influence of the experimental environment, blindly pursuing high 
batch size and low initial learning rate cannot achieve the expected effect. When the learn-
ing rate is less than 0.0005 or greater than 0.002, the loss value has an upward trend. When 
the learning rate is set within 0.001, the ACNN network has the lowest loss value with 
high accuracy. When the batch size value is greater than 64 or less than 8, the accuracy 
rate has a downward trend; when the batch size is set to 16, ACNN has the highest accu-
racy rate and the lowest loss value. Therefore, the optimized values for the initial learning 
rate and batch size are 0.001 and 16. 

After selecting the optimal hyperparameters, the classification performance of the 
model is evaluated using the confusion matrix, and the results are shown in Figure 10. 
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Figure 10. Confusion matrix of the proposed approach. 

In the confusion matrix, the rows and columns of the confusion matrix represent the 
True label and Output label of each condition [52]. Figure 10 shows the confusion matrix 
of the test sample used in the improved ACNN, giving detailed classification results. 

As shown in Figure 7, the overall recognition accuracy of S3 is the highest, and the 
highest error rate is only 1% (only 1% of S5 is recognized as S3). The reason may be that 
the current fluctuates violently when the machine tool is turned on, and its characteristics 
are easier to identify. However, the overall recognition accuracy of S4 is relatively low, 
indicating that ACNN misclassifies S4 the most. Even 2.6% of S4 were misidentified as S2, 
the highest among all experiments. It is foreseeable that the current fluctuations of S4 and 
S2 are not clear, the gap between the peak and the trough is not large, and can easily be 
erroneously classified. In addition, S1 has the most balanced recognition accuracy, with 
the highest recognition error rate (S3) and the lowest recognition error rate (S4) differing 
by 0.8%. In general, the recognition accuracy of the five states can reach about 97%, the 
highest can reach 97.8%, the lowest can reach 96.5%, and the peak difference is only 1.3%. 
It can be seen that the method combining WT and ACNN not only has high classification 
accuracy, but also has relatively stable classification performance. 

Furthermore, by further analyzing the misclassification of different machine tool op-
erating system datasets, this study shows that the color and texture features of different 
OS are important basis in the classification process. Misclassification is likely to occur 
when there is noise. The misclassified samples are mostly images with high brightness, 
low saturation and added Gaussian blur. Its complex background interferes with the char-
acteristics of the image to some extent, which affects the accurate identification of the sam-
ple. 

4.2.2. Discussion 
To further illustrate the superiority of the proposed model, this paper uses the fol-

lowing four common models to analyze from the perspective of recognition accuracy and 
computational cost: Linear Regression (LR), Backpropagation (BP), LeNet-5 and Residual 
Network (ResNet-18). The first three models bear fewer network layers and are more com-
monly used early classification models, and the fourth model is currently a more popular 
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classification model. To investigate the performance of the proposed feature extraction 
method, three typical feature extraction methods were selected for comparison: engineer-
ing methods, statistical methods, and principal component analysis (PCA). For computa-
tional load, there are two methods of computational load that can be used to analyze 
ACNN models: 

• 1T : Time spent on modeling during training; 
• 2T : The time taken to generate the sample. 

Each model was run 20 times, using the same initial learning rate, batch size, and 
training set, and the final average was taken as the result. Table 2 shows the corresponding 
results for the five classifiers. It can be seen that the maximum classification accuracy rates 
are 85.17%, 89.17%, 91.56%, 97.89% and 98.14%, respectively. 

As shown in Table 2, compared with the linear model, the excellent performance of 
the deep learning model in model recognition shows that the feature extraction of the 
original data by the deep learning model can mine deeper and more comprehensive fea-
ture information, which proves the feasibility and effectiveness of Deep Learning Models. 
With the increase in the network structure, the accuracy of ACNN is much higher than 
that of LeNet-5, and it is not much inferior to ResNet-18. On the contrary, when calculating 
the load, the time spent by ResNet-18 is multiplied compared to that of ACNN, and the 
impact on the server and the actual production process is self-evident. 

Table 2. Accuracy of different models and time spent modeling and generating samples. 

Type of Comparison Linear Regression BP LeNet-5 ACNN ResNet-18 
Training times 20 20 20 20 20 

Initial learning rate / / 0.01 0.01 0.01 
Accuracy (%) 85.17 89.17 91.56 97.89 98.14 

T1 
EST 0.016 0.055 0.028 0.040 0.184 

STAT 20.357 28.387 30.489 39.224 111.874 
PCA 16.872 17.5780 20.784 33.874 109.477 

T2 
EST 0.014 0.041 0.046 0.102 0.544 

STAT 0.014 0.058 0.027 0.093 0.578 
PCA 0.026 0.034 0.029 0.031 0.129 

It can also be seen from the table that LR requires the least computational time to 
develop the model in the milling machine. In contrast, the proposed ACNN is computa-
tionally expensive because ACNN spends a lot of time on convolution and pooling oper-
ations. ResNet-18 obviously increases the computational cost significantly after adopting 
the residual structure. Average computation time for generating samples. The longest one 
is ResNet-18, because a lot of time is spent on updating features. Unexpectedly, ACNN is 
almost the same as BP and LeNet-5 when adopting the PCA feature lifting method 

By comparison, it can be found that the fitting effect of the ACNN model is signifi-
cantly better than that of other classification models. The main advantages of proposed 
model are: 
• The training parameters are adjusted. Because the adjusted model network has a suit-

able batch size, it can aggregate faster. In particular, the complex classification of the 
energy consumption of machine tools is especially notable. The data collection time 
is short, and easily affected by the processing environment; 

• Feature extraction techniques such as wavelet decomposition are combined with 
deep learning networks. The performance went well on small training samples, the 
network is very sensitive to the characteristics of the data, and it is not prone to loss 
and overfitting; 
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• The structure of the model. The ACNN model facilitates real-time data processing 
without human intervention. Moreover, the operation speed is improved by using 
ReLU and multiple CPUs. At the same time, techniques such as overlapping pooling, 
data gain, and dropout are used to improve the operational accuracy of ACNN and 
reduce overfitting. 

5. Conclusions 
In this paper, an ACNN-based current data-driven identification method of a ma-

chine tool operating system is proposed. The identification of the operating system is a 
precondition for the fault diagnosis of the machine tool, and is of great significance to the 
fault diagnosis of the machine tool. This study only requires raw current data to identify 
the machine tool operating system and mine sensitive energy consumption features from 
the data. Compared with the traditional threshold method and experimental method, the 
generalization is stronger, and the requirements for the scene environment and artificial 
feature extraction are not high. In addition, this paper extracts the temporal features of the 
data through WT, which reduces the noise in the process of converting the data to gray-
scale images. While meeting the input requirements of ACNN, more accurate feature in-
formation can be included. Finally, a series of experiments were carried out. The results 
show that compared with linear regression, BP, LeNet-5 and RESNET-18, classifiers, 
ACNN performs better than the above-mentioned classifiers in most cases. Furthermore, 
it has faster recognition speed and higher recognition accuracy. 

The proposed ACNN provides an efficient, simple and fast method to determine the 
operating system of a machine tool. The method has certain guiding significance for re-
ducing maintenance time, improving system reliability and ensuring the safe operation of 
machine tool systems. In the real-world production environment, the collected machine 
tool current data are becoming increasingly complex. At present, the model has only been 
verified in milling processing, and its application in turning and other processing can be 
considered in the follow-up research. This can be aided by increasing the scale of model 
training data to further improve the accuracy of the mode, improving the test environ-
ment, and adopting more advanced AI algorithms to improve the recognition perfor-
mance. 
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