Computational Statistics
https://doi.org/10.1007/s00180-022-01277-6

ORIGINAL PAPER

®

Check for
updates

Polynomial whitening for high-dimensional data

Jonathan Gillard'® - Emily O’Riordan’ - Anatoly Zhigljavsky'

Received: 19 August 2021 / Accepted: 17 August 2022
© The Author(s) 2022

Abstract

The inverse square root of a covariance matrix is often desirable for performing data
whitening in the process of applying many common multivariate data analysis meth-
ods. Direct calculation of the inverse square root is not available when the covari-
ance matrix is either singular or nearly singular, as often occurs in high dimensions.
We develop new methods, which we broadly call polynomial whitening, to construct
a low-degree polynomial in the empirical covariance matrix which has similar prop-
erties to the true inverse square root of the covariance matrix (should it exist). Our
method does not suffer in singular or near-singular settings, and is computationally
tractable in high dimensions. We demonstrate that our construction of low-degree
polynomials provides a good substitute for high-dimensional inverse square root
covariance matrices, in both d < N and d > N cases. We offer examples on data
whitening, outlier detection and principal component analysis to demonstrate the
performance of the proposed method.

Keywords Whitening - Covariance - Mahalanobis - Scatter - Generalized inverse

1 Introduction

Let X € RN be a matrix of data, with N observations in d dimensions. We
denote the empirical d-dimensional mean vector and the empirical d X d covari-
ance matrix of X by u and X respectively, and make no other assumptions about
the generation or structure of the data. In this paper we consider transforma-
tions of X of the form X, = A(X — ), where A is a d X d matrix, with the aim
of whitening the data X. Data whitening is a transformation of the data intended
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to decorrelate and standardize the variables. Fully decorrelated data possesses
a diagonal covariance matrix, and standardized data has unit variance for each
variable (Hossain 2016). Applying a whitening transformation both decorrelates
and standardizes the data, so that in the case of non-degenerate data, the covari-
ance matrix of the whitened data X, will be the identity matrix. By removing the
simple elliptic structure of the data through such whitening transformations, we
can uncover more interesting and complex structures in the data that may have
previously been hidden in correlations, such as clusters or outliers (Li and Zhang
1998). Furthermore, the orthogonality of whitened variables can improve compu-
tational time and performance of many statistical methods (Koivunen and Kostin-
ski 1999; Huang et al. 2020; Zuber and Strimmer 2009).

Examples of existing whitening methods include the so-called Mahalanobis
whitening defined by

Xsop=2Z7V2(X = p),

which is popularly used to whiten data before performing many classical methods
of multivariate analyses (Kessy et al. 2018). The transformed data Xy, has zero-
valued mean and the d X d identity matrix I, as the covariance matrix. The success
of the Mahalanobis whitening depends on the ability to compute X~!/2 in a way that
is both accurate and stable.

It is common for big, high-dimensional data to be close to degeneracy/low-
rank (Udell and Townsend 2019) yielding unstable computations of X~!/2, with
numerous examples of this problem observed in: recommender systems data
(Zhou et al. 2008; Li et al. 2016); finance (Bai and Shi 2011); medicine (Schuler
et al. 2016); genomics (Wu et al. 2015); and social networks (Liben-Nowell and
Kleinberg 2007). These issues also arise in generalized mixture models (Xiao
2020); multiple regression (Healy 1968; Hoang and Baraille 2012); adaptive
algorithms (Baktash et al. 2017); and linear discriminant analysis (Ye and Xiong
2006). This is because variables often possess (approximate) linear dependencies,
resulting in a covariance matrix X that is singular, or very close to singularity.
As such, the inverse of the covariance matrix therefore does not exist or is at
least unstable, and it becomes inadvisable or impossible to calculate X~'/2. Con-
sequently Mahalanobis whitening, and many other methods which directly rely
on the inverse of the covariance matrix (such as those described in the survey of
the recent paper (Kessy et al. 2018)), are not recommended.

Nevertheless, it has been demonstrated that applying Mahalanobis whiten-
ing prior to clustering or outlier detection (to give just two out of many possi-
ble examples) often results in better empirical results. This has been observed in
several practical examples (Zafeiriou and Laskaris 2008; Shi et al. 2015). The-
oretically, Mahalanobis whitening underpins weighted least squares (Seber and
Lee 2012), PCA (Jolliffe 1986; Hyvirinen and Oja 2000), canonical correlation
analysis (Hirdle and Simar 2007) and most of the array of classic multivariate
statistics methods (Li and Zhang 1998; Malsiner-Walli et al. 2016). Crucially,
decorrelated and standardized data greatly simplifies both theoretical and practi-
cal multivariate data analysis (Agostinelli and Greco 2019; Anaya-Izquierdo et al.
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2011; Martens et al. 2003; Thameri et al. 2011; Chen et al. 2015; Yang and Jin
2006).

The need to find stable ways of calculating (or approximating) X! in settings
when X is (close to) degeneracy is evidenced in other application domains. In
high-dimensional examples one often would like to use the Mahalanobis distance
(Mahalanobis 1936) to measure the ‘scatter’ or ‘spread’ of the data (Pronzato et al.
2017, 2018), as a basis for proximity-dependent techniques such as clustering (Zuan-
etti et al. 2019) and Approximate Bayesian Computation (ABC) (Akeret et al. 2015).
But again, for the reasons outlined earlier, the covariance matrix may be singular or
ill-conditioned. ABC is used to find estimates of distribution parameters by simulat-
ing data over a parameter space (informed by some prior) and finding simulated data
closest to the observed data. The ideal measure of closeness is to use the Mahalano-
bis distance, but the practical need to use ABC is often informed by degeneracy of
the observed data, rendering the construction of a computationally tractable distance
measure one of the fundamental problems of applying ABC (Wegmann et al. 2009;
Beaumont 2019; Prangle 2017).

Recent literature has shown that whitening can also be used to improve the train-
ing of neural networks (Huang et al. 2018). Often, normalization is used in such
training, rather than whitening, due to ill-conditioned problems (Luo 2017) and the
great expense of computing a large inverse square root covariance matrix (Ioffe and
Szegedy 2015), despite whitening being preferable if it is possible (Huang et al.
2020).

Naturally, many methods attempt to circumvent the aforementioned problems by
use of the Moore-Penrose pseudo-inverse X~ to X, and then to take the square root
of X~ if needed. However, in the case of high-dimensional data, it has been shown
that the Moore-Penrose pseudo-inverse is not always suitable (Hoyle 2011; Bodnar
et al. 2016; Bickel and Levina 2004), particularly when there are small eigenvalues.
This is a problem appearing in several branches of mathematics, and work on this
topic can be found in the statistics literature (which tend to use shrinkage-type esti-
mators (Ledoit and Wolf 2004; Fisher and Sun 2011; Ito et al. 2015)and/or assume
sparsity of the covariance matrix (Cai et al. 2011, 2016; Jankova and van de Geer
2017)) and in the linear algebra/numerical analysis literature. In this latter work,
algorithms (alternating projections (Higham and Strabi¢ 2016) or Newton-type
(Qi and Sun 2011; Higham 2008)) to compute ‘substitute’ covariance matrices are
developed. Challenges in the successful use of these algorithms include computa-
tional tractability, stability, and the ability to find good starting-points. Our work
differs from this in that we provide explicit formulae for the construction of our sub-
stitute to X~'/2 and we are able to quickly generate a family of whitening matrices
based on the order of our polynomials.

In this paper, we introduce polynomial whitening, and what we call the minimal-
variance polynomial matrix, to be used in place of the square root of the inverse of
the empirical covariance matrix. In view of the celebrated Cayley-Hamilton theo-
rem (Cayley 1858; Hamilton 1853) the true inverse of a full-rank d X d matrix X
can be calculated through a d — 1 degree polynomial in X. In Gillard et al. (2022),
it is shown that an alternative to the inverse of a matrix can be found using low
degree polynomials. Our work follows on from this, as we consider polynomials

@ Springer



J. Gillard et al.

of low degree in X to now provide an alternative to the square root of its inverse.
Our method is applicable in cases where the true inverse square root of the covari-
ance matrix does not exist, making it a viable alternative for degenerate and close-to
degenerate datasets. Parameter options also allow for a trade-off between data whit-
ening accuracy and time complexity.

The main practical focus of this paper is in data whitening, but in view of the dis-
cussion above, we envisage other settings where our work may be useful. The struc-
ture of the paper is as follows. Section 2 introduces the form of our matrix polynomial,
and the optimization problem we solve in order to obtain an alternative to the inverse
square root of the covariance matrix. The main theorem of this paper which is stud-
ied in later examples is given in Sect. 2.3. We address different parameter choices in
Sect. 2.4, and in Sect. 2.6 we discuss using our procedure in conjunction with random
projection methods, which can be useful when dealing with very high-dimensional
data. Examples applying our method to data whitening, outlier detection and dimen-
sion reduction are given in Sect. 3, before we conclude the paper in Sect. 4.

2 The minimal-variance polynomial
2.1 Covariance matrix of transformed data

The mean vector E(X,) and covariance matrix Z(X,) of X, =AX — u) are
respectively:

EX,)=0,, 92X, =AZAT,

where 0, is the d-dimensional vector of zeroes (Mathai and Provost 1992). Data
transformed by Mahalanobis whitening, Xy, = >-12(X — i), has covariance
matrix

D(Xgap) =222 =1,
where I, is the d X d identity matrix. The total variation in X, is given by

trace(Z(X,)) = trace(AXAT), and for the Mahalanobis whitening the total varia-
tion in X5_1/» is given by trace(@(XZ_l/z)) = trace(l;) = d.

2.2 The minimal-variance polynomial alternative to 312

Let 6 = (9(), 91, ,ek_l)T and Z(k) = (ZO, Zl, ,Zk_l)T. We define Ak to be a
(k — 1)-degree matrix polynomial in X, of the form:

k-1

A=) 05 =07%,. (1)
i=0

For a chosen integer k such that k — 1 < d, our objective is to find the k coefficients
of the matrix polynomial, denoted 6 = (90,01, ,Gk_l)T in (1), so that the total
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variation of the transformed data X A, = A (X — ), is minimized, subject to suitable
constraints. For further intuition as to why we minimize the total variation, see Gil-
lard et al. (2022).

Let s; = trace(X'), S 4y = (512 5i11 -+ » 8441 )» and define the matrix
S| Sy e S
]
Sk Skw1 e S2-1

We seek to minimize the total variation of the transformed data X, = A (X — p),
which is given by:

trace (Z(X,)) = trace(A, ZA])

k-1 k-1

= trace Z 0.3 Z 6,5
i=0 =0

_ T

= 07 M.

To ensure non-trivial solutions to the minimization of the total variation, we intro-
duce a constraint. There are a number of options for this constraint; here we consider
constraints of the form

trace(A; X*) = trace(X*"!/?) )
for a scalar value a. This can be written in the above notation as
T
0 S(a,k) = Sg-1/2-

A constraint of this form ensures that the minimal-variance polynomial matrix A,
has similar qualities to >-1/2 in the cases where this matrix exists. The constraint
(2) will be revisited after the following theorem.

2.3 Constructing the minimal-variance polynomial

Theorem 1 Let X € R™" pe a d-dimensional dataset with n observations, having
empirical mean yu and empirical covariance matrix X. For k — 1 < d, the matrix
polynomial A, = Zf:ol 0,X" = 07 3, such that trace( XX, )) is minimized, subject
to the constraint HTS(a’k) = S,_12- has coefficients given by

A Sa—1/2 —1

0= M S(a,k) . (3)

T -1 (k)
S (a, k)M (k) S(a, k)
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Proof We will minimize %trace(.@(X Ak)) subject to the constraint (2), where the con-
stant 1/2 is introduced to simplify calculations. The Lagrange function ‘A6, w) with
Lagrange multiplier w is given by

1
LAB, w) = E¢9TM(k)9 — (0" St 1) = Sa1/2)-

We minimize the Lagrange function by differentiating with respect to 6 and setting
the result equal to O, which gives:

M0 = @Sy 1
and we can therefore rearrange to find 6:
H = wM(‘k; St )
Let @ = w,. We can find the value of w, by substituting (4) into the constraint
HTS([,’ 0 = Sa1/2 giving
Sa—1/2

=T a-lc
St My S

Wy

Thus, the vector of coefficients of the polynomial (1) which minimizes trace(@(X Ak))
subject to the constraint (2) is given by (3). We call this polynomial the minimal-
variance polynomial. O

When evaluating the polynomial, we recommend forming the matrix powers by iter-
atively multiplying by X, or using Horner’s method for polynomial evaluation. Both
of these methods are outlined in Sect. 4.2 of Higham (2008).

2.4 How to choose parameter values in the minimal-variance polynomial
2.4.1 Choice of the parameter a in the constraint (2)

We studied the outcomes of polynomial whitening with different values of « in the
constraint (2). Theoretically, any value of @ will produce an alternative whitening
matrix. Empirical investigations showed that the polynomial with @« = 1/2 per-
formed particularly well, in terms of data whitening success, stability and computa-
tional cost. Using this value of a is equivalent to applying the constraint

trace(A; X'/?) = trace(I,) = d. )

Our analysis found that, when using this constraint, data was approximately whit-
ened using a relatively low value of k (when compared to the value of the dimension
d of the dataset).

Figure 1a considers a 50-dimensional dataset, with 5 eigenvalues greater than 1,
30 eigenvalues between 0 and 1, and 15 zero eigenvalues. Figure 1b considers a
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3 .
T a=1/2, k=4
\“ —= a=1/2, k=5
o4l
E p a=1/2, k=6
z | &
o371
o "\
= LY
g o
g2 \
5| Wi
I~ %
& 1 \,'g._,, ———
IS Rl g
™
0 T T T T T
0 1 2 3 4 5
Eigenvalues
(a)d =50
5
----- a=1/2, k=4
—= a=1/2, k=5
a=1/2, k=6

Reciprocal sqrt eigenvalues

0 T T T T T
0 1 2 3 4 5
Eigenvalues
(b) d = 150

Fig. 1 The minimal-variance polynomial fit to simulated eigenvalues (blue, values given in Appendix
1.1) for datasets with a 50 dimensions and b 150 dimensions. Parameters used are « = 1/2 and k =4
(red, dotted line), kK = 5 (green, dash-dot line) and k = 6 (orange dashed line)

150-dimensional dataset, with 5 eigenvalues greater than 1, 100 eigenvalues between
0 and 1, and 45 zero eigenvalues. The eigenvalues of these datasets are given in
Appendix 1.1. These eigenvalues have been chosen to create a degenerate example
which the Moore-Penrose pseudo-inverse would struggle to deal with well. We did
so by setting roughly d/3 eigenvalues equal to zero, and letting the nonzero eigen-
values taper towards zero, making the rank of the dataset unclear. We plot in blue
dots the nonzero eigenvalues of the dataset on the horizontal axis, and the reciprocal
square root of the nonzero eigenvalues on the vertical axis. We then plot the cor-
responding minimal-variance polynomial with &« = 1/2 in degree k as follows. Find
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the coefficients 6 = (6,,0,, ..., 0,_,)" of the minimal-variance polynomial using (3),
and write the polynomial as in (1), replacing the matrix X with a symbol #:

p() =0,° +6,' +...0,_ "

We can then plot this polynomial p(¢) for different values of 7. In Fig. 1, we con-
sider polynomials of degree 3, 4 and 5, (recalling that using the value k results in a
(k — 1)-degree polynomial). The degree of these polynomials are much lower than
the dimensionality of the datasets, yet still provide a good approximate fit to the
inverse square root of the given eigenvalues.

The constraint (5) with @ = 1/2 works well in the case of non-degenerate data
(when X is essentially non-singular), but requires some simple tuning for degener-
ate or nearly-degenerate data, which has been applied here. This tuning will be dis-
cussed in Sect. 2.5.

2.4.2 Choice of the parameter k to determine the degree of the minimal-variance
polynomial

The true inverse square root of a full-rank covariance matrix can be written as a
(d — 1)-degree polynomial using the characteristic polynomial. The minimal-vari-
ance polynomial with parameter k forms a (k — 1)-degree polynomial, as defined in
(1). As k increases, the polynomial can approximate the square root of the charac-
teristic polynomial more accurately, but is more costly to compute. Therefore, the
choice of the parameter k is often a trade-off between accuracy and cost.

However, as k increases, so does the opportunity for instability in the polynomial,
particularly when working in high dimensions (see Table 3 for an example of this,
and Sect. 3.1 for more of a discussion on this topic). As such, keeping k relatively
low is not only beneficial for cost, but for stability. Furthermore, choosing low val-
ues of k results in a good approximation for the inverse square root of the covariance
matrix, as can be seen by the polynomial fit to the eigenvalues in Fig. 1. This will be
further demonstrated in the numerical examples in Sect. 3.

In this paper, we often run the same experiments multiple times with different
values of k, and use a problem-specific metric to identify the best value of k for that
dataset. For example, in Sect. 3.1, we use the Wasserstein metric to compare the
whitened data to the standard normal distribution, as well as a sum-of-squares-based
metric. We then choose the value of k which produces the lowest values for these
metrics. This is similar to methods used in many parameterized methods, such as
using scree plots or silhouette scores to judge the best number of clusters to use in a
clustering algorithm. It may often be best to apply minimal-variance whitening for
multiple values of k to the dataset, and then inspect the empirical covariance matrix
of the transformed data to see which value of k has performed best.

@ Springer



Polynomial whitening for high-dimensional data

2.5 Constraint adjustment for rank-deficient data

We provide an adaptation to the method when using @ = 1/2 to make it suitable
for use when X is singular, as hinted at in discussions about the choice of . When
using the constraint (5) with @ = 1/2, the polynomial aims to ensure that the trace
of A, X'/? is equal to d. We propose that this trace should aim to equal r, the rank
of the covariance matrix, in a similar way to the Moore-Penrose pseudo-inverse X~
having the property that trace((X~)!/2X1/2) = r. However, for matrices with many
small eigenvalues, r is hard to calculate (Vidal and Favaro 2014), and often approxi-
mations of r are based on arbitrary eigenvalue thresholding or subjective elbow plots
(Kishore Kumar and Schneider 2017).

5
® ‘\ === 0riginal
\ — Adjusted
g 41
=
=
>
c
& 31
o
=
7
™| 2
o
e
a
by
e 1
D T T T T T T
0 1 2 3 - 5
Eigenvalues
(a)d =50
5 \
° \ === QOriginal
‘\ - Adjusted
8 41
=
™
>
[ =
231
L
t
7
© 2
o
2
a
b
e 1
0 T T T T T
0 1 2 3 4 5
Eigenvalues
(b) d =150

Fig.2 The minimal-variance polynomial with k = 5 fit to eigenvalues (blue, the same as in Fig. 1) before
(red, dashed line) and after (green, solid line) adjustment for rank-deficiency, as described in Sect. 2.5
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In cases where X is not full-rank, we propose an adjustment to modify our con-
straint (2) without the need to calculate r directly. We will illustrate our adjustment
using the two examples in Fig. 2, which plot the nonzero eigenvalues and nonzero
reciprocal square root eigenvalues in the same way as in Fig. 1. The datasets used
in Fig. 2 are the same as those in Fig. 1, details of which are given in Sect. 2.4 and
Appendix 1.1.

We first calculate the minimal-variance polynomial using the constraint (5).
This is shown in Figs. 2a and b as the red, dashed line. Although the polynomi-
als take the correct shape, they are clearly placed too high and do not fit the plot
of the inverse square root eigenvalues. We adjust the polynomial by multiplying
by some constant ¢ between 0 and 1, which ensures a better fit of the polynomial.
Our method of choosing a value of c is as follows.

LetA = {4, ..., 4,} be the set of all eigenvalues of X, andlet A = {A, €A A #0}
be the set of all nonzero eigenvalues of . In the case of very large dimensions d, com-
putation of eigenvalues 4, is certainly out of reach; in this case, as will be discussed in
Sect. 2.6, we suggest to project the data to a low-dimensional space and use the set of
eigenvalues for the low-dimensional version of the data. The constant ¢ can be found in
any number of ways which minimizes the distance between the polynomial p(4) and the
target values 1 /A'/2, for A € A. We use the value ¢* from

c* =argmin ) w(lc-p(A) — A~
c€(0,1] ieA

where w(A) is a suitable weight function. That is, we seek to minimize the weighted
sum of squares between the polynomial and the reciprocal square root of the nonzero
eigenvalues. The optimal value of the adjustment constant c is then found to be

o = Zaci VDI pd)
2 i WAp(A)?

In Fig. 2 (and all other examples in this paper), we have used w(4) = 4, and in gen-
eral we recommend this. However, the choice of w can be altered to give a different
fit for the data given. If the user is more concerned about fitting the polynomial to
the larger eigenvalues, they may decide to use w(A) = A/ with i > 1, for example.

The adjusted polynomials (given by the green solid line) clearly fit the desired
points much more successfully than the original polynomials. However, if this
adjustment is not performed, the data transformed by the polynomial whitening
matrix A, will still be approximately isotropic, so the adjustment is not necessary
if equal variance is of variables is sufficient. This adjustment has been applied to
all examples that follow in this paper.

This adjustment to the constraint can also be used to detect the singularity of
a matrix. Let us first consider the case with d < N. If ¥ is full rank, and k is
chosen appropriately, the value ¢* will be equal to (or very close to) 1, as the
minimal-variance polynomial is aiming to make trace(AkZ) = d, which is cor-
rect in the case of full-rank X. If the matrix X is not full-rank, ¢* will be less
than 1. To illustrate this, Table 1 gives two d < N examples. A d-dimensional
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Table 1 The adjustment value

Dataset d N R *
c¢* for different configurations atase " ¢
of the d1mens10n d, number of 1 100 1000 100 100 1.00
observations N, rank of true
population covariance matrix R 2 100 1000 50 50 0.50
and rank of sample covariance 3 100 50 100 50 0.50
matrix r 4 100 50 50 50 0.50
5 100 50 30 30 0.30

dataset with N observations is generated using a covariance matrix gener-
ated with rank R. Further details on how these datasets were generated is given
in Appendix 1.1. The empirical covariance matrix of the dataset has rank
r = min(d, N,R), and is used to find the minimal-variance polynomial matrix
with k = 10, and the constraint adjustment c* is given. In dataset 1, the empirical
matrix has full rank r = d, so ¢* = 1. In dataset 2, the ‘true’ covariance matrix has
rank R =50, d = 100 and N = 1000, therefore the empirical covariance matrix
has rank r = min(d, N, R) = 50. This produces a constraint adjustment value of
*=10.50 < 1, so we know the empirical covariance matrix X is singular.

We now consider cases with d > N through the use of three examples. Dataset 3 in
Table 1 has 100 dimensions and only 50 observations. The ‘true’ covariance matrix
used to generate this dataset is full-rank R = 100, but the empirical covariance matrix
has rank » = min(d, N, R) = 50. Therefore, using the empirical covariance matrix in
the minimal-variance polynomial matrix gives adjustment value ¢* = 0.50, informing
us that this dataset is degenerate. Dataset 4 also has d = 100, N = 50, and the ‘true’
covariance matrix now has rank R = 50. The adjustment value is therefore less than
1: ¢* = 0.50. The final example we consider again has dimension d = 100 and num-
ber of observations N = 50, but the ‘true’ covariance matrix has rank R = 30. The
empirical covariance matrix therefore has rank » = min(d, N, R) = 30, and the adjust-
ment value is ¢* = 0.30. In all these examples, ¢* < 1, as the empirical covariance
matrix X will never be full-rank in d < N examples.

2.6 Applications to extremely high-dimensional data

Given a dataset X with extremely high-dimension d, say d = 1,000, 000, finding
the minimal-variance polynomial matrix can be too costly and time-intensive. We
can instead sample some variables from X to produce a ‘representative’ dataset X
in a much smaller dimension d. This representative dataset can be found through
random samples of the variables in X, or projection to a lower dimensional space
(see Bingham and Mannila (2001), Blum et al. (2014)). We can proceed with cal-
culating the covariance matrix £ of X, and use X to produce the minimal-vari-
ance polynomial alternative to X~1/2;

A =0y +6,% + - +0,_ Z". (6)
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We can then replace the d-dimensional matrix 2 in (6) with the d-dimensional
covariance matrix X to obtain the minimal-variance polynomial matrix A;. This can
be used to whiten the original large dataset X, and is much cheaper than finding the
minimal-variance polynomial matrix directly.

For large datasets, it may be that we don’t know the eigenvalues exactly, but can
approximate the distribution of the eigenvalues. If this is the case, we can sample d
eigenvalues from this distribution using the inverse cumulative distribution function.
We will illustrate this using the Marchenko-Pastur distribution, as this distribution is
known to model the eigenvalues of the sample covariance matrix of a random matrix
as d, N — oo. Figure 3 considers an example with d = 10,000 and N = 15,000, and
the probability density function (PDF) of the Marchenko-Pastur distribution with
these parameters is shown by the red line. The histogram represents a random sam-
ple of 300 eigenvalues, and shows such a sample models the distribution well.

Similar methods can be used in the case where d > N. We can reduce d to a value
smaller than N by sampling the real eigenvalues, if they are known or can be calcu-
lated. Alternatively, we can sample the eigenvalues from an assumed distribution as
described above.

3 Numerical examples

3.1 Whitening data using minimal-variance polynomials

3.1.1 Datawithd <N

We begin the numerical examples by whitening several synthetic and real datasets

using the minimal-variance polynomial. The details of these datasets are given
in Table 2. The four synthetic datasets (D1, D2, D3, D4) are sampled from a

0.6
—— Marchenko-Pastur PDF
Sampled eigenvalues
054 p g
0.4 4

Frequency
=] =]
N w
. L

°
-
.

0.0 — T T T T T
0 1 2 3 4 5

Eigenvalues
Fig.3 Sampling of eigenvalues from the Marchenko-Pastur distribution. The red line indicates the

Marchenko-Pastur PDF, when d = 10,000 and N = 15,000. The histogram shows the spread of the 300
sampled values from this distribution
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Table 2 Datasets used in

Sect. 3.1.1, their dimension d Dataset d N

and number of observations N DI 50 250
D2 100 500
D3 500 2500
D4 1000 5000
Digits 64 1797
Musk 168 6598
HAR 561 10299
MNIST 784 70000

Gaussian distribution .#,(0, X) with N = 5 X d observations, where the covariance
matrices X are produced as follows. Generate d eigenvalues A = {4, 4,, ..., 4,4}
from the Wishart distribution and produce a random d X d orthogonal matrix Q.
Let L be the matrix with the eigenvalues A on the diagonal and zeroes elsewhere,
then let X = QTLQ.

The real datasets ‘Digits’, ‘Musk’ and ‘HAR’ (Human Activity Recognition)
(Anguita et al. 2013) were obtained from the UCI Machine Learning repository
(Dua and Graff 2017). The ‘MNIST’ dataset (LeCun et al. 2010) was obtained
from the OpenML database (Vanschoren et al. 2013).

In some cases, it can be beneficial to rescale the data so that each variable
has zero mean and unit variance, before finding the minimal-variance polyno-
mial matrix. If rescaling the data provides less extreme eigenvalues in the covari-
ance matrix, this scaling is likely to improve the performance of the polynomial
whitening. The heatmaps in Fig. 4 show the covariance matrices of the datasets,
and the distribution of the eigenvalues of these covariance matrices are given in

(c) o3

| —
SEREHENEEEE

EE TS

25

BBULLBHEEREENENEGR eowo

seagege

;

—
&

238

(e) pigits (g) Har (h)mnist

Fig.4 Heatmaps of the covariance matrix of each dataset detailed in Table 2 before minimal-variance
polynomial whitening. Datasets corresponding to Figures (a), (e), (f) and (h) are scaled to have unit var-
iance, to improve performance of polynomial whitening. These heatmaps show the covariance matrix
after this scaling
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(g) HAR k (h)MNisT k=5
Fig.5 Heatmaps of the covariance matrix of the datasets in Table 2 after minimal-variance polynomial
whitening. The value of k used in constructing the minimal-variance polynomial is given in the caption
for each dataset

Table 3 The Wasserstein scores (7), denoted W, y, which measure the distance between the polynomial-
whitened dataset A, X and the standard normal distribution .#(0, I) for each dataset

Dataset Wy Wy x Wy x Wax Wyx Wy x Wyx Wyx Wy ox
D1 0.455 0.179 0.119 0.090 0.075 0.060 0.057 0.071 0.139
D2 0.634 0.358 0.301 0.246 0.220 0.181 0.160 0.200 0.225
D3 0.866 0.718 0.678 0.631 0.601 0.578 0.544 0.520 0.552
D4 0.812 0.585 0.524 0.465 0.425 0.393 0.360 0.336 0.365
Digits 0.361 0.137 0.101 0.073 0.066 0.058 0.071 0.107 0.381
Musk 0.949 0.574 0.450 0.373 1.123 2.022 0.989 0.990 0.991
HAR 0.885 0.772 0.794 0.586 3.892 0.998 0.998 0.998 0.998

MNIST 0.612 0.405 0.341 0.296 0.597 1.077 1.039 1.566 4.563

Values in bold indicate the lowest Wasserstein score W, x over all & for a given dataset

Appendix 1.2. Figure 4 shows a lot of nonzero off-diagonal values in the heat-
maps, indicating that these datasets are highly correlated.

We can measure the proximity of the transformed data X, ~ A;(0,.7) to the
standard normal distribution .4,(0,]) using the Wasserstein metric (Givens and
Shortt 1984):

WX,,) = (d + trace(.¥) — 2trace(<71/2) )/d, @

where we divide by d here to account for the difference in the dimensions of each
dataset.

The heatmaps in Fig. 5 show the covariance matrix of the transformed data
X a, = A, X for each dataset, illustrating that the correlations between variables have
been approximately whitened. The value of k used in these heatmaps is chosen as
the value of k which gives the lowest Wasserstein score, as given in Table 3. The
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Wasserstein scores in Table 3 show that, in general, as the value of k increases, the
transformed data is closer to the standard normal distribution, as desired. In some
cases, such as the Musk dataset, higher values of k begin to show an increase in the
Wasserstein score, indicating the whitening transformation is less successful than
when using lower values of k. This is likely due to numerical instability, as the min-
imal-variance polynomial aims to fit itself to extremely small eigenvalues, causing
erratic behaviour in the polynomial. As such, it is recommended to use lower val-
ues of k which provide a more reliable alternative to the inverse square root of the
covariance matrix, or to compute several minimal-variance polynomial matrices for
different k and use the one that best satisfies some metric, such as the Wasserstein
score.

As indicated by the Wasserstein scores in Table 3 and the heatmaps in Fig. 5, we
produce an effective alternative to the inverse square root of the covariance matrix
using a polynomial of degree significantly lower than the dimension of the dataset.

The Wasserstein measure concerns itself with the diagonal values of the covar-
iance matrix, as it is calculated using traces. We can consider it as a measure of
standardization, rather than whitening. We therefore need to measure the extent to
which the data has been decorrelated. The heatmaps in Fig. 5 show that the off diag-
onals of the covariance matrix of the transformed data are close to zero, indicating
good decorrelation. Another way we can measure this is by considering the sum of
squares of the off-diagonal entries of the covariance matrix of the transformed data.
In Table 4, let SS, x be the sum of squares of the off-diagonal entries of the covari-
ance matrix of the whitened dataset A, X.

The sum of squares values in Table 4 decrease as k increases, until a certain value
of k, much like the Wasserstein scores. Given we would like this value to be as small
as possible, we see the value of k that gives the optimum sum of squares value for
each dataset is close to value of k that gives the optimum Wasserstein score for each
dataset. Therefore, when the data has been successfully standardized, it has also
been decorrelated well.

Table 13 in Appendix 3 shows the average time taken to produce the minimal-
variance polynomial matrices for each dataset for each value of k considered, over

Table4 The sum of squares, denoted SS, 4% of the off diagonal values of the covariance matrix of the
polynomial-whitened dataset A, X for each dataset

Dataset ~ SS SSux SSux  SSix  SSax  SSax  SSux SSuy  SSux

Dl 10.104  2.891 2.801 2.442 2.120 2.095 1.738 1.846 2.971
D2 10.879  6.955 5.869 5.830 5.123 5.088 5.052 4.723 5.784
D3 20.042 19.686 18.547 18.444 16.141 15.758 15.652 15391 16.441
D4 31.882 21.596 21.378 21.087 20.887 20.235 20459 19.971 19.243

Digits 11.095 2.636 2.118 1.961 1.469 1.178 1.665 1.877 3.999
Musk 58.266  5.029 6.965 6.635 31.327 127.561 0.640 0.510 0.411
HAR 33.836 3.095 1.349 1.438 20434 1.386 1.458 1.533 1.613
MNIST 74.745 11.023 11.016 10.614 13.614 58.666 38.451 280.832 1661.624

Values in bold indicate the lowest value of SS, x over all k for a given dataset
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100 runs. The time taken increases as the dimensionality d of the dataset increases,
and as the parameter k increases. However, the procedure to calculate the matri-
ces only takes a matter of seconds, even for 1000-dimensional datasets. This time
performance could be improved much further by implementing parallel computing
methods.

3.1.2 Datawithd > N

It is increasingly common for data to have higher dimensionality than number of
observations in many fields, such as genetic microarrays, medical imaging and che-
mometrics (Hall et al. 2005). Such data is clearly rank-deficient, with r < N < d,
and thus the sample covariance matrix of such data is always singular, rendering
many multivariate data analysis methods unusable, including data whitening. Mini-
mal-variance polynomial whitening is applicable in such cases, as illustrated by the
following examples.

We consider four synthetically generated datasets and four real datasets, detailed in
Table 5. The first two synthetic datasets, E1 and E2, are sampled from a Gaussian dis-
tribution .4,(0, X), where the covariance matrices X are produced as follows. Like the
d < N case, we generate d eigenvalues, and produce a random d X d orthogonal matrix
Q. Let L be the matrix with the eigenvalues A on the diagonal and zeroes elsewhere,
then let ¥ = QTLQ. The third synthetic dataset, E3, is generated to copy the example in
Wang and Fan (2017): a multivariate Gaussian with population covariance matrix with
diagonal entries [50, 20, 10] + [1] = 47. This creates a spiked eigenvalue model, which
is of interest in HDLSS datasets (Aoshima and Yata 2018). The fourth dataset uses
a covariance matrix with eigenvalues generated from a random uniform distribution
between 0 and 1, to produce a non-sparse set of eigenvalues. The madelon dataset was
obtained from the UCI Machine Learning Repository (Dua and Graff 2017). The raw
madelon dataset has 4400 observations, greater than the 500 features, so we sampled
only the first 250 observations to create the madelon’ dataset with d > N. The yeast
dataset is a real genomic dataset with 2284 features and 17 observations (Tavazoie et al.
1999; Vanschoren et al. 2013). The third real dataset is a genomic dataset on colon can-
cer data (Alon et al. 1999), used by (Yata and Aoshima 2013) as an example of a spiked

Table 5 Datasets used in

Sect. 3.1, their dimension d and Dataset d N

number of observations N Bl - ”
E2 1000 50
E3 500 50
E4 1000 500
Madelon" 500 250
Yeast 2884 -
Colon 2000 40
DB-emails 242 64

The madelon’ dataset is a subsample of the true madelon dataset,
with only the first 250 observations considered
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eigenvalue model. This dataset includes two clusters which represent tumorous and
non-tumorous colons; we only consider the former cluster here. The DB-emails dataset
is a ‘bag-of-words’ representation of a collection of emails (Filannino 2011). Note that
the madelon’ , yeast and colon datasets have been scaled to have unit variance. The
empirical eigenvalues of all datasets are given in Appendix 1.2.

Successful whitening of these datasets would result in a covariance matrix with r
eigenvalues equal to 1, and d — r eigenvalues equal to 0. We performed Moore-Penrose
whitening on the four datasets in Table 5 by pre-multiplying the data by the Moore-
Penrose inverse of the square root of the covariance matrix. We also performed mini-
mal-variance polynomial whitening on the datasets as described in Sect. 2.

Figure 6 compares the distribution of the eigenvalues of the covariance matrices
after Moore-Penrose whitening and minimal-variance polynomial whitening. The
eigenvalues are scaled such that the maximum eigenvalue is equal to 1. The first
three synthetic datasets show that using minimal-variance whitening returns a data-
set with eigenvalues only equal to 0 and 1, whereas using Moore-Penrose whitening
gives a dataset with a spread of eigenvalues between 0 and 1. Figure 6d shows that
minimal-variance whitening may not achieve perfect whitening, but that it is still
more successful than the Moore-Penrose whitening method.

Figure 6f considers the Yeast dataset, and shows that both Moore-Penrose whit-
ening and minimal-variance whitening return only eigenvalues of value 0 or 1. How-
ever, the Moore-Penrose whitening gives one eigenvalue equal to 1, and the rest 0
(or very close to 0). When using the minimal-variance whitening, the dataset has
rank equal to the original dataset (r = 16 in this case). The madelon’ , colon and
DB-emails datasets are not whitened perfectly by either method, but the eigenval-
ues are much more dispersed when using Moore-Penrose whitening compared to
minimal-variance polynomial whitening, whereas we seek eigenvalues only valued
at 0 and 1, ideally.

3.2 Comparison to other whitening methods

Due to rotational freedom, there are infinitely many whitening matrices of the form
W = QX~1/2 where Q is orthogonal and satisfies QTQ = I, (Kessy et al. 2018).

Let us define some decompositions of the covariance matrix X, beginning with
> = V/2py1/2, where V is the diagonal variance matrix and P is the correlation
matrix. Let ¥ = UAUT be the eigendecomposition of the covariance matrix, with U
the matrix of eigenvectors and A the diagonal matrix of eigenvalues. Analogously,
define the eigendecomposition P = GOG" of the correlation matrix. We also define
the Cholesky decomposition of the inverse covariance matrix LLT = X~!, when X!
exists.

Five whitening procedures are identified by Kessy et al. (2018) to be unique in
fulfilling a given objective function. Most of these objective functions used in the
paper are based on the cross-covariance matrix @ and the cross-correlation matrix ¥
between the original data X with covariance X and the whitened data Xy,
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Polynomial whitening for high-dimensional data

D =cov(Xy,X) =WZ,
¥ = corr(Xy, X) = @V~1/2,

In the following example, we will compare polynomial whitening to the three pro-
cedures from this paper that share our goal of whitening the data while changing as
little else as possible. We do not consider the other methods in this paper, as these
methods aim to maximize compression of variance into the first few variables of the
whitened data. Although polynomial whitening performed relatively well in these
scenarios, this is not the aim of our method. The three types of whitening we will
consider alongside polynomial whitening are given below.

Mahalanobis whitening (MW) W = >~!/2. Mahalanobis whitening is found to
be the unique whitening procedure which maximizes trace(®), the average cross-
covariance between each variable of the original and the newly transformed data.
This is equivalent to minimizing the total squared distance between the original data
X and the whitened data Xy, ensuring the whitened data is as similar as possible to
the original data.

Mahalanobis-cor whitening (MCW) W = P~'2yv=12 Mahalanobis whitening
can be affected by the differences in the scales of variables. To avoid this issue we
may use a scale-invariant version, known as Mahalanobis-correlation whitening.
The Mahalanobis-correlation whitening method maximizes the cross-correlation
trace(¥) between each variable of the standardized original data V~!/2X and the
whitened data Xy,. Doing this is shown to be equivalent to minimizing the squared
distance between V~'/2X and Xy

Cholesky whitening (CW) W = LT. Cholesky whitening is the only whitening
procedure fulfilling the constraint of producing lower-triangular cross-covariance
and cross-correlation matrices with positive diagonal entries. It does not result from
fulfilling an objective function like the above methods, but rather from satisfying
this constraint.

We evaluate the performance of these different whitening procedures by apply-
ing them to a dataset and considering the different objective functions in @ and .
First, as in Kessy et al. (2018), we apply the whitening methods to the 4-dimensional
Iris dataset (Fisher et al. 1936) in Table 6. Given the dataset’s low dimension and
well-conditioned covariance matrix, polynomial whitening (PW in the table) with
k = d = 4 produces exactly the same results as Mahalanobis whitening. We also per-
form polynomial-cor whitening (PCW), where the data is standardized and polyno-
mial whitening is performed using the correlation matrix P. This produces the same
results as Mahalanobis-cor whitening.

Table6 A comparison of MW MCW cw PWk=4 PCWk=4
different whitening methods

applied to the Iris dataset, using 7 29820 28495 19369  2.9829 2.8495
metrics identified by Kessy et al.

(2018) tr(p)  3.0742  3.1914 25331  3.0742 3.1914

Bold entries identify the best result for each metric

@ Springer



J. Gillard et al.

The polynomial whitening method is more effectively used when applied to higher
dimensional datasets with singular or near-singular covariance matrices. As such, we
repeat the above exercise with a different dataset. For the purposes of this example, we
are unable to use a dataset which has a singular covariance matrix, as the Mahalanobis
and Cholesky whitening methods are not usable in this case. We use the Wisconsin
Breast Cancer dataset (Wolberg et al. 1992), which we have pre-standardized to give
improved results from all methods. This dataset has dimension d = 32 and has a covar-
iance matrix which could be considered ill-conditioned (see Appendix 1.4 for details
on the eigenvalues). Table 7 shows that polynomial whitening outperforms Mahalano-
bis whitening, using both the covariance and correlation matrix.

3.3 The effect of different pre-processing methods on outlier detection
algorithms

Outlier detection algorithms often require that data is pre-processed before the algo-
rithm can be applied. It has been shown by Campos et al. (2016) that the normalization
of datasets will often lead to a better performance of outlier detection algorithms.

Here we replicate a study described in Kandanaarachchi et al. (2020). The authors
produced a collection of labelled benchmark datasets to be used for evaluating outlier
detection algorithm performance. They evaluated the performance of various algo-
rithms when used after applying different normalization methods to these datasets. Per-
formance of an algorithm was measured using the area under the Receiver Operator
Characteristic (ROC) curve, which compares the labels of an observation (‘inlier’ or
‘outlier’) produced by the algorithm to the ‘true’ labels. They found that two types of
normalization method performed differently (dependent on data set and outlier detec-
tion method):

‘Min—-Max’ normalization Each variable v of a dataset is normalized to only have
values in the range [0, 1]:

v — min(v)
max(v) — min(v)’
where min(v) and max(v) are the minimum and maximum values of the variable v,

respectively.
‘Median-IQR’ normalization Each variable v is transformed to

Table7 A comparison of different whitening methods applied to the Wisconsin Breast Cancer dataset,
using metrics identified by Kessy et al. (2018)

MW MCW Ccw PWk=6 PCWk=6
tr() 21.0193 21.1282 14.5409 24.8036 23.1984
tr(yr) 20.9651 21.0737 14.5034 21.7396 24.7396

Bold entries identify the best result for each metric
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v — median(v)

IQR(v)

where median(v) and IQR(v) are the median and inter-quartile range of the variable
v, respectively.

We consider the following four different outlier detection methods from the
Python package PyOD (Zhao et al. 2019):

)

KNN: K-Nearest Neighbours

LOF: Local Outlier Factor

COF: Connectivity-based Outlier Factor
FastABOD: Fast Angle Based Outlier Detection

Sl o e

Further details of each of these algorithms are provided in Campos et al. (2016).
All of the above methods require a parameter choice K (different to the polynomial
degree parameter k referred to throughout this paper) to set the so-called neighbour-
hood size, and a contamination value C to indicate how many observations the algo-
rithm should label as outliers. We let K = 0.1 X N, where N is the number of obser-
vations in the dataset. The parameter C is equal to the percentage of outliers given
by the ‘true’ labels.

For a dataset D, an outlier detection method o and a pre-processing method z,
we denote the area under the ROC curve as AUC(D, o, z). For each outlier detec-
tion method o listed above, we say a dataset D ‘prefers’ a pre-processing method z if
AUC(D,0,7) > AUC(D, 0, y) for all other pre-processing methods y. We evaluate the
AUC score for transformations A, D using (3) by taking the maximum AUC score
over all k considered.

We tested the outlier detection methods with each pre-processing method on
7667 real datasets, as used in Kandanaarachchi et al. (2020). The datasets ranged
from dimension 3 to dimension 359, and the number of observations in a dataset
ranged from 44 to 5396. We impose no structural assumptions on the datasets for
our method or the other normalization methods.

Table 8 shows the percentage of datasets that prefer each pre-processing method
for each of the given outlier detection algorithms. The results in this table indicate
that the polynomial whitening method outperforms the two normalization methods.

The scatter graphs in Fig. 7 compare the minimal-variance polynomial whiten-
ing to the normalization methods considered individually. Each point represents a

Table 8 The pf:rcer}tage of Outlier Detection ~ Min—Var Min-Max Median-IQR
datasets that give higher AUC Method

scores for the pre-processing

technique (given in the column), KNN 40.12% 30.70% 29.17%

by outlier detection method .

(given in the row) LOF 41.29% 30.09% 28.61%
COF 42.26% 29.39% 28.34%
FastABOD 39.17% 31.16% 29.67%
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Min-Max AUROC Scores
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Fig.7 Scatter graphs plotting the AUC scores of outlier detection algorithms when performed using the
minimal-variance polynomial whitening ‘Min—Var’ on the horizontal axis, and the AUC scores when
using a—d ‘Min-Max’ or e-h ‘Med-IQR’ normalizations on the vertical axis. Points in red indicate a
dataset where using Min—Var produced a better score than the alternative method, and points in blue
indicate a dataset where using the alternative method produced a better score

dataset, and the diagonal line indicates those datasets where the two methods give
equal AUC scores. Points below this line, in red, indicate that the minimal-variance
whitening method outperformed the other method considered. A numerical break-
down of these scatter graphs is given in Table 9. Much like Table 8, Table 9 shows
the percentage of datasets that prefer each pre-processing method, but shows a pair-
wise comparison.

Table 10 shows the amount of datasets out of the total 7667 (and the percentage)
for which the pre-processing methods produce strictly better results, for each outlier
detection method. It is clear that the minimal-variance method performs as well as
(and often better than) the techniques often used to preprocess datasets before apply-
ing common outlier detection methods.

Table9 The percentage of datasets for which the given pre-processing method (given in the column)
produces AUC scores better than the alternative method in the adjacent column, for different outlier
detection methods (given in the row). L.e. 34.4% of datasets produced higher AUC scores when using
Min—Var than when using Min—-Max, for the KNN outlier detection method. This differs from Table 8 in
that it is a pairwise comparison of the pre-processing methods

Min-Var vs Min—Max Min—Var vs Med-IQR

Min—Var Min-Max Equal Min—Var Med-IQR Equal
KNN 34.4% 15.9% 49.7% 35.8% 14.0% 50.1%
LOF 37.3% 14.1% 48.6% 38.1% 12.8% 49.2%
COF 40.6% 16.1% 43.3% 41.8% 14.8% 43.4%
FastABOD 32.2% 15.1% 52.7% 33.8% 12.8% 53.4%
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Table 10 The number (and

Min-V: Min-M: Med-IQR
percentage) of datasets for novar A ed-1Q
which the given pre-processing KNN 2195, 29% 742, 10% 632, 8%
method (in the column)
produces AUC scores strictly LOF 2338, 30% 772, 10% 604, 8%
better than the other methods, COF 2460, 32% 811, 11% 689, 9%
for each outlier detection FastABOD 1950, 25% 705, 9% 519,7%

method (in the row)

3.4 Principal component analysis

Principal component analysis (PCA) is a popular dimension-reduction tech-
nique, as it reduces a dataset to a chosen dimension p while retaining the great-
est amount of variance from the original dataset as possible. PCA finds p linear
combinations of the variables of the dataset, giving p new compressed variables
with maximal variance. As such, it is highly sensitive to the variances of the
variables in the dataset. If one variable is measured on a much larger scale than
the others, this variable will be likely have much greater variance, and therefore
be given much more weight in a linear combination than the other variables (Jol-
liffe and Cadima 2016). To prevent this, it is good practice to standardize the
variables to ensure they are all measured on the same scale.

We compare two methods of standardization prior to performing PCA:
(Moore-Penrose) Mahalanobis standardization, which is most commonly used
before PCA, and minimal-variance standardization. In Mahalanobis standardi-
zation, let the variable v; € X have mean y; and standard deviation o;. We then
consider the dataset made up of the variables

_ (V,' - /4,')

i
0;

fori e {1,...,d}. If 6; = 0, we use Moore-Penrose Mahalanobis (MPM) standardi-
zation, in which we find the square root of the Moore-Penrose inverse of the covari-
ance matrix 27, and then use (X7);; (i.e. the ith diagonal entry of X7) in place of o;.

In minimal-variance (MV) standardization, we find the minimal-variance pol-
ynomial matrix A;, and use the values on the diagonal of A;, denoted (4;);;, in
place of o;:

v — )
W, = ———.
(AR
Note that this is different to minimal-variance whitening, in that we only use the

diagonal of the minimal-variance polynomial matrix to perform the transformation.
We do this to align our method with the Mahalanobis standardization method.
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Our method of comparing the different standardization methods for PCA is
as follows. In the following sections, we consider 1000 generated datasets, each
with K clusters. For each dataset, we consider three versions: let X be the origi-
nal dataset, X,,p,, be the MPM standardized dataset and X,,, be the MV stand-
ardized dataset. For each version, we find the data given by the PCA transforma-
tion for a given number of principal components, and then perform the K-means
clustering algorithm (Lloyd 1982). This is repeated for 1000 different datasets,
and the results are given in the following sections for different types of data.

3.4.1 Datawithd < N

We first consider the impact of the different standardization methods on PCA for
data with d < N. For each of the 1000 datasets, we generate 3 clusters from mul-
tivariate Gaussian distributions X®, i = {1,2,3} with dimension d = 100, where
the parameters u®, X® and N® denote the mean, covariance matrix and number of
observations in cluster X®. The details of these parameters are given in Table 11.
The eigenvalues of each X taper off towards zero gradually. This creates a degener-
ate dataset with a rank that is hard to identify, a situation which the Moore-Penrose
inverse struggles to deal with well.

In this example, we make parameter choices based on the relative size of the
eigenvalues of a dataset compared to the maximum eigenvalue. Let A = {4, ..., 4}
be the set of eigenvalues of a dataset, let 4_,, be the largest eigenvalue in A, and let A
be the mean of the eigenvalues in A.

Let p = p(A) be the number of principal components that we wish to reduce a
dataset to using PCA. For each dataset, the parameter p(A) is chosen to be the num-
ber of eigenvalues in A greater than the mean eigenvalue A:

max

d
p(A) = Z Ilj,i>js
i=1

as commonly used in practice (Abdi and Williams 2010).

The parameter k = k(A) for the minimal-variance polynomial will chosen based
on the number of scaled eigenvalues z; = A;/A,,,, that are bigger than a given
threshold ¢:

max

Table 11 Details of clusters of

[ (@) i (@) (i)

datasets used for PCA and K ! H Eigenvalues of > N
-means examples in Sect. 3.4.1 1 [0.....0] [100.50,0.9',0.9%,0.9, ... 1 166
2 [1,....1] [100,50,0.8',0.8%,0.8°, ... ] 166
[0] % 33 +[1] = 64 [100,50,0.8',0.82,0.8% ... 168

All datasets have dimension d = 100
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d
kA) =Y 1,.,
=1

In the examples that follow we use = 0.1.

The K-means clustering algorithm aims to assign each point within a dataset to
a cluster, by estimating the distances from each point to the estimated centre-point
of a cluster of points. For more information on the algorithm, see Jain (2010). We
consider how well the K-means clustering algorithm performs after applying PCA,
given the different standardization methods. We use the adjusted rand (AR) score
(Hubert and Arabie 1985; Steinley 2004) of the cluster labels provided by K-means
to judge how well the algorithm has found the correct clusterings. An AR score of 0
indicates random labellings, and an AR score of 1 means the clusters were perfectly
labelled by the algorithm.

We also give the silhouette scores (Rousseeuw 1987) of the methods depending
on the standardization methods. The silhouette score of a clustering indicates how
well separated the clusters are. A score of 1 indicates well-distinguished clusters,
whereas a score of -1 tells us that clusters have been incorrectly assigned. A higher
silhouette score tells us that the standardization method and PCA have retained clus-
ter structure well.

Figure 8 shows that using the MPM standardization gives a slight improvement
on using no standardization. However, using minimal-variance standardization
before applying PCA and K-means clustering results in vastly better AR scores, as
well as better silhouette scores.

3.4.2 Datawithd > N
We modify the above example slightly to help us consider the case where d > N. In

such circumstances, PCA can sometimes perform poorly due to difficulties in find-
ing the eigenvectors of the covariance matrix correctly (Aoshima et al. 2018). As

1.0
N 0.40
508
g £ o035
206 a
& 2030
° [
% 04 ‘E 0.25
2 @
202 % 0.20 [%
0.0 i . i . ] i
Original MPM MV Original MPM MV
(a) Adjusted Rand (b) Silhouette
Score Score

Fig. 8 a Adjusted Rand scores and b Silhouette scores of the labellings made by the K-means algorithm
after PCA, which was applied to 1000 datasets with: no standardization (Original); Moore-Penrose
Mahalanobis (MPM) standardization; minimal-variance (MV) standardization
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such, we now compare the standardization methods when applied before 3 different
methods of dimension reduction:

1. Classical PCA (Pearson 1901)
2. Cross-Data PCA (CD-PCA) (Yata and Aoshima 2010)
3. Noise-Reduction PCA (NR-PCA) (Yata and Aoshima 2012)

The latter two methods were formulated for performing dimension reduction on
HDLSS data, and can avoid the difficulties sometimes faced by PCA in such set-
tings. Examples given in these papers show promising results for eigenvalue estima-
tion and dimension reduction in high dimensions. For more details on the imple-
mentation of these methods, see the papers referenced above.

As in Sect. 3.4.1, we consider 1000 different datasets, each with d = 1000 and
N = 430. Each dataset is generated as a mixture of four multivariate Gaussian distri-
butions X; ~ Ji{,( His Zi), i={1,2,3,4}. The population parameters of each cluster
are given in Table 12.

Figure 9 shows boxplots of the AR scores and silhouette scores of the labels given
by K-means clustering, after applying one of the standardization methods and one of
the three dimension reduction methods. Across all types of PCA, we see that MPM
standardization gives very similar results to the datasets with no standardization. On
the other hand, the MV standardization method provides a large improvement for all
three methods of dimension reduction. The clustering results are better when MV
standardization has been used, as indicated by the boxplots of AR scores in Fig. 9a,
c and e. We see that cluster separation is also better when using MV standardiza-
tion with dimension reduction, as the silhouette scores are much higher for all three
dimension reduction methods.

Across the three dimension reduction techniques considered, the minimal-vari-
ance standardization method is clearly very useful in those cases where standardi-
zation would improve dimension reduction algorithms (or other multivariate data
analysis methods), as it behaves similarly to the Moore-Penrose Mahalanobis stand-
ardization method, but does not struggle in cases where the rank is unclear and there
are many small eigenvalues.

Table 12 Details of clusters of

datasets used for PCA and K i uo Eigenvalues of 2 N

-means examples in Sect. 3.4.2 1 [0,....0] [100,50.0.9',0.92,0.9°, ... ] 133
2 [1,...,1] [100,50,0.8',0.82,0.8, ...] 133
3 [0] % 333 4+ [1] * 667 [100,50,0.8',0.82,0.8° ... ] 134
4 [1,...,1] [100,50,0.1',0.12,0.1° ... ] 30

The datasets have d = 1000 and N = 430
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Fig. 10 Eigenvalues of the datasets used in Sect. 3.1.1. A dataset with a * in its caption has been rescaled p
such that each variable has zero mean and unit variance, and hence the eigenvalues of the correlation
matrix are given

4 Conclusion

We have developed a method of constructing polynomials in the empirical covari-
ance matrix to provide an alternative to the inverse square root of a covariance
matrix, particularly suitable to degenerate (or close to degenerate) data in high
dimensions. The minimal-variance polynomial whitening method aims at minimiz-
ing the total variation in a transformed dataset, and in doing so it provides a data-
set that has been decorrelated and standardized. We have demonstrated the potential
applications of these polynomial matrices by considering whitening, outlier detec-
tion and principal component analysis for both d < N and d > N cases. We have dis-
cussed and given recommendations for the choice of the parameter & which dictates
the degree of the polynomial, as well as an alternative constraint and adjustments.
We also suggested a method to reduce computational time in extremely high-dimen-
sional cases, ensuring that this method can be applied in such scenarios.

Appendix 1
Details of the datasets in Section 2.4 and Section 2.5

The eigenvalues of the datasets used in Figs. 1 and 2 are given below.

d = 50 eigenvalues: [5.0, 4.0, 3.0, 2.0, 1.0, 1.0, 0.7, 0.7, 0.6, 0.4, 0.4, 0.4, 0.2, 0.2,
0.1, 0.1, 0.07, 0.04, 0.03, 0.01, 0.009, 0.007, 0.003, 0.001, 0.0009, 0.0002, 1e-05,
4e-08, 1e-08, 8e-12, le-16, 8e-17, 1e-22, 6e-23, 8¢-28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0,0, 0].

d = 150 eigenvalues: [5.0, 4.0, 3.0, 2.0, 1.0, 1.0, 1.0, 0.8, 0.8, 0.5, 0.5, 0.5, 0.4,
0.4, 0.3, 0.3, 0.2, 0.2, 0.1, 0.1, 0.1, 0.08, 0.08, 0.07, 0.06, 0.05, 0.04, 0.04, 0.03,
0.02, 0.02, 0.02, 0.007, 0.007, 0.006, 0.006, 0.005, 0.005, 0.002, 0.002, 0.0004,
0.0002, 0.0001, 0.0001, 3e-05, 2e-05, 2e-05, le-05, 8e-06, 7e-06, Se-06, 4e-06,
4e-06, 2e-06, 7e-07, 6e-07, 2e-07, 2e-07, 3e-08, 3e-08, 2e-08, 5e-10, 4e-10, 1e-10,
8e-11, 6e-11, 3e-11, 2e-11, 4e-12, 2e-12, 3e-13, 3e-13, 2e-13, 9e-14, le-14, 2e-15,
le-15, 8e-16, 4e-16, 3e-17, 1e-17, 1e-17, 7e-18, 1e-18, 1e-18, 5e-19, 2e-19, 4e-20,
3e-20, 2e-20, 4e-22, 8e-25, 3e-25, 8e-28, Se-31, 2e-37, 6e-38, 2e-38, 9e-40, le-41,
5e-43, 9e-50, 1e-52, 9e-65, 8e-105, 0, 0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0, 0, 0, O,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0,0, 0]

The datasets used in Table 1 in Sect. 2.5 were generated using Python code as fol-
lows. For the given values of d, N and R:
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Fig. 11 Eigenvalues of the datasets used in Section 3.1.2. A dataset with a * in its caption has been p
rescaled such that each variable has zero mean and unit variance, and hence the eigenvalues of the cor-
relation matrix are given

true_sigma =np.diag([np.random.rand () for _
in range(R)]+ [0] *(d - R))
X = np.random.multivariate_normal(np.zeros(d),
sigma, N).T
empirical_sigma = np.cov (X)

Eigenvalues of the datasets in Section 3.1
Datasets in Section 3.1.1, withd < N

The histograms in Fig. 10 give the distribution of the eigenvalues of the datasets
used in Sect. 3.1.1, detailed in Table 2.

Datasets in Section 3.1.2, withd > N

The histograms in Fig. 11 give the distribution of the eigenvalues of the datasets
used in Sect. 3.1.2, detailed in Table 5.

Time to compute the minimal-variance polynomial in Section 3.1

Table 13 gives the time it took to calculate the minimal-variance polynomial (in
seconds) for each dataset used in Sect. 3.1, for each different value of k.

Eigenvalues of the datasets in Section 3.2

In Sect. 3.2, we compare different whitening methods with the minimal-variance
polynomial whitening method by applying them to the Iris dataset and the Wis-
consin breast cancer dataset (the latter of which we have scaled to improve per-
formance). The eigenvalues of these datasets are given below:

Eigenvalues of Iris: [4.2282, 0.2427, 0.0782, 0.0238]

Eigenvalues of Wisconsin Breast Cancer: [9.8005, 8.2868, 3.3664, 2.2588,
1.5496, 1.4151, 1.1688, 0.9771, 0.5900, 0.5073, 0.4427, 0.3733, 0.3303, 0.2486,
0.2024, 0.1211, 0.1064, 0.0798, 0.0737, 0.0519, 0.0452, 0.0369, 0.0302, 0.0250,
0.0226, 0.0186, 0.0144, 0.0125, 0.0058, 0.0026, 0.0010, 0.0004].
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Table 13 Time taken to

. Dataset k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
calculate A, in seconds for each

dataset (average over 100 runs) 004 004 005 004 004 006 004 005
D2 025 023 023 021 020 023 026 027
D3 135 143 172 208 198 200 259 3.1

D4 4.16 473 591 6.62 847 977 12.02 14.36
Digits 0.02 0.02 0.02 0.02 0.02 0.02 002 0.02
Musk 021 022 022 023 025 026 029 031
HAR 198 215 234 262 381 354 383 442
MNIST 6.24 6.55 724 820 10.11 1229 1271 14.35
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