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Abstract

This paper focuses on the link between non-parametric survival
analysis and three distributions. The delta method is applied to de-
rive the variances of the non-parametric estimators of three distribu-
tions: the distribution of durations (DD), the cross-sectional distribu-
tion of ages (CSA) and the cross-sectional distribution of (completed)
durations (CSD). The non-parametric estimator of the the cross-
sectional distribution of durations (CSD) has been defined and de-
rived by Dixon (2012) and used in the generalized Taylor price model
(GTE) by Dixon and Le Bihan (2012). The Monte Carlo method is
applied to evaluate the variances of the estimators of DD and CSD
and how their performance varies with sample size and the censoring
of data. We apply those estimators to two data sets: the UK CPI
micro-price data and waiting-time data from UK hospitals. Both the
estimates of the distributions and their variances are calculated. De-
pending on the empirical results, the estimated variances indicate that
the DD and CSD estimators are all significant.
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1 Introduction

Survival analysis has a wide range of applications across several disciplines
including engineering, medicine and economics. In this paper, three related
distributions1 arising from survival analysis are examined: the distribution
of durations (DD)2, the cross-sectional distribution of ages (incomplete du-
rations) (CSA) and the cross-sectional distribution of (completed) durations
(CSD). Dixon (2012) introduces a unified framework for modelling the three
distributions, each of which can be written in terms of the survival function
and hazard function. They are different ways of describing the same under-
lying data. The purpose of this paper is to derive the variances of the non-
parametric estimates of the three distributions using the the delta method
of Greenwood (1926).

Suppose time is divided into discrete periods: days, weeks, months and so
on. In economic applications, this will often be driven by the data we have.
The survival function Si gives the probability that an event will last for more
than i periods. Clearly, Si ∈ [0, 1] and Si ≥ Si+m for m > 0. The cor-
responding hazard function hi gives the conditional probability that having
survived i periods, the event ends (death or failure). There are two clas-
sic non-parametric methods of estimating this process. The Kaplan-Meier
estimator (KM) for the survival function, and the Nelson-Aalen estimator
(NA) for the cumulative hazard function (see Kaplan and Meier (1958), Nel-
son (1972) and Aalen (1978)). The properties of both estimators have been
well studied and in particular their asymptotic variances (see Breslow and
Crowley (1974)). Whilst both KM and NA are general non-parametric es-
timators, they can also be estimated in parametric forms, such as the Cox
proportional hazard model. Our analysis is applicable to a panel of obser-
vations, where many agents (people, households, firms and machines) are
observed repeatedly over time and also to situations where just a few agents,
or even one, are observed over time.

Starting from the KM and NA estimators of the survival and hazard
functions, the non-parametric estimators of the three distributions are con-
structed in section 2. The contribution of the paper is to derives the asymp-
totic variances of the estimators of the three distributions using the delta
method in section 3. Theorem 1 derives the asymptotic variances for the

1We use the term distribution as short hand for discrete probability density function.
2This is also known as the unconditional hazard function.
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DD estimator. The main result is found in Theorem 2, which derive the
asymptotic variances for the CSD estimator. Corollary 1 follows with the
variances for the CSA estimator.

The three distributions we estimate have many useful applications. In
economics, CSD can be used to calibrate the generalized Taylor model of
heterogeneous price and/or wage setting in a macroeconomic setting (see
Taylor (1980), Coenen et al. (2008), Dixon and Le Bihan (2012) and Taylor
(2016)). In this setting, the cross-sectional distribution gives the proportion
of price or wage setters in the economy who set prices or wages for a particular
period of time. In demographics, it also gives the cross-sectional distribution
of durations for those people living at a point in time. Dixon and Siciliani
(2009) estimate the distribution to obtain the completed waiting times of
people on hospital waiting lists, moving from CSA and “ages” or incomplete
waiting times to completed waiting times given by CSD. Also, if we are
looking at the stock of something at a point in time (unemployed workers,
people living in an area, or machines), the CSD gives us the distribution
across this stock which can be generated if we know either DD or CDA.
This allows us to say when the existing unemployed workers find a job, when
people will move from an area, when machines will fail. DD is useful when
we want to look at the population over an extended period of time: the
distribution of spells of unemployment, the distribution of price spells, the
distribution of periods before machines have their first fault and so on. The
key conceptual difference between CSD and DD is that the cross-sectional
distribution weights spells by their duration.

In section 4, the Monte Carlo method is applied to explore the perfor-
mance of our estimated variances of the DD and CSD estimators in different
sample sizes, and also their sensitivity to the presence of censored observa-
tions. We find that whilst there can be small biases in the variances for
samples as small as 25, for samples 50 or over there are almost no biases.
These results are not sensitive to the presence of right-censored observations
for sample sizes of 50 or over.3 In section 5, we also provide illustrative
applications of the method to real data on price-spells and hospital waiting
times. We show how the estimated variances can be used to evaluate the
significance of the estimators of CSD and DD.

3Durations are censored if we do not observe their beginning (left-censored) or their
end (right-censored). It is common practice in survival analysis not to used left-censored
data, which is why we focus on the right-censored data.
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We conclude the introduction with a brief review of the literature on
the Kaplan-Meier and Nelson-Aalen estimators of the survival and hazard
functions.

1.1 Literature Review

Kaplan and Meier (1958) derived the product limit estimator and the vari-
ance of the survival function obtaining the same result derived by Green-
wood (1926). In addition, the product limit estimators were shown to be
consistent. On the other hand, Nelson (1972) applied a graphical method to
investigate the hazard rate (failure ratio) and cumulative hazard function.
This graphical method was named as “hazard plotting”. After that, Aalen
(1978) investigated the hazard function and the cumulative hazard function
using counting process theory. Since both Nelson and Aalen derived the cu-
mulative hazard function, the new estimator is known as the Nelson-Aalen
estimator. For the asymptotic properties of KM and NA estimators, see An-
dersen et al. (1993), Fleming and Harrington (1991), Kalbfleisch and Prentice
(2002), Fleming and Harrington (1991), Bohoris (1994) and Colosimo et al.
(2002). With respect to the parametric method for estimating the survival
function and the hazard function, see Cox (1972). In terms of comparing the
KM estimators in different groups, see Mantel (1966).

Breslow and Crowley (1974) investigated the life table and the Greenwood
formula for the survival function in large samples. They also derived the
covariance formula for the survival function. The confidence interval of the
KM estimator was introduced by Gillesple and Fisher (1979), Nair (1981),
Nair (1984) and Kalbfleisch and Prentice (2002). Kalbfleisch and Prentice
(2002) provided a method called the log-log transformation to guarantee the
positive lower bound of the confidence interval of the KM estimator.

2 The Survival and Hazard Functions

Kaplan and Meier (1958) provided an estimator for the survival function, the
Kaplan-Meier (KM) estimators of the survival probabilities Si ∈ [0, 1] for
i = 0, 1, 2, ......, F , where F is the maximum duration observed in the data set
(in purely theoretical work, this can be arbitrarily large and even infinite).
We can imagine that there is a panel of agents. A spell of time is a period
when the agent remains in the same state (remains alive, remains ill, sets
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the same price). Failure occurs when that state changes (death, recovery
from illness, machine failure, price change). When the state changes, this
can either be seen as the same agent continuing in the different states (the
firm continues but sets a different price) or a new agent replaces the old (the
machine fails and is replaced with a new machine). In this section and with
all of our analytical results, we will assume that all spells are uncensored and
observed in their entirety. We will delay the discussion of censored spells
until sub-section 3.2 and section 4 below.

If we look across the entire data set, we can count the number of spells
that last at least k periods as Nk, and the number of failures in the k-th
period as Dk. N0=N is the total number of price spells in the initial period.
The Kaplan-Meier estimator Ŝi of the survival function Si can be written as:

Ŝi =
i∏

k=1

Nk −Dk

Nk

(1)

Ŝi can be defined as the proportion of spells surviving for longer than i
periods. This formula is also known as the product limit estimator for the
survival function. We can set Ŝ0 = 1 (all spells last longer than zero) and
ŜF=0 (no spell lasts more than F periods): Hence there remain F−1 survival
probabilities to be estimated from the data.

The hazard function hi is estimated as the proportion of failures amongst
spells that have lasted i periods:

ĥi =
Di

Ni

(2)

Again we assume D0 = 0 and ĥ0 = 0 because all spells last at least 0 periods.
Since F is the longest spell observed, ĥF = 1 and there remain F −1 hazards
to be estimated. The estimator of hazard function can be transformed into
the KM estimator:

Ŝi =
i∏

k=1

(1− ĥk) (3)

Likewise, the KM estimator can be transformed into the estimator of hazard
function:

ĥi =
Ŝi−1 − Ŝi

Ŝi−1
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There is thus a one-to-one mapping between the estimated hazard function
and survival function. Note that equation (2) is also the maximum likelihood
estimator of hazard function4. Therefore, KM estimator can be derived from
the maximum likelihood estimator of the hazard function.

Before deriving the estimators of our three distributions, we need to de-
fine two additional variables. First define the sum of the estimated survival
probabilities Ŝ =

∑F
k=0 Ŝk, and second define h̄ as the reciprocal of this sum.

h̄ =
1∑F

k=0 Ŝk

=
1

Ŝ
(4)

Intuitively, in a balanced panel, h̄ is the average proportion of agents that
fail each period. To see this, consider some simple examples. First, all spells
end in the first period. In this case, F = 1 and Ŝ0 = 1 with Ŝ1 = 0 so that
h̄ = 1. Second, take the example where all spells last for two periods and
then fail, so that F = 2. In this case, we have Ŝ0 = Ŝ1 = 1 and Ŝ2 = 0 so
that h̄ = 1/2 : 50% of spells fail per period. Hence, with a balanced panel,
we can think of h̄ as being the average proportion of failures each period.
However, if there is only one cohort, h̄ can be thought as being the weighted
average hazard over F periods for i = 0, 1, ......, F , where the weights are the
proportions surviving to period i divided by the sum of estimated survival
probabilities (to ensure the weights add up to 1). This is summarised in
Proposition 1.

Proposition 1:

h̄ =

∑F−1
i=0 Ŝiĥi+1∑F

i=0 Ŝi

All proofs are given in the appendix. We will now go on to describe the
three distributions and how they relate to the survival and hazard functions
and to each other. For all three distributions, we are considering the non-
parametric probability density functions corresponding to the non-parametric
estimates of the survival and hazard functions. As such, they are captured
by the estimated proportions belonging to each duration, which are all non-
negative and sum to one.

4We summarise this derivation in the online appendix.
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2.1 The Distribution of Durations DD

We have a population of price-spells with a discrete random duration i
(i = 1, 2, ..., F ), which has a discrete probability density function DD de-
scribed by the F probabilities adi which we seek to estimate. The estimators
of DD are the the proportions of spells in the data lasting for exactly i pe-
riods, i = 1, 2, ..., F 5. That is, they survive for at least i − 1 periods with
estimated survival probability Ŝi−1 and change (or end) in the i-th period
with estimated hazard probability ĥi. Our estimator of the probability of
spells lasting exactly i periods can thus be defined as:

âdi = Ŝi−1ĥi (5)

Clearly, âdi > 0 and for F > 1, 1 > âdi . Also note that:

F∑
i=1

âdi = 1

Since:
F∑
i=1

Ŝi−1ĥi =
F∑
i=1

(
Ŝi−1 − Ŝi

)
= Ŝ0 = 1

DD can be thought of as applying a particular cohort starting within a
specific time frame (as with life tables), or as the distribution of all spells
over a long period (as in a balanced panel).

2.2 The Cross-Sectional Distribution of Ages CSA

The cross-sectional distribution of ages (CSA) is the probability density func-
tion of ages (incomplete durations) at a point in time. The obvious example
is a census which records the age of people at a particular date. As with
DD, the CSA is defined by F probabilities aAi (i = 1, 2, ..., F ) which we seek
to estimate. The estimator for age i is the ratio between the estimates of
survival probability for duration i divided by the sum of all the estimates of
survival probabilities Ŝ (or equivalently multiplied by h̄):

âAi =
Ŝi−1

Ŝ
= Ŝi−1h̄ (6)

5DD is NA(not available) when i = 0. The reason is that âi0
d = Ŝ−1h0.
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Since the survival function is non-increasing, the age distribution is also non-
increasing: âAi ≥ âAi+1. Note that âA1 = h̄ since Ŝ0 = 1. In addition, it is clear
that the summation of the estimates of the age distribution is equal to 1.

In the case of a balanced panel, the age distribution can be thought as
being the cross-sectional distribution of ages across agents at a (random)
point in time. However, for a particular cohort, it can be also thought as
the proportions of spells from that cohort lasting at least a particular length.
This differs from the survival function because the proportions add up to
unity (being the survival function pre-multiplied by h̄). The survival function
does not add up to unity because the events captured are not mutually
exclusive. The sum of survival probabilities will exceed one unless all spells
last just one period.

The estimates of the CSA and DD are related by the simple equality:

âAi = âdi
h̄

hi

In the case of a constant hazard rate we have hi = h̄ for all i, so that the
estimators are equal for all durations âAi = âdi .

6

2.3 The Cross-Sectional Distribution of Durations CSD

Next, we consider the less familiar cross-sectional distribution of completed
durations (CSD). Unlike the CSA, this can be considered as the completed
durations (lifetime of a person, waiting time before the patient is treated) in
process at a point in time and is defined by probabilities ai (i = 1, ..., F )7.
The CSA is purely backward looking; it simply says what the duration is up
until a point in time. The CSD not only looks backwards, but also forward
to the end of the completed duration. This is a new distribution derived by
Dixon (2012). The estimators for CSD can be written as:

âi = ih̄Ŝi−1ĥi (7)

6The cross-section is length biased, so that the probability of observing a spell is pro-
portional to length. The CSA has an interruption bias, since the spells are incomplete.
With a constant hazard, the two biases exactly cancel out. This happens when DD fol-
lows a Bernoulli distribution with a hazard rate that is constant (in macroeconomics this
is used in the discrete-time Calvo model of pricing).

7CSD estimator â0 = 0 when i = 0

8



Alternatively, the estimators of CSD can be written as:

âi = i
Ŝi−1ĥi

Ŝ
(8)

Furthermore, the sum of these estimators is always unity:

Proposition 2.
∑F

i=1 âi = 1.

The estimates of the CSD and DD are related by the simple equality:

âi = iâdi h̄

That is the CSD estimator for i-th period is i times the corresponding esti-
mate for DD multiplied by h̄. In the case F > 1, we have h̄ < 1. It follows
that the distributions “cross” as ih̄ goes from below 1 to greater than 1. If
h̄ = 0.25, âi < âdi for i = 1, 2, 3 and the two distributions cross at i = 4,
hence â4 = âd4. For i > 4, we have âi < âdi . If we have a balanced panel, we
can think of this as the cross-sectional distribution which is length weighted.
The probability of observing a spell lasting i periods at a random point in
time is i times the probability of observing a one period spell.

In the case of a single cohort, the CSD can be thought as being the
distribution of durations where we take an observation over each of the F
periods. In the first period, we have all of the spells. In the second period,
the one-period spells drop out and we have the spells with a duration of 2
and above and so on. Hence the i-period contracts will be counted i times.
Thus the CSD for the cohort is given by âi = ih̄âdi . In effect, for a single
cohort or even a single firm, the CSD can be thought as weighting the spells
by their length, as was suggested by Baharad and Eden (2004).

2.4 The Three Distributions

Since the survival and hazard functions and their estimators are well known,
the three distributions can be expressed in terms of these functions. However,
the survival function, hazard function and the three distributions are just
different ways of describing the data. They are all linked by identities: for all
unique survival functions there exists a corresponding unique hazard function
and unique DD, CSA and CSD. These identities hold for their estimators
as well. Likewise, if we pick a particular hazard function, we can express the
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Table 1: Relationships Among Different Functions and Distributions
Ŝi ĥi âdi âAi âi

Ŝi I
∏i

j=1

(
1− ĥj

)
for i = 1, 2, ..., F. 1−

∑i
j=1 â

d
j

âAi+1

âA1
1− 1∑F

k=1
âk
k

∑i
j=1

âj
j

ĥi
Ŝi−1−Ŝi

Ŝi−1
I

∏i−1
j=1

(
1− ĥj

)
âAi −âAi+1

âAi

âi
i

[∑F
i=1

âi
i

]−1
âdi Ŝi−1 − Ŝi ĥi

∏i−1
j=0

(
1− ĥj

)
I

âAi −âAi+1

âA1

âi

i
∑F

j=1

âj
j

âAi

[∑F
i=0 Ŝi

]−1
Ŝi−1

[∑F
i=1

∏i−1
j=0

(
1− ĥj

)]−1∏i−1
j=0

(
1− ĥj

)
1−

∑i−1
j=1 â

d
j∑F

i=1 iâ
d
i

I
∑F

k=1
âk
k
−
∑i

j=1
âj
j

âi i
[∑F

i=0 Si

]−1 (
Ŝi−1 − Ŝi

)
i
∏i−1

j=1

(
1− ĥj

)
ĥi

[∑F
i=1

∏i−1
j=0

(
1− ĥj

)]−1
âdi

i.
∑F

j=1 jâ
d
j

i.
(
âAi − âAi+1

)
I

survival function and all three distributions in terms of the particular hazard
function. However, we can also work in the opposite direction and use one
of the three distributions to describe the others.

The full set of relationships is given in table (1). Each column represents

the estimators of the functions or distributions:
{
Ŝi, ĥi, â

d
i , â

A
i , âi

}
; each row

shows how the elements can be written in terms of the elements of that
column. Thus the first row has the different ways of writing the estimator
of survival function Ŝi in terms of itself (the indicator I), the estimator of
hazard function ĥi, and then the estimators of the three distributions âdi , â

A
i

and âi. The second row shows how we can write the estimators of the sur-
vival function, the hazard function (by itself) and the three distributions in
terms of the hazard function estimators ĥi. It is these identities that enable
us to derive the estimators of the three distributions and their variances by
applying the well known estimators of the survival and hazard functions. In
the appendix, we show some further relationships between the three distri-
butions, especially at their extreme values such as i = 0 and i = F .

3 Asymptotic Variances of the Estimators of

Three Distributions

In this paper, we employ the delta method to derive the variances of the
estimators of DD, CSA and CSD. This method is also applied in Greenwood
(1926) to derive the variance of the survival function. Since the survival
function has been extensively analysed, we can use this as a natural starting
place to derive the variances of the estimators of the three distributions using
the identities we have derived in the previous section. We continue to assume
that all spells are uncensored for our analytical results.

Assume the estimated survival function Ŝi converges to the mean value
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Si (the underlying survival probability). This can be expressed as:√
Ni[Ŝi − Si]

a.s.∼ N(0, V ar(Ŝi))

By Taylor expansion we have:

g(Ŝi) = g(Si) + g′(Si)(Ŝi − Si) + Op((Ŝi − Si)
2)

where Op(.) is the Bachmann-Landau notation. From Slutsky’s theorem8,
there exists the relationship:√

Ni[g(Ŝi)− g(Si)]
a.s.∼ N(0, [g′(Si)]

2V ar(Ŝi))

3.1 Derivation of the Asymptotic Variances of the Es-
timators

This section contains the main results of the paper, where we derive the vari-
ances of the three non-parametric estimators: for DD (Theorem 1), CSD
(Theorem 2) and CSA (Corollary 1). Starting with DD, we have the esti-
mator:

âdi = Ŝi−1ĥi

With variance:
V ar(âdi ) = V ar(Ŝi−1ĥi)

Theorem 1: Assume that we have the estimates of the survival function
Ŝ = (Ŝ1, ...ŜF−1) and hazard function ĥ = (ĥ1, ĥ2, ...ĥF ). The variances
of the DD estimators âdi are given by:

V̂ ar(âdi ) = (Ŝi−1ĥi)
2[
Ni −Di

NiDi

+
i−1∑
k=1

Dk

Nk(Nk −Dk)
] (9)

For i = 2, ..., F . If i = 1, this simplifies to:

8Slutsky’s theorem states that if there exist two random variables or vectors Xi and

Yi, and those variables or vectors satisfy Xi
d.−→ X and Yi

p.−→ c, then there exists the
relationship:

f(Xi, Yi)
d.−→ f(X, c)

Where Xi
d.−→ X means that Xi converges to the fixed value X in distribution; Yi

p.−→ c
means that Yi converges to the constant point c in probability.
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V̂ ar(âd1) = (ĥ1)
2[
N1 −D1

N1D1

] (10)

Theorem 1 allows us to move from our estimates of Ŝi−1 and ĥi to add the
terms in the square bracket from the data to give us the variance of âdi . Note
also, the variance of âdi depends only on the data up to and including period
i: neither âdi nor its variance depend on the distribution of spells beyond i
periods.

To derive the variance of the CSD estimator, some additional formulae
are needed. In equation (8), it can be seen that it is the product of the
constant value i, and three random variables Ŝi, ĥi and h̄. The constant
value i is the length of the duration and hence we say that the CSD is
weighted by length.

Breslow and Crowley (1974) showed that both the estimated survival
function and the hazard function follow the normal distribution asymptoti-
cally. The off-diagonal terms in the variance-covariance matrix of the hazard
function are all equal to zero. This means that the estimates ĥi are asymp-
totically independent across durations. Note, this does not mean that the
underlying true hazards are unrelated, but merely that the errors are unre-
lated (if one estimate is too high, it has no implications for the errors of the
other estimators in large samples).

In contrast, they showed the covariances for the estimators of the survival
function do not equal zero. This follows from the fact that to survive to j
periods you have to pass through each of the previous i periods (i < j). To
derive the variances of the CSD estimators, we will need first to derive the
covariance of Ŝi and Ŝj for i < j. To do this we take the Taylor expansion

for Ŝi and Ŝj:

exp(lnŜi) = exp(lnSi) + (lnŜi − lnSi)exp(lnSi) + Op((lnŜi − lnSi)
2) (11)

exp(lnŜj) = exp(lnSj) + (lnŜj − lnSj)exp(lnSj) + Op((lnŜj − lnSj)
2) (12)

Rearranging equation (11) and (12):

Ŝi − Si = Si(lnŜi − lnSi) + Op((lnŜi − lnSi)
2) (13)

Ŝj − Sj = Sj(lnŜj − lnSj) + Op((lnŜj − lnSj)
2) (14)
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If we multiply equation (13) with (14) and take the expectation:

Cov(Ŝi, Ŝj) = E[Ŝi − Si)(Ŝj − Sj)]

≈ SiSjE[(lnŜi − lnSj)(lnŜj − lnSj)]

= SiSjCov(lnŜi, lnŜj)

= SiSjCov(
i∑

k=1

ln(1− ĥk),

j∑
l=1

ln(1− ĥl))

= SiSjV ar[
i∑

k=1

ln(1− ĥk)] (15)

The delta method is applied to derive the covariance of the KM estimators
in equation (15). Since Cov(ĥk, ĥl) = 0 for k 6= l, we have:

Cov(
i∑

k=1

ln(1− ĥk),

j∑
l=1

ln(1− ĥl)) = V ar[
i∑

k=1

ln(1− ĥk)] for i < j

Where V ar[
∑i

k=1 ln(1 − ĥk)] =
∑i

k=1
Dk

Nk(Nk−Dk)
, which was shown in the

proof of Theorem 1. Applying the large sample properties of the maximum
likelihood estimator, the estimated covariance between Ŝi and Ŝj can be
written as:

Ĉov(Ŝi, Ŝj) = ŜiŜj[
i∑

k=1

Dk

Nk(Nk −Dk)
] for i < j (16)

The expression above states that the covariance of the survival function
estimates from two periods depends on the product of the two survival prob-
abilities and the summation term in square brackets, which includes only
data up to the shorter of the two survival durations.

In Theorem 1, we used the delta method to derive the variance of the DD
estimator, and have now in addition derived the covariance of the survival
functions across time. We now proceed to derive the variance of the CSD
estimator, by treating the estimates âi as a ratio distribution x̂i/ŷ with x̂i =
iŜi−1ĥi and ŷ =

∑F
k=0 Ŝk. We can then apply the delta method for the ratio

estimator x̂i/ŷ to approximate x̂i and ŷ at the mean value xi and y:

x̂i

ŷ
≈ xi

y
+

x̂i − xi

y
− xi

y2
(ŷ − y)
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Taking the expectation on both sides, it can be seen that:

E[
x̂i

ŷ
] ≈ xi

y
(17)

Therefore, the variance of the ratio estimator âi = x̂i/ŷ is:

V ar(
x̂i

ŷ
) ≈ V ar(x̂i)

y2
+

x2
i

y4
V ar(ŷ)− 2

xi

y3
Cov(x̂i, ŷ) (18)

Applying the large sample properties of the maximum likelihood estimator,
we can replace xi by x̂i and y by ŷ where x̂i = iŜi−1ĥi and ŷ = Ŝ.9 First,
note that the variance of Ŝ is:

V ar(Ŝ) = V ar(
F∑
i=0

Ŝi) =
F∑
i=0

V ar(Ŝi) + 2
∑
i 6=j

Cov(Ŝi, Ŝj) (19)

In addition, the covariance of iSi−1hi and Sj can be derived as:

Cov(iŜi−1ĥi, Ŝj) = iCov(Ŝi−1 − Ŝi, Ŝj) = i[Cov(Ŝi−1, Ŝj)− Cov(Ŝi, Ŝj)]

Therefore:

Cov(iŜi−1ĥi,
F∑

k=1

Ŝk) = i[Cov(Ŝi−1,
F∑

k=1

Ŝk)− Cov(Ŝi,
F∑

k=1

Ŝk)]

= i[
F∑

k=1

Cov(Ŝi−1, Ŝk)−
F∑

k=1

Cov(Ŝi, Ŝk)] (20)

Substituting the equation (9), (15), (19) and (20) into equation (18), we
are able to state the variances of the CSD estimators:

Theorem 2 The variances of the CSD estimators can be defined as:

V̂ ar(âi) = i2
V̂ ar(Ŝi−1ĥi)

Ŝ2
+ i2

Ŝ2
i−1ĥ

2
i V̂ ar(Ŝ)

Ŝ4
− 2i2

Ŝi−1ĥiĈov(Ŝi−1ĥi, Ŝ)

Ŝ3

(21)

For i = 1, 2, ..., F .

9The maximum likelihood estimator Ŝi is close to the mean value of Si in large sample
size. the Si can be replaced by Ŝi in Greenwood formula. At this point, we replace xi by
x̂i and y by ŷ
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Note that âi and its variance V̂ ar(âi) depend not just on data from pe-
riods up to i, but what happens across all durations up to F . This follows
because Ŝ, the sum of the survival function, appears in the denominator and
the numerator of both âi and its variance V̂ ar(âi). This is not only because
all of the estimators âi have to add up to unity (Proposition 2), but they
are weighted by duration i. When combined, these two factors imply that
what happens across the whole distribution influences each âi and its vari-
ance V̂ ar(âi). This stands in contrast to Theorem 1 for DD, where âdi and

their variances V̂ ar(âdi ) only depend on data up to i.
Since the variance of the CSD has been derived, the corresponding vari-

ance for CSA follows immediately by using equation (18):

Corollary 1 The variances of the CSA estimators are given by:

V̂ ar(âAi ) =
V̂ ar(Ŝi−1)

Ŝ2
+

Ŝ2
i−1V̂ ar(Ŝ)

Ŝ4
− 2

Ŝi−1Ĉov(Ŝi−1, Ŝ)

Ŝ3
(22)

For i = 1, 2, ..., F.

3.2 Censored and Uncensored Spells

All of the previous results are under the assumption that no spells are cen-
sored. In empirical data, we often observe some spells which are not complete.
The process of collecting data will be limited in time and there may be errors.
An uncensored spell is one that is observed in its entirety, from beginning to
end with no break. A left-censored spell occurs when the starting point is
not observed or known, being outside the period of observation (the sample
period). However, the endpoint is included in the sample period. The right-
censored spells are where the endpoint cannot be observed but the start can
be. The KM estimator is usually applied after excluding left-censored spells,
so here we will just consider the implications of having right-censored and
uncensored data in the sample. The maximum length of a spell is assumed
to be F periods. N is the total number of the observations. The observed
lifetime tj can be defined as follows:

tj = min(Tj, Cj) and ωj = I(Tj ≤ Cj) j = 1, 2, ..., N.

Where the Cj means the censored time for the j-th observation; Tj is the
survival time of the j-th observation. The observed lifetime tj is the minimum
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value between Cj and Tj. We also define a dummy variable ωj indicating
whether the spell is censored or not.

Cj < Tj, tj = Cj (right censored) and ωj = 0

Otherwise, if the observation is uncensored:

Tj ≤ Cj, tj = Tj (uncensored) and ωj = 1

In the next section, we will consider the effect of the presence of right-censored
data on the estimators we have derived10 with Monte Carlo simulations using
this method.

4 Monte Carlo Simulation

In Theorems 1 and 2 and Corollary 1, the variance formulae for the estimators
of CSD, CSA and DD have been derived by the delta method. In this
section, we are going to investigate the properties of those formulae using
Monte Carlo methods. Depending on the simulation, the accuracy of the
analytic variances can be evaluated both when all data is uncensored and
when there are some right-censored observations.

The simulation data is generated from the continuous time exponential
distribution. The sample sizes used are N = 25, N = 50, N = 100 and
N = 200. We take the raw continuous time data and then put them into
each interval defined as (0, r1], (r1, r2], ...(ri−1, ri] with i = 1, 2, ..., F . 11 For
tj ∈ (0, r1] we set the duration at tj = r1. For tj ∈ (ri−1, ri] we set tj = ri and
so on. After that, we can count the number of the observations locating in
each interval. The number of the observations locating in i-th interval can be
defined as Di if all the observations are uncensored. Therefore, the estimates
of the survival functions and the hazard functions can be calculated for each
interval. However, we will also allow for the case of right-censoring in each of
the simulations, enabling us to evaluate the accuracy of the variances of the
estimators of three distributions. The sample sizes used in the simulations
are N = 25, N = 50, N = 100 and N = 200. The simulation process is:

10This method could also be extended to include left-censored data or other data im-
perfections.

11The interval (0, r1] can be defined as the “first” period, and (ri−1, ri] is the “i”-th
period. At this point, all the formulae are slightly different from previously result. For

example, the estimator of CSD is ai =
iSui−1

hui∑ui
k=0 Sk
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Step 1: The observed duration is tj = min(Tj, Cj) where j = 1, 2, ......, N .
Both the lifetime time Tj and the censored time Cj follow the exponen-
tial distribution. The censored time and the lifetime have the survival
functions for each k-th period:

p(Cj > ri) = exp(−0.5ri) p(Tj > ri) = exp(−2ri) (23)

The proportion of uncensored spells is 0.8. 12 For the case without cen-
soring, we can ignore the censored times and just generate the survival
time using the lifetimes tj = Tj and assume they are all uncensored
with the right-censored coefficient ωj = 1 for all j. In other words, the
observations can be written as (Tj, 1) for all j.

For the case with right-censoring observations, we also need to generate
the censored durations Cj and compare the two values Tj and Cj for
each j. If Tj < Cj, the j-th observation is uncensored and we assign
a parameter ωj = 1 to the j-th observation. If Cj < Tj, it means the
observation is right-censored and ωj = 0.

Once we have generated the raw data with and without censoring, the
survival data are allocated into F = 5 intervals (periods). We divide
up the data in two different ways. In case 1, our five intervals (periods)
are defined as: (0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.5], and (0.5,∞). In
case 2, our five intervals (periods) are defined as: (0, 0.2], (0.2, 0.4],
(0.4, 0.6], (0.6, 0.8], and (0.8,∞). We consider two cases to evaluate
the accuracy of analytic variance formulae of the three distributions.

Step 2: The formulae (9), (21) and (22) are applied to calculate the variance
of the estimators for DD, CSD and CSA for each period. When
we have right-censored data, we apply the method described in the
previous section to the same formulae.13.

Step 3: Repeat step 1 and step 2 for M times, where we choose M = 10, 000.
If by chance there is a sample with no observations in one of the inter-
vals, this sample is eliminated and another sample is simulated until we

12Since the parameter of the exponential distribution of censored time and observed
time are 0.5 and 2, separately. The right-censored proportion of the total sample can be
known as 0.8 = 0.5

2+0.5 . The algebra is shown by Efron (1981).
13That is, we include the right censored data in Ni, but have only uncensored data in

Di
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have 10,000 samples in which all 5 intervals are non-empty. Following
Kiviet and Phillips (2014), we specify the benchmark value14 of the
variances for CSD as:

V ar(âi)benchmark =
M∑

m=1

(âi,m −
∑M

m=1 âi,m
M

)2/(M − 1) (24)

Where âi,m is the estimate from the m-th Monte Carlo simulation.

The benchmark values for CSA15 are:

V ar(âAi )benchmark =
M∑

m=1

(âAi,m −
∑M

m=1 â
A
i

M
)2/(M − 1) (25)

The benchmark values for DD are:

V ar(âdi )benchmark =
M∑

m=1

(âdi,m −
∑M

m=1 â
d
i,m

M
)2/(M − 1) (26)

In other words, we collect M estimators of each of the three distribu-
tions âi,m, âAi,m and âdi,m, from which we calculate the estimated variances.16

Equation (24), (25) and (26 ) are the benchmark variances of the three dis-
tributions based on the properties of the Monte Carlo simulations. The
benchmark variances are then compared with the analytic variances derived
by the delta method to see whether the theoretical approximation results are
close to the benchmark value.

Table (2) reports the simulation results for DD where all data are uncen-
sored using case 1, with interval (0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.5], and
(0.5,∞). As we can see from table (2), when the sample size is equal to 25,
there exist the small biases for the variances (except for V ar(ad0.5)). How-
ever, when the sample size is increased to 50, the approximation formulae of
the variances perform very well for all the intervals. When the sample size
is increased to either N=100 or N=200, the gaps between the benchmark

14The benchmark value calculated from the Monte Carlo simulation. It is very close to
the true value.

15The CSA is the special case of the CSD, so we only provide the empirical results of
CSD.

16In the simulation results, the coefficient i of equation (24) is ignored in the simulation
process. The reason is that i is a constant parameter for each ai.
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values and the analytic values of the variances are further reduced. With
the increase of the sample size, the approximation values are closer to the
benchmark values when the observations are uncensored.

Table 2: The Variances of DD Estimators for Case 1 When All the Obser-
vations Are Uncensored. All the Results Are Multiplied by 103

.
Benchmark Values

N V ar(âd0.1) V ar(âd0.2) V ar(âd0.3) V ar(âd0.5) V ar(âd∞)
25 5.6497 4.6783 3.7561 5.6901 9.1525
50 2.9913 2.5801 2.1244 2.9637 4.6877
100 1.4844 1.2554 1.0757 1.4705 2.2919
200 0.7451 0.6293 0.5404 0.7406 1.1594

Approximation Values

N E[V̂ ar(âd0.1)] E[V̂ ar(âd0.2)] E[V̂ ar(âd0.3)] E[V̂ ar(âd0.5)] E[V̂ ar(âd∞)]
25 5.6880 4.9125 4.2650 5.6862 8.8820
50 2.8987 2.4790 2.0904 2.9041 4.5610
100 1.4677 1.2533 1.0613 1.4640 2.3022
200 0.7367 0.6293 0.5318 0.7355 1.1578

Note: V ar(âdi ) is the benchmark value calculated from formula (25);

E[V̂ ar(âdi )] is the variance calculated from formula (9).

In table (3), the variances for CSD are simulated by the same process.
There still exist the small biases for the variances for CSD when the sample
size is N = 25. When the sample size is increased to 50, all the approximated
results are improved and they are all close to the benchmark values. With
respect to N=100 and N=200, the approximations of the variances tend to
be closer to the benchmark variances. However, it can be found that the
approximations of the variances do not always overestimate the benchmark
values. In conclusion, the biases of the approximated variances of CSD
estimators are reduced with the increase of the sample size.

Next, we consider the case with right-censored observations. Table (4)
shows the the variances of the DD estimators. Compared with the bench-
mark values, there exist the small biases in the variances calculated from
the analytic formulae when the sample size N=25. When sample size is in-
creased to 50, the analytic variances perform well. When the sample size
tends to be larger (N=100 and N=200), the empirical results show that the
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Table 3: The Variances of the CSD Estimators for Case 1 When All the
Observations Are Uncensored. All the Results Are Multiplied by 103

Benchmark Values
N V ar(â0.1) V ar(â0.2) V ar(â0.3) V ar(â0.5) V ar(â∞)
25 0.7378 0.51417 0.3606 0.4858 0.46588
50 0.36525 0.27085 0.19608 0.24835 0.2327
100 0.1777 0.1299 0.0986 0.1228 0.1137
200 0.0879 0.0646 0.0494 0.0616 0.0575

Approximation Values

N E[V̂ ar(âd0.1)] E[V̂ ar(âd0.2)] E[V̂ ar(âd0.3)] E[V̂ ar(âd0.5)] E[V̂ ar(âd∞)]
25 0.7719 0.5478 0.4084 0.4752 0.4460
50 0.3644 0.2638 0.1951 0.2418 0.2256
100 0.1782 0.1305 0.0982 0.1221 0.1140
200 0.0877 0.0647 0.0489 0.0613 0.0572

Note: V ar(âi) is the benchmark value calculated from formula (24); E[V̂ ar(âi)]
is the variance calculated from formula (21).

approximations of the variances are nearly the same as the benchmark values.
In conclusion, the estimated variances form the analytic formulae are close
to the benchmark values even when the sample size is small(N=25). The
approximated variances may overestimate or underestimate the benchmark
variances.

Table (5) shows the simulation results of the CSD variances with right-
censored data. When the sample size is extremely small (N=25), the approx-
imations of the variances are still quite accurate. When the sample size is
increased to 50, all the analytic variances are improved. They are all close to
the benchmark values. When the sample size is larger (N=100 and N=200),
the analytic variances are very close to the benchmark values. Therefore, the
analytic formulae of the variances of the CSD perform well even when there
are right-censored observations.

In tables (6) to (9), the variances for DD and CSD are presented under
the alternative assumption of case 2 where all the data are assigned into the
five intervals: (0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8,∞). Otherwise,
the simulations are carried out as before.

From tables (6) and (7), we can see that the analytic formulae of the
variances can give the accurate approximations for the benchmark values
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Table 4: The Variances of the DD Estimators for Case 1 When the Right-
Censored Observations Exist in the Samples. All the Results Are Multiplied
by 103

Benchmark Values
N V ar(âd0.1) V ar(âd0.2) V ar(âd0.3) V ar(âd0.5) V ar(âd∞)
25 5.4770 4.7128 4.0016 6.1382 9.5321
50 2.8680 2.5773 2.2555 3.4038 5.0703
100 1.4566 1.3187 1.1746 1.7109 2.5091
200 0.7497 0.6525 0.5807 0.8130 1.2539

Approximation Values

N E[V̂ ar(âd0.1)] E[V̂ ar(âd0.2)] E[V̂ ar(âd0.3)] E[V̂ ar(âd0.5)] E[V̂ ar(âd∞)]
25 5.6045 5.0796 4.7601 6.4884 9.4990
50 2.8519 2.5617 2.2987 3.3076 4.9242
100 1.4442 1.3024 1.1618 1.6589 2.4841
200 0.7248 0.6537 0.5837 0.8349 1.2496

Note: V ar(adi ) is the benchmark value calculated from formula (25);

E[V̂ ar(adi )] is the variance calculated from formula (9).

even in the extremely small sample size (N=25). Both the variances of the
DD and CSD estimators are either overestimated or underestimated without
a systematic bias. When the sample size tends to be a large number, they are
nearly unbiased from the benchmark values. When there are right-censored
observations in the samples, the same conclusion can be seen to hold in table
(8) and table (9) as we saw in case 1.
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Table 5: The Variances of the CSD Estimators for Case 1 When the Right-
Censored Observations Exist in the Samples. All the Results Are Multiplied
by 103

Benchmark Values
N V ar(â0.1) V ar(â0.2) V ar(â0.3) V ar(â0.5) V ar(â∞)
25 0.6767 0.4910 0.3696 0.5094 0.6005
50 0.3311 0.2565 0.2006 0.2770 0.3102
100 0.1645 0.1290 0.1032 0.1381 0.1545
200 0.0832 0.0631 0.0506 0.0656 0.0772

Approximation Values

N E[V̂ ar(âd0.1)] E[V̂ ar(âd0.2)] E[V̂ ar(âd0.3)] E[V̂ ar(âd0.5)] E[V̂ ar(âd∞)]
25 0.6798 0.5162 0.4174 0.5094 0.5824
50 0.3345 0.2557 0.2032 0.2660 0.2992
100 0.1648 0.1285 0.1025 0.1345 0.1513
200 0.0811 0.0636 0.0511 0.0676 0.0763

Note: V ar(âi) is the benchmark value calculated from formula (24); E[V̂ ar(âi)]
is the variance calculated from formula (21).

Table 6: The Variances of the DD Estimators for Case 2 When All the
Observations Are Uncensored. All the Results Are Multiplied by 103

Benchmark Values
N V ar(âd0.2) V ar(âd0.4) V ar(âd0.6) V ar(âd0.8) V ar(âd∞)
25 8.511 6.4731 4.6370 2.9440 6.0651
50 4.4362 3.4353 2.5537 1.7365 3.2366
100 2.1816 1.6982 1.2514 0.8812 1.5987
200 1.1384 0.8610 0.6392 0.4491 0.8074

Approximation Values

N E[V̂ ar(âd0.2)] E[V̂ ar(âd0.4)] E[V̂ ar(âd0.6)] E[V̂ ar(âd0.8)] E[V̂ ar(âd∞)]
25 8.4295 6.5750 4.9049 3.6899 6.1695
50 4.3413 3.3608 2.4783 1.7592 3.1459
100 2.1879 1.7030 1.2538 0.8834 1.5953
200 1.0990 0.8550 0.6298 0.4459 0.8012

Note: V ar(âdi ) is the benchmark value calculated from formula (25);

E[V̂ ar(âdi )] is the variance calculated from formula (9).
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Table 7: The Variances of the CSD Estimators for Case 2 When All the
Observations Are Uncensored. All the Results Are Multiplied by 103

Benchmark Values
N V ar(â0.2) V ar(â0.4) V ar(â0.6) V ar(â0.8) V ar(â∞)
25 2.3456 1.1895 0.6760 0.3829 0.5396
50 1.2091 0.6276 0.3794 0.2329 0.2956
100 0.5764 0.3054 0.1860 0.1176 0.1462
200 0.2987 0.1535 0.0938 0.0602 0.0731

Approximation Values

N E[V̂ ar(âd0.2)] E[V̂ ar(âd0.4)] E[V̂ ar(âd0.6)] E[V̂ ar(âd0.8)] E[V̂ ar(âd∞)]
25 2.4358 1.2334 0.7190 0.4755 0.5430
50 1.2085 0.6222 0.3667 0.2325 0.2828
100 0.5841 0.3095 0.1845 0.1174 0.1440
200 0.2884 0.1540 0.0925 0.0594 0.0727

Note: V ar(âi) is the benchmark value calculated from formula (24); E[V̂ ar(âi)]
is the variance calculated from formula (21).

Table 8: The Variances of the DD Estimators for Case 2 When the Right-
Censored Observations Exist in the Samples. All the Results Are Multiplied
by 103

Benchmark Values
N V ar(âd0.2) V ar(âd0.4) V ar(âd0.6) V ar(âd0.8) V ar(âd∞)
25 7.9283 6.9220 5.1855 3.6686 6.3243
50 4.2300 3.7601 3.0929 2.3271 3.9246
100 2.1853 1.8781 1.5767 1.2560 1.9910
200 1.0669 0.9379 0.7799 0.6350 0.9996

Approximation Values

N E[V̂ ar(âd0.2)] E[V̂ ar(âd0.4)] E[V̂ ar(âd0.6)] E[V̂ ar(âd0.8)] E[V̂ ar(âd∞)]
25 8.1582 7.0511 6.0630 5.5234 7.5641
50 4.2223 3.6962 3.0363 2.4997 3.8673
100 2.1348 1.8690 1.5411 1.2321 1.9587
200 1.0734 0.9371 0.7749 0.6247 0.9865

Note: V ar(âdi ) is the benchmark value calculated from formula (25);

E[V̂ ar(âdi )] is the variance calculated from formula (9).
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Table 9: The Variances of the CSD Estimators for Case 2 When the Right-
Censored Observations Exist in the Samples. All the Results Are Multiplied
by 103

Benchmark Values
N V ar(â0.2) V ar(â0.4) V ar(â0.6) V ar(â0.8) V ar(â∞)
25 1.9352 1.1768 0.7175 0.4503 0.5984
50 1.0521 0.6580 0.4406 0.2989 0.3947401
100 0.5269 0.3224 0.2233 0.1618 0.2025
200 0.2539 0.1603 0.1108 0.0813 0.1017

Approximation Values

N E[V̂ ar(âd0.2)] E[V̂ ar(âd0.4)] E[V̂ ar(âd0.6)] E[V̂ ar(âd0.8)] E[V̂ ar(âd∞)]
25 1.8620 1.1101 0.7612 0.5964 0.6855
50 1.0220 0.6266 0.4140 0.3027 0.3806
100 0.5159 0.3197 0.2164 0.1557 0.1970
200 0.2561 0.1594 0.1091 0.0798 0.1000

Note: V ar(ai) is the benchmark value calculated from formula (24); E[V̂ ar(ai)]
is the variance calculated from formula (21).

5 Two Applications to Data

Having explored the properties of the estimators using Monte Carlo sim-
ulations, it can be seen that the analytic variances of the non-parametric
estimators are quite accurate. In this section, we apply our methods to real
UK data: the first application is price-quote data from the Office for National
Statistics (ONS); the second application is waiting-time data from the Na-
tional Health Service (NHS). These examples show how we can use different
types of duration data to estimate the two distributions DD and CSD, and
corresponding variances. With the price-quote data, we start with the raw
data of completed durations to estimate the variances of the estimators for
DD and CSD. With the waiting time data, we start with data on incomplete
durations to estimate the same statistics.
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5.1 Price-Quote Data

Our first application is using the underlying UK micro price data which is
used to construct the CPI inflation statistics. This data set gives price-quotes
each month across over 700 items sampled from different sellers across the
UK in order to measure CPI inflation: there are over 100,000 price-quotes
collected each month. The period we have chosen is 1996-2007 (inclusive),
the great moderation prior to the Great Financial Crisis, which includes over
20 million price quotes (for a more detailed description of the data see Dixon
and Tian (2017) and Dixon et al. (2020)).

From the price-quotes, we can construct price-spells: these are the se-
quences of monthly quotes where an individual price-setter sets the same
price each month. Our data includes 319,784 price-spells, which are sorted
into durations of 1-48 months. For i = 1, 2, ..., 47, 48, a price-spell has dura-
tion i if it lasts exactly i months. For example if the duration is 12 months,
that means we observe twelve consecutive months where the seller set the
same price and in both the preceding and following month set a different
price. The only exception is 48 months, where all spells of 48 months or
longer are counted. It is common practice to truncate the distribution in
this way. For applications of this type of data and distributions in dynamic
macroeconomic models, see for example Dixon and Le Bihan (2012) using
French CPI data and Dixon (2012) using the same UK data. Following these
two papers, we do not use left-censored spells and assume that right-censored
spells end with price-changes. In this paper, the first 5 months of first year
and fourth year of those distributions and their variance are reported.
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Table 10: The DD and CSD Estimators and Their Variances for UK Micro-
CPI Data in the First 5 Months of the First Year

DD
âd1 âd2 âd3 âd4 âd5

0.4113 0.1703 0.0979 0.0682 0.0462

V̂ ar(âd1) V̂ ar(âd2) V̂ ar(âd3) V̂ ar(âd4) V̂ ar(âd5)
7.6270 ∗ 10−8 4.4513 ∗ 10−8 2.7821 ∗ 10−7 2.0019 ∗ 10−8 1.3878 ∗ 10−8

std.(âd1) std.(âd2) std.(âd3) std.(âd4) std.(âd5)
0.0002762 0.0002110 0.0001668 0.0001415 0.0001178

CSD
â1 â2 â3 â4 â5

0.1036 0.0858 0.0740 0.0687 0.0582

V̂ ar(â1) V̂ ar(â2) V̂ ar(â3) V̂ ar(â4) V̂ ar(â5)
1.5661 ∗ 10−8 1.7549 ∗ 10−8 1.9664 ∗ 10−8 2.2830 ∗ 10−8 2.3271 ∗ 10−8

std.(â1) std.(â2) std.(â3) std.(â4) std.(â5)
0.0001251 0.0001325 0.0001402 0.0001511 0.0001525

Table 11: The DD and CSD Estimators and Their Variances for UK Micro-
CPI Data in the First 5 Months of the Fourth Year

DD
âd37 âd38 âd39 âd40 âd41

0.0003 0.0003 0.0002 0.0003 0.0002

(âd37) V̂ ar(âd38) V̂ ar(âd39) V̂ ar(âd40) V̂ ar(âd41)
9.4508 ∗ 10−11 9.4569 ∗ 10−11 6.2925 ∗ 10−11 9.4413 ∗ 10−11 6.3025 ∗ 10−11

std.(âd37) std.(âd38) std.(âd39) std.(âd40) std.(âd41)
0.000009722 0.000009725 0.000007933 0.000009717 0.000007939

CSD
â37 â38 â39 â40 â41

0.002795 0.002871 0.001964 0.003022 0.002065

V̂ ar(â37) V̂ ar(â38) V̂ ar(â39) V̂ ar(â40) V̂ ar(â41)
8.1690 ∗ 10−9 8.6207 ∗ 10−9 6.0507 ∗ 10−9 9.5334 ∗ 10−9 6.6966 ∗ 10−9

std.(â37) std.(â38) std.(â39) std.(â40) std.(â41)
0.00009036 0.00009280 0.00007782 0.00009767 0.00008181

Table (10) shows the results for the first 5 months of the two distributions
(DD and CSD). In the first row we have the estimates of the probabilities,
in the second row their variances and in the third the implied standard devi-
ations. Table (11) gives the results for another 5 months (37-41) towards the
end. The small variance observed is because of the large sample size. In the
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first 5 months, the sample size is very large, as over 60 per cent last no more
than 4 months. However, even in the later months 37-41 when the estimated
coefficients of DD and CSD are small, their variances are also small. The
values of the estimators of DD and CSD are more than twice the standard
deviation implied by the estimated variances and hence significantly different
from zero.17

5.2 Hospital Waiting Times

The second data set is about hospital waiting times. This is generated from
a census taken at particular dates and gives the length of time patients have
been waiting for a particular type of procedure up to that date. It is in effect
data on the age distribution, since the time waited is an incomplete duration.
We can the use this age distribution to estimate the two other distributions:
DD and CSD. As discussed in Dixon and Siciliani (2009) and Siciliani et al.
(2013), although the raw data collected is in the form of the age distribution
(non-completed waiting times at a point in time), it is often more useful to
interpret the data in terms of completed waiting times (both DD and CSD)
for health policy.

The data used is the same as used in Dixon and Siciliani (2009). It covers
three financial years: 2004-5, 2005-6 and 2007-8 with more than 800,000 pa-
tients involved each year. The data is collected weekly by the NHS (hospitals
report the data to the NHS who then published it). We use the weekly data
of 2007-8 for this exercise. We were able to use 625,960 observations in our
estimation. From the waiting time data, we estimate both DD and CSD
for weeks 6-10 and 21-25 and the corresponding variances of these estima-
tors. The empirical results are reported in table (12) and (13). As before,
the standard deviation reported is here implied by the estimated variance so
that we can easily interpret the significance of the DD and CSD estimators.

17As Cox (1990) and Franz (2007) have shown, the delta method is a robust method
for calculating the confidence interval for the ratio variable if the coefficient of variation,
CV , of denominator of the ratio variable is a small value, where CV = σ/µ. In the
CPI micro-data, CV = 0.0061795. Since we use the delta method, we can interpret the
ratio of the estimator to its standard deviation as a t-statistic, demonstrating that it is
significantly different from zero. In Tian and Dixon (2022), we evaluate the empirical size
for the delta approximation of CSD estimator. The empirical results indicate that delta
method is valid to do the null hypothesis test and construct the confidence interval for
CSD estimator by using the critical value from student-t test.
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Table 12: The DD and CSD Estimators and Their Variances for UK Waiting
Times in Weeks 5-10

DD
âd6 âd7 âd8 âd9 âd10

0.08686 0.09918 0.03515 0.07538 0.05516

V̂ ar(âd6) V̂ ar(âd7) V̂ ar(âd8) V̂ ar(âd9) V̂ ar(âd10)
1.2671 ∗ 10−7 1.4273 ∗ 10−7 5.4181 ∗ 10−8 1.1134 ∗ 10−7 8.3260 ∗ 10−8

std.(âd6) std.(âd7) std.(âd8) std.(âd9) std.(âd10)
0.0003560 0.0003778 0.0002328 0.0003337 0.0002885

CSD
â6 â7 â8 â9 â10

0.05592 0.07450 0.03017 0.07280 0.05919

V̂ ar(â6) V̂ ar(â7) V̂ ar(â8) V̂ ar(â9) V̂ ar(â10)
5.7707 ∗ 10−8 8.7831 ∗ 10−8 4.0812 ∗ 10−8 1.0718 ∗ 10−7 9.6872 ∗ 10−8

std.(â6) std.(â7) std.(â8) std.(â9) std.(â10)
0.0002402 0.0002964 0.0002020 0.0003274 0.0003112

Table 13: The DD and CSD Estimators and Their Variances for UK Waiting
Times in Weeks 21-25

DD
âd21 âd22 âd23 âd24 âd25

0.0003126 0.0005612 0.003826 0.005195 0.004257

V̂ ar(âd21) V̂ ar(âd22) V̂ ar(âd23) V̂ ar(âd24) V̂ ar(âd25)
4.9790 ∗ 10−9 8.9154 ∗ 10−9 6.0890 ∗ 10−9 8.2565 ∗ 10−9 6.7725 ∗ 10−9

std.(âd21) std.(âd22) std.(âd23) std.(âd24) std.(âd25)
0.00007056 0.00009442 0.00007803 0.00009087 0.00008230

CSD
â21 â22 â23 â24 â25

0.007045 0.013252 0.009443 0.01338 0.01142

V̂ ar(â21) V̂ ar(â22) V̂ ar(â23) V̂ ar(â24) V̂ ar(â25)
2.5109 ∗ 10−8 4.9012 ∗ 10−8 3.6716 ∗ 10−8 5.3950 ∗ 10−8 4.8104 ∗ 10−8

std.(â21) std.(â22) std.(â23) std.(â24) std.(â25)
0.0001585 0.0002214 0.0001916 0.0002323 0.0002193

As can be seen, all of the DD and CSD estimators are significant if we
use the standard deviations implied by our estimated variances.18 Whilst the

18As with the CPI data, the CV = 0.01071 is small.

28



DD are declining in weeks 6-10, it is not so in weeks 21-25. The estimated
variances are not monotonic in weeks 6-10 or 21-25 for either distribution.

Both of the examples used of price-spells and hospital waiting times were
from large data sets, with low estimated variances relative to the correspond-
ing DD and CSD estimators. We could also consider small sample size and
explore the issues of estimating the variances in that context (as in the pre-
vious section with Monte Carlo simulations). However, that is a matter that
lies beyond this paper as it would be specific to the type of data used and
how it was collected. In an online appendix we show the complete range
of the DD and CSD estimators and their variances in both table form and
graphs.

6 Conclusion

In this paper, we use the delta method to derive the variances of the es-
timators of the distribution of durations DD, and the two cross-sectional
distributions of ages CSA and (completed) durations CSD. Whilst both
CSD and CSA are cross-sectional distributions, they can be also be applied
to the case of a single cohort of data rather than a panel. Depending on the
asymptotic approximations of the variances, we provide the analytic formulae
to calculate the variances of the estimators of the three distributions. The
asymptotic variances derived from the delta method are easy to understand
since they are the same derivations as the Greenwood formula. In addition,
in this paper we derive the covariance between different estimated survival
probabilities in a simpler way than Breslow and Crowley (1974).

We used Monte Carlo simulations to investigate the accuracy of the
asymptotic variances for the three distributions. The Monte Carlo results
show that the analytic formulae of the variances of the DD and CSD esti-
mators become more accurate as the sample size increases. In other words,
the bias between the approximations and the benchmark values are reduced
as the sample size increases. This is true even in the presence of censored
data.

In addition, the variance formulae are applied in two data sets: micro
price-quote data and hospital waiting times. The variances and implied stan-
dard deviations of DD and CSD estimators are reported from the two data
sets. Furthermore, we show how the estimated variances can be used to
judge whether the estimated coefficients of the distributions are significant.
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For further study, it will be useful to see if the bootstrap corrected variances
can provide a better result compared with the asymptotic formulae in the
case of a small sample size. Another extension is to derive the confidence
intervals for the estimators of the three distributions.
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7 Appendix.

Recall that all of the theoretical results proven in this appendix are derived
under the assumption that all spells are uncensored.

7.1 Proof of Proposition 1

To see why, note that:

h̄ =
1∑F

i=0 Ŝi

F−1∑
i=0

Ŝiĥi+1

=
1∑F

i=0 Ŝi

(
Ŝ0 − Ŝ1

Ŝ0

+ Ŝ1

(
Ŝ1 − Ŝ2

Ŝ1

)
+ ...ŜF−1

)
=

1∑F
i=0 Ŝi

(
1− Ŝ1 +

(
Ŝ1 − Ŝ2

)
+
(
Ŝ2 − Ŝ3

)
+ ..(ŜF−2 − ŜF−1) + ŜF−1

)
=

1∑F
i=0 Ŝi

7.2 Proof of Proposition 2

To see why Proposition 2 holds, note that∑F

i=1
âi = h̄

∑F

i=1
iŜi−1ĥi

= h̄
∑F

i=1
i
(
Ŝi−1 − Ŝi

)
= h̄

[∑F

i=1

(
Ŝi−1 − Ŝi

)
+
∑F

i=2

(
Ŝi−1 − Ŝi

)
+ ..

∑F

i=j

(
Ŝi−1 − Ŝi

)
+ ŜF−1

]
= h̄

[
Ŝ0 + Ŝ1 + Ŝ2.. + ŜF

]
= 1
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7.3 Proof of Theorem 1

The first-order Taylor expansion can be applied to derive the variance of the
estimators of DD. Recall the DD formula âdi = Ŝi−1ĥi. The Taylor series
for âdi at Ŝi−1=Si−1 and ĥi=hi is:

Ŝi−1ĥi ≈ Si−1hi + hi(Ŝi−1 − Si−1) + Si−1(ĥi − hi) (27)

Recalling equations (11) and (12), we can use the same method to obtain
the following equations:

Ŝi−1 − Si−1 = Si(lnŜi−1 − lnSi−1) + Op((lnŜi−1 − lnSi−1)
2) (28)

ĥi − hi = hi(lnĥi − lnhi) + Op((lnĥi − lnhi)
2) (29)

From equations (28) and (29), we can rewrite equation (27) as:

Ŝi−1ĥi − Si−1hi ≈ Si−1hi[(lnŜi−1 − lnSi−1) + (lnĥi − lnhi)]

Hence the variance V ar(adi ) can be rewritten as:

V ar(âdi ) = V ar(Ŝi−1ĥi) ∼= (Si−1hi)
2[V ar(ln Ŝi−1) + V ar(ln ĥi)] (30)

From the large sample property of the maximum likelihood estimator,
the KM estimator Ŝi−1 converges to the true value Si−1 and the (marginal)
hazard function ĥi converges to the true value hi.

19 Therefore, V ar(âdi ) can
be written as:

V ar(âdi )
∼= (Ŝi−1ĥi)

2[V ar(lnŜi−1) + V ar(lnĥi)]

Note that this approximation assumes that Ŝi−1 and ĥi are independent and
that the covariance between (ln Ŝi−1) and (ln ĥi) is zero.

The logarithm version of the survival function can be written as:

ln Ŝi−1 =
i−1∑
k=1

ln(1− ĥk)

19As shown in the online appendix, the KM estimator is a maximum likelihood esti-
mator so that Ŝi−1 converges to the true value Si−1 and the marginal hazard function ĥi
converges to the true value hi. At this point, we show that those result can be derived
from the delta method. In the online appendix, we show how the KM estimator can be
derived as an MLE.
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If we interpret the hazard probability as a Bernoulli probability, we can
assume that the “failures” Di follow the binomial distribution with param-
eters Ni and ĥi, so that V ar(Di) = Niĥi(1 − ĥi). It can be shown that
V ar(ĥi) = V ar(Di

Ni
) = ĥi(1− ĥi)/Ni. Taking the first-order Taylor expansion

we can obtain the following two equations:

ln(ĥi) = lnhi + (ĥi − hi)
1

hi

+ Op((ĥi − hi)
2)

ln(1− ĥi) = ln(1− hi) + (ĥi − hi)
1

1− hi

+ Op((ĥi − hi)
2)

We can rewrite these two formulae as:

ln(ĥi)− lnhi
∼= (ĥi − hi)

1

hi

ln(1− ĥi)− ln(1− hi) ∼= (ĥi − hi)
1

1− hi

Under the assumption that the observations Di are independent with each
other, the variance of ĥi can be written as:

V ar(ĥi) = V ar(1− ĥi) =
ĥi(1− ĥi)

Ni

Applying the large sample properties of the maximum likelihood estimator
this becomes:

V ar(ln(ĥi)) ∼=
1

ĥ2
i

ĥi(1− ĥi)

Ni

∼=
Ni −Di

NiDi
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V ar(ln(1− ĥi)) ∼=
1

(1− ĥi)2
ĥi(1− ĥi)

Ni

∼=
Di

Ni(Ni −Di)

We have a formula for the exponential function:

V ar(Ŝi−1ĥi) = (Ŝi−1ĥi)
2[V ar(lnŜi−1) + (lnĥi)]

Substitute equation (31) and (31) into equation (30):

V̂ ar(âdi ) = (Ŝi−1ĥi)
2[
Ni −Di

NiDi

+
i−1∑
k=1

Dk

Nk(Nk −Dk)
] (31)

7.4 Identities of The Three Distributions

In this section we point out some identities linking the the three distribu-
tions. Whilst these are not used explicitly in the paper, these identities will
also apply to the estimators. As in section 2, we present the results under
the assumption that all spells are uncensored. First, recall the estimators
(adi , a

A
i , ai) i = 1...F from section 2:

adi = Si−1hi

aAi = Si−1h̄

ai = ih̄Si−1hi

Hence for i = 1...F
ai = ihia

A
i = ih̄adi

Turning first to the shortest duration i = 1, since S0 = 1 we have:

ad1 = h1
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aA1 = h̄

Hence:

a1 = h̄h1 = aA1 a
d
1

Turning next to the longest duration, we have hF = 1, so that:

adF = SF−1

aAF = h̄SF−1 = h̄adF

aF = Fh̄SF−1 = ih̄adF = FaAF

Notice that h̄ < 1 except in the degenerate case of F = 1. Assuming
F > 1, for durations i = 1, 2, ..., F − 1, we have the following relationship
between DD and CSD:

i < h̄−1 → ai < adi

i > h̄−1 → ai > adi

i = h̄−1 → ai = adi

This implies that there is a unique “cross-over” point for the two distri-
butions ai and adi . If we compare ai and aAi , it is slightly more complicated,
since the hazard function hi varies with i and its reciprocal can be arbitrarily
large (since we can have hi at or close to zero for any i < F ).
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