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Abstract

In theory, building automation and management systems (BAMSs) can provide all the
components and functionalities required for analyzing and operating buildings. However,
in reality, these systems can only ensure the control of heating ventilation and air condi-
tioning system systems. Therefore, many other tasks are left to the operator, e.g. evaluating
buildings’ performance, detecting abnormal energy consumption, identifying the changes
needed to improve efficiency, ensuring the security and privacy of end-users, etc. To that
end, there has been a movement for developing artificial intelligence (AI) big data analytic
tools as they offer various new and tailor-made solutions that are incredibly appropriate
for practical buildings’ management. Typically, they can help the operator in (i) analyzing
the tons of connected equipment data; and; (ii) making intelligent, efficient, and on-time
decisions to improve the buildings’ performance. This paper presents a comprehensive sys-
tematic survey on using Al-big data analytics in BAMSs. It covers various Al-based tasks,
e.g. load forecasting, water management, indoor environmental quality monitoring, occu-
pancy detection, etc. The first part of this paper adopts a well-designed taxonomy to over-
view existing frameworks. A comprehensive review is conducted about different aspects,
including the learning process, building environment, computing platforms, and applica-
tion scenario. Moving on, a critical discussion is performed to identify current challenges.
The second part aims at providing the reader with insights into the real-world application
of Al-big data analytics. Thus, three case studies that demonstrate the use of Al-big data
analytics in BAMSs are presented, focusing on energy anomaly detection in residential and
office buildings and energy and performance optimization in sports facilities. Lastly, future
directions and valuable recommendations are identified to improve the performance and
reliability of BAMSs in intelligent buildings.
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Asynchronous advantage actor-critic
Actor-critic

Auto-encoder

Air handling unit

Advanced metering infrastructures
Artificial neural network

Auto-regressive

Adaptive Boosting

Bagged auto-associative kernel regression
Building automation and management system
Bayesian belief networks

Bootstrap bagging of regression trees
Binary decision tree

Bagged echo state network

Binary multiclass-classification decision tree
Bayesian networks

Bagging neural network

Back propagation neural network

Bagged regression tree

Backtracking search algorithm

Bagged tree

Bidirectional long short-termmemory
Compound annual growth rate
Classification and regression tree
Closed-circuit televi-sion

CART decision tree

Coupled input and forget gate
Convolutional neural network
Cyber-physical system

Conditional restricted Boltzmann machines
Conditional random fields

Compact regression Gaussian process
Completely-random tree

Computational urban sustainability platform
Convolutional LSTM

Deep belief network

Density-based spatial clustering of applications with noise
Deep cascade forest

Deep deterministic policy gradient
Distributed denial of service

Deep feed forward neural networks

Deep learning

Deep neural networks

Deep Q-learning

Dutch resi-dential energy dataset

Deep reinforcement learning

Decision tree

Discrete wavelet transform
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EBT
ELM
FCM
FCRBM
FFNN
GAM
GBM
GBRT
GLRM
GPRM
GRU
GSA
GSD
HCA
HEP
HMM
HVAC
ICT
IEQ
Isomap
KNN
KPCA
LDA
LOF
LR

LR
LSSVR
LSTM
MC
MCSVM
MDA
MDS
MLP
MLR
MPC
MSA
MetaFA
NB
NILM
NN-SAE
NN
OCSVM
PCA
PG

PLS
PPO
QDA
QL

QR

Ensemble bagging tree
Extreme learning machine
Fuzzy C-means

Factored conditional restricted Boltzmann machines

Feed-forward neural network
Generalized additive models
Gradient boosting machine

Gradient boosting regression tree
Generalized linear regression model
Gaussian process regression model
Gated recurrent units

Gravitational search algorithm
Generated sampled data
Hierarchical cluster analysis
Hydro-electric power

Hidden Markov model

Heating ventilation and air conditioning system
Information and communication technology
Indoor environmental quality
Isometric feature mapping

K-nearest neighbors

Kernel principal component analysis
Linear discriminant analysis

Local outlier factor

Linear regression

Logistic regre-ssion

Least squares support vector regression
Long short-term memory

Monte Carlo

Multi-class support vector machines
Multiple discriminant analysis
Multidimensional scaling
Multi-layer perceptron

Multiple linear regression

Model predictive control
Multiplicative season algorithm
Metaheuristic firefly algorithm
Naive Bayes

Non-intrusive load monitoring
Neural network-based-supervised auto-encoder
Neural network

One-class support vector machine
Principal component analysis

Policy gradient

Partial least square

Proximal policy optimization
Quadratic discriminant analysis
Q-leaning

Quantile regression
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RBDT Regression binary decision tree
RBFNN Radial basis function neural network
RBM Restricted Boltzmann machines

RF Random forest

RFT Regression fitting

RL Reinforcement learning

RNN Recurrent neural networks

RT Regression tree

ResNet Deep residual network

SAE Memory-gated RNN-based autoencoders
SAE Sparse autoencoders

SARIMA Seasonal autoregressive integrated moving average
SARSA State-action-reward-state-action

SDN Software-defined networks

SGPR Stepwise Gaussian processes regression
SSL Semi-supervised learning

SSNN Semi-supervised neural network

SVM Support vector machine

SVR Support vector regression

TRL Tradi-tional reinforcement learning
TSVD Truncated singular value decomposition
TTS Text-to-speech

VAE Variational autoencoders

VHT Vertical hoeffding tree

WQP Water quality prediction

XGBM Extreme gradient boosting machine

XGBoost EXtreme gradient boosting
mLSTM Multip-licative LSTM
t-SNE t-Distributed stochastic neighbor embedding

1 Introduction
1.1 Preliminary

Building automation and management systems (BAMSs) are intelligent systems of both
hardware and software, connecting heating ventilation and air conditioning system (HVAC)
systems, lighting, security, and other systems to communicate on a single platform. That
said, BAMSs deliver crucial information to operators and/or users on the operational per-
formance of buildings, which aim at promoting energy efficiency and optimizing water
consumption, enhancing the safety and comfort of the occupants, reducing maintenance
costs, extending the life cycle of the utilities, etc (Ippolito et al. 2014). This is possible
by networking a plethora of sensors and components responsible for the monitoring and
operation of mechanical, security, fire, lighting, HVAC and humidity control and ventila-
tion systems (Su and Wang 2020).

With the broad utilization of information and communication technologies (ICTs), sens-
ing and measurement technologies along with the cloud computing, big data storage and
data analytics, conventional BAMSs are being revolutionized. Vast quantities of building
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automation and management data are produced, gathered and saved (Sardianos et al. 2020;
Himeur et al.). This has offered an excellent opportunity for implementing big data min-
ing and analysis in BAMSs. In this context, as the quantity of data collected in BAMSs is
enormous, the ”big data” phenomena is surfacing this field and revolutionizing the way
we manage data by using Al-big data analytics tools (Quinn et al. 2020, Himeur et al.).
Accordingly, with advanced sensing and metering technologies in BAMSs, data split into
multiple modalities and many variables can create a comprehensive source of informa-
tion to analyze. This allows for more targeted analysis, but also means that more powerful,
intelligent, and sophisticated tools are needed to identify the most enormous patterns/varia-
bles (Muntean et al. 2021). As a consequence, the big data analytics market in the building
energy sector is expected to grow at a Compound annual growth rate (CAGR) of 11.28%,
during the forecast period, 2021-2026." Data collection in the building industry is becom-
ing all-embracing. This wealth of big data allows informed data-driven decision-making by
designers, facilities managers, and owners during building design, operation, and retrofit
(Berger et al.). On the other hand, for existing or outdated buildings to make full use of
the services offered by the flourishing data analytics market, the necessary enhancement
to the existing system for deploying the new technology must be addressed and sorted out
(Varlamis et al. 2022). The main challenges of gathering and analyzing data of old build-
ings are the outdated technologies and the conventional error-prone data collection means
(Jia et al. 2019; Al Dakheel et al. 2020). Nevertheless, data analytics can assist in designing
and implementing the new system adaptation and existing system renovation (Elnour et al.
2022).

Besides, it is of utmost importance to know the current state of Al-based building
automation before presenting the actual study concerning user input, demand, response,
energy-saving, and automation. In this respect, it is obvious that Al adds new dimensions
to building automation environments by enabling autonomous data analysis for operation
optimization. Therefore, many Al-based contributions have recently emerged as key solu-
tions for (i) predicting building occupancy, (ii) forecasting thermal comfort, (iii) boosting
energy saving, and (iv) enabling demand-side response (Himeur et al. 2020). Additionally,
as mentioned in previous studies, (O’Grady et al. 2021) people can spend up to 90 percent
of their lives in buildings; this highlights the importance of user input, behavioral data,
and behavioral analytics for optimizing and automating building operations. To that end,
a significant research effort is ongoing to develop Al-based behavioral change technolo-
gies to promote energy saving in residential and office buildings (Sayed et al., Varlamis
et al. 2022), understand consumers demand patterns for successful demand response devel-
opment (Cruz et al. 2021; Pratt and Erickson 2020), optimizing occupants’ thermal com-
fort (Zheng et al. 2022), transforming water management (Doorn 2021), improving fault
detection and diagnosis (Yun et al. 2021), etc. Moreover, Al-based big data analytics are
contributing to building automation by making BAMSs self-learning, self-configuring and
self-diagnosing, and self-commissioning (Katipamula 2019). Additionally, using Al-based
analytics can adapt existing building systems to promote the deployment of BAMSs with
fewer investments from building owners.

From another hand, as Al models are very competent to learn common human error
patterns, their use in big data analytics is significant. They can (i) detect and resolve pos-
sible flaws in datasets, (ii) learn by watching how the operators and users interact with

! https://www.researchandmarkets.com/reports/4774956/big-data-analytics-market-in-the-energy-sector.
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the analytics programs, and identify anomalies and surface unexpected insights from large-
scale datasets fast (Mahmud et al. 2020; Diamantoulakis et al. 2015). In this context, Al
models assist operators and users of BAMSs to perform the different tasks related to the
big data cycle, among them the operations of collecting, pre-processing, aggregating, stor-
ing, analyzing and extracting various kinds of features (Hu and Vasilakos 2016; Bode et al.
2019). Moving on, the integration of Al-big data analytics can (i) optimize energy and
operational efficiency, (ii) automate monitoring and control through wireless platforms,
(iii) provide quick and better decision making, (iv) smartly control the facility and reduce
risk failures, (v) lower life cycle costs, and (vi) increase safety and security measures with
ease (Aghemo et al. 2014; Zhou and Yang 2016; Aste et al. 2017).

1.2 Paper contributions

Due to the importance of using Al-big data analytics in BAMSs, a plethora of works have
been proposed to (i) address different challenges, (ii) improve and automate building oper-
ation, and (iii) optimize building user experience. In addition, different reviews have been
introduced to discuss the advances made in this research topic, such as (Zhang et al. 2021;
Molina-Solana et al. 2017; Zhao et al. 2020). However, most of them have only focused
on addressing one task at a time, e.g., energy management, rather than covering multiple
BAMS tasks together (e.g., water management, occupancy detection, comfort optimiza-
tion, fault diagnosis and anomaly detection (FDAD), etc.) (Sun et al. 2020; Wang et al.
2021; Fan et al. 2018). To that end, we present in this paper a comprehensive systematic
survey reflecting the latest developments in the field of Al-big data analytics and their uti-
lization in BAMSs from different perspectives. For example, Zhang et al. (2021) discuss
sensor impact verification and evaluation for FDAD in energy systems, while Molina et al.
(2017) review the contributions of data science for building energy management issues.
Moving on, data mining strategies used for building energy management are overviewed
in Zhao et al. (2020). Similarly, in Sun et al. (2020), data-driven techniques for energy
prediction in buildings are described. Besides, Wang et al. (2021) focus on studying the
practical problems related to implementing ML models for building energy efficiency. It
also investigates the commitment of existing studies to comfort and energy saving (i.e.,
Save energy with/without compromising thermal comfort). Moreover, in Fan et al. (2018),
unsupervised data mining methodologies for energy efficiency improvement are analyzed.
Lastly, in Pinto et al. (2022), Pinto et al. discuss the roles of transfer learning integration
for smart buildings and systems.

To that end, we present in this paper a comprehensive survey reflecting the latest devel-
opments in the field of Al-big data analytics and their utilization in BAMSs from different
perspectives. Thus, we first introduce a generic taxonomy for classifying Al-big data ana-
lytics frameworks based on various criteria, including the learning method, building envi-
ronment, computing platform, and application or challenge addressed. Typically, an over-
view of existing works and discussions is presented, highlighting some of the challenges,
limitations, and shortcomings. Then, three case studies are presented illustrating the use of
Al-big data analytics for critical concerns in the buildings sector, that is, energy efficiency
and management, to provide the reader with insight into real-world applications. The opti-
mization of energy consumption in buildings has been a hot research topic recently” in

2 https://www.energy.gov/sites/prod/files/2017/03/£34/qtr-2015-chapter5.pdf.
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terms of efficient planning, proper management, and preventive maintenance. Lastly, future
directions to ease the use of Al-big data analytics models in BAMSs and improve their
feedback are derived. To summarize, the contributions of the presented work are manifold:

— Providing a thorough review covering the general use of Al-big big data analytics in
BAMSs and shedding light on their increasing importance for developing efficient and
smart BAMSs.

— Presenting a well-designed taxonomy of existing Al-big data analytics frameworks,
which helps in understanding intriguing relationships between various concepts and
variables in the field. Different criteria have been adopted when analyzing existing
frameworks, including the learning method, building environment, computing platform,
application, etc.

— Conducting a critical analysis and discussion to (i) extract diverse relevant lessons that
are learned from overviewed works; and (ii) highlight open issues and current chal-
lenges, among them data scarcity, data benchmarking, security and privacy, scalability
and interoperability and real-time big data intelligence.

— Presenting three case studies that describe the use of Al-big data analytics in BAMSs
for buildings energy management and optimization, such that the first two case studies
demonstrate unsupervised and supervised energy anomaly detection strategies in resi-
dential and office buildings, and the third one is about energy and performance optimi-
zation in sports facilities.

— Deriving a set of future research and development directions that attract considerable
interest in the near and far future, and help in improving the performance and reliability
of BAMSs.

Table 1 outlines some of the main differences between the actual review and other survey
studies. It also sheds light on some of the main contributions addressed by this review
compared to the others in terms of overviewed resources (i.e., ML tools and computing
platforms), application scenarios, discussed challenges (i.e., security issues), evaluation
metrics, case studies, and proposed future directions (i.e., multimodal data analysis, in-situ
sensor calibration in BAMSs, smart building digital twins, blockchain edge analytics, etc.).

1.3 Review methodology

A well-established review methodology is adopted in this paper, where we first con-
duct a comprehensive literature search in the most popular scientific databases, includ-
ing Scopus, Elsevier, Wiley, and IEEE. Following, most of the works that deal with the
use of Al-big data analytics for BAMSs are included in this study. Many keywords and
their combination are then used in the search, e.g., ”building automation and manage-

ELERET) ELERET) LTI T]

ment systems”, ’big data analytics”, artificial intelligence”, “machine learning”, “deep
learning”, “transfer learning”, “energy prediction in buildings using machine learning”,
“thermal comfort in building using machine learning”, “fault diagnosis and anomaly
detection in buildings”, ”security in building automation and management systems”,

etc. Therefore, research studies introduced between January 2015 and February 2022
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Fig.1 The significant progress made in the development of BAMSs during the last two decades

are discussed in this framework. This period has arbitrarily been selected to evaluate the
recent and pertinent contributions. Typically, this framework discusses English-written
peer-reviewed journal articles, conference proceedings papers, and book chapters. The
selection process adopted in this review relies on adhering to the specifications of the
PRISMA (Moher et al. 2009), which is a practical and efficient approach for writing
survey studies. Concretely, a search was performed for the last seven years (January
2015-February 2022). To eliminate duplicate references, a reference manager software
was utilized, and only the remaining frameworks have then been considered after filter-
ing them by their titles, keywords, and abstracts.

In addition to reviewing existing Al-big data analytics contributions for BAMSs, three
case studies are also included in this article to provide the reader with more explanations
about using Al tools in tackling the buildings’ energy consumption question in terms of (i)
unsupervised energy anomaly detection, (ii) supervised energy anomaly detection, and (iii)
energy and performance optimization for sports facilities.

1.4 Organization of the paper

The rest of this paper is structured as follows. Section 2 highlights the significant advances
made in the development of BAMSs. Section 3 provides an overview of the interdiscipli-
nary Al-big data analytics research in BAMSs following a well-defined taxonomy. Sec-
tion 4 evaluates and critically analyses overviewed frameworks to identify the open issues
and current challenges. Section 5 presents three case studies that describe the use of Al-big
data analytics in BAMSs for energy anomaly detection in residential and office buildings,
and energy optimization in sports facilities. Moving on, Sect. 6 presents the future direc-
tions for improving the performance of BAMSs. Finally, conclusions and significant find-
ings are summarized in Sect. 7.

2 Evolution of BAMSs

In the last decades, BAMSs have been rapidly developed; indeed, from the 1950s to 1990s,
they have been transformed from pneumatics to electronics then open protocols (e.g. BAC-
nets). Moving forward, with the digitization era, BAMSs have further progressed by (i)
integrating more powerful and smart technologies, (ii) becoming easier to implement in
different kinds of buildings, and (iii) using high-quality softwares to aid the users in getting
the most pertinent information from their buildings. Indeed, digitization has significantly
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accelerated with the launch of smartphones, where these devices have abruptly replaced
mobile communicators, cell phones, etc. and become more practical in many real-world
applications as they deliver different benefits, such as supporting apps.

2.1 Progress made during the two last decades

We briefly described in this section the most significant achievements made in the devel-
opment of BAMSs during the last two decades, which can be summarized as portrayed
in Fig. 1. Typically, in 2008, it became possible to virtualize BAMSs in data centers,
and hence receives greater security and availability and enables more flexible access to
buildings’ data. In 2009, WiFi was integrated to BAMSs to help in flexibly and remotely
monitoring appliances in households and commercial centers (Wang 2009). Following,
in 2010, due to the growing utilization of smartphones and tablet computers in smart
city applications to control smart and location-based products, BAMSs have been also
positively influenced through developing more sophisticated and portable BAMSs solu-
tions (Aste et al. 2017).

By 2014, audio files had been deployed in BAMSs using the text-to-speech (TTS)
technology. The latter enabled to support preventive inspections and maintenance, work
contracts, service requests, work contracts, equipment audits, etc (Mundt et al. 2014). In
2016, IoT began to significantly influence the society after that IoT devices found their
way into the building management sector, where six billion devices were installed and
more than 31 billion were expected in 2020 (Aste et al. 2017). Explicitly, the impor-
tance of automation has been increased in both existing and new buildings. Follow-
ing, in 2018, commercial buildings have progressively evolved into smart buildings
and routines have been improved and/or automated in BAMSs, resulting in enhanced
comfort and efficiency (Markoska and Lazarova-Molnar 2018; Lee and Karava 2020).
Lastly, in 2020, Al joined the spectrum of BAMSs to help in early fire detection, and
energy demand prediction. Moreover, it becomes possible to identify behavioral change
through the analysis of real-time data. Thus, BAMSs learn from experiences and histori-
cal data for automatically adjusting the indoor conditions (Yaici et al. 2021).

2.2 Big data sources

This section discusses and describes the essential sources of heterogeneous big data
used to implement Al-big data analytics in BAMSs. Indeed, developing and accelerat-
ing the advance and deployment of BAMSs require the installation of a large number
of smart sensors, smart meters, and other measurement devices in the different parts
of each building, which helps in (i) increasing the observability of its transient and
dynamic events, and (ii) gather actual data related to the diverse functionalities of the
building. This will later help the Al-big data analytics in accurately analyzing this data
and extracting pertinent features and therefore facilitating the operation and monitoring
of all building technology, especially in larger buildings. Figure 2 portrays the overall
architecture of a BAMS and its principal data sources. The control module is the central
brain of the BAMS, and most of the controllers are built using the industry standard
BACnet protocols in addition to Konnex (KNX); an open communication standard for
commercial and domestic building automation, LonWorks; a standardized bus system
used in centralized and decentralized building automation control (Merz et al. 2018),
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Fig. 2 Principal services of a BAMS system

and Modbus; a network communication protocol for connecting electronic equipment in
industrial automation systems. Overall, a BAMS can provide various services to control
(1) heating and cooling, (ii) lighting, (iii) security, (iv) access control, (v) fire and life
safety, and (vi) elevators and escalators.

3 Overview of Al-big data analytic frameworks
3.1 Overall taxonomy

To understand the challenges related to Al-big data analytics in BAMSs, it is essen-
tial to perform a generic taxonomy of existing Al-big data analytics techniques used
for monitoring the smart buildings. Specifically, Fig. 3 provides a structured analysis
framework that helps in overviewing existing techniques and shedding the light on the
organization of the presented framework.

3.2 Al-learning process

The first step in any Al process is system learning. This can take four primary forms:
supervised learning, unsupervised learning, semi-supervised, and reinforcement learn-
ing. In this section, we present an overview of existing Al learning architectures used to
improve the performance of BAMSs.
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Fig.3 Taxonomy of existing Al-big data analytics frameworks

3.2.1 Unsupervised learning (U)

Unsupervised learning learns from raw data without prior knowledge and mainly deals
with unlabeled datasets. Although it does not need to annotate data as supervised learn-
ing, the learning phase can be more computational as all the possibilities are checked.
The accuracy is lower since there are no corresponding outputs (labels) (Himeur et al.
2021).

3.2.1.1 U1. Clustering It is a category of ML algorithms used for separating data (e.g.
energy consumption observations, ambient conditions, etc.) into different classes or clus-
ters following a specific goal. Clustering algorithms usually pertain to one of the follow-
ing groups, i.e. hybrid, fuzzy-based, model-based, and density-based approaches. Using the
clustering process facilitates the classification tasks when dealing with various problems,
such as anomaly detection of energy consumption, indoor environmental quality (IEQ)
monitoring and detection of pollutants, detection of abnormal water consumption, etc.
K-means, C-means and fuzzy C-means (FCM) were among the most investigated clus-
tering approaches. They have been applied for non-intrusive load monitoring (NILM) and
appliance identification (Ji et al. 2019; Zhang et al. 2020), energy performance evalua-
tion and ranking in working spaces (Sun and Yu 2021), energy efficiency assessment in
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industrial buildings (Liu et al. 2018), building management and identification of operat-
ing anomalies (when analyzing electricity, gas and water consumption) (Akil et al. 2019),
IEQ monitoring (Dogruparmak et al. 2014; Cao et al. 2020; Alghamdi et al. 2020; Roger
Rozario 2021), energy forecasting (Tian et al. 2020; Chen et al. 2020; El Motaki et al.
2021), and data sampling for better visualization (Qin and Zhang 2017).

In Culaba et al. (2020), an energy prediction model is introduced using a k-means model
to cluster data, and a support vector machine (SVM) is employed to forecast energy con-
sumption. In Himeur et al. (2021), three clustering algorithms, namely one-class support
vector machine (OCSVM), density-based spatial clustering of applications with noise
(DBSCAN), and local outlier factor (LOF), are used to detect anomalous energy consump-
tion in households by analyzing energy footprints. Besides, in Afaifia et al. (2021), hierar-
chical cluster analysis (HCA) is implemented to model residential energy consumption and
promote energy efficiency. Clustering-based techniques have been used in BAMSs because
of their simplicity and relatively computational efficiency. Also, clustering models gener-
ally have few parameters to tune. However, they have different limitations that affect their
applications in BAMSs, among them the manual selection of the optimal K, dependency
on initial values, troubles to cluster data with varying densities and sizes, the need for scal-
ing as the number of dimensions increases, etc. (Li et al. 2018).

3.2.1.2 U2. Dimensionality reduction In diverse ML tasks, dimensionality reduction tech-
niques can be employed to classify data while promoting low computational costs as they
first remove irrelevant observations. Accordingly, a plethora of frameworks have been pro-
posed in the literature to explore the applicability of dimensionality reduction schemes in
BAMSs. That includes the principal component analysis (PCA), factor analysis, linear dis-
criminant analysis (LDA), quadratic discriminant analysis (QDA), and multiple discrimi-
nant analysis (MDA), isometric feature mapping (Isomap) (Liu et al. 2020), kernel principal
component analysis (KPCA) (Abba et al. 2020), t-distributed stochastic neighbor embed-
ding (t-SNE) (Zhan et al. 2020; Lopes et al. 2020), multidimensional scaling (MDS) (Wang
2020, and truncated singular value decomposition (TSVD) (Kalantzis et al. 2021).

For instance, PCA has been utilized for early fault detection and classification (Li and
Wen 2014; Cotrufo and Zmeureanu 2016; Chen and Wen 2017; Swiercz and Mroczkowska
2019), IEQ (Mansor et al. 2021), energy consumption prediction (Sha et al. 2019), occu-
pancy detection in buildings (Pal et al. 2019), etc. Moving on, LDA has been employed
for thermal comfort evaluation (Gtadyszewska-Fiedoruk and Sulewska 2020), sensor-based
occupancy detection (Fayed et al. 2019). Using dimensionality reduction in BAMS has
gained attention because it can: (i) reduce the storage space and time needed to classify
recorded data, (ii) improve the interpretation of the ML models’ parameters by removing
multicollinearity, and (iii) simplify data visualization (Al-Kababji et al. 2022). However,
dimensionality reduction models have some disadvantages. For example, (i) this can result
in relevant data loss, (ii) finding linear correlations between variables (as PCA does) can be
no appropriate in some scenarios, and (iii) some dimensionality reduction models can fail
in classifying variables if the covariance and mean are not sufficient to represent datasets
(Himeur et al. 2021; Abdulhammed et al. 2019).
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3.2.2 Supervised learning (S)

Supervised learning is applied for the case of labeled energy datasets. Despite its high per-
formance, the necessity of labeled data causes some difficulties in real-world applications.

3.2.2.1 S1.Classification It refers to conventional ML models that attempt to derive some
conclusions from the input data given in the training process, and hence aim at predicting
the class labels/categories for a new set of data. Classification models have widely been
deployed in existing BAMS based big data analytics frameworks to perform different tasks,
e.g. energy forecasting, energy balancing, IAQ monitoring, energy optimization, fault and
anomaly detection. Typically, SVM, K-nearest neighbors (KNN) (Valgaev et al. 2017), deci-
sion tree (DT) (Yu et al. 2010), artificial neural network (ANN) (Moon et al. 2019), multi-
layer perceptron (MLP) (Haidar et al. 2019), extreme learning machine (ELM) (Salerno and
Rabbeni 2018) and logistic regression (LR) (Rehman et al. 2020) are among the famous
classification models deployed in BAMSs. Classification models have been used in BAMSs
since they are simple to understand, fast and efficient. In addition, they can excel in clas-
sifying different kinds of BAMS data if accurately labeled datasets are used in the train-
ing process. However, they have a set of limitations. For instance, SVM models are not
adequate for non-linear problems, and their performance does not improve if the number of
features increases while the number of neighbors ”K” is manually selected in KNN. Moreo-
ver, poor results are usually obtained with DT algorithms on small datasets, and overfitting
can quickly occur (Himeur et al. 2021).

3.2.2.2 S2.Regression It is based on the identification of the relation between two or more
energy consumption observations for producing a set of model parameters, that help in pre-
dicting and classifying them for different purposes, including energy prediction, anomaly
detection, security and privacy preservation, etc. Diverse regression models have been pro-
posed to analyze BAMSs’ data, e.g. support vector regression (SVR) (Zhong et al. 2019),
linear regression (LR), auto-regressive (AR) models, regression tree (RT) and regression fit-
ting (RFT). Regression models have gained popularity in smart buildings and smart energy
systems because most of them are easy to implement and interpret, and efficient to train.
Also, they perform remarkably well for linearly separable data. However, it is worthy to note
that regression models involve complicated and lengthy procedures of analysis and calcula-
tions in addition to assuming the existence of linearity between the dependent and independ-
ent variables, which is not always the case in real-world applications (Bilous et al. 2018).

3.2.2.3 S3. Deep neural networks (DNN) It is a subclass of ML that is principally a NN
including more than two layers. These DNNs aim at simulating the behavior of the human
brain “albeit far from matching its ability”, which allows them to learn from large-scale
datasets. In addition to the capability of NNs with a single layer for making approximate
predictions, DNNs have further benefits via (i) optimizing and refining the classification
accuracy when additional hidden layers are considered, and (ii) identifying the most inform-
ative features of the data.

DNNSs have become the state-of-the-art methods in various ML-based domains, simi-
larly in BAMSs, they are attracting greater attention. They have widely used for energy
forecasting, this is the case of recurrent neural networks (RNN), long short-term memory
(LSTM) (Gao et al. 2019; Wang et al. 2020), gated recurrent unit (GRU) (Lin et al. 2021),
bidirectional LSTM (BiLSTM) (Haq et al. 2021; Ishaq and Kwon 2021), convolutional
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LSTM (ConvLSTM) (Syed et al. 2021), multiplicative LSTM (mLSTM) (Krause et al.),
bidirectional GRU (BiGRU) (Khan et al. 2020), coupled input and forget gate (CIFG)
(Runge and Zmeureanu), deep feed forward neural networks (DFNN) (Marino et al. 2016),
and convolutional neural network (CNN) (Li et al. 2017). Moreover, numerous hybrid
models have been built by combining the aforementioned models with other deep learning
(DL) architectures, such as CNN-LSTM (Alhussein et al. 2020), CNN-BiLSTM (Wu et al.
2021), partial least square (PLS) CNN-BiLSTM (PLS-CNN-BiLSTM) (Wu et al. 2021),
CNN-GRU (Sajjad et al. 2020; Wu et al. 2020), conditional random fields (CRF) and RNN
(CRF-RNN) (Wytock and Kolter 2013), DFNN-LSTM (Bashari and Rahimi-Kian 2020),
radial basis function neural network-CNN (RBFNN-CNN) (Sideratos et al. 2020), etc.

DL models have also been used for other tasks, including smart IEQ monitoring, where
different architectures were investigated, such as LSTM (Liu et al. 2020; Janarthanan et al.
2021), GRU (Ahn et al. 2017; Das et al. 2020), BiLSTM (Ma et al. 2019), CNN (Moli-
nara et al. 2020), residual neural network (ResNet) (Zhang et al. 2020), variational autoen-
coders (VAE) coupled with CNN (VAE-CNN) (Loy-Benitez et al. 2020a), memory-gated
RNN-based autoencoders (MG-RNN-AE) (Loy-Benitez et al. 2020b), sparse autoencoders
(SAE) (Loy-Benitez et al. 2020)

Occupancy detection in buildings has also received the attention of the DL commu-
nity through the use of CNN (Zou et al. 2017), RNN (Zhao et al. 2018), LSTM (Mutis
et al. 2020), BiLSTM (Feng et al. 2020). Moreover, as some studies have investigated
the use of camera imagery (e.g. thermal cameras) to estimate the number of occupants
inside buildings, it was rational to use various CNN backbones, which are widely utilized
in image classification or image recognition, among them ResNet (Acquaah et al. 2020),
VGGNet (Zou et al. 2017), AlexNet (Acquaah et al. 2020) and GoogLeNet (Tien et al.
2020). Using DL models in BAMSs has become a research hot-spot nowadays because of
their robustness to natural variations in the data, which is automatically learned. Addition-
ally, their performance significantly improves with increasing the quantity of training data.
However, DL models still face different challenges. Typically, DL algorithms require large-
scale training datasets to perform better than other ML models. Moreover, their training is
computationally expensive as they are built on complex models. Additionally, DL models
require expensive GPUs and cloud data centers to run, which increases their deployment
cost (Guo et al. 2018; Himeur et al. 2020).

3.2.2.4 S4. Statistical models They refer to mathematical models embodying an ensem-
ble of statistical rules used to generate data samples, predict the relationships between one
or diverse random/non-random variables or classify them. widely used statistical models
include Bayesian networks (BN) (Singh and Yassine 2018), naive Bayes (NB) (Li et al.
2020), generalized additive models (GAM) (Khamma et al. 2020), bayesian belief networks
(BBN) (Bassamzadeh and Ghanem 2017), restricted Boltzmann machines (Elsaeidy et al.
2019), conditional restricted Boltzmann machines (CRBM) (Kang et al. 2020) and factored
conditional restricted Boltzmann machines (FCRBM) (Hafeez et al. 2020). In BAMSs,
they have been used for different tasks, such as selecting the most energy-efficient primary
HVAC systems (Tian et al. 2019), building energy and water retrofitting (Bertone et al.
2018), energy forecasting (Huang et al. 2018), assessing energy efficiency (Grillone et al.
2019), NILM (Verma et al. 2019), gas usage prediction (Pathak et al. 2018), IEQ monitor-
ing (Giovanis 2019), etc. While most statistical models are useful for BAMSs as they have
deterministic and stochastic components to mathematically describe the functional relation-
ship between inputs and outputs, they also have pitfalls. In this respect, if recorded data is
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biased or faulty, statistical modeling will be misleading. In addition, these kinds of models
are hard to apply to heterogeneous data (Agha and Palmskog 2018).

3.2.3 Semi-supervised learning (SSL)

SSL refers to the process of training ML models using a small portion of labeled data along
with a large number of unlabeled observations. Then, the ML models should be able to
learn and make predictions on new data. It falls between unsupervised learning and super-
vised learning, which is also considered as a special instance of weak supervision (Van
Engelen and Hoos 2020). Although supervised learning techniques are largely utilized in
for providing different BMAS services, they can only reach high performance only when
they are trained with sufficient labeled data. Otherwise, their performance could drastically
decrease if annotated data is insufficient or not accurately labeled. Moreover, annotating
data is a challenging, costly, and time-consuming task. In this regard, SSL has been pro-
posed as an alternative solution to address some of these issues.

In BAMS, SSL has been widely used for fault and anomaly detection. For instance, in
Fan et al. (2021, 2021), the authors introduce an SSL-based fault detection and diagnosis
in air handling units (AHUs) based on a semi-supervised neural network (SSNN), which
adopts a self-training strategy. Moving on, in Elnour et al. (2021), Elnour et al. propose an
SSL-based data-driven attack detection scheme in HVAC systems to promote security in
intelligent buildings. This approach has been developed using an isolation forest and two
ML models, i.e. PCA and 1D-CNN (IF-PCA-CNN). While in Li et al. (2021), an SSL-
based approach to detect and diagnose chiller faults is presented using a semi generative
adversarial network (semi-GAN) model. In the same way, an SSL-based fault identifica-
tion scheme for building HVAC systems is proposed in Li et al. (2021) using a modified
GAN. In Nguyen et al. (2021), an SSL-based load monitoring solution is introduced, which
has the ability to (i) augment the data, (ii) transform existing labeled sets, and (iii) train a
WiderResNet (the backbone model) on the augmented data. Although SSL is an excellent
option for developing Al-big data analytics when labeled data is expensive to obtain, it has
some limitations, e.g., the results are not stable, and the performance is lower than that of
supervised learning. Typically, the decision boundary might be overstrained if the training
dataset does not have the annotated samples required in each class (Lu 2009).

3.2.4 Reinforcement learning (RL)

Reinforcement learning is a field in artificial intelligence that involves an agent that devel-
ops the knowledge of the best strategy to follow to accomplish a defined objective by trial
and error given the interaction with its environment. Besides the RL agent and the envi-
ronment, the main elements of an RL system are: (i) the policy, which is a function that
defines the action taken by the RL agent in a given time step (i.e., state), (ii) the reward,
which defines the result of the action taken by the agent due to its interaction with the
environment, and intuitively describes the desired behavior of the agent, and (iii) the value,
which indicates the long-term desirability of a set of states/actions given the agent’s expe-
rience and the likely future rewards (Collins and Cockburn 2020). The agent explores the
possible actions to be taken as the learning progresses. Based on the consequence of the
actions taken, it opts for actions that maximize the cumulative reward. Reinforcement
learning algorithms can be categorized as: (i) traditional RL (TRL) methods in which
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tabular (i.e. lookup tables) or conventional value function approximation approaches (e.g.,
coarse coding, ML algorithms) are used; and (ii) deep RL (DRL), which represents the
evolution of the traditional methods where DL models (e.g., deep NNs, CNNs, RNNs) are
used to approximate the state and/or action value (Wang and Hong 2020).

3.2.4.1 R1.TRL models It is only efficient to use TRL for simple RL problems where the
action-state space can be represented in a tabular form or approximated by a simple func-
tion approximation algorithm. Monte Carlo (MC), Q-leaning (QL), State-action-reward-
state-action (SARSA), policy gradient (PG), and actor-critic (AC) are examples of TRL
approaches. For TRL-based BAMS applications, tabular QL was used for occupancy pre-
diction and HVAC control to optimize the occupant comfort and energy consumption in
Barrett and Linder (2015), and controlling the HVAC system and windows for mechanical
and natural ventilation in Chen et al. (2018).

3.2.4.2 R2.DRL models Recently, RL has taken advantage of the DL technology to reach
phenomenal results. Typically, DL has been combined with RL due to its ability to capture
all the intricate details of the knowledge and also perform complicated learning tasks that
RL failed in doing so. This has given rise to DRL. In BAMSs and many other research
fields, DRL is becoming a significant focus of scientists. The commonly used DRL methods
are deep Q-learning (DQL), asynchronous advantage actor-critic (A3C), deep deterministic
policy gradient (DDPG), and proximal policy optimization (PPO). A review of DRL appli-
cations for intelligent buildings energy management was presented in Yu et al. DQL was
used for indoor and domestic hot water temperature control in Lissa et al. (2021) to optimize
the home energy management system. In Wang et al. (2017), a DRL-based control system
for office HVAC systems using an RNN-based actor-critic approach was presented. In Val-
ladares et al. (2019), double Q-learning was utilized for energy optimization and thermal
comfort control, while PPO method was applied in Azuatalam et al. (2020); Chemingui
et al. (2020) for controlling the building’s HVAC systems for energy and thermal comfort
optimization.

AL in all, RL models (TRL and DRL) are utilized for solving very complex problems
that can not be fixed using traditional ML or DL models. They can also correct the errors
occurring during the training stage. However, exceeding the number of required RL stages
can result in an overload of states, and hence reducing the performance of RL models
(Ding et al. 2019).

3.2.5 Ensemble methods (E)

Ensemble methods are a class of ML that deploy different aggregation strategies for com-
bining multiple learning models and then achieving better predictive performance com-
pared to the use of a unique learning algorithm.

3.2.5.1 E1. Boosting It implies the gradual development of an ensemble learning using
a set of ML models, where every new model occurrence is trained for emphasizing the
training occurrences that previous models misclassified. In some applications, boosting can
achieve better performance than bagging; however, it often looks after overfitting the train-
ing data. Random forest (RF), adaptive Boosting (Adaboost), and eXtreme gradient boost-
ing (XGBoost) were among the most used boosting models for different Al-big data analyt-
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ics tasks, such as overall building energy consumption forecasting (Zeki¢-SuSac et al. 2021;
Xiao et al. 2021; Ferdoush et al.; Wang and Chen 2021; Yucong and Bo 2020), heating and
ventilation load prediction (Sun et al. 2020), HVAC optimization (Li 2020), Space cooling
load forecasting (Feng et al. 2021), load disaggregation and monitoring (Xiao et al. 2021),
water monitoring (Somontina et al. 2018; Movahedi and Derrible; Golabi et al. 2020), [EQ
monitoring (Mo et al. 2019).

Following, other variants have been then introduced and utilized for performing energy
forecasting and load monitoring, IEQ monitoring, water management and occupancy
detection in different kinds of buildings, including gradient boosting machine (GBM)
(Gong et al. 2020), extreme gradient boosting machine (XGBM) (Gong et al. 2020), gradi-
ent boosting regression tree (GBRT) (Nie et al. 2021), LightGBM (Park et al. 2021; Wang
et al. 2020).

3.2.5.2 E2.Bootstrap aggregating It is also abbreviated as bagging and refers to the design
of a new ML model by aggregating multiple models that have equal weights in the ensem-
ble vote. Every model is trained using a randomly drawn subclass of training data for pro-
moting the model’s variance. Various bagging models have been developed, modified and
used to perform different tasks in BAMSs. For instance, bagging ARIMA (BARIMA) in de
Oliveira and Oliveira (2018) is proposed to conduct a mid-long term load forecasting, while
in Khwaja et al. (2015), a bagging neural network (BNN) is developed where the bagging
concept is combined with neural networks (NNs) to improve short-term energy prediction.
Moving on, in Hu et al. (2020), an enhanced bagged echo state network (BESN) is intro-
duced to forecast energy. In Choi and Hur (2020), a bagging model is developed by setting
RF, XGBoost and LightGBMs as the base learners. In Dehalwar et al. (2016), the authors
introduce a bagged regression tree (BRT) that has been used for energy forecasting.

Moreover, bagging models have also been employed for water management in buildings
using ensemble bagging tree (EBT) (Hasanzadeh Nafari et al. 2016), and thermal evalu-
ation using bagged tree (BT) (Ahmad and Chen 2018), and fault detection using bagged
auto-associative kernel regression (BAAKR) (Yu et al. 2017).

Overall, ensemble methods have been used in BAMSs since they can result in better
predictive accuracy than individual models in complex systems/models Moreover, they are
appropriate for scenarios with linear and non-linear data variables. However, ensembling is
less interpretable, and the outputs of ensemble models are complex to explain and predict
in most applications. In addition, a wrong selection of the models to be aggregated will
arise lower predictive accuracy than individual models. Furthermore, ensemble models are
generally computationally expensive and require much storage memory.

3.3 Building environments and their characteristics

Buildings range in size, function, construction, design, and other attributes. Additionally,
they present varying levels of potential hazards and risks to the occupants and the sur-
rounding environment. However, buildings are primarily classified based on the utilization
purpose that governs occupancy profile, sophistication level, and building design require-
ments. Building environments are further described in the following subsections.
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3.3.1 Residential buildings

Residential buildings are mainly for private occupancy, designed and built for individu-
als or groups, providing the necessary facilities and utilities to satisfy living requirements.
Spaces in residential buildings involve several activities, including sleeping, sitting, con-
veniences, cooking, dining, and others. Those functions can be in shared spaces or have
exclusive rooms per function. They exist in various sizes and have different occupancy
rates. A low occupancy density generally characterizes them. Examples of residential
buildings are story houses, apartments, terraces, and condominiums. In addition to air con-
ditioning and ventilation systems, lighting, and media equipment, several major appliances
are regularly used in residential buildings, such as dishwashers, washers, dryers, refrigera-
tors, freezers, stoves, water heaters, trash compactors, ovens, and others (Estiri 2014).

Residential buildings are typically equipped with simple BAMSs that provide the basic
requirements of building management for inhabitants’ well-being and comfort. Standard
manual control is used for the most part of their BAMSs. For instance, the decentralized
control of the indoor environment is driven by the thermal comfort levels of the occupants.
Thermal comfort is subjective to outside weather conditions that determine the indoor
environment conditioning requirements, which are heating or cooling, humidification or
dehumidification, and air ventilation (Do and Cetin 2018).

3.3.2 Office buildings

Office buildings are where people perform routine tasks, execute assignments and jobs
for their employers, or provide passive or active, free of charge or remunerated ser-
vices to the public. Types of workplaces vary in the form and requirements of the work
and the variety of tools involved. Hence, they differ in size and the extent of personnel
involvement and expertise. Familiar workplaces are office buildings such as law and
corporate firms, commercial companies, post offices, banks, courtrooms, and similar
places where people are involved in lengthy desk jobs or light-weight activities. Most
of the spaces are offices, meeting rooms, or auditoriums of defined capacities. Addi-
tionally, they have shared areas such as corridors and lobbies. Office buildings require
flexible and technologically-advanced working environments that are safe, healthy,
pleasant, durable, and accessible towards promoting the users’ comfort, productivity,
and working efficiency (Tanabe et al. 2013). It includes the accessibility to natural
ventilation and natural lighting sources, and the availability of IEQ control and moni-
toring. The provision of localized indoor environment control allows users to adjust
the air temperature, air movement, and other relevant indoor environment properties
according to their preferences. They are characterized by their moderate operation
schedules, and fairly regular and established user profiles. Additionally, some work-
spaces may involve many service recipients (Alsalemi et al.).

3.3.3 Healthcare centers
The indoor environment in healthcare centers is critical for the health, well-being,
safety, and comfort of patients, visitors, and the staff, as well as for the medical utili-

ties and services. It has to comply with specific standards related to temperature, infec-
tion, and odor control (Salonen et al. 2013). It plays a significant role in the quality of
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the provided medical service in terms of the treatment, healing, recovery processes,
and the success of the conducted operations and procedures.

The various spaces in healthcare centers have different temperature regulation
requirements. For instance, the success of surgical procedures depends in part upon
the cold indoor conditions of the operating room to avoid the risks of anesthetic explo-
sions, promote the comfort, productivity, and efficiency of the staff, and conserve the
patient’s resources (Ellis 1963). On the other hand, burn units are regulated at temper-
atures between 28 and 33 degrees because burn injuries restrict the ability of patients’
bodies to stay warm (Fernandez and Pablo 2021). Moreover, healthcare centers require
a clean and sterile environment. Hospital-acquired infections are a major threat in
healthcare centers (Lobdell et al. 2012). Hence, air ventilation and infection control
are essential to control the potential contaminants and other suspended microorgan-
isms, consequently lowering airborne disease risk. Additionally, air ventilation helps
dispel odors, which improves the indoor conditions for the patients, staff, and visitors.
Moreover, medical waste disposal and management is an essential aspect of the opera-
tion of healthcare centers as they are considered one of the main sites for the genera-
tion of hazardous waste (Aljabre 2002). The proper management of medical waste is
essential to avoid health and environmental risks. Healthcare centers have protocols for
the disposal of the generated waste according to their location. Additionally, health-
care centers are obliged to provide adequate security implementations for (i) the safety
of patients, the public, and staff, (ii) the privacy and integrity of the patients’ data, (iii)
the prevention of breaches against the BAMS, (iv) the management of the utilities and
equipment, and (v) the prevention of injuries and unwanted occurrences.

3.3.4 Sports facilities

Sports facilities involve areas where individuals or groups engage in physical exercise,
participate in athletic competitions, or attend sporting events. Examples of sports facilities
are gymnasiums, cultural centers, stadiums, swimming pools, indoor and outdoor tennis
courts, squash courts, training halls, and sports arenas. They encompass large and various
spaces involving different types of activities. Sports facilities have distinct requirements for
air conditioning and ventilation, thermal comfort, and lighting with unique usage and occu-
pancy patterns. They are governed by the type of sports activity, the operating time, the
season, and the geographical location of the facility (Trianti-Stourna et al. 1998).

Sports facilities are characterized by the variety of their architectural sophistication
and sizes, deployed technologies, and their distinctive energy demand profile compared to
other types of buildings (Elnour et al. 2022). For instance, stadiums are the most sophis-
ticated ones, which occupy vast land space. Even though they are often infrequently used,
their operation and running costs during a single event are substantial (Aquino and Nawari
2015). Aquatic centers are the second most popular sports facilities that host different water
events and tournaments. They encompass other spaces such as changing rooms, shower
rooms, and storage rooms.

Sustainability measures and implementation are deployed in sports facilities’ design,
construction, and operations. They require extensive lighting, air conditioning, broadcast-
ing, surveillance, and security requirements when operated to achieve successful sports
events. The proper lighting in the sports facilities ensures good visual conditions. The
event’s prosperous broadcasting is essential to delivering an entertaining, thrilling, and
engaging experience for the athletes and fans. Given the considerable volume of user flow
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in sports facilities, emergency evacuation planning, users’ entry and exit management,
security screening, and preventive measures are among the top priorities in sports facili-
ties management (Hall et al. 2011). Additionally, sports facilities involve extensive body
workouts and activity by the users, during which excessive heat and CO2 discharge occur.
They demand mainly air conditioning and ventilation, especially for indoor sports events
as well as water heating for pools and domestic use to maintain the comfort, health, and
well-being of the users. Moreover, sports facilities require constant maintenance, servicing,
and overseeing even when not used, such as grass fields, pools, water treatment, and sports
equipment.

3.3.5 Commercial buildings

Commercial buildings have at least 50% of their floor spaces for commercial activities
(Kiliccote and Piette), such as malls, retail, and food services. Malls and restaurants are
typical commercial buildings of various sizes and complexity. They include shops, cafes,
kitchens with several commercial appliances, storage rooms, pantries, a refrigerated space,
offices, dining areas, and public restrooms. They demand maintaining a clean and well-
conditioned environment. For example, in restaurants and coffee shops, compliance with
proper food storage and preparation standards is required to reduce the risk of spoiling food
and eliminate the risk of incidents jeopardizing the well-being of the users as well as the
reputation of the restaurants (El-Sharkawy and Javed 2018).

Air ventilation affects the health and safety of workers and customers and can influence
food sanitation levels. The chiefs and the kitchen staff in restaurants are exposed to air pol-
lutants generated from cooking for long periods. Hence, they may suffer potential respira-
tory and cardiovascular problems in the long run (Juntarawijit and Juntarawijit 2017). Also,
they are subjected to high levels of heat generated from cooking activities, decreasing the
staff’s productivity. Additionally, excessive unpleasant odors or poor air conditioning in
restaurants can result in an unpleasant experience for the customers. In addition, malls and
shopping centers are commercial buildings where goods or services are sold to customers.
They may include ample parking spaces, escalators, elevators, and various outlets such as
department stores, food courts, amusement and theme parks, and movie theaters. Safe and
comfortable indoor conditions are essential to provide a convenient and enjoyable experi-
ence for users and maintain a flourishing business with efficient energy consumption to
contain the incurred running and operating costs.

Commercial buildings are famous for their exceptional operating schedule and occu-
pancy patterns. They run for about more than 12 hours all week, and they have peak occu-
pancy during weekends and significant volumes of user flow. They utilize extensive closed-
circuit television (CCTV) surveillance, lighting, and air ventilation and conditioning
systems. Additionally, fire prevention, suspension, and other security and alarm systems
are crucial elements of their management systems to ensure dependable and safe circum-
stances for the users. Overly, the proper management of commercial buildings is essential
to maintain a lucrative operation.

3.3.6 Industrial buildings
Industrial buildings include buildings used for the generation and distribution of power,

manufacturing products such as food, apparel, electronics, petrochemicals, construc-
tion materials, automobiles, the processing of raw materials, and many others. They have
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minimal and relatively low user flow for security purposes, such that they are only acces-
sible to individuals with privileges. However, they involve energy-intensive and delicate
machinery. They are generally equipped with sophisticated BAMSs that support the secu-
rity and the centralized control requirements. Industrial buildings are equipped with robot-
ics, industrial devices, and software-defined production processes. They require a high
level of automation, given the nature of the processes involved and the tasks performed.
In addition, they may involve delicate processes that are associated with health, social, and
environmental risks. Industrial sites and environments can result in air and water pollution
due to the generated by-products and the released unwanted toxins of the occurring pro-
cesses. Hazards from combustion and unstable reactions can lead to highly harmful acci-
dents due to the sudden release of material at high temperatures or pressures (Englund
2007). Additionally, fire hazards are common in industrial facilities, which can endanger
the lives of staff and can result in substantial economic losses and environmental implica-
tions. Industrial facilities must be safe, secure, and productive. Proper process control, air
ventilation, treatment and conditioning, and waste management are crucial to managing the
safety and health of the staff as well as the general public and the surrounding environment.
Security is an essential dimension in the operation of the BAMSs of industrial buildings.

3.3.7 Academic buildings

Academic buildings are used to conduct teaching activities such as schools, academies,
universities, colleges, technical institutes, etc. They encompass classrooms, lecture halls,
libraries, student centers, dining halls, laboratories, computer labs, offices, and service
areas necessary for the proper functioning of the academic programs. Individuals of vari-
ous age groups are frequent users of educational facilities, and they engage in multiple
types of activities. A convenient and safe environment in academic facilities is an essen-
tial requirement for the education process. It affects the well-being and comfort of stu-
dents, faculty members, and other staff, hence their productivity and working efficiency. A
comfortable and safe environment has been identified as an essential element for enhanc-
ing the learning of students (Muhammad et al. 2014). Over-heated and poorly ventilated
classrooms can result in the discomfort of students and educators, and consequently diverts
their attention and affects their abilities to concentrate (Roelofsen). Adequate lighting in
the facilities of academic buildings is vital to the comfort and well-being of the students to
create an attractive and engaging learning environment and avoid eye strain. Additionally,
students’ health and well-being are essential for their learning process. The indoor environ-
ment influences students’ attendance and hence their study. Students need to be in good
health to be able to study well. Therefore, spaces in academic buildings should be well
conditioned and ventilated to avoid altering users’ well-being, spreading airborne diseases
spread, and disrupting students’ learning. Lastly, a brief summary is presented in Table 2 to
compare the characteristics of the different buildings discussed above.

3.4 Computing platforms
3.4.1 Cloud computing
The advancement of cloud computing platforms has opened new opportunities for BAMSs

to take control of operations on a large scale. Thus, BAMSs that consist of networked

@ Springer



SONIATIOR
JyStom
JUSWIUOIIAUD -y31y Jo
Sunyiom 9[qe sqol yso(T - $919q0[ wa)sAs Kyoyes
-1I0JWod pue o1qnd ‘SIOPLLIOD pUE QOUB[[I9AINS ‘[0NUOD
QUAIOLYD ‘AT soyoid 1osn ysiy 0) SAOIAIIS ‘SwINIo)Ipne JUSWIUOIIAUD JOOPUI [BOO0]
S9O1JO -onpoid ‘o[qenp poysI[qeIsd pue 0} e Jjeropow ‘syse) ‘swool 3ut ‘3unysI| rernjeu ‘uon
jsod‘syueq ‘swar]  ‘9[qIxep ‘“Ayifeay Te[ngar AjIe - -I9POJA 0) [[ewtS aunnoy - -1o9W ‘sAYJO ssauisng -B[IJUQA [RINJRU I0J PIRpuL]S Ehliife)
SONSSI puLwWAp
yead Aq patu
-edwoooe
pue A310U9 JOo
sjunowre [en
-ueisqns A[An
-B[aI QWINSUO) -
sooue
-1iddejuowr sonianoe  Sururp ‘Surjood [01u0d [enuew
swn 1I0Jwod -dmbo esnes Jero JySrom ‘SOOUDIUAAUOD plepue)s ‘1I0JWOd pue
-TUTWOPUOISIUSW pue Surog-Tfom pue ‘suonjerodo -pour Jjeropow ST ‘Sur ‘Fumis ‘Sur Sureq-[jom sjuejIqeyuI 10§
-jrede ‘sasnoy Ssiueyiqequip WS- 01 MO 0) [[ewS -[om( - -deays 1oj seoedg Surom@  syudwaambar d1seq 1oy ojdwirg [enuapIsoy
adesn
/Koued
ordwrexyg syuowaIInboy SONISLINOBIRYD) -n%d20 oz1§  odK) Ayanoy ad4&) sooedg N odK) SINVYG  2dAy Surpping

Al-big data analytics for building automation and management...

s3urp[ing Jo sadA} JuaIayIp oY) usamiaq uosLredwod y g ajqel

pringer

As



Y. Himeur et al.

$)S00 uon
sjuowarinbar  -eredo pue Suru
Sunseopeolq  -uni [enuelsqng - SIOPLLIOD
pue suonipuod ‘sadfy S31QQOJ ‘Sa01JO
[ensia oyroadg - Qoeds snorrea ‘Swoo1 93108
110JWOd [BULIY) ssedwoouyg- sadKy ‘SUWI00I JOMOUS A1mods pue
‘uone[NUIA pue ‘MO pue S[oA9[ ‘swoo1 3ut QOUB[[IOAINS‘TUNISLOPLOIq
sjood Suruonipuod s19sn Y31y jo ysiy aSre[ JUIYIP JO -Sueyo ‘seare SaNIATIOR ‘Sutuonipuod e ‘Sur
SUTWWIMS SIOIUD I1e IO} SJUow suroped ofesn 03 9 0) o3e SONIAT)OR s103e309ds pue sjuoAd -)YSI] QAISUI)XD J0]
suiods ‘swnipeys  -exmbar jounsiqg- [euoseas YSIH-  -ISpOJAl -IOAY Suniodg - ‘swoor Sururery, Suniodg WR)SAS paouLApY sy1odg
JUSWIUOIIAUD "SYSLI
Q[LIIS PUR UBJ[D - [BIUSUWIUOIIAUD
‘[OTUOD IOPO  PUE YI[BAY YIIM
pue ‘uonoYur PRIBIOOSSE $919q0[
‘amyeradwya) o) -JuouIIedn) pue ‘SIOPLLIOD
PaJe[aI SpIepUR)S snsousderp 10y ‘swoo1 Sunrem
oyr1oads ym juowdinbo ‘swool syuaned
A1dwoo-sao1A108 aA1suadxo pue ‘swioox Sur
pue sonInn [ed pareonsiydos -jerado ‘syueq
-Ipaul ‘Jyels Ay apnpour -moy sjuoul Poo[q ‘SaLIONRI JuswaSeurw
‘s10)1S1A ‘sjuoned sIosn 9[qeIopIs -11adx9 qey - -0qe[ ‘Swool juowdinbasadiales ‘Qoue|
JO 1I0JWOD pue -uod pue juanb ysiy a3xe[ sainpadoid uoneuTwEeXd -[1oAIns ‘A)rmoas ‘uone[ngar
SIOJUAD Y)[BIYS ‘Kyoyes ‘3uroq -o1y ‘vonerodo 03 Qe 0) o3e [eo1pow ‘s)Iun aIed SQOIAIAS arnjerodwd) pue ‘UoneR[IUIA
-o1po ‘srendsoy -[[oMm “YI[edH- PUNOI-IBdX - -I9POJA -IoAY QBOI[A( - ‘SWOO0I JUSUIIBAL], yesy UouUIILRI) ITB 10} PAOUBAPY Aredyeoy
ages 3
Ro:ww mo
ordwrexyg syuowaIrnbay SONISLIJOBIRYD) -n9d0 oz1g  odK) Ayanoy ad£) sooedg ENel odK) SINVG  odAy Surpping a

Qs

(ponunuod) zsjqer



Al-big data analytics for building automation and management...

SIOPLLIOD
Sur '$91q9O[ ‘sqe|
-y31y oyenbopy - 10)ndwod
Jels ‘SaLI0RIOqR|
pue sjuapnys I10J mop ysiy SONIATIOR ‘s[rey Suturp Aunooes pue
JUSWIUOIIAUR JJes 0} 9JeIopout ysiy oBre| ySrom ‘swool Jur ‘SUIIONIPUOD PUB UOHB[IUA
S[00Y0s‘S9T[[0D pue 9[qeIIOJWOd josuroped o) o) 0) oSe KAeoy -)ooW ‘SO are ‘3unysi| ‘Qoue[[IoAINS
‘SANISIOATUN JUOTUSAUOD W/ - 9Fesn [BUOSES -  -IOPOJA -IAY 01y3ry - ‘SUI00ISSB[D) 10} WISAS dAISNOU] JIWOPLOY
SYSLI [ejua
-UOIIAUQ pue
‘[eroos ‘yieay
)M PIJBIOOSSE
juowr sassoooid pue sjuerd TeoTwoyd
-o3euew )sem - AIouryoeul Aed puE [BOL193]d
uonerodo -1[Op PUB QAIS ‘swoo1 ssao01d
aanonpoid pue -UQUI-A310UQ SONIATIOR pue A1ouryoeu
‘OINOOS ‘QJes - ‘MO[J SIasn Jud Jrero a3xe| JyStom ‘swool 1oynd Jjuowaseuew
suone)s uopewone -)SISUOD pUB  -powr 01 33e Kaeay -Wod ‘SWO01 pUE UOTJBWOINE PIZI[RIIUID
10m0d S9110108,] JO [9A9] YS1H - POIWI] QA[OAU] 0} MO] -IOAY 0)ySr7-  [0NUOD ‘SO 10§ WwsKs payeonsiydog [ermsnpug
SI9WOISNO
pue sIoyIom Jo
Kyoyes pue yieay
Sururejurew MO} s1osn SIOPLLIOD
I10J UOTB[JUSA  [qRIDPISUOD JO ¢$91qqOJ ‘S0YJo
are 1adoid sporrad yead ‘swool d3e SuruonIpuod pue uon
SJUBINE)SAI‘SAI0)S -JUQWIUOIIAUD juanbaiy yym ysiy 9Bre| SONIATIOR -103S ‘SUUAILY -B[U2A 1B ‘Sunygiy ‘ooue]
K190013 pauonIpuod uonerado o3 e 0) o3e ySromiy3i| ‘seare Jur -[IOAINS ‘UOISTAQ[Q) JINIILD
‘sirewr Surddoys -[[om pue ue9[)- pUnOI-IedxX  -I9POJA -IoAY ‘pIepue)S - -uIp ‘sajed ‘sdoys -PIsO[d 10J WA)SAS QAISN[OU]  [BIOIAWIWIOD)
ages)
/Koued
ordwrexyg syuowaIrnbay SONISLIJOBIRYD) -n9d0 oz1g  odK) Ayanoy ad£) sooedg odK) SINVG  odAy Surpping

(ponunuod) zsjqer

pringer

As



Y. Himeur et al.

sensors and actuators, have been recently adapted to be able to connect to different cloud-
based services (Alsalemi et al. 2020). The latter can provide data storage, connectivity, and
powerful computing resources. To that end, significant efforts have been devoted to devel-
oping cloud-based big data analytics solutions in BAMSs (Bode et al. 2019). For instance,
a voice-activated system for remotely monitoring BAMSs using cloud computing is pre-
sented in Valenzuela et al. (2013). While in Khattak et al. (2019), the idea of developing
vehicular clouds for smart buildings and smart city applications is investigated. Moving
on, in Stergiou et al. (2018), the security and privacy concerns along with the efficiency of
cloud platforms are analyzed. In Delsing (2017), local cloud IoT automation is studied to
promote the use of distributed IoT automation solutions.

Despite the significant effort made during the last decade to promote the use of cloud-
services to run BAMSs, some drawbacks are still causing issues to users and operators,
among them (i) the increased cost and communication overheads, (ii) the privacy and secu-
rity concerns, especially when private data is transmitted to a centralized server for pro-
cessing (Mohamed et al. 2018).

3.4.2 Edge computing

Edge computing it refers to performing data pre-processing, data fusion for different
sources and Al-big data analytics at the edge of the network i.e. sensor nodes (Ray et al.
2019). Also, it enables optimizing cloud computing platforms due to its capability to use
the processing power of IoT devices for filtering, pre-processing, aggregating and storing
IoT sensor data. These tasks can correspondingly be conducted in real-time using conveni-
ent analytical tools (Sharma et al. 2018), while cloud platforms perform further enrich-
ment, aggregation and running complex analytics on the filtered data. To that end, the new
advances in BAMSs combined with the latest generation of IoT devices make it possible
to bring the intelligence and computing tasks to the edge nodes in close proximity to the
building’s IoT devices (Zakharchenko and Stepanets 2019; Khan et al. 2020). Moreover, a
new generation of open software platforms hosted on edge nodes are enabling access to the
building data and advanced Al-big analytics deployed on these platforms are providing the
technology to create value from this data by transforming data from building environments
into actionable information. Various open edge platforms have recently been proposed, e.g.
IO0Tech’s Edge Xpert,3 Echelon SmartServer IoT platform,4 JENEsys Edge,5 etc.

3.4.3 Fog computing

Fog computing represents a decentralized computing strategy where data storage, data
processing and computing resources are located in the middle layer situated between edge
devices and cloud. Typically, IoT smart sensors and submeters periodically collect the data
and forward it to a gateway that acts as a fog device (Javadzadeh and Rahmani 2020). In
this line, BAMSs can benefit from streaming data over a layer of fog devices (or nodes) to
become more connected, where data can be analyzed to detect abnormalities for example,
and autonomously react, if authorized, for compensating the problems or fixing the issues.
Otherwise, fog nodes will send the convenient requests to the cloud (or services higher up

3 https://www.iotechsys.com/markets/industries/building-automation/.
4 https://www.dialog-semiconductor.com/products/industrial-edge-computing/smartserver-iot-edge-server.
5 https://www.lynxspring.com/technology.
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the fog hierarchy) for making further skilled and powerful technical analysis using com-
plex ML models (Ferrdndez-Pastor et al. 2018; Aazam et al. 2018).

For instance, in some situations that require real-time decision-making, e.g. shut down
appliances or equipment before being damaged or adjust crucial process parameters, edge
devices or fog nodes can rapidly act with millisecond-level latency, while it is not possi-
ble to reach real-time decision making using cloud data centers (Rocha Filho et al. 2018).
Therefore, the use of fog computing or edge computing helps avoid potential latency prob-
lems, delays an/or network/server down-times that can lead to different kinds of accidents
or reduced service optimization and efficiency (Maatoug et al. 2019).

3.4.4 Hybrid computing

Hybrid computing refers to the case when the aforementioned computing architectures, i.e.
edge computing, fog computing and cloud computing, are used together to process and
analyze data (Himeur et al. 2021; Zhang et al. 2020). In this context, based on the appli-
cation scenario and computation requirement, some data processing tasks could be made
at the edge devices and/or fog nodes, while high-level data processing tasks (e.g. feature
extraction, classification, anomaly detection, etc.) could be performed at the cloud data
centers (Himeur et al. 2020).

3.5 Applications
3.5.1 Facility and asset management

Facility management to eliminate waste is among the benefits of using Al-big data analyt-
ics in BAMSs and can perform in diverse forms. For instance, using an Al strategy, a bath-
room supplies monitoring company has saved up to 40% in of the total cost by installing
a sensors that collect and send information about the utilization levels of toilet paper rolls
and soaps (Gaboalapswe 2019; Sayed et al. 2022). Similar techniques are also be deployed
for monitoring sports facilities, commercial buildings, office supplies, and other building
necessities (Himeur et al. 2021; Idowu et al. 2016).

For instance, in sports facilities there is an emergency to improve the BAMS services to
meet consumer’s growing experience needs, and hence, overcome various issues, €.g. poor
resource sharing, weak flexibility of response and slow transmission of information, and
instability of aero-thermal comfort, which are considerable affecting the end-users’ expe-
rience and restricting the development of sport venues (Zhong et al. 2020). To that end,
a great attention has been put recently to design intelligent BAMS architectures of sport
centers. This helps in interconnecting multiple subsystems, improving the interoperability,
integrating information, realizing the integration of data application network, and achieves
the goal of resource sharing and function upgrading. In Xiao-wei (2020), an Al-big data
analytics platform is built using SVM-back propagation neural network (SVM-BPNN)
for (i) predicting the end-user flow in the sport facility, (ii) providing recommendations
to adjust the service plan, and (iii) improving the overall management and the end-users’
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experience. Moving on, in Wan et al. (2021), as the cyber-security is a challenging issue
in sports facilities due to the number of spectators and players and the large number of
sport events organized, an Al-assisted cyber-physical system (AI-CPS) is integrated to the
BAMS for promoting network security and predicting cyber attacks and adversaries.

On the other hand, because developing an appropriate setpoint temperature for the
HVAC system is a crucial challenge, the authors in Aparicio-Ruiz et al. (2021) identify
such temperature using a KNN-based dynamic adaptive comfort technique. It relies on the
idea that occupants’ thermal comfort in a building has different acceptability levels, which
can be used for learning the comfort temperature corresponding to the average running
temperature. Thus, this helps define the adequate range of indoor temperature. While in
Carreira et al. (2018), Carreira et al. introduce a framework for tracking building end-users’
group preferences, learning from them, and automatically managing HVAC systems. This
framework is built by tracking building users using an RFID card, interacting with them on
a mobile app, computing setpoints, and sending instructions to the HVAC sub-system over
a gateway. Additionally, a K-means algorithm has been used for configuring the setpoint, in
line with a prediction based on the current building status.

3.5.2 Load forecasting

In BAMSs, forecasting energy consumption is of significant importance to enable an effec-
tive management of energy, in which Al-big data analytics techniques play an essential
role. In doing so, load patterns (and ambient conditions) are constantly collected from
diverse building smart-meters and then fed into the Al models to predict energy usage.
Because of the real-time characteristic of short-term forecasting, it has been more chal-
lenging than generic forecasting. Thus, various Al-big data analytics models have been
proposed (Chou and Tran 2018; Ahmad and Chen 2018; Seyedzadeh et al. 2018; Fathi
et al. 2020). In Pham et al. (2020), a random forests (RF) model is introduced to perform a
short-term energy load prediction at an hourly sampling rate in various buildings by using
different energy consumption datasets. In Seyedzadeh et al. (2019), the authors investigate
the performance of diverse popular ML algorithms to predict buildings heating and cooling
energy usage. Accordingly, specific tuning has been carried out for every ML algorithm
using two building energy consumption datasets generated in EnergyPlus and Ecotect. In
Ribeiro et al. (2018), a transfer learning based load prediction scheme is introduced, where
energy consumption data of different buildings are used to forecast the load of a new build-
ing. This approach can work with various ML algorithms with pre- and post-processing
phases.

In Moon et al. (2018), Moon et al. propose an energy prediction model using diverse
ML models, including ANN, SVR, and PCA-factor analysis (PCA-FA). Data from four
buildings in an academic institution have been used for evaluating the performance of
these models. In Ahmad et al. (2020), an intelligent load prediction scheme is proposed
using generated sampled data-based Gaussian process regression model (GSD-GPRM),
regression binary decision tree (RBDT), bootstrap bagging of regression trees (BBRT) and
binary multiclass classification decision tree (BMCDT). In Idowu et al. (2016), supervised
ML algorithms are used to develop a load forecasting model using SVM, regression tree,
feed-forward neural network (FFNN), and multiple linear regression (MLR). Moving on,
in Ahmad et al. (2018), diverse supervised ML models are implemented to predict energy
consumption at short, medium, and long-term levels in different building environments,
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namely compact regression Gaussian process (CRGP), binary decision tree (BDT), gen-
eralized linear regression model (GLRM) and stepwise Gaussian processes regression
(SGPR). In Chou and Ngo (2016), a short-term based energy prediction system is proposed
using a seasonal autoregressive integrated moving average (SARIMA) model along with
a metaheuristic firefly algorithm-based least squares support vector regression (MetaFA-
LSSVR) model. Typically, this framework uses (i) the SARIMA architecture for linearing
energy observations, and (ii) the MetaFA-LSSVR model for capturing nonlinear energy
patterns.

In Li et al. (2021), a transfer-learning-based ANN scheme is developed to predict
short-term energy consumption in information-poor buildings. The efficiency of trans-
fer learning in improving the prediction accuracy has been demonstrated using limited
training data. Moving on, in Grolinger et al. (2016), a short-term energy consumption
prediction of sports facilities, which is considered as a challenging scenario due to the
variations caused by by the hosted events, is performed using NN and SVR. In Zheng
et al. (2017), a short-term energy prediction approach using an empirical mode decom-
position (EMD)-LSTM-based RNN is proposed with a Xgboost model to select feature
patterns based on a feature importance evaluation. In a similar manner, in Haq et al.
(2021), a sequential learning-based load forecasting algorithm is developed and used
in both residential and commercial buildings. Accordingly, this framework implements
a convLSTM integrated with BILSTM (ConvLSTM-BiLSTM) and compares its perfor-
mance with various sequential models, including ConvLSTM integrated with BiLSTM,
LSTM, auto-encoder (AE), multi-layer Bi-LSTM (MBiLSTM), BiLSTM-AE, GRU,
and CNN with multilayer bidirectional GRU (CNN-MB-GRU). Fig. 4 illustrates a
flowchart of an energy forecasting system based on Al-big data analytics. Specifically,
a short-term energy consumption prediction is performed using EMD-LSTM neural
networks with a Xgboost algorithm to extract importance features. Besides, Moradza-
deh et al. (2020) propose a heating and cooling load forecasting scheme that is based
on MLP and SVR in residential buildings. These models help identify a linear map-
ping between inputs and outputs. MLP has outperformed SVR in terms of the recall
metric, where a recall of 99.93% has been achieved. To summarize, Table 3 compares
various Al-Big data analytics frameworks used for energy forecasting, in terms of Al
model, forecast horizon, building environment, year of appearance, method description
and evaluation metrics.

3.5.3 Energy efficiency

One area that can get immensely benefited from Al-big data analytics is energy effi-
ciency in buildings. This is because of the way a building consumes energy can be
quite variable, and is related to various parameters, e.g. the nature of the building,
the energy provider, the sources of the energy, the number of devices, the number of
end-users/occupants in any building, the behavior of end-users/occupants, etc. Himeur
et al. (2021); Fatema et al. (2020). Moreover, comprehending the energy consumption
habits of a building is the first and most critical step to achieve energy efficiency. This
way, Al-big data analytics and energy efficiency can go hand in hand towards the goal
of optimizing energy consumption and reducing the amount of wasted energy without
compromising the comfort level of end-users and the level of efficiency and productiv-
ity in a company or industry Sardianos et al. (2021).
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Fig.4 Flowchart of an energy forecasting system based on Al-big data analytics (Zheng et al. 2017)

In (Yu and Chiller), Yu et al. propose an open IoT cloud-based ML system, namely
Al Chiller, to promote energy efficiency in buildings by optimizing the consumption of
the HVAC system. An Al-big data analytics scheme based on an RNN-LSTM architec-
ture and to analyzing and fusing BAMS environmental footprints has been developed
and combined with a genetic algorithm to achieve 10% savings. In Al-Ali et al. (2017),
energy saving in residential buildings in the Gulf region is achieved using IoT, off-the-
shelf business intelligence, and big data analytics platforms.

3.5.4 Predictive control and thermal comfort

One solution to save buildings’ energy is using model predictive control (MPC). It aims at
developing predictive models for (i) simulating input-output interactions; and (ii) helping
users to identify optimum control actions that drive the predicted outputs to the desired
references. In this context, ML models predict energy demand and simulate MPC con-
trol techniques to save energy and optimize end-users’ comfort. Typically, these models
can provide decision bases for selecting optimal MPC control actions Serale et al. (2018);
Mariano-Hernandez et al. (2021). In Gao et al. (2020), building thermal comfort control
is conducted using RL, where a deep feed-forward neural network (FNN)-based method
is introduced. The latter helps predict consumers’ thermal comfort before introducing a
deep deterministic policy gradients (DDPGs)-based scheme to optimize thermal comfort.
In Yang et al. (2020), an MPC approach based on an RNN with nonlinear autoregressive
exogenous (NARX) architecture, namely NARX-RNN, is proposed to optimize air con-
ditioning and mechanical ventilation (ACMYV) in a hospital office and hence save energy
and optimize thermal comfort. Similarly, in Yang et al. (2021), the same methodology is
experimentally implemented to control the ACMV systems in office and lecture theatre
(LT) testbeds in real-time. In Chen et al. (2020), Chen et al. developed an MPC approach
based on deep transfer learning to optimize the HVAC operation in smart buildings.
Moving forward, in Biinning et al. (2020), an RF-based data predictive control (DPC)
scheme is proposed using convex optimization and affine functions. This help in controlling
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energy consumption and temperature in a room of a real-life apartment. In Yang and Wan
(2022), Yang et al., RNN-NARX-based MPC is introduced with instantaneous lineariza-
tion for ACMV optimization. Table 4 summarizes some of the recent ML-based MPC
frameworks described above, their characteristics, and their contributions. Most concen-
trate on controlling HVAC and ACMYV systems in buildings since they consume the most
significant proportion of building energy. Thus, this significantly impacts the thermal com-
fort of buildings’ occupants.

3.5.5 Anomaly and fault detection and diagnosis

Failures in building electric networks and devices’ operation cycles may result in exces-
sive energy losses and extra costs. To alleviate these issues, Al-big data analytics are a
prevalent tool that enables detecting faults and disturbances early enough and predicting
maintenance. That is possible by implementing continuous energy consumption monitor-
ing to create “an early warning system” empowered with Al-big data analytics strategies
and pattern recognition models to notify the end-users and operators Alsalemi et al. (2020).
Accordingly, information related to energy consumption, environmental conditions, and
occupancy patterns is fed into the Al black-boxes to identify and classify deviations. Once
deviations are classified, their causes are determined before taking appropriate measures
for their prevention Himeur et al. (2020), Alsalemi et al. (2020).

In this regard, a plethora of Al-based frameworks have been proposed to develop Al-
big data analytics platforms that allow building energy efficiency Himeur et al. (2021).
In Himeur et al. (2020), a DNN model and the micro-moment concept have been used
to identify energy consumption deviations. A micro-moment rule-based algorithm is
employed to extract load features of daily intent-driven energy usage moments. Next,
DNN is applied to classify and determine abnormal consumption classes automatically
and then compare the performance with various scenarios using conventional ML clas-
sifiers, e.g. LR, LDA, NB, SVM, RF, KNN, DT, ensemble classifier, and MLP. Simi-
larly, in Himeur et al. (2021), unsupervised and supervised anomaly detection schemes
are introduced to promote energy saving in academic and residential buildings. OCSVM
is applied to extract abnormal energy consumption patterns from unlabeled data, while
an improved kNN classifier is proposed to process annotated consumption footprints
that are benchmarked using the micro-moment concept. In Xu and Chen (2020), a
hybrid model using RNNs with quantile regression (QR) is proposed for anomaly detec-
tion in residential houses towards improving the performance of the building and reduc-
ing energy waste (Table 5).

Additionally, fault detection and diagnosis in HVAC systems, being the most exten-
sively operated equipment, has been covered widely in the literature. For instance, the uti-
lization of the different configurations of deep RNNSs is investigated in Taheri et al. (2021)
to perform fault detection and diagnosis of common HVAC system faults, such as the mal-
function and leakage of valves and dampers and sensor bias faults. A comparative study is
presented comparing the performance of a DRNN-based diagnosis approach with RF and
GB algorithms. In Yun et al. (2021), a neural network-based supervised auto-encoder (NN-
SAE) - which is an auto-encoder with two outputs that are the classification label and the
reconstructed signal- is proposed for air handling units fault detection and diagnosis before
its validation using ASHRAE experimental data. The two outputs of the NN-SAE have
been then processed to determine the diagnosis decision reliability. This approach has been
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compared with conventional ANN and SVM algorithms, and it has been found reliable as it
considers undefined situations.

Additionally, a 2D CNN-based HVAC system actuator fault diagnosis is introduced in
Elnour and Meskin, in which the system’s measurements and control signals were con-
figured into multi-channel images and then processed using the 2D CNN-based diagno-
sis framework. CNNs are characterized by their high-performance accuracy and powerful
capability in learning and realizing complex functions and interdependency from any given
data. While in Liu et al. (2021), a CNN-based chiller fault diagnosis method is developed
for building energy systems. Additionally, a TRL-based scheme is assessed to investigate
the potential of using a pre-trained CNN-based fault diagnosis approach for chillers with
different specifications, which is useful when available data is limited in size and/or types
of operating conditions/faults captured.

In Dey et al. (2020), a big-data framework is presented to enable automated HVAC sys-
tem fault diagnosis in large scale buildings in which a feature extraction approach is pro-
posed to reduce the data dimensionality, and a multi-class SVM (MCSVM) algorithm is
utilized to develop the diagnosis model. It aims to provide energy savings through preemp-
tive maintenance, behavior analysis, and predictive building identification. In Bode et al.
(2020), various ML algorithms are investigated to perform fault detection on a heat pump
system, which are LR, kNN, classification and regression tree (CART), RF, NB, SVM, and
NNs. This study demonstrates the effect of the data quality and amount and the limitations
on the system’s features availability (i.e, types of available sensors) on the performance of
the developed ML models. While in Han et al. (2020), a supervised hybrid fault diagnosis
model using SVM, kNN, and RF is developed for chiller fault diagnosis such that the three
models are developed independently to perform fault diagnosis; then the final decision is
made based on the plurality voting method. It was found that ensemble learning contributes
to diagnostic performance improvements. In Li et al. (2021), a fault diagnosis approach
is proposed for the common component faults in the HVAC system of an office building
using a modified GAN. The proposed approach enables leveraging the labeled and unla-
beled data simultaneously such that it aims to process the unlabeled data and utilize the
limited information from the labeled ones to conclude the diagnosis decision.

Those fault diagnosis approaches mainly require sufficient labeled data for training,
which can be unavailable or complex, and costly to obtain. Therefore, several studies have
developed unsupervised and semi-supervised diagnosis strategies as in Elnour et al. (2020),
where an auto-associative neural network (AANN) is utilized for sensor data validation
and fault diagnosis in HVAC systems using semi-supervised learning. It demonstrates a
compelling performance in sensor error correction, data replacement of unavailable sen-
sors, measurement noise reduction, and sensor inaccuracy correction. Also, it is effective
for both single and multiple sensor faults diagnoses. In Zhu et al. (2021), transfer learning
is applied to develop a chiller fault diagnosis approach that only requires the system’s nor-
mal operation data using domain adversarial neural network (DANN). While in Shahnaz-
ari et al. (2019), a distributed diagnosis approach using RNNs utilizing the normal system
operation data is developed for multiple sensors and actuator faults diagnosis. It is based on
developing intercommunicating fault detection and isolation (LFDI) agents for the various
HVAC subsystems, i.e., cooling coil, VAV box, etc., and each LFDI agent is composed of
two RNN-based models. It demonstrates promising capability in fault diagnosis. However,
it is excessively computationally demanding, given the two RNN-based models included in
each agent.

Additionally, a multi-level automatic fault detection framework is proposed in Dey
et al. (2020) for fan coil units (FCUs). Feature extraction followed by data clustering are
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applied to identify faulty and healthy data, and then a clustering-based fault diagnosis
model is developed. The least-squares support vector machine (LS-SVM) regression model
is used in Han et al. (2019) to develop a chiller fault diagnosis strategy that is validated
using ASHRAE data. The proposed approach is compared with two other methods using
the SVM algorithm of probabilistic neural networks (PNNs). In Choi and Yoon (2021),
a semi-supervised fault diagnosis approach is proposed for building automation systems
using NN-based auto-encoders (AEs). An AE is a structure that transfers the input to the
latent space then uses the compressed representation to produce a reconstructed version at
the output. Variants of the proposed method are investigated: the residual-based approach
using the error between the original and the reconstructed signal as the indication of the
system status, and the latest space-based approach in which the features of the compressed
representation are used for fault diagnosis.

3.5.6 Indoor environmental quality (IEQ) monitoring

IEQ monitoring continues to grow in importance, several works have demonstrated an
apparent relationship between the increasing concentration of CO, and decreasing cogni-
tive performance (Nejat et al. 2020; Pulimeno et al. 2020). Typically, monitoring ambient
IEQ and temperature can reveal valuable information for creating a healthier, more com-
fortable environment for end-users. It is also a prime opportunity for energy and cost sav-
ings (Saini et al. 2020a). Thus it becomes possible, using detailed Al analytics in BAMSs,
to identify various environmental problems, including air pollution, where different pollut-
ants may affect the IEQ , such as the cleaning products, cigarettes smoke, perfumes, con-
struction activities, water-damaged building materials, and other types of outdoor pollut-
ants (Saini et al. 2020b). Indeed, albeit these gazes are commonly safe for end-users, their
effect on human health can be dangerous if they exceed certain thresholds of exposure. To
that end, an intelligent IEQ monitoring system for classifying and recognizing diverse pol-
lutants and measuring their levels is of utmost importance (Wei et al. 2019; Muiruri et al.
2021).

Before the COVID-19 outbreak, IEQ monitoring was not a priority in public buildings,
e.g. sport venues, banks, healthcare centers, academic institutions, commercial centers, res-
taurants, and so on. However, the fast proliferation of the corona virus and its resulting
harmful effects have put IEQ in the spotlight as an important component of BAMSs. In
Mumtaz et al. (2021), the authors (i) develop an IoT node including various sensors for
collecting data, (ii) introduce a NN model for classifying 8 pollutants, and (iii) design an
LSTM-based DL model for predicting the concentration of every pollutant and the overall
IEQ. In Mad Saad et al. (2017), a pollutant recognition scheme is proposed for IEQ moni-
toring using different supervised ML algorithms, including MLP, KNN and linear discrim-
ination analysis (LDA). The evaluation has been conducted in a residential building located
in a rural area in China, where 5 different indoor air pollutants were considered (combus-
tion activity, presence of chemicals, presence of food and beverages, ambient air, and pres-
ence of fragrances). While in Loy-Benitez et al. (2020b), Loy et al. introduce an ML-based
scheme for detecting, diagnosing, identifying, and reconstructing abnormal observations
of multivariate IEQ data in a subway station. Accordingly, a memory-gated RNN-based
autoencoders (MG-RNN-AE) that can process dynamic and sequential IEQ data has been
utilized.

In Cruz et al. (2020), an IEQ prediction model is developed using SVM radial basis func-
tion (SVM-RBF) and stochastic Gradient Boosting machines (SGBM). The performance of
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of these models has been evaluated using root mean squared error (RMSE) and R?, and a
comparison with other ML algorithms has been presented. In Tastan and Gokozan (2019),
a real-time IEQ monitoring system is designed using and IoT-based e-nose and diverse ML
classifiers, including SVR, generalized regression neural network (GRNN), and extreme
learning machine (ELM) with Gaussian kernels. The linear correlation (LC) has been used
for evaluating this framework. In Sharma et al. (2021), a cost-effective framework for [EQ
prediction is introduced, where MLP and eXtream Gradient Boosting Regression (XGBR)
are used for providing real-time measurements of the concentration of pollutants, i.e. CO,
and particulate matter 2.5 (PM, ;) in a set of classrooms. Moving on, an LSTM without
using the forget gate (LSTM-wF) is deployed to predict the air quality at a lower complex-
ity and increase the prediction performance.

In Alawadi et al. (2020), an indoor temperature forecasting scheme is proposed, where
up to 36 ML models (pertaining to 20 different families) have been deployed. Real-world
data gathered for three hours from both smart households and weather station have been
used to validate this study. Similarly, in Aliberti et al. (2019), Aliberti et al. propose a
smart solution for indoor air-temperature prediction, where a non-linear autoregressive
neural network (NN-ARNN) has been utilized to perform short- and medium-term fore-
casting. This model has been then validated on both a synthetic dataset and real-world data
recorded using IoT devices installed in residential buildings.

As CO, concentration is appropriate for measuring the IEQ quality due to its over the
sensor networks, a set of frameworks have adopted it. For instance, in Taheri and Razban
(2021), an ML-based IEQ monitoring approach is proposed by predicting CO, concentra-
tion in the academic building (campus classrooms) using demand-controlled ventilation.
Various ML algorithms have been employed and compared to learn the CO, concentration,
among them SVM, AdaBoost, RF, Gradient Boosting (GB), LR, and MLP. In a similar
way, Kallio et al. (2021) propose a smart approach to forecast office indoor CO, concentra-
tion by adopting four ML algorithms, i.e. ridge regression (RR), DT, RF, and MLP. Moreo-
ver, a baseline to evaluate the indoor CO, prediction has been introduced by producing
a benchmark dataset covering an entire year. Moving on, In Tagliabue et al. (2021), an
ML-based IEQ monitoring approach that relies on measuring the CO, concentration in an
academic building is proposed. Specifically, an LSTM-based RNN models and IoT sen-
sors have been then used for monitoring the indoor conditions depending on the occupancy
patterns.

Other IEQ monitoring frameworks have focused on measuring and predicting other
factors, which are recommended in various countries, such as total volatile organic com-
pounds (TVOC), formaldehyde (HCHO), and carbon monoxide (CO). For instance, in
Chen et al. (2018), Chen et al. use four ML models, including SVM, Gaussian processes
(GP), M5P and backpropagation neural network (BPNN) for predicting CO,, HCHO, and
TVOC in an academic building (in Singapore). In a similar way, in Lagesse et al. (2020),
various ML models are utilized for predicting PM, s in office buildings, i.e. ANN, LSTM,
multiple linear regression (MLR), partial least squares regression (PLS), distributed lag
model (DLM), and least absolute shrinkage selector operator (LASSO).

Other Al-big data analytics have also been used to perform additional tasks. For exam-
ple, Loy et al. (2020a) introduce a variational autoencoder (VAE) coupled with convo-
lutional layers (VAE-CNN) model to impute missing IEQ data. Accordingly, two sce-
narios have been adopted to evaluate the VAE-CNN algorithms: (i) a point-to-point data
removal, and (ii) data intervals removing at different sampling rates. While in Kalajdjieski
et al. (2020), the capability of generative adversarial networks (GANs) is exploited in
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combination with a data augmentation technique for overcoming the class-imbalance issue
while monitoring IEQ using large-scale datasets. Table 6 outlines pertinent Al-Big data
analytics frameworks introduced for monitoring IEQ and performs a comparison between
them, with reference to the AI model, forecast horizon, building environment, year of
appearance, method description and evaluation metrics.

3.5.7 Security and safety

Among the major safety concerns in general and in buildings, in particular, are the fire out-
break. The prevention of and the immediate reaction to fires minimizes their consequences
in terms of the people’s well-being and the financial losses. This includes the minimization
of fire incidents potentials, the fast detection and extinguishment of the fire source, the
effective execution of emergency evacuation, and the prompt notification of the emergency
situation to the concerned authorities. Buildings are usually equipped with conventional
fire alarm and extinguishment systems consisting of several sensing devices, including
smoke, heat, and flame detectors, automated alarms, and water sprinklers (Zverovich et al.
2016). With the advent of big data algorithms and analytics, the fire safety in buildings can
be boosted by employing buildings data to develop frameworks for fire prevention, detec-
tion, and suspension. An analysis of the advantage of utilizing ML algorithms for reliable
and prompt fire detection was provided in Surya (2017) represented in their distinguished
capability of black-box modeling, feature extraction, pattern recognition with high accu-
racy and reliability. Unlike conventional fire detection systems, ML-based models can be
used to detect fire, analyze it effects, assess its risks, predict its behavior utilizing the data
collected from the sensing devices.

For example, in Zhang et al. (2021), a model combining a deep belief network (DBN)
and a recurrent LSTM neural network (R-LSTM-NN) was proposed for fire hazards pre-
diction in smart cities. The proposed model was used in predicting the air quality that is
then used to detect fire outbreaks based on the sensors readings of the IoT system. It shows
promising potential in when data records of the IoT system are available for normal opera-
tion and scenarios of fire occurrence. In Fu (2020), a comparative study was presented
using ML algorithms, namely, DT, KNN, and NN, to develop classification models to pre-
dict failure patterns and to assess the progressive collapse potential for steel framed build-
ings in fire. The study aimed to develop a reliable fire assessment tool for practitioners and
the developed framework demonstrated a satisfactory performance overly. In Sultan Mah-
mud et al. (2017), another comparative study was conducted for developing an intelligent
fire detection system with early notification system in which data mining algorithms such
as DTs, Bayesian networks (BayesNet), NNs, and SVM were used to develop data-driven
classifiers using supervised learning. Moreover, the proposed smart fire detection system
employed an edge detection model to analyze the data collected from the cameras to con-
firm the fire detection decision. In Huda et al. (2012), an Al-based framework was pro-
posed to assess the thermal condition of electrical installations in buildings to prevent the
potential of injuries and fire hazards using infrared images. Raw data was processed using
PCA for features selection that are then used to develop an NN-based classifier to deter-
mine the condition of electrical equipment.

In Ouache et al. (2021), a fire safety assessment framework was proposed to help pre-
dict the potential fire impacts and recommending optimal fire intervention strategies in
multi-unit residential buildings using NNs. Supervised learning was used to train a NN
based on 5 predictors, among which are the mean of the initial fire detection (i.e., smoke
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detector, heat detector, visual, etc.), the action taken to fight fire (i.e., occupant response,
fire department, BMS, etc.), and the performance of the BMS in fire detection and exten-
sion. The fire impact assessment covered several aspects, which are the occupant response
to the incident, fire extension, fire damage, and financial losses. The proposed framework
demonstrated a remarkable ability to predict fire impacts accurately, and it represented a
promising solution to define and regulate fire safety strategies.

The security of the automation and management system in buildings has become more
imperative due to the rapid advancement in the technologies used and the IoT systems.
The industry predicts that the IoT market will grow from an installed base of 30.7 Bil-
lion devices in 2020 to 75.4 Billion in 2025 (IoT Security Foundation), which will expose
them to increased risk of advanced attack vectors. According to Kaspersky Lab, nearly four
in ten buildings were targeted by attacks in the first half of 2019 , and it is expected that
the impact of cyberattacks on the building and construction industry will be significant
in the coming years (Kaspersky). In Elnour et al. (2021), an attack detection framework
for false data injection was proposed for a multi-zone HVAC system in office buildings
utilizing an isolation forest (IF) algorithm. The operational data of the system’s sensor and
control command signals were used to develop the detection model using semi-supervised
learning. Isolation forests are characterized by the low computational requirement and
capability to handle to complex and multi-variate data. They work based on pointing out
anomalies using the concept of isolation, which improves the attack detection capability.
Feature selection was applied to the raw data, and the study presented a comparative analy-
sis of two models for feature reduction, which are PCA based model and a 1D-CNN-based
model.

In de Assis et al. (2020), a security system for industrial IoT was proposed in which
a CNN-based classifier was developed to identify distributed denial of service (DDoS)
attacks in software-defined networks (SDNs). This system is based on supervised learn-
ing from the labeled network data of the IoT system. CNNs are advantageous for their
high accuracy and classification performance, and powerful capability in realizing com-
plex interdependency from multi-variate and sophisticated data. While in Aboelwafa et al.
(2020), a residual-based attack detection framework was presented in which an NN-based
auto-encoder was trained to profile normal system behavior. Then, non-conforming obser-
vations are identified as anomalies based on the generated residuals between the input and
the output of the AE. Auto-encoders are used to learn the latent feature representation
of the system using healthy operational data. They are also used for data dimensionality
reduction, noise filtering, information retrieval, etc. In Yahyaoui et al. (2020), a preliminary
demonstration of a ML-based intrusion detection system for data protection in healthcare
centers was presented. An SVM model was developed using the labeled data of the IoT net-
work and it demonstrated a promising performance in detecting malicious actions launched
against the IoT system. The accuracy of the proposed framework was assessed based on
the energy consumption in the communication network because attacks result in increased
energy usage due to the increased network traffic. Table 7 highlights and compares existing
AI-Big data analytics frameworks introduced to ensure security and safety in BAMSs.

3.5.8 Occupancy detection
Occupancy data are collected by various sensors and devices in buildings to help improve

the efficiency of the BAMSs in terms of energy utilization and occupants’ comfort and
well-being. These include cameras, infrared sensors, and carbon dioxide detectors
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(Sardianos et al. 2020; Sayed et al. 2022). The data can be directly used as inputs to con-
trol and regulate some of the buildings’ equipment, such as lights, air conditioning, doors,
etc. Additionally, scholars and researchers utilize big data analytics to develop approaches
for analyzing and processing building occupancy data to facilitate an efficient and reliable
overall building management (Sardianos et al. 2020).

In Huang and Hao (2020), a DL-based visual recognition was used to implement an
occupancy detection framework utilizing CNNs. The proposed approach was used to deter-
mine the number of people present and their location to help operate demand-based HVAC
systems more reliably and efficiently. It was found that the proposed approach outperforms
the conventional occupancy detection systems in terms of accuracy, precision, robustness,
ability to provide occupancy count, and ability of static and dynamic occupancy detection.
It also requires hardware and computational considerations as CNNs have a high computa-
tional overhead. In Acquaah et al. (2020), a study was presented to estimate the occupancy
count based on thermal images using CNNss for feature extraction and SVM for multi-class
classification. Two well-known CNN architectures were investigated, which are the 50 lay-
ers ResNet (ResNet-50) and AlexNet using transfer learning due to their superior perfor-
mance in image processing (He et al. 2016; Krizhevsky et al. 2012). In Tien et al. (2021), a
computer vision-based occupancy and equipment usage detection framework was proposed
to facilitate a demand driven control of the HVAC system in an office room. A multi-class
region-based CNN model was developed and deployed to analyze camera images. It can
predict the occupancy count, activity type (i.e. sitting, walking, etc.), and equipment usage
in real-time.

A thermal-based occupancy detection approach was presented in Zhao et al. (2018)
in which data-driven models were developed using SVR and RNN to predict occupancy
information using the building’s properties, including indoor temperature, towards man-
aging energy use and security monitoring in intelligent buildings. That is, the interac-
tion of the thermal components present in the conditioned space and the necessary part
of determining thermal consistency is indicated by the indoor temperature. Supervised
learning was used to train the ML models using simulation data generated from Energy
Plus such that the target outputs were the occupancy count. The work in Elkhoukhi
et al. (2020) combined the IoT technology and Big data analytics to implement real-
time occupancy detection such that data of the indoor lighting, temperature, humidity,
and CO, levels were used to predict the status of the building occupancy. Two models
were developed and tested, one using LDA and the other using vertical hoeffding tree
(VHT) for offline and online occupancy detection, respectively. Additionally, in Fatema
and Malik (2021), feature extraction and correlation analysis were performed on indoor
sensors data (i.e., temperature, CO, level, light intensity, humidity) and then particle
swarm optimization was used to train an NN-based occupancy detection model. It dem-
onstrated improved classification performance compared to conventional NNs optimized
using the back-propagation algorithm.

In Wu and Wang, a ML-based model was proposed to improve the operation of the
BAMS due to the shortcomings of infrared sensors for stationary occupancy. The model
predicted the occupancy status based on multiple statistical features of the signals acquired
by the infrared sensors. ML algorithms were investigated, among which SVM demon-
strated the best performance due to its ability to capture complex and nonlinear functions,
and its efficacy in handling high dimensional data. In Huchuk et al. (2019), a comparative
analysis was presented for occupancy forecasting using ML algorithms based on thermo-
stat data. The prediction model was intended to optimize the operation of the air condition-
ing system, such that both the present and the future occupancy information is taken into
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consideration. It was found that RF algorithm outperformed the LR, the Markov model, the
hidden Markov model (HMM) and the RNN, which is based on the bagging technique in
which multiple models on different subsets of the training dataset are developed, then their
predictions are combined to conclude the final output of the RF model. However, occu-
pancy forecasting is only dependable when the building does not exhibit rapid and random
fluctuations in the user profile, which is generally the case for residential buildings.

In Razavi et al. (2019), a comparative study was presented for the utilization of super-
vised ML algorithms such as SVM, RF, KNN, and NN to estimate and predict occupancy
information in residential buildings based on power meters data. It was found that the
reliability of occupancy prediction is lower for the larger forecast horizons. In Feng et al.
(2020), a DL-based approach is proposed combining a CNN and a bidirectional LSTM
network for occupancy detection in houses based on electrical data of advanced metering
infrastructures (AMIs). The data essentially contain readings of electric current, voltage,
and power that are processed by the CNN for spatial feature extraction. Using supervised
learning, the extracted features are then fed to the BILSTM network to solve a binary classi-
fication problem to identify the occupancy condition in real-time. The proposed framework
demonstrated improved performance when compared to other ML and DL based models
due to its ability to interpret the spatial and contextual features of the data. However, since
detailed occupancy information are mostly not recorded and hence not available, super-
vised learning-based approaches that are based on such a detailing in the data (i.e., people
count) can be impractical and difficult to implement using actual building data. While in
Pesic et al. (2019), a LSTM network-based framework was proposed to perform occupancy
detection and forecasting as well as data analytics based on Bluetooth positioning and WiFi
utilization data of the IoT infrastructure in a multi-story residential building. The network
data were pre-processed to extract the information of the occupancy of the apartments,
then used to develop the LSTM network to predict and forecast occupancy condition and
patterns in the different spaces of the building. The proposed work demonstrated the effec-
tive fusion of Bluetooth and WiFi data as well as the successful deployment of NN-based
data analytics using wireless networks data for occupancy detection application. Table 8
summarizes the relevant AI-Big data analytics frameworks developed to detect occupancy
profiles.

3.5.9 Water usage management

Almost all kinds of buildings are users of water, although the cost of water and sewer ser-
vices varies from area to area and can become a significant expense. Worse, in areas where
there is a shortage of water, it is not only a big expense, but an imperative to conserve.
Therefore, it becomes of significant importance to bring the monitoring of water levels
and switching points of all wet applications in buildings to the BAMS. Furthermore, water
monitoring systems can benefit from the advancement of Al and ML technologies for
improving their performance (Sun and Scanlon 2019). Typically, by harnessing the power
of Al-big data analytics, it is possible to maximize information and data available and
hence make better decisions while enhancing service delivery and reducing costs (Rahim
et al. 2020).

In this context, using Iol' water meters with wireless connectivity (Bluetooth,
LoRaWAN, etc), it becomes relatively easy to install water meters within the building.
These can be as simple as pulse style meters that can easily be integrated into a BAMS.
Moving on, adopting Al-big data analytics to analyze data from water meters has become
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Fig.5 Flowchart of water usage monitoring system used to detect water leaks and optimize water consump-
tion (Jenny et al. 2020)
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crucial for optimizing the management of water resources and sustaining growth and devel-
opment. Accordingly, various Al-big data analytics frameworks have recently been pro-
posed with the aim of (i) processing complex nonlinear water data, (ii) forecasting water
demand, (iii) predicting water meter failures, or (iv) monitoring the quality and tempera-
ture of the water. Fig. 5 illustrates the flowchart of a water usage monitoring system used to
detect water leaks and optimize water consumption (Jenny et al. 2020).

In Altunkaynak and Nigussie (2017), water demand prediction is conducted by first using
multiplicative season algorithm (MSA) to extract pertinent information from water meter
records and also capturing periodicity and converting nonstationary signals into stationary sig-
nals. Following, their output is fed into an MLP for accurately predicting water demand. The
RMSE and Nash-Sutcliffe coefficient of efficiency have been adopted to evaluate the predic-
tion performance of the learning model and its ability to extend prediction lead time. Shine
et al. (2018), diverse ML models are used for predicting water consumption in an agricultural
building based on analyzing data collected from a remote monitoring system. Thus, RF, ANN,
SVM, and CART decision tree (CDT) algorithms were trained to predict water consumption,
where a backward sequential variable selection was adopted for excluding variables adding
low predictive power along with a hyper-parameter tuning with nested cross-validation for cal-
culating the prediction accuracy for each model. In a similar way, in Smolak et al. (2020),
three ML algorithms are implemented and compared for predicting water usage, i.e. RF, SVM,
ARIMA. The water consumption data augmented with end-users occupancy patterns were
used to improve the prediction accuracy. A novel approach to process and correlate between
occupancy and water usage time-series was introduced. This framework was validated on 51
days of water consumption readings and over 7 million occupancy patterns from urban areas.

On the other hand, by using Al-big data analytics, it is also possible to monitor water quality
and hence improve water resources management plans. In Chen et al. (2020), 10 ML models
are deployed to water quality prediction (WQP). Specifically, DT, NB, LR, LDA, completely-
random tree (CRT), KNN, SVM, RF, and deep cascade forest (DCRF) have been trained using
water data from a hydro-electric power (HEP) plant, including pH, DO, CODMn, and NH3-N
to forecast water quality. The precision, recall, F1 score, and weighed F1-score (wF1) have
been selected to evaluate the prediction performance of the ML algorithms. In Roccetti et al.
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(2019), Rocecetti et al. develop an ML-based classifier, which is personalized for predicting the
failure of a water meter. Typically, an RNN model is deployed for (i) processing 15 million
of readings collected from 1 million of mechanical water meters, and (ii) extracting relevant
patterns representing the complex phenomenon of defective water meters. This has helped in
achieving more than 80% accuracy in detecting failures.

In Wang et al. (2018), water demand of urban areas is predicted using gravitational search
algorithm (GSA) and backtracking search algorithm (BSA) with ANN with regard to various
weather parameters. While in Antunes et al. (2018), four ML models are selected to predict
water demand, including ANN, RF, SVM and KNN, through the analysis of real-world data
from two Portuguese water utilities. Moving forward, a weighted parallel strategy for com-
bining multiple ML algorithms is introduced to improve the prediction performance. Moreo-
ver, additional data related to weather, seasonality, and feature extraction (forecast window
of time-series data) are also analyzed. In Nasser et al. (2020), the water demand prediction is
performed using an LSTM model based on analyzing data gathered from intelligent IoT water
meters. A cloud platform has been used to store water consumption records, enabling near
real-time data streaming and storing. The performance of LSTM has been then compared to
those of SVR and RF. Similarly, in Du et al. (2021), Du et al. propose an LSTM model that
combines discrete wavelet transform (DWT) and PCA to forecast daily urban water demand.
Therefore, after smoothing the outliers of water demand time-series, noise components are
removed using DWT and pCA. Following, the LSTM network is deployed to predict urban
water demand using the outputs of DWT and PCA. Table 9 presents the main AI-Big data
analytics frameworks proposed for water management in buildings.

3.6 Evaluation metrics

Evaluation metrics are used to measure the performance of the model in terms of the
quality of its output as per what is expected. For Al applications, there are various
types of metrics that can be used based on the subject matter. That is, the outputs of
an Al model can take two forms, which are categorical variables (Cvars) and quantita-
tive variables (Qvars). For instance, the outputs of classification models represent cat-
egorical variables in which the input data are classified into different groups or classes
which are characterized by a unique label or value such as detection problems, rec-
ommender systems, etc. Each observation can be placed in a single category, and the
categories are mutually exclusive. Hence, the performance of the model depends on its
ability to correctly classify the observations to their respective categories/groups.

On the other hand, quantitative variables represent numerical values that exhibit
quantitative characteristics. Regression models have quantitative variables as outputs
such as forecasting and estimation models in which the AI model is used to represent
the mapping between the independent variable(s)—i.e., the input(s)—and the depend-
ent variable(s)—i.e., the output(s)—. In this case, the quality of the model is measured
by the closeness of the model’s outputs to the ideal expected values. Table 10 presents
a summary of the common metrics used to evaluate Al models.
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4 Critical discussion and current challenges

A truly smart building combines a BAMS with intelligent data analytics software that
offers helpful insights for maintenance, service, and efficiency opportunities. Typically,
these tools together offer benefits for building owners, such as: (i) providing a high-
level, system-wide big data capture of the entire operations, (ii) ensuring air quality
control and a healthier building environment, (iii) saving energy and energy consump-
tion during off-peak or low occupancy periods, (iv) eliminating waste from everyday
system usage through intelligent sensor data, (v) offering guidance for performance
improvements for individual assets, (vi) addressing equipment that really needs repair
and not just those on a fixed schedule that don’t need to be serviced, and (vii) offering
advanced automation capabilities and actionable results. In addition to these benefits,
the cost savings related to the use of smart data analytics can be significant.

However, various gaps specific to each application field of Al-big data analytics
are identified. Among them, more effort should be put to efficiently carrying out text
analytics on operators’ work-order logs; and identifying (i) the information to derive,
(ii) the text-mining methods to adopt, and (iii) the efficient approaches to convey the
information to the operator and visualize it. Moreover, another challenging issue con-
cerns the use of virtual metering, where a limited number of works were dedicated to
virtual meter development (Kim et al. 2021; Wilcox 2020) despite its significance in
helping operators for understanding plant-to-zone water and energy flows and ranking
their operational decisions, such as identifying and evaluating faults.

The HVAC prognostic and failure prediction is another application that is still very
challenging, where limited research activity was conducted to target this challenge. In
fact, developing prognostics models is valuable for (i) predicting the time-to-failure,
(i1) avoiding global failures in key BAMS components (e.g. boilers, chillers, pumps,
fans, etc.), and preventing disruptions in building services. In addition, there are new
challenges from emerging BAMSs that need to be addressed, e.g. data benchmarking,
big data security and privacy, scalability and interoperability, real-time big data intel-
ligence and knowledge transfer.

4.1 Data quality issues

Usually, raw data gathered from BAMSs can have some data quality problems, including
(i) outliers, (ii) noise, (iii) inconsistent data, (iv) duplicate data, and (v) missing values.
Data pre-processing techniques are deployed to overcome these issues, such as formatting,
cleaning, and resampling. Formatting aims at converting the raw data into appropriate for-
mats to ease the application of ML algorithms, while cleaning refers to removing or replac-
ing missing samples (Zhang et al. 2021). Lastly, resampling can be applied based on the
requirements of ML algorithms. Typically, it can be (i) a down-sampling to reduce data
redundancy, foster the processing and improve the accuracy; or (ii) an up-sampling that
helps increase the amounts of data to train data-hungry ML models, especially DL algo-
rithms (Elnour et al. 2022). To that end, because of the high requirements for data quality
set by ML models, developing novel strategies to improve the quality of BAMS recorded
data by creating additional data with enhanced quality or augmenting existing datasets is a
crucial challenge.
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4.2 Data scarcity and data benchmarking

The different applications of BAMSs necessitate extensive historical data to train the
Al-big data analytics, especially those based on DL algorithms before they can be used
reliably. However, large-scale data might not be available for some reason or can not be
recorded representatively and sufficiently in a short time when we study newly-built envi-
ronments. Fortunately, the problems addressed within each specific Al-big data analyt-
ics task in BAMSs illustrate some similarities. This could be justified by the fact that the
different application tasks, despite studying distinct problems, use the same data-driven
algorithms which are validated on slightly similar datasets collected from different kinds
of buildings and devices. This has opened opportunities for using knowledge transfer and
transfer learning to overcome the lack of datasets in some situations, e.g. sports facilities.

On the other hand, collecting and benchmarking data represents the most significant
challenge so far when applying Al-big data analytics in BAMSs, especially for the case of
large buildings, i.e. sports facilities, commercial centers, industrial buildings. Many tasks
require annotated datasets to train Al models and validate them. Indeed, developing and
validating new data-driven algorithms require recording and annotating large-scale data-
sets, especially when using DL algorithms that are notoriously data-hungry (Kucera and
Pitner 2018). Improving the performance of BAMSs does not rely only on the selection of
Al algorithms but also on the quality and parameters of datasets used to train them.

For instance, labeled and accurate anomaly detection datasets are needed for develop-
ing new automatic anomaly detection solutions. Similarly, development and validation of
occupancy detection algorithms require repositories of building occupancy profiles with
concurrent ground-truth people counts. In this context, to further improve the performance
of BAMSs, public and open-access datasets are needed for different application fields (e.g.,
load forecasting, anomaly and fault detection, demand response, occupant-centric controls,
IEQ monitoring, water monitoring, etc.) for assessing the Al-big data analytics algorithms
developed by the Al Community (Park et al. 2019; Francisco et al. 2020).

From another hand, successful sustainability strategies to overcome this issue could be
via (i) incentivizing buildings/facilities managers for participating in benchmarking cam-
paigns and surveys organized for different application fields, and (ii) encouraging the Al
community in organizing data benchmarking competitions and challenges.

4.3 Security and privacy preservation

The nature of data collected in BAMSs introduces new challenges in data analytics, i.e.
security and privacy preservation, in which traditional technologies can not deal with.
Using encapsulated protocols and IP-based communication, BAMSs are more and more
connected to corporate networks and also remotely accessed for management reasons, both
for emergency and convenience purposes. However, security and privacy preservation have
not been set as a primary concern when designing these protocols. Therefore, most of the
BAMSs are being operated with sub-standard or non-existent security implementations,
and mainly rely on ensuring security by obscurity. In this line, there has been recently a
move to address the shortfalls of security and privacy preserving implementations in
BAMSs (Stamatescu et al. 2020; Ashaj and Ergelebi 2020). However, the definition of the
new threats against BAMSs, and identification of these threats is still a field that is excep-
tionally lacking.
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Moreover, another critical concern about security in BAMSs is related to the fact that
buildings’ data is valuable not only for managers and other BAMS competitors, as it is
attached to the control of buildings’ equipment. Typically, it could be significantly criti-
cal to end-users if manipulated. To that end, sharing data in most BAMSs has limited the
buildings’ intranet. Also, any attempts to extract this data to cloud data centers can result in
severe security risks, considerably higher costs for the appropriate security systems or both
(Lv et al. 2021; Himeur et al. 2022).

4.4 Scalability and interoperability

An important issue of BAMSs is the inherent lack of scalability and interoperability. This
is because each BAMS manufacturer has its own proprietary data protocol that requires
the development and maintenance of various processes and integrations. Moreover, BAMS
vendors usually have competing products and thus are incentivized to make their data inac-
cessible to third parties (Png et al. 2019; Tang et al. 2020). Therefore, the interoperabil-
ity is a legitimate concern for making efficient smart buildings as it refers to the ability
of all the systems inside a building to communicate with one another. Specifically, with
the actual proliferation of intelligent building technologies designed and manufactured by
a plethora of companies, there is a need to make them communicate universally for pro-
moting their deployment inside residential, commercial, industrial, and office buildings
(Ozturk 2020; Miori et al. 2019). Put differently, as smart buildings need to meet energy
and water efficiency, adequate indoor environmental conditions, high comfort levels, and
economic goals set by building managers/users, they require the use of a highly-connected
building automation system in which different parts can efficiently communicate with one
another and adjust to changes in the environment. However, while numerous buildings are
equipped with excellent systems, they often lack a combined monitoring system for light-
ing, climate control, water monitoring and blinds that could facilitate efficiency measures
(Schachinger et al. 2017).

The BAMS community makes great efforts to develop and deploy communication pro-
tocols that ensure interoperability, such as Modbus, KNX, LonWorks, and Protocol 3964R
(Merz et al. 2018). For instance, LonWorks and KNX are interoperable open standards as
they can be used together. However, integration concerns may arise (Tang et al. 2020). The
technologies’ popularity can hinder interoperability potential in BAMSs, as the example
with LonWorks, the market leader in the United States. In contrast, KNX—widely used in
Europe—has yet to impact (Merz et al. 2018). Additionally, the installation and operation
costs can pose severe integration limitations. Indeed, many contractors or system integra-
tors that provide off-the-shelf solutions are less concerned about whether the integration is
successful.

4.5 Real-time big data intelligence

Collecting and analyzing data in real-time are of significant importance while designing
powerful and efficient BAMSs. The first step towards this is by adopting a real-time sub-
metering, which helps in tracking track utility costs by building region (floor, room, etc),
by the tenants, by individual facility equipment (e.g., HVAC, lighting), etc. Therefore,
granular utility sub-metering data provides the essential tools for monitoring energy costs/
performance, water consumption/waste. This will result in accurately identifying usage
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anomalies, enabling data-driven portfolio analysis, etc. Although the value of real-time
sub-metering is unquestioned, most of the BAMSs are still unable to provide the real-time
data monitoring, which delays decision-making measures and hence reduces then the qual-
ity of efficiency and optimization operations.

5 Case studies

This literature review established several applications of Al big data analytics for build-
ings in terms of energy management, load forecasting, water management, FDAD, or IEQ
monitoring. In this section, we present their deployment for energy-related applications
given the continuous rise in energy consumption worldwide of the buildings sector under
the global energy dilemma and the energy optimization potential of BAMSs, given the
increasing concerns about energy efficiency in buildings. More specifically, the case stud-
ies handle two of the lead causes of energy waste in buildings, which are (i) system faults
and equipment malfunctioning, and (ii) poor management and regulation of the buildings’
systems (Alsalemi et al. 2022; Elnour et al. 2022, 2020). The first two case studies pre-
sent strategies for energy anomaly detection that can be due to both or either of the for-
mer causes. They demonstrate the deployment of two different methods: unsupervised and
supervised learning. The last case study presents the use of Al data analytics to establish
reliable and efficient regulation of HVAC systems, given that those are considered major
energy consumers in buildings (energy.gov, Elnour et al. 2022; Fadli et al. 2021).

5.1 Unsupervised Al-based energy anomaly detection

This section presents an example of using unsupervised ML algorithms for detecting
abnormal energy consumption (Himeur et al. 2022). Therefore, four algorithms are con-
sidered, namely (i) OCSVM with linear kernel, (i) OCSVM with Gaussian kernel, (iii)
DBSCAN, and (iv) LOF. They have been applied on the Dutch residential energy data-
set (DRED), which incorporates electricity consumption, occupancy patterns and ambient
conditions of a typical household (in the Netherlands). Figure 6 portrays the scatter plot
of energy footprints in which normal and abnormal patterns are identified using the afore-
mentioned approaches. It has been clearly seen OCSVM (with linear kernel) detects more
energy samples that fall outside the inlier region, which refer to consumption anomalies.
While by using OCSVM (with a Gaussian kernel), the number of samples that fall inside
the inlier region has been reduced because of its separation capability introduced by the
hyperplane generated using the Gaussian kernel. From another side, LOF and DBSCAN
help detect abnormal patterns with almost the same efficiency as OCSMV (with the Gauss-
ian kernel), and only a slight difference has been registered in classifying a few numbers of
samples.

5.2 Supervised Al-based energy anomaly detection

Supervised ML algorithms excelled in detecting abnormal energy usage, although they
require labeled energy data. To that end, in Himeur et al. (2021), a micro-moment-
based approach is introduced to cluster energy footprints of an office building (at Qatar
University) into five classes with reference to the energy consumption, occupancy pat-
terns and appliance operation specifications. These classes are named “class 0: good
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kernel=linear, nu=0.10 e normal kernel=rbf, nu=0.10 e normal
e outliers e outliers

eps=25, min_points=10 e outliers k=15, lof>=1.25 e normal
e clusterl e outliers

Fig.6 Energy consumption anomaly detection in residential buildings using a) OCSVM with linear kernel,
b) OCSVM with Gaussian kernel, c) DBSCAN and d) LOF

usage”, “class 1: turn on appliance”, “class 2: turn off appliance”, “class 3: exces-
sive consumption” and “class 4: consumption while outside”. Following, an improved
KNN model is developed and used to learn abnormal energy usage using this anno-
tated data. Fig. 7 illustrates the flowchart of the micro-moment based scheme used
to extract and learn intent-driven moments of energy consumption. Typically, energy
micro-moment features MF are extracted based on analyzing occupancy profiles (O)
and power consumption (p) of each device in reference to device active consumption
range (DACR), device operation time (DOT) and device standby power consumption
(DSPC). Then, the appliance operation parameters are called, including DACR, DOT
and DSPC. Table 11 presents an example of different appliance parameter specifica-
tions that are used in the rule-based algorithm to extract power consumption micro-
moments (Himeur et al. 2022).

To have a clear view of how abnormal energy consumption is distributed over
the time, the scatter plot of energy consumption profiles of a television is illustrated
in Fig. 8. Accordingly, the corresponding normal and abnormal energy patterns are
detected using an IKNN model and micro-moment analysis. Because this approach
uses a supervised learning with regard to occupancy data, it has the capability of
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Rule-based micro-moment extraction

Input data

P(t): power consumption

0O(t): occupancy at time

CT: consumption time

DACR: device active consumption range
NDOT: normal device operation time
DSPC: device standby power consumption

min(DACR) Yes

an
p(t-1) < max(DSPC)
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Fig. 7 Block diagram of the supervised ML solution used to detect abnormal energy consumption in office
buildings

identifying new consumption anomalies that correspond to the absence of the end-
users when the television is on (this abnormality can be extended to other devices that
require the presence of the user during their operation, e.g. the air conditioner, heater,
fan, etc.). Detecting such abnormalities was not doable if an unsupervised ML model
was deployed, in which only energy patterns were analyzed.

5.3 Energy and performance optimization for sports facilities

In light of the increased global energy demand and its associated environmental impacts,
the management and optimization of sports facilities are becoming imperative as they are
characterized by high energy demand and occupancy profiles. This case study demonstrates
the application of the model predictive control (MPC) theory and NN for energy and per-
formance management of sports facilities. Figure 9 presents the proposed NN-based MPC
framework. The work is carried out using the building information model of a sports hall
in the sports complex of Qatar University using EnergyPlus and practical data for model
calibration. MPC systems are robust as they allow integrated dynamic optimization that
accounts for the future system behavior in the decision-making process. NNs are advanta-
geous for their ability to represent complex functions with high accuracy.
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Fig. 10 The performance of the NN-based MPC system for energy and performance optimization in the
sports hall in Qatar University sports complex

The NN-based dynamic prediction model aims to express and capture the behavior of
the building operation over time given its states x(k) (i.e., power usage, thermal comfort,
indoor and outdoor air properties, etc.) and its inputs (i.e., HVAC system settings). The
NN-based prediction model is:

F = Train_NN(x(k + 1), [x(k), u(k + 1)]), ey
and the prediction is computed by:
Xk + 1) = F(x(k), u(k + 1)). 2)

The optimization of the NN’s hyper-parameters was performed using the Bayesian optimi-
zation algorithm which keeps track of past iterations to find better choices for the next set
of hyper-parameters to evaluate (Andonie 2019).

The MPC system consists of an optimizer and an NN-based prediction model of the
building operation, and based on the system output y(k) C x(k) and its reference value
r(k) (i.e., power usage and thermal comfort level), the HVAC system settings for tem-
perature setpoints and dampers positions are determined (i.e., u(k)) using numerical
optimization to achieve tracking. When compared to routine performance, the proposed
approach was able to achieve significant energy reduction and adequate thermal comfort
levels as demonstrated in Fig. 10. Energy savings of around 15% was observed, which
was approximated by evaluating the relative change in the total energy consumption in
the two settings for the scenario under study, that is, the relative difference between
the areas under the two power curves in Fig. 10a. Considerations about the NN model
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for efficiency, comfort, and health & safety

performance, tuning of the MPC settings, and optimization sub-optimality or failure are
essential during the design and implementation phases of the proposed framework.

5.3.1 Improved computational sustainability model for sports facility management

The computational urban sustainability platform (CUSP), developed at Cardiff University,
is an immersive decision support tool built to deliver a powerful urban analytics and enable
interactive monitoring and inform decision making through a web interface. It can be used
to promote co-simulation across disciplines, and predict future scenarios towards a sustain-
able future operation and urban Intelligence [Computational Urban Sustainability Platform
(CUSP)]. The CUSP model can be improved to include three integrated models, which are
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(1) energy-water efficiency, (2) health, safety, and wellbeing, and (3) comfort as demon-
strated in Fig. 11.

The improved CUSP model integrates an energy simulation tool that is used to generate
data of the particular scenario under consideration for data analytics for quality monitoring
and planning purposes. It contains three Al-based models developed to assess each of the
three aspects of the facility operation, which are efficiency and sustainability, health and
safety, and users’ thermal satisfaction. Through the web interface shown in Fig. 12, the
integrated simulation tools will enable facility managers to evaluate the possible scenario
in terms of the HVAC system settings, and occupancy and operation schedules towards
achieving a reasonable trade-off between those three aspects prior to applying them in the
facility.

6 Future directions
6.1 Multimodal data analysis

Due to the advancement of today’s sensing and mobile technologies, various modalities
of data can be easily and effectively gathered using different and advanced means. Thus,
it is now possible to record and process big data about environmental satisfaction lev-
els of buildings’ occupants in real-time and non-invasive manners (Plageras et al. 2018).
Buildings’ end-users naturally react to ambient environmental conditions for minimizing
any environmental stress, increasing their comfort based on their autonomic nervous sys-
tems and expressed by different poses, which can effectively influence different building
operation parameters (Amato et al. 2018). Therefore, it becomes of utmost importance to
develop tools for enhancing the interdisciplinary knowledge (i.e. Al, IoT, big data, DL,
computer vision) when managing building operations. This helps significantly advance
building indoor environmental control and sensing technologies as a function of human
bio-signals (i.e. physiological signals) and poses.

Analyzing multi-modal data helps BAMSs in boosting workplace productivity and opti-
mising office spaces, which in turn cutting costs and increasing revenues for companies.
Moreover, data generated from these systems could be used to reduce the spread of viruses
and other diseases inside buildings, increasingly important since the outbreak of Covid-19
(Sun and Zhai 2020). For instance, in Ding et al. (2020), investigate the collective con-
tagion of the COVID-19 virus inside indoor environments (i.e. healthcare facilities and
public vehicles) along with the engineering control against virus spread with ventilation
systems.

6.2 In-situ sensor calibration in BAMSs

Sensors are key players in helping BAMSs to attain expected efficiency and automation.
However, they are affected by continuous failures and degradation over time. To that
end, in-situ sensor calibration plays a crucial role in calibrating different BAMS work-
ing sensors (i.e., physical sensors) and avoiding significant errors for reliable results
when it is deployed to large-scale building sensor networks (Yu and Li 2015). Most
of the studies opted for the conventional periodical calibration as a solution to over-
come sensor degradation and failure; however, this is impractical and difficult for vari-
ous sensors. By contrast, virtual in-situ calibration (VIC) can be a good alternative since
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it relies on mathematically extracting the characteristics of essential aspects involved
in a calibration, such as the uncertainty quantification, benchmark establishment, and
environment assessment (Yoon and Yu 2018). Moreover, because BAMSs need digitally
enhanced data-rich environments, virtual sensors offer reliable and informative sens-
ing contexts for operational datasets in BAMSs. More specifically, in-situ virtual sen-
sors help develop the counterparts of target physical sensors in the field. Therefore, they
can provide extra data related to residuals between physical and virtual sensors for for
deployment in data-driven modeling, diagnostics and analytics (Koo et al. 2022).

6.3 Smart building digital twins

The increasing amounts of data generated by BMAMSs, and the need for new methods
to leverage it, have motivated scientists to investigate new strategies. One promising
solution is using the digital twins (DT) paradigm, which assumes a complete cohesion
and integration between the visual and physical worlds. Typically, DT can deliver con-
siderable benefits to the BAMSs and the built environment in general by helping bring
together static and dynamic data from various sources (in 2D/3D models) and assisting
in making effective and informed decisions. Moreover, it combines the knowledge from
the physical and digital worlds by collecting real-time data from the physical environ-
ments and provides a real-time understanding of buildings’ performance (Delgado and
Oyedele 2021). Besides, despite the gradual exploration of digital twinning within the
fields of building information modeling (BIM) and cyber-physical systems (CPS), avail-
able tools and techniques need to be considered in the next level of integration (technol-
ogies and procedures). This is to (i) provide DTs with more adaptability and more cohe-
sion over the managed information and (ii) extract more value from our virtual models
(Shahzad et al. 2022).

6.4 Transfer learning

Specifically, transfer learning has recently been proposed as solution that can be investi-
gated for the case of buildings with poor information data (Himeur et al. 2022). Put sim-
ply, data and knowledge of already existing buildings (or old buildings) with rich energy
usage records, water management data, occupancy patterns, IEQ monitoring footprints
and and ambient environmental conditions can be used. Therefore, various frameworks
have been introduced for target energy forecasting (Gao et al. 2020; Li et al. 2021),
anomaly detection of energy consumption (Liang et al. 2018; Xu et al. 2021), fault diag-
nosis of energy systems (Liu et al. 2021; Zhu et al. 2021), HVAC fault detection (Dowl-
ing et al. 2020), IEQ monitoring (Tariq et al. 2021), indoor occupancy detection (Khalil
et al. 2021), etc.

6.5 Blockchain

Due to the security and privacy issues that are still open in BAMSs, blockchain is consid-
ered as a promising solution that provides the digital trust. It can function as a permanent,
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cloud-based and digital ledger of activities between different users and partners (Nawari
and Ravindran 2019; Liu et al. 2021). Also, blockchain can operate as a distributed, single
source of shared truth and has the possibility of becoming the top-system for recording
all transactions. Therefore, its deployment in BAMSs aims at (i) tracking and validating
changes (e.g. security and surveillance, access control, etc.), (ii) monitoring HVAC activi-
ties, (iii) recording property transfers, and (iv) detecting occupancy patterns (Siountri et al.
2020). Additionally, it can help manage intelligent buildings and IoT devices with renew-
able energy, e.g. wind and solar. For example, suppose a facility is in a two-way energy
communication with the grid. In that case, blockchain can make it more secure and easier
to develop a digital record of energy-in and energy-out transactions (Tiwari and Batra). On
another side, as the global market of building automation exceeds $120 billion, smart con-
tracts can be utilized for automating warranties and providing refunds when IoT-connected
devices or equipment do not perform as expected (Himeur et al. 2022).

Overall, there are numerous potential applications of blockchain in BAMSs, although
the principal advantages are data is easy to access, is secure, and can not be corrupted.
Specifically, data stored in the blockchain database can be easily and quickly reviewed,
even though it is managed by distinct entities, which results in an accurate and fast data
analysis (Nawari and Ravindran 2019). Moving forward, blockchain helps in stream-
lining processes and lowering costs through reducing and/or eliminating those dreaded
manual operations, especially in public buildings, sports facilities, and commercial
centers. This could be adapted to almost any process, including preventive maintenance,
work orders, environmental health, and safety planning, and space management (Nawari
and Ravindran 2019).

Only for energy management in smart buildings, blockchain has found diverse applica-
tions. For instance, in Van Cutsem et al. (2020), use a blockchain-based approach to coop-
erate energy management of multiple end-users in smart-buildings, where smart-contracts
have been utilized to allow decentralizing community energy management. In Mukherjee
et al. (2021), a smart energy management solution is safeguarded with blockchain and
hence ensures judicious generation, uniform distribution and shielded monitoring along
with guaranteed security and privacy of the havoc data. In Tiwari and Batra, blockchain is
introduced for enabling the reparation of smart buildings-cyber physical systems. Moving
on, decentralized and flexible access control using smart contracts is developed for smart
and large commercial buildings in Bindra et al. (2021). This solution has been proposed
as an alternative to inefficient, unsystematic, and human-intensive access control schemes
usually used in these buildings. While the widespread implementation of blockchain is
still a long way off, it is also challenging to deploy this technology reliably and widely in
BAMSs. This research area needs to be further investigated in the near future. This prom-
ising new technology could benefit the other tasks of smart buildings, i.e. water manage-
ment, [EQ monitoring, occupancy detection, etc.

6.6 Cyber-security standards for BAMSs

While using Al in BAMSs represents a powerful asset, it also presents some data secu-
rity and privacy concerns and problems with the regulations. Typically, Al-driven
BAMSs involve the deployment of lower-cost sensors (both wired and wireless) and the
adoption of cloud, fog, edge, and/or hybrid computing architectures, increasing cyber
risks. To that end, the need for a sound cybersecurity strategy has become crucial for
promoting secure remote BAMSs. Data flows must be planned and monitored, possibly
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making it necessary to use one-way data diodes. On the other hand, BAMSs integrate
heterogeneous sensing, computation, and control capabilities. They combine cyberspace
with the physical world to develop cyber-physical systems. However, the security of
BAMSs is significantly threatened by software/hardware failures and/or cyber/physical
attacks. For example, sensor failures can engender false detection of abnormal energy/
water consumption behaviors and result in actuator misbehavior.

To handle the above issues, privacy and security protection mechanisms should be
enforced. This is possible by providing recommendations to the building automation
community, e.g., the data protection directive 95/46/EC (Tokarski) suggests recommen-
dations for supporting the security of the implementation of smart metering and smart
using data controllers. Addressing these recommendations can enable moving to fully
harmonized data protection environments and improving security measures in BAMSs.
Moreover, different cyber security standards can be used to secure BAMSs by address-
ing the cybersecurity for operational technology in automation and control systems,
such as ISA/IEC 62443 series (Bicaku et al.) and ASHRAE 135 series (BACnet) (Tang
et al. 2020).

6.7 Self-learning for long-term building operation

Self-learning ML models are key to realizing the BAMS in the long-term building
operation. The systems built upon these models have recently gained industry recogni-
tion and market share as they are based on using a "user-friendly” technology (Cortigos
2019). Typically, self-learning, also called self-supervision, is an emerging technology
that helps develop computationally efficient, low-cost, autonomous, and self-supervised
ML algorithms (Kaklauskas et al. 2019). For example, for energy management, a self-
learning control scheme assists in assessing the energy flexibility of buildings, in addi-
tion to guaranteeing robustness, scalability, and adaptability. Moreover, automated
self-learning systems have promising perspectives when they are to integrate demand-
response strategies for effective home-energy management systems (Bampoulas et al.
2019).

6.8 Edge analytics for BAMSs

With the advancement of BAMSs and the latest generation of IoT devices, data acquisi-
tion from multiple types of equipment has become much easier in today’s buildings.
Real-time access to this data helps in better managing facility operations, sustaining
efficiency, and lowering costs. However, as most BAMSs are only implemented using
cloud computing, real-time data analysis may not be guaranteed. To overcome this issue,
open software platforms hosted on edge nodes in close proximity to the building’s IoT
devices can enable access to the building data and advanced analytics deployed on these
platforms in real-time. In this context, edge computing employs the processing power
of IoT devices for filtering, pre-processing, aggregating and storing recorded data, and
actions can then be performed in real-time using adequate analytical algorithms. This is
because edge computing enables resolving bandwidth and latency problems and reduc-
ing response time. Following, the filtered data could be transmitted to the cloudlet plat-
forms for aggregation and enrichment, and running of complex analytics (Sharma et al.
2018).
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Thus, various use cases where edge computing and the IoT can efficiently be utilized in
BAMSs are emerging, among them fault diagnosis, which helps to (i) find patterns in sen-
sor data representing equipment failures, anomalies, or degraded performance; (ii) detect
abnormal energy consumption, e.g. if the lighting or HVAC systems are activated too early
or operate too late with regard to the actual occupancy schedules; and (iii) identify correla-
tions across different types of data, which are essential to infer the factors impacting energy
consumption (e.g. the patterns related to weather, age of facilities, etc). Overall, open edge
software platforms combine multi-protocol connectivity and the ability to aggregate data
from multiple sources and facilitate the task of advanced analytics in turning this data into
actionable information that can be used to improve the overall operational efficiency build-
ings (Petri et al.).

7 Conclusion

This paper carried out a comprehensive overview of the application of Al-big data analyt-
ics in BAMSs to conduct different tasks, including energy forecasting, fault and anomaly
detection, water monitoring, and IEQ monitoring. The pros and cons of Al models within
the unsupervised, supervised, semi-supervised, and reinforcement learning categories have
been identified. Moreover, it concluded that supervised learning algorithms excelled well
in performing the diver BAMS tasks, but their performance always relies on the availabil-
ity of annotated data and its accuracy. Unsupervised learning models with no prior knowl-
edge can address this issue with less efficiency.

It was demonstrated in this framework that technologies of ML, IoT, and new connec-
tivity capabilities have a critical role in shaping the future of BAMSs. With building own-
ers and facility managers focusing heavily on improving energy efficiency and increasing
cost savings, features like advanced fault detection and diagnostics, energy analytics, IEQ
monitoring, and water management are becoming critical. The growing interest devoted to
developing intelligent analytics in BAMSs has been highlighted by the increasing number
of works and studies proposed in the literature to address several challenges. In the coming
years, data analytics is expected to expand the capabilities of intelligent building technolo-
gies, spurring further advancements in building automation systems and equipment stand-
ards while minimizing the environmental impact of commercial buildings.

The Al-big data analytics technology is up-and-coming to BAMSs. However, it faces
various challenges for achieving market penetration, including legal, regulatory, security
and privacy preservation, interoperability and scalability, and competition barriers. Addi-
tional research initiatives, investigations, projects, and collaborations should be considered
a primary requirement for showing if the technology can reach its absolute power, prove its
commercial viability, and lastly, be adopted in the mainstream.
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