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Abstract: Demand-side management (DSM) is a significant component of the smart grid. DSM
without sufficient generation capabilities cannot be realized; taking that concern into account, the
integration of distributed energy resources (solar, wind, waste-to-energy, EV, or storage systems) has
brought effective transformation and challenges to the smart grid. In this review article, it is noted that
to overcome these issues, it is crucial to analyze demand-side management from the generation point
of view in considering various operational constraints and objectives and identifying multiple factors
that affect better planning, scheduling, and management. In this paper, gaps in the research and
possible prospects are discussed briefly to provide a proper insight into the current implementation
of DSM using distributed energy resources and storage. With the expectation of an increase in the
adoption of various types of distributed generation, it is estimated that DSM operations can offer
a valuable opportunity for customers and utility aggregators to become active participants in the
scheduling, dispatch, and market-oriented trading of energy. This review of DSM will help develop
better energy management strategies and reduce system uncertainties, variations, and constraints.

Keywords: demand-side management (DSM); distributed generations (DGs); energy management
systems (EMS); renewable energy sources (RES); optimization; waste to energy (W2E)

1. Introduction

The management of energy consumption is a critical challenge pertaining to the current
load consumption schedule of the electrical power system. With the introduction of several
efficient and intelligent devices for use by diverse customers and prosumers participating
in a power flow network at the residential and industrial usage load levels, there is a neces-
sity for standard and robust energy management architecture and implementation at the
prosumer and the generation levels. The main focus is on load consumption management
on the demand side, which can be accomplished by integrating various programs focused
on efficiency and minimizing loss at both the appliance and the intelligent grid system level.
The consumers and the energy-generating organizations participating at the energy market
levels will gain significantly from such an adjustment in the load profile. Introducing
standardization protocols for efficiency and consumption management approaches can
help resolve severe concerns such as fossil fuel use, carbon emissions, energy costs, and
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other sustainability elements, to some extent. Integrating multiple communication and
Internet of Things (IoT) protocols in renovating conventional grid systems into intelligent
grids has enabled a bidirectional information exchange [1]. This data can be utilized for a
variety of energy management strategies. On the demand side, by incorporating various
digital sensing and communication protocols, smart device control, and connectivity be-
tween utilities and geographically distant grid organizations, appliances can leverage this
information to strategically provide an optimal strategy for better operation and efficiency
characteristics. Understanding the problems related to integrating different sources and
technology can provide ideas to establish synchrony between generation and load.

The notion of demand-side management (DSM) is a solution to these significant
challenges related to grid sustainability, security, reliability, and load profile management
from the perspective of consumption and for providing strategies for load reduction. DSM
is a collection of load management solutions that plan, integrate, and monitor preassigned
routine operations on the basis of a consumer’s consumption behavior [2]. The DSM
architecture can conservatively dispatch available generation capacity, lowering emissions
and peak load usage while allowing users to use their preferred energy type [3]. DSM was
launched in 1970 [4] when the electrical sector offered the DSM model and architecture
to manage time-of-use (ToU) and peak electricity consumption and to analyze consumer
load usage profiles. DSM can establish synchrony between generation and load, taking on
maximum cases of obstacles.

There are substantial incentives to employ distributed generation (DG) to reduce
greenhouse gas emissions, improve power system efficiency and reliability, implement
competitive energy policies, and delay transmission and distribution system upgrades.
DGs are made up of renewable units such as wind turbines (WTs), photovoltaics (PV), fuel
cells (FCs), and biomass, as well as non-renewable units such as micro-turbines (MTs), gas
engines (GEs), diesel generators (DiGs), etc. By being near the clients, DGs avoid needing a
transmission system. The integration and control of DGs, storage devices, and flexible loads
can form a microgrid, a low voltage distribution network that can operate in isolated or
grid-connected modes [5]. Due to a lack of sufficient energy generation sources, microgrids
frequently struggle to meet demand. The intermittent nature of loads and renewable energy
sources create this barrier [6]. As a result, to address this issue, an energy management
system (EMS) is required. Using an EMS for a microgrid is a relatively new and trendy
issue that has recently received much attention.

1.1. Motivation behind the Adoption of DSM

The necessities of the load–grid from the perspectives of synchronization, stability of
operation, security and data protection from external attacks, reliability issues, and profit
maximization requirements have prompted attention in various areas of DSM research.
The following are motivations for the rising interest in the application of DSM techniques:

• To reduce consumer annoyance during the adoption of DSM by incorporating demand
reduction bidding during peak hours, incentive DSM, and demand response (DR)
programs.

• To create an interactive load management market, which is a prosumer-based market
in which each customer plays a part in achieving low-cost energy usage.

• To match energy supplies and dispatch additional available sources within the current
system and regulate the required demand.

• To enable proper demand and supply balance by either reducing or shifting energy use
from critical loading periods to fewer off-peak times, factoring in economic standards
and active control methods.

• To consider electricity generation and trading tariffs, environmental considerations,
demand-based usage patterns, and prosumer convenience levels when creating opti-
mal load dispatch and usage scheduling.

• To adapt to changes brought about by erratic consumption and a lack of understanding
of the operational state of daily-use devices and machines [6].
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• To conduct forecasting based on weather data assessing client comfort levels and
convenience.

• To achieve the lowest possible electricity cost from an economic standpoint, maximiz-
ing energy consumption from geographically nearby renewable energy sources (RES)
from an environmental perspective and preventing power quality issues.

• To raise consumer awareness of DSM’s benefits, which can stimulate adoption or
improve electricity usage patterns.

• To combine operational flexibility for an individual home with the flexibility of other
residential customers in the neighborhood to achieve operational flexibility for a
unique family.

• To improve grid efficiency and reliability by minimizing the peak-to-average ratio
(PAR) by offloading optional loads during peak periods [7].

1.2. Benefits of DSM

DSM comes into play to solve such difficulties concerning the current situation on the
load end and to enable greater flexibility and the robust scheduling of specific devices and
gadgets at an autonomous stage through intelligent control mechanisms. DSM can provide
several advantages, such as:

• To help minimize voltage fluctuations on a poor distribution feeder by providing grid
support [6].

• To resist environmental concerns by lowering peak demand, which decreases the need
for new traditional generating plants.

• To allow the principles of DSM to be successfully implemented, where it can benefit
both customers and the utilities economically.

• To guarantee steady and sustainable power delivery within the system, thereby avoid-
ing shortfalls.

• To provide cost savings in energy usage while also assisting in achieving positive
environmental goals.

• To decrease load profiles by intelligently managing loads [7].

1.3. Issues and Challenges in Implementing DSM

The path to DSM integration is littered with several challenges and issues that must be
solved for the program to be executed effectively and efficiently among the participating
institutions. Some of the concerns and difficulties that will be discussed are as follows:

• Residential loads frequently contribute a major portion of load demand owing to
seasonal and daily peak load consumption, causing the available grid system to be
under-sized in handling peak energy usage.

• Pricing blocks that can be adapted according to consumption at multiple levels can be
implemented smoothly.

• To use the best load scheduling approaches possible.
• Centralized controllers for both control choices and control actions are required to im-

plement direct load controls (DLCs), interruptible tariffs, demand-bidding programs,
and emergency programs. Because the client wants to save money on energy, and
the utility wants to maximize profit from the available energy, the goal is to balance
energy and save money.

• Consumer response to the price signals supplied by the utility and market tariffs,
which modifies consumer behavior, fluctuates unexpectedly depending on their ability
and willingness to adapt quickly, indifference to minor tariff adjustments, and pricing
system awareness.

• To address the opposing objectives of consumer convenience and reduced-cost con-
sumption, decrease load consumption for customers and increase revenues for utility
companies with accessible energy generation sources, etc., while formulating energy
regulations.
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• Inadequate system-wide scalability measures to address the multi-vendor dilemma,
upgrade, and expansion.

• Usage of robust system privacy measures to secure the vital information of participat-
ing customers.

• To address the neighbor effect, some consumers over-estimate other consumers’ price
rates, where any change affecting a consumer influences the choice and preference of
nearby present customers.

• A generalized operational framework of DSM is necessary owing to the characteristics
and objectives of DSM participants and loads operating in an independent system in
order to provide the customers with more control over their energy consumption.

• The reduction in peak load requirements and the minimization of overall load usage
tariffs for residential occupants while maintaining an acceptable degree of comfort
and choice for the user.

• Integrated volatile power sources such as wind and solar impact grid stability and
create issues.

• The difficulty of balancing supply and demand for electricity in the face of uncertain
demand and uncontrollable sources.

• DR faces four significant operational issues: scalability, distribution of control, unpre-
dictability, and aggregation.

• Supply and demand may become imbalanced at different locations along a changeable
demand curve [6].

• The need to build a model of energy generation is essential due to the effects of
traditional power generation and global climate change.

• Lower peak demand and overall load consumption costs while maintaining appropri-
ate comfort and convenience for residents. Integrated unreliable power sources such
as wind and solar impact system stability and create issues.

1.4. Suggested Solutions in DSM Implementation

The following suggested solutions are viable for implementation and for driving grid
integration programs in a more effective and coordinated way to deal with the above
concerns and obstacles faced during the implementation of various policies concerning
DSM using DGs systems:

• An adequately designed pricing structure will result in a flexible electricity system,
allowing residential customers and utilities to achieve their goals.

• Time-of-day (ToD) pricing can incentivize large-scale residential and commercial users
to conserve energy.

• The load profile forecast mechanism can serve as a transitive feedback signal, and the
tariff associated with it can serve as a transitive incentive signal.

• A stochastic and multi-objective optimization technique for the optimal scheduling of
various domestic appliances utilizing model predictive control (MPC) optimization.

• The transitive energy concept is a viable coordination paradigm for maximizing the
importance placed on prosumers and operators at the utility level and their overall
participation in the market structure.

• From the perspective of trading entities present in the market and their involvement
and market-based signaling, extensive changes in government laws consider both
energy providers and customers.

• A variety of sophisticated methodologies can factor in individual residential prosumer
overhead and comfort levels, optimize individual consumption schedules, and offer
positive DSM impacts [7].

• To allow the electricity markets to generate higher revenues, an incentive-based pro-
gram can change conventional consumers into new era prosumers by modifying their
behavior and habits of use [8].

• For the improved functioning of DR ideas in residential utilities, measurement and
verification protocols and an automated procedure are required [9].
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• Complete service-oriented topology and structure is a necessity to allow for provisions
of appropriate infrastructure oriented toward dynamic integration techniques and for
a more flexible operation to bring out the best in the power system scenario [10].

• DSM contributors can consume or generate energy in a coordinated operational state as
cooperative agents or virtual power plant models, which can simulate the performance
of an aggregated virtual single power source indirectly incorporated into the power
system [11].

• The introduction of generation systems such as solar photovoltaics (SPV) and energy
storage system combinations for usage during peak hours.

1.5. Outline of This Paper

This paper is presented to address the issues and solutions of DSM using a method-
ological and critical survey-based exploration of the implementation of DSM using DERs.
Efforts are made to put forth the following points concisely: Firstly, to assess and study the
suggested optimization techniques and implementations of DSM in the present literature.
This will allow the researchers with the necessary exposure to arrive at more practical and
better optimization techniques to establish a proper energy management system (EMS).
In addition, energy management modeling studies are examined in terms of uncertainty
modeling techniques, objective functions, constraints, and optimization techniques. Lastly,
EMS-related papers are reviewed and analyzed correctly to help the researcher find out the
problems and the solutions.

The remaining part of this review article is designed as follows: Section 2 represents
the detailed review methodology used to formulate this paper, Section 3 states the brief
introduction to DSM and DR, Section 4 briefly states the various DGs possible in an
intelligent grid network, Section 5 represents the DSM with different types of cleaner
energy, Section 6 briefly illustrates the energy management system and some standards
related to DG integration, Section 7 explains some issues related to different types of
DGs being integrated with DSM techniques, Section 8 represents the various optimization
techniques ascribed to DSM with objective and objective functions, Section 9 deals with
the different research gaps and critical analyses, and the future scope and conclusion are
analyzed in Sections 10 and 11, respectively.

2. Review Methodology

Any research project’s primary focus is on three key elements: the purpose, study
technique, and outcome, as well as future implementation prospects. An approach based on
an analytic-based search technique was undertaken on numerous scientific and interpretive
sources such as Google Scholar, ResearchGate, IEEE Explorer, and Scopus to gain a detailed
and complete overview of existing research publications. Combinations of thematic words,
such as “Demand-side management distributed energy resources”, “Demand response”,
“Energy management using distributed energy sources”, “Optimization”, “Scheduling”,
“Distributed energy sources integration in microgrids”, and so on, were used to filter out
the critical articles using search engines. Specific search engine parameters were employed
to find relevant, on-point, particular research papers for the review study. Exact keywords,
peer-reviewed publications published in English mainly in the last ten years, and open-
access articles were the deciding factors.

Based on the research articles, an eight-point prospect was developed:

• DSM techniques in general, with sub-strategies investigated from a modification
standpoint.

• Incentivized and price-based programs, as well as demand response strategies.
• The customer rationale for employing distributed generation to implement DSM.
• Researching the architecture and topology of the EMS system, as well as comparing it

to alternative DSM methodologies.
• The scope of limitations and constraints associated with implementing DSM using

DER architecture with present issues.
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• Published research methods and optimization approaches.
• Analysis and conclusions from the study of the approaches employed in the optimiza-

tion challenges stated.
• Action plan for the future.

As shown in Figure 1, 31 review papers, 40 case studies, 15 news articles, 107 technical
papers, and 10 research reports were reviewed and placed in this paper.

Figure 1. Review methodology for this paper.

3. Demand-Side Management

Demand-side management is an essential part of an intelligent grid architecture
because it allows consumers to adjust their load consumption patterns, making it a crit-
ical feature of an energy management system in power delivery networks [11,12]. “The
planning, implementation, and monitoring of those daily activities designed to influence
customer use of electricity in ways that will produce desired changes in the utility’s load
shape, i.e., time pattern and magnitude of a utility’s load,” according to the Electric Power
Research Institute (EPRI) [13]. Instead of relying on additional generation to meet demand,
DSM prioritizes the integration of power-saving techniques, the implementation of variable
or dynamic unit pricing, and the adoption of DR-based programs to minimize peak load,
managing the DGs to establish a proper power balance, as shown in Figure 2.
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Figure 2. Principle of DSM in the smart grid environment.

The four methodologies outlined below and illustrated in Figure 3 can be used to
classify various alterations that can be used to shape and define the electricity load profiles:

Figure 3. Basic principle of DSM.

Energy efficiency (EE): These are end-user, appliance-specific controls intended to
reduce load utilization over time by employing energy-saving methods on the device level.
Rather than relying on an event-triggered strategy for consumption profile minimization,
energy efficiency refers to the reduction in overall load consumption achieved by providing
more efficient power delivery for each unit with respect to the supplied input power to the
appliance, decreasing consumption over time. An in-depth look at the energy efficiency
improvement profiles, measurements, and roadblocks can be found in [14,15].

Time of use (ToU): The ToU pricing method divides the utility’s fixed tariff into 24 h
time blocks and then assigns a variable pricing profile for each period [16,17]. This method
can help keep peak load rates and seasonal fluctuations in pricing tariffs under control
based on the hourly block-based signal tariff of electricity units.

Spinning reserve: In the case of a drastic shortfall in generating levels, the spinning
reserve is synonymously recognized with the electric power system’s backup power, which
may be utilized by the distribution network operator (DNO) to balance the difference or
gaps between demand and supply in generation [18]. Power outages can be caused by
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various factors, including damage to producing units, inadequate load prediction, and
dispatch scheduling [19]. In general, there are two types of spinning reserves: primary and
secondary [16], with the central spinning reserve employing frequency regulation to limit
active power output and the secondary spinning reserve injecting extra active power.

Demand response: Energy users depart from their usual use patterns in response to
unit rate variations over time or incentive programs. The primary focus is to reduce load
profiles during critical tariff periods in the energy wholesale market or when grid reliability
is uncertain [20]. Short-term variations throughout the day’s critical peak pricing/usage
times, when demand is low and spinning reserve capacity is scarce, are of primary interest
to DR. DSM is more concerned with long-term load profiles, which may be accomplished
on the demand side by improving energy efficiency or adopting consumer-centric usage
behavior.

4. Distributed Generations in Smart Grid

A distributed energy resource (DER) is an aggregation of distributed generators, as
shown in Figure 4, or controllable loads (conventional or smart) connected to the network
in a smart grid. A DER unit, or distributed generation (DG), often blends a variety of
energy sources. They are classified into, essentially, two sorts of sources based on their
dispatch capacity and source of generation type:

Figure 4. Various types of energy sources in the smart grid.

4.1. Renewable Energy Sources (RES)

Solar Photovoltaics: Converting solar energy to electrical energy via mounted semicon-
ductor panels is the primary renewable generating source across the globe. It can produce
energy in any mode, stand-alone or grid-integrated, and small-scale (such as rooftop PV
in residential areas) or large-scale (centralized power plants). Scheduling, as per weather
condition forecasting, boosts production capabilities.

Solar Thermal: Solar thermal power plants use solar energy to heat a fluid to a high
temperature to generate electricity. The heat from this fluid is transferred to water, which
subsequently forms superheated steam. In a power plant, steam is utilized to run turbines,
and mechanical energy is transformed into electricity by a generator. This sort of generating
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is similar to electricity generation that uses fossil fuels, except that instead of burning fossil
fuels, sunlight is used to heat steam.

Hydropower Plants: The flowing capacity of water is capable of rotating a turbine
to generate electricity, which can be the centralized or decentralized mode of operations
according to the availability of the water and the water head. Generally, small-scale
hydropower stations are used for DSM operations, which are described in Section 5.

Wind Turbines: Wind energy conversion systems (WECs) are also a significant compo-
nent of DGs where the appropriate wind reach is available. This generation unit is limited
to smaller, low-capacity generation units. This allows for small-scale WT unit deployment
on the customer side to be possible without affecting the operation of the entire power
system as a whole.

Geothermal Energy: Geothermal energy captures the energy from the core of the
earth. DGs can be localized around nearby natural geothermal energy sources, such as lava
flows, hot springs, geysers, or places that experience direct contact between water and high
thermal capacity surfaces. As part of the natural cycle of evaporation and replenishment,
geothermal sources can be considered a viable source of renewable energy generation.

4.2. Traditional Energy Sources

Combined Heat and Power: Fossil fuels are the primary sources of CHP that are set
to run as centralized power stations, mainly to fulfill the baseload requirement. Fossil
fuels are burnt to produce steam, which rotates the turbine to produce electricity. Due to
substantial carbon emissions, limited availability of sources, and environmental concerns,
the focus has shifted toward renewables.

Fuel-based DERs: To supply supplemental power to the grid, diesel generators and
fuel cell (FC) generators often employ readily available fossil fuels, waste-derived fuel, and
hydrogen-based production, and they are typically run on-demand rather than always-on.
Due to their simple dispatch mechanism and controllability, they are suitable DER units to
link to a smart grid design. For the purposes of providing power to emergency loads, they
are suitable as a DSM option.

4.3. Energy Storage Systems

ESS is now viewed as a novel technique for adjusting generating capacity to load
demand changes, particularly as energy buffers in the situation of the high availability of
non-dispatchable generation sources. These ESS capture and store surplus energy generated
during off-peak hours, then dispatch it during peak periods when the extra load is needed.
They also allow for the optimal redistribution of PV array and WT unit output power
throughout the daily scheduling period. In terms of ESS concerned with energy supply,
they are categorized as compressed air energy storage (CAES) and hydraulic pumped
energy storage (HPES), depending on the method of application. Similarly, ESS focused
on power supply include supercapacitor energy storage (SCES), superconductor magnetic
energy storage (SMES), pumped storage, and flywheel energy storage (FWES) [21,22].

4.4. Waste-to-Energy (Bio-Energy)

An increase in urbanization is the cause of the generation of a large amount of waste,
particularly MSW (municipal solid waste). The thermal treatment of municipal or industrial
waste and sludge, as well as medical or industrial hazardous waste, decreases trash disposal
in landfill sites dramatically. The produced energy yields a new revenue stream that
helps both the local population and the environment through cleaner air, water, and
soil. The process starts with collection, followed by segregation, then processing through
various stages, such as pyrolysis, and then incineration to produce electricity. Taking into
consideration the United Nations’ Sustainability Goal of cleaner energy, waste is counted
as one of many effective sources of conversion to electricity [23,24]. The different processes,
which can be followed to convert the waste, are presented in Figure 5.
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Figure 5. Different processes of waste-to-energy.

4.5. Electric Vehicle (V2G)

Vehicle-to-grid (V2G) is a system in which plug-in electric vehicles (PEVs), such as
battery electric vehicles (BEVs), plug-in hybrids (PHEVs), and hydrogen fuel cell electric
vehicles (FCEVs), communicate with the power grid to sell demand response services by
returning electricity to the grid or throttling their charging rate. Electric vehicles with V2G
storage capability can store and discharge power generated from renewable energy sources
such as solar and wind, with output that varies based on weather and time of day [25,26].
The process of V2G is the same as in the case of the ESS shown in Figure 6.

Figure 6. Electric vehicle as a source of energy.

5. DSM Using DGs and ESS

DSM is the systematic energy management in the case of using DGs and ESS. Using
DSM can have a lot of benefits to industry, residents, nations, and the globe, which is
shown in Figure 7. DSM can be implemented by using distributed energy resources such
as solar, wind, waste-to-energy, etc. DSM generally involves load shape modification by
applying different optimization techniques [27–29]. This modification is carried out by
the significant DSM component, which is the load duration curve (LDC). LDC offers a
general and analytical idea of off-peak hours and peak hours. Six techniques are used in
load shaping, which are discussed below and in Figure 8.

a. Peak Clipping: This technique is used to reduce the peak demand at peak hours.
Effective use of this method can reduce the chances of establishing new generating
stations. Generation from DERs also helps in balancing load and can reduce the peak
demand.
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b. Valley Filling: This technique is set to rebuild the load during off-peak hours, which
helps reduce tariffs. Charging electric vehicles at off-peak hours to work as V2G at
the time of need is a possible example of valley filling.

c. Load Shifting: This is based on shifting load from peak hours to off-peak hours.
d. Load Reduction: This strategy is based on using energy-efficient equipment to reduce

load demand. Rooftop solar installation in residential areas can reduce the load
overall, which is an example of this technique.

e. Load Growth: Building up the load at the time of reduced load conditions or in off-peak
hours. This technique is an example of charging ESS or EVs at non-peak times or
during non-peak days.

f. Flexible Load Shaping: The rearrangement of LDC according to the conditions. WEC
system generation is an example of this method.

Figure 7. Benefits of using DGs and ESS in DSM.

Figure 8. DSM techniques.
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The discussed DSM objectives can be achieved by integrating the DERs described in
earlier sections in a forecasted manner [29]. The reason for using all these renewables is as
simple as the UN’s Sustainability Goal of cleaner energy. Different types of available DERs
and possible DSM techniques are discussed in Table 1, which is a new and innovative way
of expressing the information in this paper.

Table 1. Different types of DERs with DSM applications.

DERs
Available for

the Time
(24 h)

Possible DSM Techniques Types of Operations Benefits

Solar [30,31]
Morning to
afternoon

(7–9 h)

Peak clipping
Load reduction
Load shifting
Valley filling

Thermal: Converting solar
heat energy to electrical

energy.

Cleaner energy, reduction
in the use of carbon.

Photovoltaic: Converting
solar radiations to electrical

energy with solar cells.

Cleaner energy, tariff
reduction, decentralized
generation, residential

mode generation.

Wind Energy [32] 24 h
Load reduction
Load shifting
Valley filling

Converting wind energy to
electrical energy with
induction generators

Cleaner energy,
decentralized generation.

Hydro Energy
[33]

24 h

Peak clipping
Load reduction
Load shifting
Valley filling

Flexible load growth

Pumped hydro: Water
pumped during off-peak

hours generates electricity
during peak hours.

Emergency power, cleaner
energy, small centralized

power generation.

Small hydro: Decentralized
runaway water used for

electricity generation.

Emergency power, cleaner
energy, small centralized

power generation, low-cost
generation.

Waste-to-Energy
[34,35] 24 h

Peak clipping
Load reduction
Load shifting
Valley filling

Biogas: Anaerobic
digestion of biodegradable

waste into methane
produces energy.

Cleaner energy, small
centralized power

generation, less carbon
production.

Thermal: Combustion of
waste to produce energy.

Cleaner energy, small
centralized power

generation, less carbon
production.

ESS [36] 24 h

Peak clipping
Load reduction
Load shifting
Valley filling

Flexible load growth

Energy is stored at off-peak
hours in various systems
such as electric springs,

pumped hydro, fuel cells,
hydrogen cells,

supercapacitors, etc.

Emergency power, cleaner
energy, small centralized
power generation, less

carbon production,
charging stations.

Vehicle-to-Grid
[37] 24 h

Peak clipping
Load reduction
Load shifting
Valley filling

Flexible load growth

EV charging in off-peak
hours can provide power

to grid-like ESS at the time
of need.

Emergency power, cleaner
energy.

Geothermal
Energy [38]

Available when
water is in

contact with
lava

Peak clipping
Load reduction

Valley filling

Providing intermittent
boosts to power levels.

Small centralized power
generation, spinning

reserve.
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6. Energy Management System

An energy management system is an operational system used to plan, manage, miti-
gate, forecast, and continuously improve energy performance to establish a balance in the
power flow network, including various DERs, as shown in Figure 9. An EMS optimizes the
energy supplied by generating stations to the grid, taking into account various parameters,
which are listed below:

• Energy consumption in the power flow network;
• Load behavior pattern on the demand side;
• Consumer energy consumption patterns;
• Seasonal forecasting of consumer data;
• Weather forecasting data;
• Time of pricing when it is highest.

Figure 9. Energy management system.

Major components of EMS are measuring units, IoT-based tools to forecast data from
collected data, various types of sources of generation, and generation scheduling. An EMS
is operated by various optimization models with specific objectives, taking into account the
constraints related to them, which are discussed in the later section.

6.1. Energy Monitoring, Measurement, and Analysis

An EMS includes monitoring, measuring, and analysis as major components to carry
forward its operations, which will determine the energy flow performance and help it
perform DSM effectively. Its key characteristics include [9,39]:

• Significant energy use in the SG network;
• Variables related to energy use;
• Energy performance indicators;
• Effective energy-efficient plans to achieve objectives and targets.

6.2. Standards Used for Communications in DSM Using DGs and ESS

There are specific standards used for communicating various DGs and ESS to the SG’s
power flow network, which are provided in Table 2 [40].
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Table 2. Standards used for communication in DSM using DGs and ESS.

Code Year of
Implementation Objective

IEEE 1547 2003 To find a bridge between distributed generation and the electric network.
IEEE 1547.1 2005 Specifies the test procedure for the interconnection.
IEEE 1547.4 2011 Deals with the planning and operation of integration.
IEEE 1547.7 2013 To standardize the DG integration system.

IEEE 1547.8 2014 It identifies and expands the innovative design, process, and operational procedure to
achieve flexibility.

IEEE 2030 2011 Integration of information technology into the grid, the establishment of a framework
of operation because of the prospects of a smart grid.

IEEE P2030.2 2015 Integration of hybrid energy storage systems into the power flow in the network.
IEEE 2030.3 2015 The test procedure for a single storage device in the power network.
IEEE2030.7 2017 Standards for microgrid energy management.
IEEE 802.1/

802.3/802.15.4 2003 Interfaces the identifiers, which operate as the interconnecting modes and power
control. Information exchange between the components.

EEC 61850-7-2 2003 Sets standards for abstract communication service interface (ACSI) as a paradigm
used for vertical and horizontal communication for MC61850.

EEC 61970/
61968/62325 2013 Sets standards based on information integration and the software framework of EMS

for DGs

IEEE 2030.8 2018 Sets standards for microgrid energy management and control in a grid-tied or
off-grid system.

IEC 61850 2019
Automation architecture requirement for utility subsystems, enabling communication

and semantic interoperability among multi-vendor equipment, communication
networking, and the communication front-end for the network.

7. Issues and Challenges

During the review process, several issues related to integrating DGs into the smart grid
for DSM purposes were found, which are listed below, categorically segregating different
types of DGs [41–48].

7.1. DSM with SPV

SPV energy conversion systems have been used for a long time since their discovery
as a significantly cleaner energy source. Much of the maturity in semiconductor technology
has allowed for vast improvements in the scope of SPV generation. The issues discussed
below are the major difficulties in addressing stable grid operations with DSM.

• These sources of generation, albeit easy to install, are not flexible to operate. This is
because the reactive power necessary to complement the generated active power from
SPV is not readily sourced and is difficult to integrate when upgrading the primary
SPV generation sources.

• SPV generation necessitates the use of ESS to avoid drops in power delivery and the
energy buffer as and when power is not readily available for generation.

• The installation safety measures need to be stepped up, as they are prone to damage
from meteorological and physical factors such as hurricane winds and rust in the
installation equipment. This presents a potential hazard, hindering the safety aspect
of SPV installation.

• Maturity in SPV panel technology has vastly improved since its inception, but the
technology has still not reached its peak maturity for the maximum extraction of
available solar energy using existing power conversion and extraction techniques, viz.,
MPPT.

• The manufacturing and disposal of SPV equipment leave behind a very high carbon
footprint, presenting a deterrent toward adoption owing to environmental concerns.
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7.2. DSM with Wind Energy Conversion System

Wind energy conversion systems integrated into DSM have been wholly realized for a
long time; this includes wind turbines, wind monitoring systems, and related environmen-
tal protection systems, such as environmental protection stations and power generation
systems. Still, it has proved challenging to synchronize wind and hydropower effectively
in actual operations, which does achieve high efficiency at the same time each year [3]. The
complexity can be seen in the following aspects.

There are three significant issues in the current use of wind turbines in DSM that
challenge its high efficiency and stable operation [3,24]:

1. The prediction and forecasting are not accurate, as various sources influence the
generation capacity. The meteorological uncertainty, coupled with the continuous
available wind flow available at the tip level, influences the generation capacity of the
wind turbine.

2. The transmission and distribution of the existing power grid are too complicated,
making it more challenging to integrate with wind turbines effectively, as they have
issues concerning intermittency and frequency deviations from the existing grid
requirements.

3. The operation of wind turbines with the existing power grid is not sustainable during
the nighttime, eventually leading to an increased load on the grid during the daytime.

7.3. DSM with Hydro Energy Sources

Generation sources pertaining to hydro-based sources are a major part of the power
supply to grids. Complex hydropower-generating units installed in dams and tidal-based
generation can be leveraged to a high extent, owing to their pollution-free generation and
the replenishable source of waterbodies, which are naturally replenished via the water
cycle. The major issues that are present in the existing power generation scenario that can
affect DSM operation, to a certain extent, are highlighted as follows:

• The availability of water sources for potential generation is not feasible in every possi-
ble geographical location. Large-scale generation is only possible if the geographical
arrangement allows for dams to be constructed or the waves to be harnessed suitably
without causing ecological imbalance to nearby flora and fauna.

• The ratios of cost-to-establishment and revenue generation-to-cost are generally low,
owing to high recurring and installation expenditures. However, these can be lever-
aged by using an environmental outlook to justify the cost.

• Maintaining the frequency of the power generated is complex due to the intermittent
nature of water flow at the available head level. This prevents the energy generated
from the wind turbines to be directly integrated into the transmission system, as
pre-conditioning the power supplied is necessary for reliable grid operation. This adds
significantly to the power generation costs as additional power conditioning units are
required to bring the frequency and other parameters up to an acceptable generation
level.

7.4. DSM with Waste-to-Energy Sources

In recent times, waste-to-energy has gained significant potential in the renewable and
biologically eco-friendly energy market owing to its nature-oriented disposal and pollution-
free generation. DSM can be implemented at the prosumer level, with the prosumers being
active power generation sources putting greater emphasis on waste-to-energy potential
as their preferred source of energy to defer them from using conventional grid-supplied
electricity. However, the present scenario is plagued with many issues, some of which affect
DSM integration with waste-to-energy potential as a potent source of power generation.
Some of these issues are:

• Waste segregation and management on the ground level are the primary tasks that
need to be focused on. In developed countries, this is not a major issue, as the



Appl. Sci. 2022, 12, 8914 16 of 43

general population is aware at a high level in comparison to countries with developing
economies. Better awareness among the general masses can be a solution to the
segregation and management of waste.

• Complex techniques are involved in waste-to-energy-based generation, such as pyrol-
ysis in controlled environments and the use of a specific mixture of substances to keep
the entire process pollution-free.

• High investment costs are required for setting up the incineration and biogas plants.

7.5. DSM with EV and ESS

The automobile sector is presently witnessing a surge in sales of EVs with the tran-
sition to battery-based power delivery from conventional gasoline and diesel as sources
of transportation fuel being the prime focus. This has seen a rise in the adoption of more
efficient and high power density battery systems to be implemented at the EV end-user
side. Higher capacity batteries can be configured from a backup or buffer storage system
standpoint. A bidirectional implementation of these battery-enabled mobile EVs can allow
for dispatch strategies to be collectively aggregated and disbursed by DNOs as a virtual
power plant system through DSM strategies. Similarly, DSM can allow intelligent control
of EVs, charging and discharging according to adaptive schedules, which will benefit
the power system. Nonetheless, issues pertaining to EV adoption prevent the large-scale
integration of DSM in EV-based programs due to:

• High investment costs and costs of ownership from the perspective of the manufac-
turers, grid utility operators, and consumers. The careful economic and technical
planning of charging stations, the grid’s capacity to accept increased loading, and the
minimization of losses along the transmission and distribution systems to allow for
efficient use of available energy are the primary concerns from the maintenance and
setting-up perspective.

• Consumer acceptance is still low in developing countries due to a range of anxieties
about reliability and initial expenditure during purchase as compared to fossil fuel-
based automotives [46].

• Battery degradation and better health are also major concerns; the periodic mainte-
nance of fossil fuel vehicles is a fuss-free ownership experience in the long run, as
battery degradation does not hinder the performance of the vehicle to a great extent.
In contrast, in the case of EVs, the batteries eventually require replacement at their
end-of-life stage unless they find use as second-life batteries.

These issues and challenges must be addressed to make EMS architecture more robust
and reliable. After resolving these challenges, the optimization techniques can be integrated
seamlessly into the EMS architecture.

8. Optimization Methods

The earlier literature presents various ideas about different types of mathematical
approaches to solve the DSM problem. Techniques such as linear programming, dynamic
programming, non-linear programming, game theory approach, and particle swarm op-
timization set a mark for solving the DSM objectives. Recently, hybrid techniques, such
as gray wolf optimization (GWO), harmony search (HS) algorithm, enhanced differential
evolution (EDE), etc., have drawn the interest of researchers in this field. Many of these
optimization approaches and real-world implementations of DSM (mostly on residential
premises) were discussed in [26], with distinct classifications between each approach and
classification. The various objectives and constraints are discussed in Table 3, and different
types of optimization techniques are broadly listed in Table 4, below.
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Table 3. Classical technique-based single objective optimization.

Refs. Objective Objective Function
Concepts Employed

LS PC VF LS LG LR

[47]

To facilitate EMS to
reduce the total cost

of energy
consumption and

generation.

F(x) = min

(
∑
i∈I

Econ,i.Pi − ∑
j∈J

Egen,j.Pj

)
4 4

[48]

To assign a thermal
management system

for peak load
shifting.

F(x) = J(s, p) =
T
∑

t=1
∆t(pload(t)− pload(t))

T × K∆t(pload(t)− pload(t))

+ (s(t)− s(t))T M(s(t)− s(t))
4

[49]

To reduce power
consumption in
classroom-based
smart buildings.

F(x) = Eobj = min
(

c
∑

r=1

h
∑

t=1
Erαrt +

c
∑

r=1
Eα

r

)
4 4

[50]

To reduce a
building’s peak

electrical demand
through

customer-side load
control.

F(x) = min
(

∑
h

Eh
DG.Ch

)
∀h ∈ H

Eh
DG =

(
Ph

NINSLs + Ph
INSLs + Ph

SLs + Ph
B − Ph

R

)
·
(

DS
60

) 4

[51]

To propose
reduction values for

home energy
management.

F(x) = min


nLoad

∑
Load=1

λLoad × PLoad + λGrid × PGrid + λDown × RegDown−
nDG
∑

DG=1
λDG × PDG + λUp × RegUp


4 4 4

[52]

To minimize the
electricity cost and
lower the delay of

equipment running.

F (x) = W1
(∑120

u=1 pr Cu Pscd
(u))Pscd

(u)

((∑120
u=1 pr Cu Pscd

(u))Pscd
(u))max

+ W2
∑ a∈A ρDT Ra

(∑ a∈A ρDT Ra )max
4

[53]
To minimize the cost

of use on the
generation side.

F (x) = (Emaxnen − 1/2α Eres n
Emaxn

en
2 − β

pm
pmin

Swen 4 4

[54]

To minimize the cost,
including

overall energy costs,
scheduling costs,

and climate comfort.

F (x) = αECCEC + αPRCPR + αCCCCC 4

[55]
To minimize the cost

of use on the
consumer side.

F (x) = ∑i,j Fi,jxi,j + ∑i,j Gi,jdi,j 4

[56]

To minimize the
generation costs,

including all
possible types of

DGs.

F =
T
∑

t=1

{
Ng

∑
i=1

[
ui(t)Pgi(t)

(
Bgi(t) + KOMi

)
+ Sgi|ui(t− 1)|

]
+

NES

∑
j=1

[
ui(t)PSj (t)BSj (t)

]
+ PGrid (t)BGrid (t)

}

+
T
∑

t=1

{(
TE

∑
i=1

N
∑

j=1
EFijPgi (t)

)
+ PGrid (t)EFgrid

}
4

[57] To reduce the charge
and discharge costs. F =

m
∑

t=1

(
Cg

t + Cι
g
t + CES−

t − Cl
t − CES+

t + Ωt

)
× ∆t 4
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Table 3. Cont.

Refs. Objective Objective Function
Concepts Employed

LS PC VF LS LG LR

[58]
To reduce NPC,

taking into account
all types of sources.

F = NPC +
8760
∑

t=1
Pb(t) +

8760
∑

t=1
PH2 (t) +

8760
∑

t=1
Pw(t) + Pwt + PH2T

4

[59]
To reduce operation
costs, emissions, and
the reliability of SG.

F = CFOPR
t + CFEMI

t + CFRLB
t

F = CMG
in + CMG

op
4

[60]
To reduce the

investment and
operating costs.

CMG
op =

L
∑

i=1
(CFi + COMi + CSi + CEi) +

M
∑

j=1
CESS

OMj − CMG
G

4

[61]

To minimize the
operating and
emission costs,

including startup
and shutdown costs,

reverse costs, and
exchange of power

costs.

F = CostOperating + CostEmission

CostOperating =
T
∑

t=1
(cos tDG(t) + STDG(t) + cos ts(t) + cos tGrid(t) + cos tDR(t))

CostEmission =
T
∑

t=1
{emissionDG(t) + emissionS(t) + emissionGrid(t)}

F = Fstart−up
Cost + Freserve

Cost + Fgeneration
Cost + FDR

Cost + FEmission

4

[62]
To minimize the
overall costs of

generation.

F =
ND
∑

t=1

{
A
∑

a=1
[(ATat.utat + (MTCa + BTat).ptat).H/ND

+DTa.ytat + FTa.ztat] +
B
∑

b=1
[((MFCb + CFb).p fbt + ζb.dp fbt)

..H/ND + EFb.y fb f + GFb.z fbt

]
+

C
∑

c=1
[(CCc.pdcct)..H/ND]

+[BPt.pgbt − SPt.pgst + CD.pdet + CE.pext]..H/ND}

4

[63] To reduce the
operating costs.

F = ∑
s∈S

λs

[
∑

k∈K
∑
j∈J

(
Cj
(

Pj,k,s
)
+ SUj,k

)
+ ∑

k∈K
CES.

(
VCH

k,s + VDCH
k,s

)
+ ∑

k∈K
PInt,R−C−I

k,s .CInt,R−C−I
k + ∑

k∈K
∆Pdo,R−C−I

k,s .CDR,R−C−I
k

] 4

[64]
To minimize

short-term variable
generation costs.

Minimize f = CHV(PHV , QHV) 4

[65]

To maximize
economic benefit by

integrating small
CPPs, ESSs, RES,
and interruptible

demand loads.

max
T
∑

t=1

I
∑

i=1
ρs,tPdl,i,t − Cdg,i,t(Pdg,i,t)− Ces,i,t(Pes,i,t)− ρb,tPb,t

4

[66]
To provide a

self-scheduling
program for an SG. Maximize

T
∑

t=1
(

nw

∑
w=1

π(w).
Ns

∑
s=1

π(s).
Np

∑
p=1

π(p).(λp(t).Gwsp(t)

−Cwsp
conv(t)− ywsp

conv(t).Sconv))

4

[67]
To maximize the
SG’s short-term

profit.
Max

T
∑

t=1

nw
∑

w=1
πw

np
∑

p=1
πp

ndown
r
∑

rdown=1
πdown

r

nup
r
∑

rup=1
π

up
r [λp(t)(Gwp(t) + bmdown

wp (t).ψdown
r (t)

−bmup
wp(t).ψ

up
r (t))− Cc

wp(t)− SUCc .vc
wp(t)]

4

[68]
To minimize the cost,
as well as the carbon
emission percentage.

Pro f it =

max
Ns
∑

s=1
πs ×

24
∑

t=1


−

Np
∑

p=1

{
Cchp

t,p + Cho
t,p

}
{

ρem
s,t × Pgrid

s,t +
Np
∑

p=1

{
ρret_e

t × Psel
s,t,p + ρh

t × Htl
t,p − Cens

s,t,p

}


Emission = min
Ns
∑

s=1
πs ×

24
∑

t=1


Np
∑

p=1

{
Echp

t,p + Eho
t,p

Egrid
s,t



4 4
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Table 3. Cont.

Refs. Objective Objective Function
Concepts Employed

LS PC VF LS LG LR

[69]
To minimize of

average generation
cost of DG units.

MinSVPP =

n
∑

i=1
PDG_C,i ∗ vDG_C,i(PDG_C,i)

n
∑

i=1
PDG_C,i

MinCVPP =
n
∑

i=1
PDG_C,i ∗ vDG_C,i(PDG_C,i)

4

[70]

To maximize the
worst-condition

expected profit of
SG.

maxψM ∑
ω∈Ω

πω

[
∑

t∈τ
[λE

tω pE
t ∆t + λ̂

R

tω
+ pR

t

−(CC,FuC
t + SUCCvC,SU

t + SDCCvC,SD
t )] + υ

+ λ̂R
tω − pR

t − 4 4

[71] To maximize the SG
profit. Max ZPro f it =

T
∑

t=1
(PD

t .λDSO,charge
t + ∑

k∈GSP
PUpstream

kt .λLMP
kt

− ∑
i∈DG

(PDG
it .λDG,cos t

i + yDG,start
it .λDG,start cos t

i + zDG,shut
it .λDG,shut cos t

i

− ∑
j∈SG

PSG
jt .λSG,cos t

j − PFL
t .λFL,cos t

t )

4 4

[72]

To integrate EV, ESS,
and wind generation
for participation in
the day-ahead and
reserve electricity

market.

maxY =
T
∑

t=1

(
λDA

t eDA
t + PresλRes

t eRes
t + calltλRes

t eRes
t −

N
∑

n=1
cos t

deg
t,n

)
+

N
∑

n=1
(λS Edem

n ) 4

[73]

To minimize the SG
cost and

emissions using
day-ahead
scheduling.

Minimize CDN = ∆T.
T
∑

t=1

kP
t .PDN

t .QDN
t +

NB
∑

i=1

[
cRES

i .PRES
i,t + FDG

i

(
PDG

i,t

)]
−

NVPP
∑

k=1

(
πP

k,t .P
VPP
k,t + πQ

k,t .Q
VPP
k,t

)


Maximize BVPP,k
i = ∆T.

T
∑

t=1

 UDR
k

(
PDR

k,t

)
− FDG

k

(
PDG

k,t

)
−cRES

k .PRES
k,t −

(
πP

k,t .P
VPP
k,t + πQ

k,t .Q
VPP
k,t

)
4 4

[74] To minimize the total
operating cost of SG.

Minimize f =
T
∑

t=1
Cost =

T
∑

t=1



PGrid(t)× CGrid(t)
+UWT(t)× PWT(t)× CWT(t)
+UPV (t)× PPV (t)× CPV (t)
+UFC(t)× PFC(t)× CFC(t)
+UMT(t)× PMT(t)× CMT(t)

Ns
∑

j=1
Uj(t)× PSj(t)× CSj(t)

+
Ng
∑

i=1
SGi |Ui(t)−Ui(t− 1)|

+
Ns
∑

i=1
SSj
∣∣Uj(t)−Uj(t− 1)

∣∣
−∆P(t)× C∆P(t)



4

[75] To maximize the
profit.

Pro f itincrease =

[
n
∑

j=1
pro f itj(1 + i)−j

]
− Ccap

=

[
n
∑

j=1
(priceVPP × powerVPP − Incomebaseline)× (1 + i)−j

]
− Ccap

4 4

[76] To minimize the
generation costs. F =

T
∑

t=1

(
Ncpp

∑
i=1

Fcpp
i,t

(
Pcpp

Gi,t

)
+

Nvpp

∑
j=1

Fvpp
j,t

(
Pvpp

Gj,t

))
4

[77]

To minimize
congestion based on

the day-ahead
scheduling of DERs.

min
Ns

∑
s=1

ps(
Hda

∑
th=1τda

(
Nchp

∑
i=1

C f ,chp,i,s(th)

+
Ne,sto

∑
i=1

Cop,e,sto,i,s(th)− Pm,da(th)cm,da(th)τda))

min
Hid

∑
th=1τid

(
Nchp

∑
i=1

C f ,chp,i(th) +
Ne,sto

∑
i=1

Cop,e,sto,i(th) + Cpen,imb(th))

4 4
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Table 3. Cont.

Refs. Objective Objective Function
Concepts Employed

LS PC VF LS LG LR

[78]

To schedule
optimally using
EMS, taking into

account all possible
types of DGs aimed
toward profit and

the minimization of
carbon emissions.

Maximize Income =
T
∑

t=1




NL
∑

L=1
PLoad(L,t) .MPLoad(L,t) +

NM
∑

M=1
PSell(M,t) .MPSell(M,t) +

NE
∑

E=1
PDischarge(E,t) .MPDischarge(E,t) +

NV
∑

V=1
PDischarge(V,t) .MPDischarge(V,t)

.∆t



Minimize OperatingCost =
T
∑

t=1





NDG
∑

I=1
PDG(I,t) .cDG(I,t) +

NS
∑

S=1
PSupplier(S,t) .cSupplier(S,t) +

NL
∑

L=1
PLoadDR(L,t) .cLoadDR(L,t) +

NDG
∑

I=1
PDischarge(E,t) .cDischarge(E,t)

NV
∑

V=1
PDischarge(V,t) .cDischarge(V,t) +

NL
∑

L=1
PNSD(L,t) .cNSD(L,t)

NDG
∑

I=1
PGCP(I,t) .cGCP(I,t)


.∆t



Minimize E =
T
∑

t=1




Ωd
DG
∑

I=1
PDG(I,t) × EDG(I,t) +

Ωe
SP

∑
S=1

PSupplier(S,t) × ESupplier(S,t)

.∆t



4 4

[79]
To minimize the

operating cost of SG
over 24 h. Minimize F =

 24
∑

t=1




PWT(t).KWT(t) + PPV(t).KPV(t)
+PFC(t).KFC(t)− PCh(t).KCh(t)
+PDch(t).KDch(t)− PSp(t).KSp(t)

+PNs(t).KNs(t)

∆t


 4 4

Table 4. The optimization papers surveyed across DGs DSM optimization problems.

Refs. Optimization
Algorithm

DR Programs
Used Objective Function Constraints Decision Variables

[80]

ANN

• RTP
• Minimization of

the total cost to
consumers

• Battery SoC
• Battery

charge/discharge
power

• RTP pricing values
• PEV charg-

ing/discharging
rate

[81]
• Peak shaving

(PS)

• Minimization of
transformer
loading

• Transformer limits
• Line current

carrying capacity

• Transformer
parameters

• Number of EVs
• EV charging power

[82]
• PS
• IBR

• Minimization of
energy cost

• Minimization of
network losses

• Minimization of
voltage magnitude
deviation

• EV battery SoC
• EV charging power
• DG power balance

limits

• Participating active
loads

• Power injected into
the grid

[83] • PS • Maximization of
revenue

• Load
charge/discharge
limits

• EV SoC
• Maximum

charge/discharge
power

• Charging time
constraints

• Charging tariff
• Day-ahead

forecasted prices
• EV drive cycle

[84] • ToU

• Minimization of
the total cost

• Maximization of
revenue

• RES generation
limits

• DG unit operating
costs

• Available tradeable
power

• RES generation-
dependent
parameters
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Table 4. Cont.

Refs. Optimization
Algorithm

DR Programs
Used Objective Function Constraints Decision Variables

[85] DP • Load shifting
(LS)

• Minimization of
energy costs
without sacrificing
user preferences
and satisfaction

• EV
charge/discharge
power

• EV battery SoC

• RES generation
parameters

• Utility tariff rates

[86]

Fuzzy Logic
(FL)

• LS
• PS

• Minimization of
total operation cost

• Power balance
constraints

• Spinning reserve
constraints

• Generator limits
• Wind power

penetration rate

• Fuel cost
• Startup cost

[87]

• ToU
• CPP
• Valley filling

(VF)

• Minimization of
peak load demand

• EV SoC
• Bus voltage limits

• EV
charge/discharge
time

• Market pricing
signals

[88]

• ToU
• VF
• LS

• Maximization of
profit of consumers
through maximum
EV integration

• EV SoC
• Charging

preference limits
consumers

• Electricity tariff
• EV availability

[89] • LS

• Minimization of
generation costs,
emissions, and
energy losses

• Active power
output limits

• Generator limits
• Total flexible load

limits

• Flexible load
operation time

[90] • VF
• Minimization of

high ramp rates in
G2V mode

• EV SoC
• Ramp rate limits
• Wind power

output limits

• EV charging
current

[91]

Game Theory

• LS
• Minimization of

cost for residential
users

• The discharge rate
of PEV

• Hourly electricity
tariff

• PEV energy
consumption

[92] • PS • Minimization of
energy cost

• Transmission limits
• EV

charge/discharge
limits

• Total load demand
• Cost function
• Welfare function

[93] • LS
• PS

• Minimization of
peak demand
using distributed
EV integration

• Charging outlet
limits

• Energy trading
limits

• EV charging time
• Number of

participating EVs
under the same
aggregator
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[94]

Game Theory

• PS
• ToU

• Minimization of
electricity costs

• Minimization of
deviation between
predicted and
actual load
demand

• EV storage limits
• ESS storage limits
• EV SoC limits

• EV availability
• Load demand

[95] • ToU
• PS

• Minimization of
the
peak-to-average
ratio (PAR) of the
total energy
demand

• Energy balance
limits

• PEV discharge
limits

• Charging/
discharging time
limits

• Cost function
• Load demand

[96] • ToU

• Maximization of
profits in the
market
environment

• EV charging limits
• Number of

participating EVs
• Bidding tariff

[97]
• PS
• ToU
• VF

• Minimization of
charging the cost of
EV

• Grid power limits
• EV SoC limits

• Satisfaction income
of EVs

• Battery loss of EV
• Charging cost

[98] • PS
• VF

• Minimization of
energy cost

• Minimization of
battery
degradation

• Client usage
parameters

• Cost function
• Residential load

demand
• PHEV driving

behavior

[99] • ToU
• RTP

• Minimization of
electricity tariff for
the customers

• Hourly power
demand limits

• Total energy
consumption limits

• Availability of EVs
in the parking lot

• SoC of EVs
• Battery power rate
• Load demand

[100] • RTP
• ToU

• Maximization of
system stability

• Maximization of
profits

• Average power
generation limits

• Daily energy usage
limits

• EV availability
• Load demand

[101] • RTP
• Maximization of

profits of utility
companies

• Charging rate
limits

• Price function of
utility

[102] • RTP

• Maximization of
retailer profits

• Minimization of
generation cost

• Charging rate
limits

• Charging period of
EVs

• Battery charging
efficiency

[103] LP
• PS
• VF

• Minimization of
energy expenses of
individual
customer

• Charging rate
limits

• Battery SoC for
driving cycle

• Appliance
operating time

• Appliance power
demand
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[104]

LP

• LS
• RTP
• ToU

• Minimization of
peak load in the
distribution
network

• Minimization of
consumer tariff

• Power limit of EV
• Availability of

appliances
• Power generation

[105]
• PS
• VF
• ToU

• Minimization of
difference between
peak and off-peak
tariff

• Minimization of
EV charging cost

• Base tariff limits
• Price deviation

limits
• EV SoC limits
• EV charging power

limits
• Feeder baseload

limits

• Electricity tariff
• Operation time slot

[106] • VF

• Maximization of
EVs availability in
charging

• Minimization of
monetary expenses

• Charging load
limits

• EV SoC limits

• Charging decision
value/vector

[107] • PS
• ToU

• Minimization of
home electricity
expenses

• EV availability
period

• EV demand
• Electricity tariff

[108] • RTP
• ToU

• Minimization of
the operation cost
of EVCS and
energy
management
system (EMS)

• Power supply
constraints

• ESS constraints
• Heating system

constraints
• EV power balance

limits

• Load demand
• EV and ESS reserve

tariff
• Heating

compensation
prices

[109] • PS
• Minimization of

variation of the
load curve

• EV SoC • EV charging load

[110] • PS
• LS

• Maximization of
revenues

• EV charging level
limits

• Grid power limits

• Hourly tariff
• DG power

generation capacity
• Hourly critical load

demand

[111] • RTP
• ToU

• Minimization of
PAR and system
costs

• PV power trade
limit

• EV SoC limits

• PV generation
capacity

• EV charging load
• EV availability

[112] • RTP

• Minimization of
costs, peak
charging load

• Maximization of
PV integration

• EV charging
demand limit

• EV availability
• EV charging load
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[113]

LP

• RTP • Minimization of
cost of the system

• EV charging limits
• EV SoC limits

• Grid power
consumption

• Appliance
schedule

• Hourly tariff

[114] • PS
• Minimization of

operational costs
and emissions

• Thermal unit limits
• Power flow and

grid constraints
• PEV constraints
• Power balance

limits

• EV SoC
• Thermal

generation
requirement

[115] • ToU
• Minimization of

the total cost for
the consumer

• Power balance
limits

• EV SoC limits
• Power transaction

limits

• EV charg-
ing/discharging
time

• The usable capacity
of EV ESS

[116] • ToU
• Minimization of

the total cost for
the consumer

• EV charging limits
• EV operation time

limits
• EV battery capacity

limits

• Real-time tariff

[117] • RTP

• Minimization of
the total energy
cost of a smart
home

• Power balance
limits

• Power trading
limits

• EV SoC limits
• PV generation

limits

• PV generated
power

• EV availability

[118] • PS
• LS

• Minimization of
individual
consumer costs at
lower participation
levels

• EV SoC limits
• ESS storage limits
• DER generation

limits

• Price indicators
• Customer fairness

index

[119] • ToU
• Maximization of

EVCS operating
profits

• EV SoC limits
• ESS

charge/discharge
power limits

• Efficiency limits

• Short-term
forecasted loads

• Load reduction
signal

[120] • ToU
• PS

• Minimization of
energy cost • EV charging limits

• Cost function
• Total charging

demand

[121] • RTP
• LS

• Minimization of
generation costs for
the customer and
utility

• Shiftable load
power limits

• EV SoC limits
• EV availability

[122] • PS • Minimization of
PAR of the system

• Grid power
injection limits

• EV SoC limits

• EV charging
efficiency
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[123] LP • ToU • Minimization of
overall system cost

• ESS power limits
• EV

charge/discharge
power limits

• Cost function

[124]

PSO

• ToU

• Maximization of
revenues

• Minimization of
load fluctuation

• EV aggregator
power limits

• Grid power limits
• EV

charge/discharge
power limits

• Charging tariffs
from the grid

• Service revenues of
EV aggregator

[125] • LS
• PS

• Minimization of
operating costs for
the network
operator

• Grid power
balance limits

• Bus voltage limits
• Line thermal limits
• EV

charge/discharge
limits

• EV SoC
• Network power

injection
• DG power injection

[126] • PS
• Minimization of

fuel and startup
costs

• Power balance
constraints

• Generation limits
• Up/downtime

constraints
• Spinning reserve

limits
• EV

charge/discharge
power limits

• Fuel economics
cost

• Startup/shutdown
time

[127] • RTP

• Minimization of
the load curve

• Maximization of
customer profit

• Power capacity and
balance constraints

• EV
charge/discharge
limits

• EV charging time
limits

• EV availability
• The power

exchanged from
the grid

[128] Evolutionary
PSO • ToU • Minimization of

system cost

• Active and reactive
power generation
limits

• Grid voltage limits

• Power flow from
the grid

• EV availability

[129] ACO • PS • Minimization of
overall system cost

• DG generation
limits

• Grid power
balance limits

• Cost function

[130]

GA

• PS

• Minimization of
cost variance

• Maximization of
user satisfaction

• EV SoC limits
• EV

charge/discharge
power limits

• EV availability
• Load demand from

the grid

[131] • VF
• PS

• Minimization of
PAR • EV SoC limits • EV availability
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[132]

GA

• PS • Minimization of
PAR • EV SoC limits • Power demand

• EV availability

[133] • ToU

• Maximization of
profit

• Minimization of
PAR

• Minimization of
variance

• EV SoC limits
• EV

charge/discharge
power limits

• EV availability
• EV charging power

[134]

Improved
partheno-

genetic
algorithm

(IPGA)

• LS

• Minimization of
annual
construction
maintenance cost

• Grid power limits
• System reliability

constraints
• DG and ESS

penetration limits
• EVCS charging

power limits

• EV availability at
EVCS

• DG power
generation capacity

[135]
Hyper-

heuristic
optimization

• LS
• Minimization of

total cost and
emission

• EV SoC limits
• Electricity tariff

limits

• Emissions from
CPP

• DG is active in the
grid

[136] DE • PS

• Maximization of
energy
consumption using
EV-ESS

• Minimization of
PAR

• EV SoC limits • EV availability

[137]
Virus colony
search (VCS)
optimization

• PS
• Minimization of

smart parking costs

• Upstream grid
power limits

• EV SoC limits
• Power equilibrium

limits

• Cost function

[138] Hybrid GA
and PSO

• LS
• ToU

• Minimization of
total tariff for
customers in 24 h

• Energy balance
limits • EV availability

[139]

Model
predictive

control (MPC)

• PS
• RTP

• Minimization of
total operational
cost for energy
management

• Heat pump
capacity limits

• Heat pump
thermal capacity
limits

• SoC of EV limit

• Heat pump
generated power

• EV availability
• Fuel price
• Natural gas price

[140] • RTP

• Minimization of
ramping
requirements from
power plant

• Power balance
constraints

• Service quality
constraints of EVs

• EV charging load
request vector

[141] • RTP

• Minimization of
cost of energy
consumption
considering EV
owner preferences

• EV SoC limits
• EV SoC level
• Price signal
• Volume signal
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[142]
Model

predictive
control (MPC)

• PS
• Minimization of

electricity bills and
peak load

• EV SoC limits
• EV

charge/discharge
power limits

• Grid power
balance limits

• Energy tariff
• Capacity tariff

[143]
Nonlinear

programming
(NLP)

• RTP

• Maximization of
total profit
considering social
welfare

• EVCS EV loading
limits

• EV SoC limits
• EV BESS

temperature limits

• EVCS operation
time

[144] Robust
programming

• PS
• LS

• Maximization of
EV-V2G power
integration

• Grid power
balance limits

• EV power
trajectory limits

• EV availability

[145]

Robust
mixed-integer

linear
programming

(RMILP)

• LS

• Minimization of
total operational
costs and emissions

• CAES operational
limits

• BESS
charge/discharge
limits

• EV SoC limits
• RES generation

limits

• EV availability
• Grid power

injection

[146]

Robust
mixed-integer

quadratic
programming

(RMIQP)

• PS
• LS

• Minimization of
PAR and energy
cost for the users

• RES generation
limits

• Appliance loading
limits

• EV SoC limits
• Power

demand-supply
balance limits

• Appliance
operation time

• Grid power
exchange tariff

[147]

Stochastic
programming

• RTP
• PS

• Minimization of
operational cost

• DG power limits
• Fuel cell power

limits
• EV SoC limits
• Grid power

balance limits

• Cost of power at
DG units

[148] • ToU
• Maximization of

expected profits of
EV aggregator

• Bidding amount
capacity limits

• EV charger
capacity limits

• EV
charge/discharge
power

• Grid electricity
tariff

[149]

• ToU
• CPP
• RTP
• Incentive-

based pricing

• Maximization of a
parking lot profit

• EV SoC limits
• Parking lot stored

energy limits

• EV arrival and
departure SoC
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[150]

Stochastic
programming

• ToU
• DLC

• Minimization of
maximum
transformer
loading during the
charging operation

• EV SoC limits
• EV

charge/discharge
limits

• Grid power
balance limits

• Load demand
curve

• EV availability
• Transformer

loading capacity

[151]

• ToU
• Incentive-

based pricing
• Maximization of a

parking lot profit

• EV SOC limits
• EV battery

efficiency

• EV battery capacity
• Cost of

degradation
• Availability of EVs
• EV

charge/discharge
tariff

[152] • ToU
• Maximization of

EV aggregation
profit

• EV SoC limits

• Market electricity
tariff

• Spinning reserve
capacity

• EV availability

[153] • ToU

• Maximization of
expected profit

• Minimization of
risks and costs
associated with DR

• Available DR limits
• EV charg-

ing/discharging
power limits

• EV SoC limits

• Intraday price
• RES generation

capacity

[154]

Conditional
value at risk

(CVaR)
function

optimization

• RTP
• Minimization of EV

charge/discharge
cost

• EV
charge/discharge
rate limits

• EV SoC limits
• EV charging time

limits

• EV
charge/discharge
power

[155]
CVaR-based

stochastic
programming

• LS

• Minimization of
operation cost,
emissions, and
renewable power
curtailment

• Active and reactive
power limits

• Power flow and
balance limits

• EV SoC limits

• Shiftable appliance
schedule

• EV availability

[156]

Multi-period
security

constraint
optimal power
flow (MPSOPF)

• ToU

• Minimization of
generation costs,
contingency costs,
load-following
costs, and load
shedding costs

• EV SoC limits
• Distributed energy

resource (DER)
generation limits

• Load shedding and
load following
reserve limits

• Electricity ToU
tariff

• Electricity load
curve

[157]
Techno-

economic
optimization

• ToU
• CPP
• RTP

• Maximization of
income of
distribution
operator

• Minimization of
operational costs

• RES generation
limits

• Bus and line
voltage limits

• Available DR limits
• EV SoC, efficiency,

and power
exchange limits

• EV energy trading
tariff

• Bidirectional
power flow tariff

• Battery
depreciation cost
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[158]

Stochastic
dynamic

programming
(SDP)

• ToU

• Minimization of
customer’s energy
charges
considering
residential power
demand and EV
charging

• EV SoC limits
• EV charger power

limits
• Grid power

injection limits

• Time index
• Residential load

demand

[159]

Deep learning
(DL)

• ToU
• PS

• Minimization of
overall vehicle
energy cost

• EV SoC limits
• EV charger

efficiency limits

• Cost function
• Real-time

electricity tariff
• EV availability

[160] • ToU
• Minimization of

energy costs in the
real-time market

• Voltage and
current limits

• EV SoC limits

• Real-time
electricity tariff

• EV load demand

[161]

Robust
adversarial

reinforcement
learning
(RARL)

• ToU

• Minimization of
customer’s
electricity bill
considering
privacy concerns

• RES generation
limits

• EV SoC limits

• Dynamic electricity
tariff

• Appliance
schedule

[162]

Reinforcement
learning (RL)

• PS

• Minimization of
monetary and
non-monetary
costs in DSM

• EV battery SoC
limits

• Energy prices
• Load demand

curve
• Total cost function

[163] • ToU

• Minimization of
the load demand
curve of the system

• EV SoC limits
• EV

charge/discharge
power limits

• Charging reward
function

[164] • ToU

• Minimization of
charging cost over
the day-ahead time
frame

• EV BESS
charge/discharge
time limits

• EV
charge/discharge
rate limits

• EV availability
• Real-time

electricity tariff

[165]
Hierarchical

reinforcement
learning (HRL)

• PS
• Minimization of

hydrogen
consumption

• EV SoC limits
• Fuel cell operation

limits

• Fuel consumption
• Fuel cell operation

status

[166]
RL-based
pursuit

algorithm (PA)

• RTP
• ToU

• Minimization of
total energy cost

• EV SoC limits
• EV

charge/discharge
time limits

• Reward function

[167]

Correlation
optimization

algorithm
(COA)

• ToU

• Minimization of
electricity cost of
the consumers
considering PV
generation and
ToU pricing

• PV generation
limits

• EV operation time
limit

• Grid supply of
power

• Electricity price
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[168]

Market-based
multi-agent

system
optimization

• PS
• Minimization of

total operation
costs

• Aggregated energy
constraints

• Power limit of EV
fleet

• EV battery capacity
limits

• Cost function
• Demand function

[169]
Alternating

direction
method of
multipliers
(ADMM)-

based
decentralized
optimization

algorithm

• PS • Minimization of
the load curve

• EV SoC limits
• EV charging

efficiency limits
• EV charge rate

limits
• Network

constraints

• EV charging load

[170]
• VF
• LS
• PS

• Minimization of
total generation
cost

• EV charg-
ing/discharging
efficiency limits

• EV ESS capacity
limits

• EV SoC limits

• Load demand
curve

• EV availability

[171]

Multi-EV
reference and

single-EV
real-time
response
(MRS2R)

online
algorithm

• PS
• VF

• Minimization of
payment by EV
customers

• EV SoC limits
• EV BESS capacity

limits
• EV availability

[172] Interior point
optimization • VF

• Minimization of
peak valley
difference and
improvement of
stability

• EVCS charg-
ing/discharging
time limits

• Grid power limits

• Active power load
• Grid bus voltage

magnitude

[173]

Constrained
nonlinear

optimization
problem with

Karush–Kuhn–
Tucker (KKT)

conditions

• PS
• Minimization of

charging the cost
for EV owners

• Charging power
limits

• Grid power limits
• Cost function

[174]
Decision-table-
based control
optimization

• PS

• Maximization of
economic benefits

• Minimization of
grid power
consumption

• EV BESS SoC limits
• Balancing current

limits

• PV generation
during daytime

• SoH of BESS

[175]

Monte Carlo
simulation

using
mixed-integer

linear
programming

(MILP)

• ToU
• Minimization of

building energy
consumption

• EV charging time
limitations

• EV SoC limits
• Energy balance

limits

• Load demand
curve
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[176]

Convex
optimization

• VF • Minimization of
EV charging costs

• ESS charging rate
constraints

• ESS SoC limits
• ESS availability

[177] • RTP
• VF

• Minimization of
electricity costs

• Consumer comfort
limits

• EV charging time
constraints

• ESS availability

[178] • PS
• Minimization of

total electric energy
costs

• Power balance
limits

• SoC limits
• Home ESS SoC

limits

• Number of
available EVs

[179] • RTP
• Minimization of

electricity cost for
the consumer

• Charge/discharge
power limits

• Load threshold
• SoC limits

• Number of
available EVs

• Real-time energy
tariff

[180] Quadratic
programming • PS

• Maximization of
vehicle’s fuel
economy

• Power flow limits
• SoC limits • Cost function

[181]

Non-intrusive
load extracting

(NILE)
algorithm

• LS
• PS

• Minimization of
the daily cluster
charging costs of
EVs

• Power balance
limits

• Ramping rate
limits

• User comfort
constraints

• EV charging power
• Availability of EVs

[182]

Monte
Carlo-based
risk-averse

charge
scheduling

optimization

• ToU
• RTP

• Maximization of
profits

• SoC limits
• Charging period

limits

• Electricity tariff
• EV drive cycle

9. Discussion and Findings

During the systematic review of the papers as a part of the literature survey, several
research gaps were identified in the present research scenario, as well as implementations
in various projects across the research domain. Some of the key findings identified during
the survey include:

• Most of the research papers addressed DSM formulation in the EV scenario by incorpo-
rating bidirectional power flow, but the uncertainty in demand and supply forecasting
leads to inefficient control over power flow.

• The limited participation of DGs, mainly on the distribution level, restrains the in-
dividual customers, and they cannot directly participate in ancillary services and
energy markets [183,184]. Clustered DGs must be able to collectively participate in
the formation and maintenance of such groups in the proper sizing and architecture,
which should be scalable in future implementations.

• The clustering of uncoordinated DGs, which generally operate in a decentralized setup
among different utility operators, seems challenging. It is necessary to implement a
proper service-oriented architecture to group together the operation and participa-
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tion of different DG aggregating companies to make DG-DSM integration into the
commercial markets more profitable and easier to implement on a technical front.

• The drive cycle of the EV owners, on an individual basis, has not been taken into
consideration on an end-user level. The optimization of charging and discharging
can be improved, to a great extent, with the personalized scheduling of EV and ESS
charge/discharge operations based on the user’s comfort and usage cycle.

• ICT technologies are currently implemented mainly on the transmission system opera-
tor (TSO) and DSO levels. They need to be integrated directly into the end-user location
with a two-way communication channel to ensure more engaging and detailed EV
and ESS charge scheduling operations. The EV and ESS can provide personalized data
collected during diagnostic and data collection schedules to supply the EV aggregator
with proper charge schedule data. This will allow the EV aggregator to optimally
dispatch loads based on detailed SoC, SoH, BESS capacity, and drive cycle condition
data.

• The customer’s security and privacy are prioritized in the public domain. Consumers
need to be made aware that their privacy is assured when they avail themselves of
services in public locations, such as when sharing the consumer’s charging location
history and charging and discharging profile. The public charge scheduling setup
presents the issue of DGs sending private information or erroneous data to affect grid
operation and load dispatch scheduling. Even though there is research on DGs, com-
munication strategies concerning privacy issues, their effect on DG DSM scheduling in
coordination with secure communication protocols, and procedures to mitigate them
have not been explored in detail.

• Meta-heuristic optimization techniques have been studied in a few research formula-
tions, and their efficiency in forecasting the load and charge schedule of DGs in DSM
operation can be exploited to a greater extent with the discovery of newer and more
efficient meta-heuristic techniques. This would ensure better computation with less
complexity in arriving at a proper solution.

• Consumer comfort needs to be given a higher priority in DSM operations regarding
their drive cycle usage and charge/discharge patterns.

• The maximum penetration of EVs in the grid system can facilitate the better usage
of RES generation, and the high capacity of EV BESS can provide ample reserves for
power relaying, which are necessary in cases of intermittent generation sources. The
DSM operation, in the case of DGs, ensures the maximum utilization of the BESS
capacity in conjunction with RES generation.

• The centralized control architecture of DGs is necessary for setting up standards of
DSM operation and charge scheduling.

• The higher penetration of DGs into the distribution grid and the DSM operation
associated with them can cause problems during peak usage periods, when other
factors such as voltage drops and thermal overloading of transformer equipment and
cables might occur.

• Robust control and device monitoring and remote upgrade capabilities in DG DSM
architecture are important, as they may facilitate further upgradation and provide
better and more reliable operation and communication.

• Most DGs can be connected to the Internet through the global system for mobiles
(GSM), Wi-Fi, ZigBee, and other communication networks, which aggregators can
exploit and coordinate the operation thereof among constituent EVs as dispatchable
loads to the distribution grid [185].

• In the DSM environment, DGs lack methodologies to maximize revenues and grid
utilization. The primary reason can be attributed to the lack of policies for participating
entities in wholesale electricity markets, and low priority being given to commercializ-
ing DSM due to environmental, economic, and social barriers [186,187].
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10. Future Research Direction

This literature survey carefully examined the current research and the advances in the
domain of EV-based DSM, and after thoughtful discussion, based on the identified research
gaps, some valuable suggestions regarding future research directions and prospective areas
of research are suggested:

• DG integration on a system-wide scale can be a beneficial front for the maximum
utilization of intelligent loads and appliances to participate in DSM, with EVs being
smart energy hubs concerning energy dispatch and storage [188,189].

• Data collection and data handling for relevant information extraction and calculation
should be prioritized in the future since information gathering and processing have a
significant influence on performance.

• Hybrid incentive-based and tariff-based financial models can be formulated for the
optimization of load control features, such as the DSM response speed, the duration of
the program, advanced alert and notification systems, geolocation sensitivity-based
analysis, and real-time load monitoring rates [190–192].

• Meta-heuristic-based optimization can be hybridized, or newer, more efficient heuris-
tic algorithms can be used for better computation in the scheduling of DSM operations.
PSO, GA, wavelet transform-modified ANN, adaptive FL, support vector machine
computation, and autoregressive moving average value integration with models
can be implemented to obtain higher load forecast accuracy considering the regu-
lation of loads, dispatch, scheduling, and the unit commitment problems of smart
grids [193,194].

• K-map algorithms, fuzzy constrained algorithms, self-reorganizing maps, multilevel
hierarchy-based clustering techniques, artificial bee colony (ABC) optimization, and
an ACO can be implemented for the extraction of crucial information from aggregated
load consumption profiles and in the classification of various load types in intelligent
distribution systems [195].

• EV DSM models need to be more comprehensive in their operation for better prac-
tical implementation, i.e., varying charging rates, standards implemented on EVCS
premises, standardized BESS swapping station methodologies, and the active par-
ticipation of EVs in overall market trading and ancillary service support scenarios.
More research needs to be focused on obtaining an optimized tradeoff between the
performance of the system and computational complexity.

• Through data-mining and decision-making processes, diverse and hybrid optimization
techniques, such as game theory and Bayesian probability theory, among others,
should be explored further for internal energy dispatch, external market participation,
risk evaluation, information and strategy coordination, and bidding strategy.

• The practical and easy implementation of the management of charging demand during
peak/off-peak usage periods, with price-sensitive scheduling, is an excellent prospect
for DSM aggregators. With large-scale EV integration into smart grids, it is a very
feasible research direction to be focused upon, with an emphasis on EV charging
strategies based on price response and price elasticity dynamics [196].

• Climate-based EV-DSM scheduling should be researched further, as it would affect
RES generation to a large extent, and forecasting-based scheduling could help the RES
to be dispatched more efficiently based on meteorological data [197].

• There is a severe lack of datasets necessary for training machine learning and deep
learning models. Only five well-known EV charge scheduling datasets are available
in the open research domain for researchers [198–202]. Other datasets that have been
developed are available to commercial companies. More machine learning models
and bio-inspired optimization techniques need to be developed to represent varying
architectures and geographical locations [203].

• Big-data analysis should be emphasized to establish appropriate information to im-
prove the perception of the energy market to bring compatibility, universality, and
competitiveness.
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11. Conclusions

In this review paper, existing research on DSM operations, including the various DGs
and an area that has witnessed significant interest in the energy management domain in the
last few years, was reviewed extensively. The general structure, operation, and optimiza-
tion models of DSM and DG-DSM integration into the present smart grid scenario were
discussed and represented. New concepts such as waste-to-energy were explored through a
brief study, as were their implementations in test case scenarios. The optimization aspect of
DG-DSM scheduling was tabulated and represented, with emphasis placed on the objective
function formulation, constraints or limitations, and the selection and parameterization of
decision variables. With the expectation of an increase in the adoption of various types of
DG, it is estimated that DSM operations can play a valuable opportunity for the customers
and utility aggregators to be active participants in the scheduling, dispatch, and market-
oriented trading of energy. The research directions that this review article provides can
help researchers identify potential gaps, which have been discussed previously, and they
can be given due importance in finding solutions to the existing issues and challenges.
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Nomenclature

DG Distributed Generation
DR Demand Response
RES Renewable Energy Sources
DERs Distributed Energy Resources
EMS Energy Management System
CPP Critical Peak Pricing
V2G Vehicle to Grid
EVCS Electric Vehicle Charging Station
BESS Battery Energy Storage System
PHEV Plug-in Hybrid Electric Vehicle
PV Photovoltaic
PEV Plug-In Electric Vehicle
DG Distributed Generation
DP Dynamic Programming
PSO Particle Swarm Optimization
GA Genetic Algorithm
FL Fuzzy Logic
PAR Peak-to-Average Ratio
VCS Virus Colony Search
NLP Nonlinear Programming
RMIQP Robust Mixed-Integer Quadratic Programming
DER Distributed Energy Resource
SBP Stochastic Dynamic Programming
RARL Robust Adversarial Reinforcement Learning
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HRL Hierarchical Reinforcement Learning
ADMM Alternating Direction Method of Multipliers
KKT Karush–Kuhn–Tucker
PC Peak Clipping
VF Valley Filling
LG Load Growth
Pgrid(h) Transfer of Power from the Grid to Load (kW)
De(h) Electrical Energy Demand at Hour h (kWh)
SoCmin(h) Minimum SoC at Hour h
Eh

batt The Battery Energy at Hour h
dr Load Duration
Pmax

grid(h) The Maximum Power Draw by Load from the Grid at Hour h
Bsj(t) The Energy of jth Storage Device
Psj Power Emission from jth Storage
Crt

g Cost of Renewable Energy Production
Pb Penalty of Battery
PH Penalty of Hydrogen
PHT Penalty Hydride Tank
CFtRLB Cost of Reliability Operations
DSM Demand-Side Management
EV Electric Vehicle
SG Smart Grid
EE Energy Efficiency
SoC State of Charge
SoH State of Health
RTP Real-time Pricing
DoD Depth of Discharge
ISO Independent System Operator
ADR Automated Demand Response
UC Unit Commitment
ANN Artificial Neural Network
LP Linear Programming
ACO Ant Colony Optimization
DE Differential Evolution
EMS Energy Management System
IPGA Improved Parthenogenetic Algorithm
MPC Model Predictive Control
RMILP Robust Mixed-Integer Linear Programming
CVaR Conditional Value at Risk
MPSOPF Multi-Period Security Constraint Optimal Power Flow
DL Deep Learning
RL Reinforcement Learning
PA Pursuit Algorithm
MRS2R Multi-EV Reference and Single-EV Real-time Response
MILP Mixed Integer Linear Programming
TSO Transmission System Operator
LS Load Shifting
LS Flexible Load Shifting
LR Load Reduction
Pbatt(h) The Net Output Power of the Battery in (kW)
SoCmax(h) Maximum SoC at Hour h
SoC(h) SoC at Hour h
Pch(h) Power for Charging at Hour h (kW)
Pmax(h) Maximum Power at Hour h (kW)
Bgi(t) Energy Bids of ith DG
Pgi Power Generations of ith DG
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Ct
g Cost of Energy Production

Ct
ES−

, Ct
ES+ Cost of Energy Storage Charge (+) and Discharge (−)

CFtOPR Cost of Operations
Pw Penalty for Water Tank
2
CFtEMI Cost of Microgrid Installation
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