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Abstract
Background: Young people living with 22q11.2 Deletion Syndrome (22q11.2DS) are at increased 
risk of schizophrenia, intellectual disability, attention-deficit hyperactivity disorder (ADHD) and 
autism spectrum disorder (ASD). In common with these conditions, 22q11.2DS is also associated 
with sleep problems. We investigated whether abnormal sleep or sleep-dependent network activity 
in 22q11.2DS reflects convergent, early signatures of neural circuit disruption also evident in associ-
ated neurodevelopmental conditions.
Methods: In a cross-sectional design, we recorded high-density sleep EEG in young people 
(6–20 years) with 22q11.2DS (n=28) and their unaffected siblings (n=17), quantifying associations 
between sleep architecture, EEG oscillations (spindles and slow waves) and psychiatric symptoms. 
We also measured performance on a memory task before and after sleep.
Results: 22q11.2DS was associated with significant alterations in sleep architecture, including a 
greater proportion of N3 sleep and lower proportions of N1 and REM sleep than in siblings. During 
sleep, deletion carriers showed broadband increases in EEG power with increased slow-wave 
and spindle amplitudes, increased spindle frequency and density, and stronger coupling between 
spindles and slow-waves. Spindle and slow-wave amplitudes correlated positively with overnight 
memory in controls, but negatively in 22q11.2DS. Mediation analyses indicated that genotype 
effects on anxiety, ADHD and ASD were partially mediated by sleep EEG measures.
Conclusions: This study provides a detailed description of sleep neurophysiology in 22q11.2DS, 
highlighting alterations in EEG signatures of sleep which have been previously linked to neurodevel-
opment, some of which were associated with psychiatric symptoms. Sleep EEG features may there-
fore reflect delayed or compromised neurodevelopmental processes in 22q11.2DS, which could 
inform our understanding of the neurobiology of this condition and be biomarkers for neuropsychi-
atric disorders.

RESEARCH ARTICLE

*For correspondence: 
nick.donnelly@bristol.ac.uk
†These authors contributed 
equally to this work
‡These authors also contributed 
equally to this work

Competing interest: See page 
25

Funding: See page 26

Preprinted: 11 November 2021
Received: 11 November 2021
Accepted: 12 August 2022
Published: 30 August 2022

Reviewing Editor: Ole Jensen, 
University of Birmingham, United 
Kingdom

‍ ‍ Copyright Donnelly, Bartsch 
et al. This article is distributed 
under the terms of the Creative 
Commons Attribution License, 
which permits unrestricted use 
and redistribution provided that 
the original author and source 
are credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.75482
mailto:nick.donnelly@bristol.ac.uk
https://doi.org/10.1101/2021.11.08.21266020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Medicine | Neuroscience

Donnelly, Bartsch et al. eLife 2022;0:e75482. DOI: https://doi.org/10.7554/eLife.75482 � 2 of 32

Funding: This research was funded by a Lilly Innovation Fellowship Award (UB), the National Insti-
tute of Mental Health (NIMH 5UO1MH101724; MvdB), a Wellcome Trust Institutional Strategic 
Support Fund (ISSF) award (MvdB), the Waterloo Foundation (918-1234; MvdB), the Baily Thomas 
Charitable Fund (2315/1; MvdB), MRC grant Intellectual Disability and Mental Health: Assessing 
Genomic Impact on Neurodevelopment (IMAGINE) (MR/L011166/1; JH, MvdB and MO), MRC 
grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment 
2 (IMAGINE-2) (MR/T033045/1; MvdB, JH and MO); Wellcome Trust Strategic Award ‘Defining 
Endophenotypes From Integrated Neurosciences’ Wellcome Trust (100202/Z/12/Z MO, JH). NAD 
was supported by a National Institute for Health Research Academic Clinical Fellowship in Mental 
Health and MWJ by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Science 
(202810/Z/16/Z). CE and HAM were supported by Medical Research Council Doctoral Training 
Grants (C.B.E. 1644194, H.A.M MR/K501347/1). HMM and UB were employed by Eli Lilly & Co 
during the study; HMM is currently an employee of Boehringer Ingelheim Pharma GmbH & Co KG. 
The views and opinions expressed are those of the author(s), and not necessarily those of the NHS, 
the NIHR or the Department of Health funders.

Editor's evaluation
The authors quantified sleep oscillations and their coordination in young people with 22q11.2 
Deletion Syndrome and their siblings. This was done to identify potential biomarkers of later neuro-
developmental diagnoses in 22q11.2 Deletion Syndrome. The core findings based on solid data 
demonstrate that sleep rhythms in 22q11.2DS are altered in comparison to the control group, as 
is their relationship with the behavioral expressions of memory consolidation. These are important 
findings as they directly provide a link between genes and sleep rhythms and memory consolidation.

Introduction
22q11.2 microdeletion syndrome (22q11.2DS) is caused by a deletion spanning a~2.6 megabase region 
on the long arm of chromosome 22. It occurs in ~1:3000–4000 births and is associated with increased 
risk of neuropsychiatric conditions including intellectual disability, autism spectrum disorder (ASD), 
attention-deficit hyperactivity disorder (ADHD), and epileptic seizures. (Cunningham et  al., 2018; 
Eaton et al., 2019; Moulding et al., 2020; Niarchou et al., 2014). 22q11.2DS is also considered to 
be one of the largest biological risk factors for schizophrenia, with up to 41% of adults with 22q11.2DS 
having psychotic disorders (Karayiorgou et al., 1995; Monks et al., 2014; Schneider et al., 2014). 
However, the neurobiological mechanisms underlying psychiatric symptoms in 22q11.2DS remain 
unclear. Deep phenotyping of young people with 22q11.2DS may allow their elucidation and there-
fore enable early detection and/or intervention.

The electroencephalogram (EEG) recorded during non-rapid eye movement (NREM) sleep features 
spindle and slow-wave (SW) oscillations: highly conserved and non-invasively measurable signatures 
of neuronal network activity generated by corticothalamic circuits (Adamantidis et al., 2019). The 
properties and co-ordination of these oscillations are candidate biomarkers of brain dysfunction in 
neuropsychiatric disorders (Ferrarelli and Tononi, 2017; Gardner et al., 2014; Manoach et al., 2016).

Sleep EEG features are altered across many neurodevelopmental disorders, including schizo-
phrenia, including first episode psychosis, as well as first degree relatives (Chouinard et al., 2004; 
Cohrs, 2008; Ferrarelli et al., 2007; Ferrarelli et al., 2010; Göder et al., 2014; Bartsch et al., 2019; 
Demanuele et al., 2017; Wamsley et al., 2012; Manoach and Stickgold, 2019; Castelnovo et al., 
2018; Keshavan et al., 1998); ADHD (Cortese et al., 2009; Gorgoni et al., 2020; Lunsford-Avery 
et al., 2016), ASD although findings have been inconsistent (Gorgoni et al., 2020; Lehoux et al., 
2019) and a range of rare genetic conditions, including Down syndrome, Fragile-X syndrome and 
Angelman syndrome (Angriman et al., 2015).

We have recently shown that the majority of young people with 22q11.2DS have sleep problems, 
particularly insomnia and sleep fragmentation, that associate with psychopathology (Moulding et al., 
2020). However, this analysis was based on parental report; the neurophysiological properties of 
sleep in this condition remain unexplored. Furthermore, it has been demonstrated that neuroana-
tomical features associated with psychopathology in 22q11.2DS significantly converge with those in 
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idiopathic psychiatric disorders (Ching et al., 2020). Therefore, studying the sleep EEG in 22q11.2DS 
may produce insights that can be generalized to broader populations, affording a unique opportunity 
to clarify the relationship between sleep EEG and psychiatric risk.

We hypothesized that 22q11.2DS would be associated with alterations in sleep EEG features rela-
tive to controls, including altered spindle and SW events, and aberrant spindle-SW coupling. We 
investigated these hypotheses in a cross-sectional study of young people with 22q11.2DS and unaf-
fected sibling controls, combining detailed neuropsychiatric assessments with overnight high-density 
EEG recordings and a sleep-dependent memory task.

Results
Psychopathology and sleep architecture in 22q11.2 DS
Young people living with 22q11.2DS (n=28) and healthy control siblings (n=17) completed semi-
structured research diagnostic interviews to quantify Full Spectrum Intelligence Quotient (FSIQ), 
neuropsychiatric symptoms and self- and carer-reported sleep behavioral problems (Table  1 and 
Figure 1—figure supplement 1). Participants with 22q11.2DS had a lower mean FSIQ (reported as 
Odds Ratio (OR) or group difference (GD) with [95% confidence interval]): FSIQ, GD = − 28.70 [- 40.48, 
– 16.92], p<(0.001), and higher incidence of anxiety (OR = 3.10 [1.93, 4.99], p<0.001), ADHD (OR = 
9.46 [5.12 – 17.48], p<0.001) and ASD symptoms (Odds Ratio [OR]=7.46 [4.76, 11.70], p<0.001), but 
did not show significantly more psychotic experiences than controls (OR = 4.05 [0.67, 43.67], p = 
0.096). Details of the specific psychotic symptoms reported are shown in Table 2.

Participants with 22q11.2DS also experienced more sleep problems (OR = 6.27 [2.12, 18.56], 
p=0.001); more sleep problems were associated with younger age, 22q11.2DS genotype and anxiety 
symptoms but not with gender, family income, psychotic experiences, ADHD, or ASD symptoms 
(Table 3).

Participants were asked to perform a delayed recall 2D object location task (Figure 1A) to test sleep-
dependent memory consolidation. Of 42 participants who engaged in the task, those with 22q11.2DS 
needed more training cycles to reach a 30% performance criterion (Hazard Ratio [95%  CI]=0.328 
[0.151, 0.714], p=0.005, Figure 1B, Table 4) and made fewer correct responses in the morning test 
session (OR = 0.631 [0.45, 0.885], p=0.008, Figure 1C, Table 4). However, there was no difference 
between groups in overnight change in correct responses between the evening learning session and 
the morning test session (Figure 1D, Table 4). Additionally, there was no association between task 
performance or accuracy in the morning test session and any psychiatric measure, or FSIQ (Table 4).

All participants completed one night of full polysomnography with 64-channel high density 
EEG recorded at their home. After expert sleep scoring, we compared sleep architecture between 
22q11.2DS and controls (Figure 1E and Table 1). There was no difference in gross measures of sleep 
such as Total Sleep Time and Sleep Efficiency, suggesting that our EEG recordings did not disrupt 
sleep differently between groups. However, 22q11.2DS was associated with a reduced percentage of 
N1 (GD = −2.71 [-5.05,–0.36], p = 0.044) and REM sleep (GD = −4.20 [-7.10,–1.30], p = 0.012) while 
the percentage of N3 sleep was increased (GD = 5.47 [1.98, 8.96], p = 0.009). There were no signifi-
cant relationships between sleep architecture metrics and psychiatric measures or FSIQ in 22q11.2DS 
(Table 5).

Altered spectral properties of the sleep EEG in 22q11.2DS
Given the above evidence for an altered overall distribution of sleep stages in 22q11.2DS, we next 
used spectral analyses to quantify sleep EEG oscillations in our sample.

Before analyzing all 60 EEG electrodes, we calculated power spectral density (PSD) across frequen-
cies from 0.5 to 20  Hz for controls and in 22q11.2DS for electrode Cz, as both spindle and slow 
wave oscillations can be reliable detected at this location (Figure 2A). We found that power in lower 
frequencies appeared to be increased in 22q11.2DS across N2 and N3 as well as across a range of 
frequencies during REM sleep (cluster-corrected p<0.05).

To investigate potential changes in specific oscillatory components of the EEG (particularly at the 
sigma and SO frequency bands), we first z-scored raw EEG recordings in the time domain to eliminate 
broadband power differences between recordings, and again compared the PSD (Figure 2B). This 
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Table 1. Psychiatric characteristics and sleep architecture.

Variable Group Type Statistic (95% CI) p-value

22q11.2DS,
n=28 a

Sibling
Control,
n=17 a

Age @ EEG 14.6 (3.4) 13.7 (3.4)
Group Difference 
(22q - Sib) b 0.897 [-1.219, 3.013] 0.397

Sex Chi-Squared c 0 1

Female 14 (50%) 9 (53%)

Male 14 (50%) 8 (47%)

Sleep Problem 1.32 (1.70) 0.24 (0.56) Odds Ratio d 6.269 [2.118, 18.556] 0.001

FSIQ 76 (13) 105 (27)
Group Difference 
(22q - Sib) e –28.696 [-40.478,–16.915] <0.001

missing 0 1

Anxiety 
Symptoms 5.0 (7.8) 1.4 (2.8) Odds Ratio d 3.101 [1.929, 4.986] <0.001

ADHD 
Symptoms 6.0 (6.0) 0.7 (2.1) Odds Ratio d 9.456 [5.117, 17.475] <0.001

ASD Symptoms 11 (6) 1 (2) Odds Ratio d 7.463 [4.762, 11.697] <0.001

missing 1 1

Psychotic 
Experiences Odds Ratio f 4.047 [0.698, 43.668] 0.096

No PE 18 (64%) 15 (88%)

PE 10 (36%) 2 (12%)

N1 (%) 10.4 (4.7) 13.6 (4.3)
Group Difference 
(22q - Sib) e –2.707 [-5.05,–0.363] 0.044

N2 (%) 26.2 (8.2) 27.1 (5.9)
Group Difference 
(22q - Sib) e –1.089 [-5.146, 2.967] 0.620

N3 (%) 30 (7) 25 (6)
Group Difference 
(22q - Sib) e 5.473 [1.984, 8.962] 0.009

REM (%) 14.4 (4.6) 18.2 (5.6)
Group Difference 
(22q - Sib) e –4.198 [-7.1,–1.296] 0.012

N1 Latency 
(Minutes) 23 (18) 21 (9)

Group Difference 
(22q - Sib) e 3.486 [-5.538, 12.509] 0.470

REM Latency 
(Minutes) 143 (69) 140 (49)

Group Difference 
(22q - Sib) e 9.368 [-19.312, 38.048] 0.549

Sleep Efficiency 
(%) 88 (8) 89 (9)

Group Difference 
(22q - Sib) e –1.845 [-5.826, 2.136] 0.398

Total Sleep 
Time (Minutes) 456 (122) 485 (79)

Group Difference 
(22q - Sib) e –27.206 [-88.489, 34.077] 0.413

Awakenings (n) 42 (52) 42 (40)
Group Difference 
(22q - Sib) e 3.097 [-19.732, 25.925] 0.802

a Mean (SD); n (%)

b Linear Model

c Pearson’s Chi Squared Test

d Generalised Linear Mixed Model

e Linear Mixed Mode

f Fisher’s Exact Test

https://doi.org/10.7554/eLife.75482
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analysis revealed reduced relative power in the 
sigma frequency band in 22q11.2DS in N2 and 
N3 sleep (cluster-corrected P<0.05).

Next, we used irregular-resampling auto-
spectral analysis (Hahn et al., 2020; Wen and Liu, 
2016) to separate the oscillatory and fractal (1 /f) 
components of the EEG. This analysis demon-
strated that the power of the fractal component 
of the PSD was increased in 22q11.2DS across a 
wide range of frequencies in N2, N3, and REM 
sleep (Figure  2C). However, in the oscillatory 
component of the EEG we found that power 
in the sigma band appeared to be reduced in 
22q11.2DS (Figure 2D) but to have a higher peak 
frequency. Every participant had a distinct peak 
in oscillatory activity in the sigma frequency band 
(Figure 2—figure supplement 1A).

We then focused on a set of PSD derived 
measures from N2 and N3 sleep: power in the slow 
delta (<1.25 Hz) and sigma (10–16 Hz) bands, and 
peak sigma frequency. Additionally, we calculated 
the y-intercept (cons) and the negative exponent 
(beta) of a 1 /f line fit to the fractal component of 
the signal to allow comparison of non-oscillatory 
activity between groups, for N2, N3, and REM 
epochs. We extracted these measures across all 
60 EEG electrodes and fitted generalized addi-
tive mixed models to the data from all electrodes 
for each measure. Table 6 shows all spectral EEG 
measures calculated. A detailed topographical 
analysis revealed that 22q11.2DS showed lower 
sigma power, but higher sigma frequency during 
N2 and N3 sleep in central regions, and higher 
total power, as indexed by the 1  /f intercept 
measure across N2, N3, and REM sleep, particu-

larly in fronto-lateral regions (Figure 2E–G). In contrast, there were no substantial differences in slow 
delta power or 1 /f slope between groups.

Individual data and group boxplots for this set of spectral measures extracted at electrode Cz are 
shown in Figure 2—figure supplement 1B, and plots of spectral measures with age are shown in 
Figure 2—figure supplement 1C, demonstrating clear positive relationships between age and sigma 
frequency, and negative relationships between age and the overall PSD power (constant) and slope 
(beta), as previously demonstrated (Hahn et al., 2020). Group average topoplots for all PSD derived 
measures are shown in Figure 2—figure supplement 2

Spindles and slow waves in 22q11.2DS
To further interrogate the thalamocortical oscillations underlying genotype-dependent alterations in 
spectral power and frequency, we quantified individual spindle and slow wave (SW) events using 
automated detection algorithms. For spindle detection, for each participant and each electrode, we 
individualized the frequency used for spindle detection, using the peak sigma band frequency from 
our spectral analysis.

Figure 3A and B show example spectrograms from electrode Cz for a pair of siblings; one control 
(Figure  3A), one with 22q11.2DS (Figure  3B), with detected spindle and SW events overlaid. As 
expected, these plots clearly indicate the presence of co-occurring spindle and SW events during 
NREM sleep.

Table 2. Psychotic experiences details.

Frequency of specific psychotic experiences

Type of PE 22q11.2DS Sibling

Unusual thought 
content/
Delusional ideas 8 1

Suspiciousness/
Persecutory ideas 5 0

Grandiose Ideas 3 2

Perceptual 
Abnormalities/
Hallucinations 8 2

Disorganised 
communication 4 0

Count of total distinct types of psychotic experience

Number of PE 22q11.2DS Sibling

0 18 15

1 2 0

2 2 1

3 2 1

4 4 0

Details of psychotic experiences reported by 
participants with 22q11.2DS and unaffected sibling 
controls in the CAPA interview.

https://doi.org/10.7554/eLife.75482
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The average waveforms of spindle and SW events detected on electrode Cz are shown in 
Figure 3C and Figure 3D, exemplifying group differences in spindle and SW properties: participants 
with 22q11.2DS showed increased spindle amplitude across fronto-lateral regions, with accompa-
nying increases in spindle density and frequency across smaller regions (Figure 3E). SW amplitude 
was also increased in central, frontal and lateral areas, but there were no differences in SW density or 
duration between groups (Figure 3F). Individual data from all participants for the measured spindle 
and SW properties are presented in Figure 3—figure supplement 1, and group topoplots for each 
property in Figure 3—figure supplement 2. Figure 3—figure supplement 3 shows SW-triggered 
potentials across the scalp.

 

Increased spindle-SW coupling in 22q11.2DS
The relative timing of spindle and SW events is coupled during NREM sleep, and thought to reflect 
limbic-thalamic-cortical interactions (Bartsch et al., 2019; Demanuele et al., 2017; Djonlagic et al., 
2021; Helfrich et al., 2018; Latchoumane et al., 2017). An illustrative example of an overlapping 
spindle and SW detection is shown in Figure 4A. To investigate whether 22q11.2DS was associated 
with alterations in spindle-SW coupling, we first calculated the proportion of spindles that overlapped 
a detected SW (where a spindle peak fell within +/-1.5 seconds of a detected SW negative peak). We 
then calculated the SW phase angle at the point of peak amplitude in each spindle, and the mean 
resultant length [MRL, a measure of the circular concentration of phase angles, with greater values 
indicating a more consistent spindle-SW phase relationship (Djonlagic et al., 2021)] at the peak of 
each spindle.

The mean angle of spindle-SW coupling showed a non-uniform distribution, confirming that spin-
dles tended to consistently occur at particular SW phases (Figure  4B shows coupling angles for 
spindles detected at electrode Cz); at electrode Cz both control and 22q11.2DS participants had 
significantly non-uniform distributions of spindle-SW coupling phase angles (siblings: mean angle = 
27.6o, SD = 0.959, Rayleigh Test for non—uniformity statistic = 0.632, p<0.001; 22q11.2DS: mean 

Table 3. CAPA sleep problem adjusted model.

Term Odds ratio p-value

Genotype

Sibling Reference

22q11.2DS 7.867 [1.71, 36.186] 0.008

Gender

Female Reference

Male 1.557 [0.486, 4.986] 0.456

Age @ EEG 0.757 [0.622, 0.921] 0.005

Family income (£PA)

<19,999 Reference

20,000–39,999 0.38 [0.068, 2.13] 0.271

40,000–59,999 0.227 [0.034, 1.505] 0.124

>60,000 0.297 [0.043, 2.058] 0.219

Anxiety symptomsa 1.117 [1.031, 1.21] 0.007

ADHD symptomsa 1.025 [0.945, 1.112] 0.546

ASD symptomsa 0.964 [0.869, 1.07] 0.488

Psychotic experiences (PEs)

No PEs Reference

PEs 1.369 [0.646, 2.9] 0.413

aContinuous variables (no reference category)

Associations between CAPA sleep problem count and group, demographic, family and psychiatric covariates, 
modeled with a generalized linear mixed model, with a poisson distribution and family identity as a random 
(varying) intercept. Data shown are odds ratios and the 95% confidence interval.

https://doi.org/10.7554/eLife.75482


 Research article﻿﻿﻿﻿﻿﻿ Medicine | Neuroscience

Donnelly, Bartsch et al. eLife 2022;0:e75482. DOI: https://doi.org/10.7554/eLife.75482 � 7 of 32

Figure 1. Memory task performance and sleep architecture features of 22q11.2DS.  
 (A): Schematic of the 2D object location task. The evening before sleep EEG recordings, participants first were sequentially presented with pairs of 
images on a 5 x 6 grid. In a subsequent test cycle, they were presented with one image of the pair, and were required to select the grid location of the 
other half of the pair. If the participant did not achieve > 30% accuracy, they would have another learning cycle. In the morning a single test cycle was 
undertaken. (B): Plot of performance in acquiring the 2D object location task, showing the proportion of participants in each group reaching the 30% 
performance criterion after each learning cycle. Shaded areas represent the 95% confidence interval. Black dots show when participants were right-
censored due to stopping the task prior to reaching the 30% criterion. (C): Box plots of performance in the morning test session, where participants 
had one cycle of the memory task. Number of correct responses is out of a possible 15. Asterix indicate the group difference is statistically significant, 
generalised linear mixed model, p<0.05 (see Table 2 for full statistics). (D): Plots of change in performance between the final evening learning session 
and the morning test session. Each participant is represented as a point, with a line connecting their evening and morning performance. Points have 
been slightly jittered to illustrate where multiple participants had the same score. (E): Box and whisker plots showing sleep architecture features: Total 
sleep time (TST) in minutes, Sleep efficiency (SE) as a percentage, Latency to N1 sleep (minutes), Latency to first REM sleep (minutes), Number of 
awakenings after sleep onset (n), Percentage of hypnogram in N1 sleep, Percentage of hypnogram in N2 sleep, Percentage of hypnogram in N3 sleep, 
and Percentage of hypnogram in REM sleep. Asterixes indicate the group difference is statistically significant, linear mixed model, P<0.05 (see Table 1 
for full statistics). Boxes represent the median and IQR, with the whiskers representing 1.5 x the IQR. Individual participant data are shown as individual 
points. Points have been slightly jittered in the x direction only to illustrate where multiple participants had similar results.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Individual Psych Hypno Data.

https://doi.org/10.7554/eLife.75482
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Table 4. Memory task acquisition and test session performance.

Cycles to Criterion Cox Model

Term Hazard ratio p-value

Group

Control Reference

22q11.2DS 0.328 [0.151, 0.714] 0.005

Gender

Female Reference

Male 1.389 [0.642, 3.005] 0.400

Age @ EEG 1.029 [0.91, 1.164] 0.650

Cycles to Criterion Cox Model – Adjusted for Psychiatric Measures - 22q11.2DS Only

Term Hazard Ratio p-value

Gender

Female Reference

Male 2.314 [0.542, 9.882] 0.257

Psychotic experiences

No PEs Reference

PEs 0.203 [0.041, 1.012] 0.052

Age @ EEG 1.139 [0.933, 1.390] 0.200

FSIQ 1.026 [0.972, 1.082] 0.355

Anxiety symptoms 0.992 [0.879, 1.120] 0.900

ADHD symptoms 0.915 [0.760, 1.102] 0.349

ASD symptoms 1.027 [0.926, 1.139] 0.616

Morning Accuracy Binomial Model

Term OR p-value

Group Control Reference

22q11.2DS 0.631 [0.45, 0.885] 0.008

Gender Female Reference

Male 1.083 [0.762, 1.538] 0.657

Age @ EEG 0.997 [0.945, 1.051] 0.900

Morning Accuracy Binomial Model - Adjusted for Psychiatric Measures - 22q11.2DS Only

Term OR p-value

Gender Female Reference

Male 1.623 [0.807, 3.268] 0.174

Psychotic experiences No PEs Reference

PEs 0.556 [0.296, 1.032] 0.065

Age @ EEG 1.012 [0.924, 1.108] 0.803

FSIQ 1.004 [0.982, 1.027] 0.716

Table 4 continued on next page

https://doi.org/10.7554/eLife.75482
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angle = 9.51o, SD = 0.769, Rayleigh test statistic 0.744, p<0.001), but no difference in coupling angle 
was observed between groups: Watson Williams test F1,43 = 1.341, p = 0.253.

We then compared coupling between groups across all electrodes. Compared to siblings, 
22q11.2DS was not associated with any change in the proportion of spindles overlapping SW, but 
was associated with increased MRL across a central region, indicating less variable spindle-SW phase 
coupling (Figure 4C). There were only minor differences in preferred coupling angle in 22q11.2DS 
(Figure 4D). Per participant data for the overlap and MRL measures recorded on electrode Cz are 
presented in Figure 4—figure supplement 1 and group topoplots in Figure 4—figure supplement 
2. SW-Triggered scalograms, showing the location of spindle-frequency acitivty relative to the SW 
waveform, are presented in Figure 4—figure supplement 3.

Sleep feature associations with memory recall
Next, we tested whether features of the sleep EEG which demonstrated significant group differences 
(REM 1 /f intercept, spindle amplitude, SW amplitude and spindle-SW MRL), interacted with group 
effects on accuracy in the morning test session. As there were no group differences in change in task 
performance overnight, but groups differed in morning test performance, we focused on number 
of correct responses in the morning memory test session. For features extracted at electrode Cz 
(Figure 5A), significant features x genotype interactions were observed (all P<0.05). Applying the 
same analysis across all recording electrodes (Figure 5B), we found significant clusters of negative 
interactions between group and REM intercept, spindle and SW amplitude across multiple central 
and posterior electrodes: higher spindle and SW amplitudes were associated with higher accuracy in 
controls; in 22q11.2DS, higher amplitudes were associated with lower accuracy. We did not observe 
any interaction between spindle-SW MRL and task performance.

Mediation of genotype effects on psychiatric symptoms by EEG 
features
Finally, we used mediation models to investigate whether the effects of 22q11.2DS genotype on 
psychiatric symptoms and FSIQ were potentially mediated via sleep EEG measures (Figure 6A); such 
mediation would support the potential role for quantitative sleep EEG measures serving as biomarkers 
for psychiatric disorders e.g. (Manoach and Stickgold, 2019). We calculated the total effect of geno-
type on psychiatric measures and IQ, the indirect (mediated) effect of EEG measures, and the propor-
tion of the total effect that may be mediated by EEG measures, correcting for multiple comparisons 

Cycles to Criterion Cox Model

Anxiety symptoms 1.028 [0.969, 1.091] 0.353

ADHD symptoms 0.973 [0.924, 1.023] 0.288

ASD symptoms 1.018 [0.973, 1.066] 0.441

Evening – Morning Difference

Term Group Difference p-value

Group Control Reference

22q11.2DS –0.424 [-1.923, 1.074] 0.565

Gender Female Reference

Male –0.5 [-2.036, 1.035] 0.512

Age @ EEG –0.023 [-0.256, 0.21] 0.839

Associations between genotype group, sex, age and psychiatric symptoms and performance in the 2D object 
location task.

Table 4 continued
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Table 5. Regression of sleep architecture features in 22q11.2DS.

Measure Variable Beta (95% CI)
Adjusted P-value 
(BH)

N1 (%)

Sex –0.059 [-5.21, 5.092] 0.981

Age @ EEG 0.101 [-0.808, 1.01] 0.963

CAPA sleep problems 0.003 [-1.632, 1.639] 0.963

FSIQ 0.135 [-0.044, 0.313] 0.963

Anxiety symptoms 0.158 [-0.38, 0.696] 0.963

ADHD symptoms –0.288 [-0.682, 0.105] 0.963

ASD symptoms 0.33 [-0.006, 0.666] 0.963

Psychotic experiences –2.758 [-6.921, 1.404] 0.963

N2 (%)

Sex 2.183 [-8.465, 12.831] 0.963

Age @ EEG 0.097 [-1.782, 1.976] 0.915

CAPA sleep problems –0.407 [-3.787, 2.974] 0.915

FSIQ 0.195 [-0.174, 0.564] 0.915

Anxiety symptoms 0.254 [-0.859, 1.366] 0.915

ADHD symptoms –0.691 [-1.505, 0.123] 0.915

ASD symptoms 0.28 [-0.414, 0.974] 0.915

Psychotic experiences –3.603 [-12.208, 5.002] 0.915

N3 (%)

Sex –0.849 [-10.545, 8.847] 0.915

Age @ EEG 0.675 [-1.037, 2.386] 0.915

CAPA sleep problems 1.399 [-1.68, 4.477] 0.997

FSIQ –0.062 [-0.398, 0.273] 0.997

Anxiety symptoms –0.43 [-1.442, 0.583] 0.816

ADHD symptoms 0.359 [-0.382, 1.1] 0.816

ASD symptoms –0.05 [-0.682, 0.582] 0.997

Psychotic experiences 3.852 [-3.984, 11.688] 0.816

REM (%) Sex 2.516 [-2.744, 7.775] 0.816

Age @ EEG –0.682 [-1.61, 0.246] 0.816

CAPA sleep problems –1.168 [-2.837, 0.502] 0.816

FSIQ 0.138 [-0.044, 0.32] 0.235

Anxiety symptoms 0.732 [0.182, 1.281] 0.421

ADHD symptoms –0.295 [-0.697, 0.107] 0.788

ASD symptoms –0.054 [-0.397, 0.288] 0.235

Psychotic experiences –0.404 [-4.655, 3.847] 0.719

Table 5 continued on next page
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Measure Variable Beta (95% CI)
Adjusted P-value 
(BH)

N1 Latency (Minutes)

Sex –8.061 [-32.213, 16.092] 0.235

Age @ EEG –1.225 [-5.487, 3.037] 0.235

CAPA sleep problems 0.484 [-7.184, 8.152] 0.947

FSIQ –0.237 [-1.073, 0.6] 0.235

Anxiety symptoms –0.62 [-3.143, 1.902] 0.638

ADHD symptoms 0.143 [-1.703, 1.989] 0.638

ASD symptoms –0.194 [-1.769, 1.38] 0.638

Psychotic experiences 1.894 [-17.625, 21.414] 0.107

REM Latency (Minutes)

Sex –30.174 [-110.781, 50.433] 0.638

Age @ EEG 1.517 [-12.707, 15.741] 0.638

CAPA sleep problems 10.761 [-14.83, 36.353] 0.638

FSIQ –2.491 [-5.283, 0.301] 0.638

Anxiety symptoms –2.763 [-11.183, 5.656] 0.638

ADHD symptoms 3.909 [-2.251, 10.069] 0.254

ASD symptoms –2.116 [-7.371, 3.139] 0.254

Psychotic experiences –14.904 [-80.048, 50.24] 0.363

Sleep Efficiency (%)

Sex 1.813 [-8.177, 11.802] 0.254

Age @ EEG –0.099 [-1.862, 1.663] 0.872

CAPA sleep problems –0.979 [-4.151, 2.192] 0.256

FSIQ 0.286 [-0.06, 0.632] 0.254

Anxiety symptoms 0.587 [-0.456, 1.63] 0.254

ADHD symptoms –0.671 [-1.435, 0.092] 0.256

ASD symptoms 0.444 [-0.207, 1.096] 0.483

Psychotic experiences –1.347 [-9.42, 6.726] 0.736

Total Sleep Time (Minutes) Sex 76.874 [-63.554, 217.302] 0.87

Age @ EEG –14.689 [-39.469, 10.092] 0.87

CAPA sleep problems –13.13 [-57.714, 31.453] 0.87

FSIQ 0.156 [-4.708, 5.021] 0.736

Anxiety symptoms 9.132 [-5.536, 23.799] 0.507

ADHD symptoms –10.338 [-21.069, 0.394] 0.87

ASD symptoms –0.955 [-10.11, 8.2] 0.507

Psychotic experiences –121.448 [-234.938,–7.958] 0.772

Table 5 continued

Table 5 continued on next page
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using cluster-based permutation testing. The largest effects were of mediation of genotype effects on 
anxiety and ADHD symptoms by SW amplitude and spindle – SW coupling, with mediation of geno-
type effects on ADHD symptoms by REM constant, and genotype effect on ASD symptoms by spindle 
amplitude (Figure 6B and Table 7). There was little evidence for consistent mediation of genotype 
effects on sleep problems, psychotic experiences or FSIQ.

Discussion
Summary of findings
We performed an analysis of sleep EEG characteristics in 22q11.2DS, correlating these with psychi-
atric symptoms, sleep architecture, and performance in a memory task.

Our previous results, based on primary carer reports, discovered sleep disruption, particu-
larly insomnia and restless sleep in 22q11.2DS (Moulding et al., 2020), which was associated with 
psychopathology. We extend these findings to show that, compared to unaffected control siblings, 
22q11.2DS is associated with decreased N1 and REM sleep, increased N3 sleep, increased overall 
EEG power and altered power and frequency in the sigma band during NREM sleep.

These finding were accompanied by changes in NREM sleep-related events: increased spindle 
amplitude, density, and frequency; increased SW amplitude; and increased spindle-SW phase coupling. 
The relationship between spindle and SW features and performance of a spatial memory task differed 
by group, with a positive correlation between spindle and SW amplitude and performance in controls, 
but a negative relationship in 22q11.2DS. Finally, group differences in anxiety, ADHD, and ASD symp-
toms were mediated by several EEG measures, particularly SW amplitude and spindle – SW coupling, 
across multiple electrodes.

Relationship to previous findings – spindles and spindle-slow wave 
coupling
We observed increased spindle amplitude, frequency, and density in 22q11.2DS, accompanied by 
increased spindle-SW coupling, and evidence that spindle amplitude and spindle-SW coupling medi-
ated genotype effects on anxiety, ADHD, and ASD symptoms.

The clinical presentation of 22q11.2DS is heterogenous (Cunningham et  al., 2018), including 
anxiety, ADHD and ASD symptoms, reduced IQ and increased risk of psychotic disorders (Schneider 
et al., 2014). Adult schizophrenia is consistently associated with reduced spindle activity (Ferrarelli 
et al., 2007; Ferrarelli et al., 2010; Lai et al., 2022), a finding replicated in a study of early onset 
schizophrenia (Gerstenberg et  al., 2017), and meta-analytic evidence suggests spindle deficits 
increase with higher symptom burden and longer illness duration (Lai et al., 2022). However, increased 

Measure Variable Beta (95% CI)
Adjusted P-value 
(BH)

Awakenings (n)

Sex 5.695 [-44.381, 55.77] 0.772

Age @ EEG 0.932 [-7.904, 9.769] 0.772

CAPA sleep problems 4.938 [-10.96, 20.836] 0.844

FSIQ –1.403 [-3.138, 0.332] 0.844

Anxiety symptoms –2.383 [-7.613, 2.848] 0.844

ADHD symptoms 2.443 [-1.383, 6.27] 0.844

ASD symptoms –2.331 [-5.596, 0.933] 0.336

Psychotic experiences –15.59 [-56.06, 24.879] 0.772

Associations between sleep architecture measures (proportion of N1, N2, N3 and REM sleep, latency to N1 and 
REM sleep, Sleep Efficiency, Total Sleep Time and total Awakenings), sex, age and psychiatric and cognitive 
(FSIQ) covariates, in participants with 22q11.2DS. Regression models were fit with linear mixed models, with family 
identity as a random (varying) intercept. Data presented are regression beta coefficients with 95% confidence 
intervals.

Table 5 continued
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Figure 2. Increased PSD power and Sigma Frequency in 22q11.2DS. (A) Raw Welch Power Spectral Density (PSD, in decibels, 10 * log10 of the PSD) 
on electrode Cz across Stage N2, N2, and REM sleep. Lines show group mean power (blue = 22q11.2DS, gray = Sibling), with bootstrapped 95% 
confidence intervals of the mean. Patches show regions of significant (cluster corrected) difference between groups (blue = 22q11.2DS >Sibling; 
grey = 22q11.2DS <Sibling), with 22q11.2DS being associated with increased power at lower frequencies. (B) Welch PSD of Z-Scored EEG signals 

Figure 2 continued on next page
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spindle amplitudes and densities have been observed in healthy adolescents with raised polygenic 
risk scores for schizophrenia (Merikanto et al., 2019). In contrast, no clear differences in spindle prop-
erties have been found in other 22q11.2DS-associated neurodevelopmental disorders such as ADHD 
(Prehn-Kristensen et al., 2011) and ASD (Maski et al., 2007).

on electrode Cz, as in (A); with 22q11.2DS being associated with lower power in the sigma frequency band (10–16 Hz) (C) Fractal (1 /f) component 
of EEG signal processed using the IRASA method on electrode Cz, conventions as (A). Higher power across a wide frequency range in 22q11.2DS. 
(D) Oscillatory component of the EEG signal processed using the IRASA method on electrode Cz, conventions as (A). (E) Topoplots of group difference 
calculated from multilevel generalized additive models fit to the full 60 channel dataset for the five measures (mean Slow Delta power, mean Sigma 
power and peak Sigma frequency, 1 /f Intercept and 1 /f Slope) recorded in N2 sleep. Positive differences represent z score group differences indicate 
22q11.2DS >Sibling (red colors); negative group differences (blue colors) indicate 22q11.2DS <Sibling. Only regions were where the probability of 
direction statistic for group difference was >0.995 are colored. (F) As in (E), for N3 sleep. (G) As in (F), for REM sleep. Note as REM sleep lacks prominent 
oscillatory activity, we have not calculated models for SD or sigma related measures in REM as these would not be meaningful.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Individual PSDs.

Figure supplement 2. Group PSD Topos.

Figure 2 continued

Table 6. EEG measure summary.

Measure group Measure details Sleep stage

Spectral Mean Slow Delta Power N2

Spectral Mean Slow Delta Power N3

Spectral Mean Sigma Power N2

Spectral Mean Sigma Power N3

Spectral Peak Sigma Frequency N2

Spectral Peak Sigma Frequency N3

Spectral Aperiodic Signal Slope N2

Spectral Aperiodic Signal Slope N3

Spectral Aperiodic Signal Slope REM

Spectral Aperiodic Signal Intercept N2

Spectral Aperiodic Signal Intercept N3

Spectral Aperiodic Signal Intercept REM

Spindle Density N2 +N3

Spindle Amplitude N2 +N3

Spindle Frequency N2 +N3

Slow Wave Density N2 +N3

Slow Wave Amplitude N2 +N3

Slow Wave Duration N2 +N3

Spindle – Slow Wave Coupling
Spindle – Slow Wave Overlap (z-scored 
against shuffled data) N2 +N3

Spindle – Slow Wave Coupling
Spindle – Slow Wave Mean Resultant 
Length (z-scored against shuffled data) N2 +N3

Spindle – Slow Wave Coupling
Spindle – Slow Wave Mean Coupling 
Angle N2 +N3

All derived EEG measures, grouped by signal type spectral, derived from the PSD; spindle, derived from 
individual detected spindle events; slow wave, derived from individual detected slow wave events and measures 
derived from spindle – slow wave coupling.

https://doi.org/10.7554/eLife.75482
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Figure 3. Spindles and slow waves in 22q11.2DS. (A) Example spectrogram of a whole night EEG recording from electrode Cz for an example sibling. 
The associated hypnogram is displayed below the spectrogram in black, detected spindle and slow wave events are overplotted in white. The co-
occurrence of spindle events with epochs of N2 sleep, and of SW events and N3 sleep can be observed. (B) Example spectrogram of a whole night 
EEG recording from electrode Cz for an example participant with 22q11.2DS, sibling of the participant illustrated in A (C) Average spindle waveforms 

Figure 3 continued on next page
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Spindle properties and spindle – SW relationships change across the lifespan (Djonlagic et al., 
2021; Hahn et al., 2020; Hahn et al., 2022; Purcell et al., 2017; Zhang et al., 2021): spindle density, 
power and frequency increases from childhood to adolescence alongside spindle-SW coupling, while 
power in lower frequency declines (Hahn et  al., 2020; Jenni and Carskadon, 2004; Tarokh and 
Carskadon, 2010). Our findings could therefore be interpreted in the context of alterations in devel-
opmental processes in 22q11.2DS: higher spindle amplitude, density, and frequency in young, at-risk 
populations for psychosis could mark an aberrant maturational state, which leads to reduced spindle 
activity in adulthood for individuals who go on to develop psychotic disorders, with higher symptom 
burden and illness duration linked to greater reductions in spindle activity.

detected on electrode Cz for siblings (left, gray), and 22q11.2DS (right, blue). For each individual the average spindle waveform at Cz was calculated, 
these averaged waveforms were then calculated for all siblings or all participants with 22q11.2DS. Shaded areas highlight the bootstrapped 95% 
confidence interval of the mean. (D) Average SW waveforms detected on electrode Cz, same conventions as C (E) Topoplots of group differences in 
spindle density, amplitude and frequency, Z-transformed, across all 60 electrodes, from GAMM analyses. Only regions with significant group differences 
are highlighted. Red colors indicate values of the parameter of interest are greated in 22q11.2DS; blue color that the parameter of interest is greater in 
siblings (F) Topoplots of group differences in SW density, amplitude and duration, conventions as in E.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Individual event data.

Figure supplement 2. Group event topoplots.

Figure supplement 3. SW-triggered potentials.

Figure 3 continued

Figure 4. Increased spindle-SW coupling in 22q11.2DS. (A) Illustrative plot of a single spindle and SW recorded at electrode Cz in a control sibling. 
From top to bottom, panels show the raw EEG (black) with Slow-Wave frequency (0.25–4 Hz) filtered data superimposed (gray) and with the detected 
boundaries of the spindle and SW highlighted with a red and blue horizontal bar, the sigma-filtered raw signal (10–16 Hz); the magnitude of the 
continuous wavelet transform of the signal (center frequency 13 Hz); and the SW phase (in degrees). (B) Histograms of the mean SW phase angle of 
spindles detected overlapping an SW for all participants at electrode Cz. The SO phase angles are as defined in (A). Black vertical dashed lines indicate 
the mean coupling phase angle for each group (C) Topoplots of group difference in spindle-SW coupling properties: z-transformed spindle-SW overlap 
(left), and z-transformed mean resultant length (right). The color represents the difference in z-score between groups where a multilevel generalized 
additive model fit to each dataset predicts a difference between group. (D) Topoplots of mean Spindle-SW coupling phase angle, where a multilevel 
generalized additive model fit to each dataset predicts a difference in coupling phase angle between groups.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Individual coupling data.

Figure supplement 2. Topoplots of group average values for spindle – SW coupling measures (overlap, MRL and mean angle).

Figure supplement 3. SW-Triggered Scalograms.

https://doi.org/10.7554/eLife.75482
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Figure 5. EEG signatures of sleep dependent memory consolidation. (A) Scatter plot of the relationship between EEG measures (recorded on electrode 
Cz) and hits in the memory task test session, by group. Lines represent predicted mean values, with 95% confidence interval, from linear mixed model. 
(B) Topoplots of the value of the group*EEG feature interaction term, for models fit to hits in the morning test session. Electrodes highlighted in white 
indicate a significant interaction for an EEG measure detected on that channel, after correction for multiple comparisons. Note all topoplots are on the 
same color scale.

Figure 6. Mediation of psychiatric symptoms and FSIQ by sleep EEG features. (B) Topoplots of the proportion of the effect of genotype on psychiatric 
measures and FSIQ mediated by one of four NREM sleep EEG features (REM constant spindle amplitude, SW amplitude and spindle-SW MRL). Fill 
color represents the Proportion Mediated. Electrodes are highlighted in white where a mediation model fit on data from that electrode had a significant 
mediated effect and a significant total effect, corrected for multiple comparisons by the cluster method. (A) Directed acyclic graph describing the 
mediation model fit to EEG data. The effect of Group (G) on psychiatric measures and FSIQ (P) was hypothesized to be mediated by (E) – sleep EEG 
features.

https://doi.org/10.7554/eLife.75482
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In our hands, spindle events peak between 
~ 270/-90 and 90 degrees in the SW cycle, with 
the average coupling angling being early on the 
first descending part of the negative half-wave, 
around 10 - 30 degrees, near the trough of the SW 
(in our frame of reference, 0 degrees is assigned 
to the positive to negative zero crossing). This 
peak coupling angle was somewhat different to 
previous studies e.g. Hahn et al., 2020; Helfrich 
et  al., 2018, which have found the peak angle 
of spindle-SW coupling to be between 90-270 
degrees in our reference, near the positive peak 
of the SW.

It has been suggested that “slow” spindles 
(frequency ~9 – 12 Hz) peak prior to the SW 
trough (90 degrees in our reference), in contrast 
to “fast” spindles (frequency > 12 Hz), which peak 
around the SW peak (~270 degrees, Mölle et al., 
2011; McConnell et  al., 2021). We detected 
spindles using a wavelet-based method where 
the wavelet centre-frequency was individualised 
based on each participants sigma frequency PSD, 
finding each participant had a unimodal distri-
bution of sigma power, rather than a separate 
‘fast’ and ‘slow’ peak, with the peak frequency 
being substantially affected by participant 
age. It is therefore possible that our detected 
spindle events predominantly reflect events that 
others have labelled “slow spindles”, therefore 

explaining our observed preferred spindle-SW coupling angle falling on the SW descending phase.
An interesting line of enquiry for future studies with larger datasets would be to explore whether 

22q11.2DS, or other neurodevelopmental disorders, are associated with any specific alterations in the 
dynamics of spindle generation, including potential subdivisions of spindles into ‘slow’ or ‘fast’ types 
around the SW.

Relationship to previous findings – slow waves
We observed increased SW amplitude in 22q11.2DS and mediation of genotype differences in anxiety 
and ADHD symptoms by SW amplitude (and spindle-SW coupling). A previous study found delta 
frequency (<4 Hz) EEG activity to be reduced in ADHD patients not using psychostimulant medication 
(Furrer et al., 2017) the authors related their finding to reduced cortical grey matter, and delays in its 
maturation in ADHD (Nakao et al., 2011; Shaw et al., 2006; Shaw et al., 2010). In contrast, imaging 
studies have suggested increased cortical grey matter thickness in 22q11.2DS, alongside changes 
in corticothalamic networks (Lin et al., 2017; Sønderby et al., 2022; Sun et al., 2020), which may 
reduce across adolescence (Schaer et al., 2009). This could therefore explain our finding of increased 
SW amplitude in 22q11.2DS, and its relationship with ADHD symptoms, as it has been previously 
demonstrated (in adults) that greater SW amplitude is associated with greater cortical thickness (Dubé 
et al., 2015).

Anxiety and ADHD symptoms in late childhood (~age 10) are associated with subsequent psychotic 
symptoms in 22q11.2DS (Chawner et al., 2019; Niarchou et al., 2019), although ASD symptoms 
are not. Brain imaging studies have demonstrated that individuals with 22q11.2DS who developed 
psychotic symptoms had a trajectory of thicker frontal cortex in childhood and early adolescence, 
which then more rapidly thinned during adolescence, than individuals with 22q11.2DS who did not 
develop psychotic symptoms (Bagautdinova et  al., 2021; Ramanathan et  al., 2017). Therefore, 
increased spindle and SW amplitude in 22q11.2DS in childhood/adolescence could reflect aberrant 
cortical development processes which clinically associate with ADHD and/or anxiety symptoms in 

Table 7. Average proportions of genotype 
effects on psychiatric measures and IQ mediated 
by sleep EEG measures.

Measure Mediator
Proportion 
mediated

ADHD 
symptoms REM constant 0.11 (0.02)

ADHD 
symptoms SW amplitude 0.14 (0.03)

ADHD 
symptoms Spin - SW MRL 0.16 (0.03)

Anxiety 
symptoms

Spindle 
amplitude 0.17 (0)

Anxiety 
symptoms SW amplitude 0.21 (0.05)

Anxiety 
symptoms Spin - SW MRL 0.19 (0.07)

ASD symptoms
Spindle 
amplitude 0.08 (0.02)

FSIQ SW amplitude 0.18

Proportions of genotype effect on psychiatric 
measures and FSIQ mediated (Measure) by select 
sleep EEG features (Mediator) of for all electrodes in 
significant clusters. Data shown are mean (SD). Note 
FSIQ does not have an SD as there was only one 
electrode in a significant cluster.

https://doi.org/10.7554/eLife.75482
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this age group, but then progress to thinner frontal cortex, increased risk of psychotic disorders and 
potentially decreased spindle/SW density in adulthood.

Relationship to previous findings – aperiodic signal component
We discovered increased broadband EEG power in 22q11.2DS during sleep, particularly in REM. 
Furthermore, the intercept of the aperiodic signal component in REM was observed to be a mediator 
of genotype effects on ADHD symptoms. One possibility is that the increased power is related to 
the increased cortical grey matter thickness observed in 22q11.2DS, as has been observed in brain 
imaging studies (Lin et al., 2017; Sønderby et al., 2022; Sun et al., 2020).

We also observed that the slope and intercept of the aperiodic part of the signal reduced with age, 
similar to previously reported findings in awake resting state EEG in children and adolescents (Hill 
et al., 2022), and aging adults (Voytek et al., 2015). The slope of the 1 /f component of the EEG has 
also been associated with changes in level of arousal across different sleep stages, with REM being 
associated with the steepest slopes (Kozhemiako et al., 2021; Lendner et al., 2020). However, we 
did not observe any differences between groups in 1 /f slope.

Mechanisms of sleep EEG changes in 22q11.2DS
Our EEG findings together suggest a complex picture of sleep neurophysiology in 22q11.2DS. On 
the one hand, increased intercept of the aperiodic component of the signal and increased SW ampli-
tude is associated with a younger developmental age in controls; on the other hand, higher spindle 
frequency and higher spindle-SW coupling is associated with an older developmental age. Further-
more, we found partial mediation of genotype effects on anxiety, ADHD and ASD symptoms by 
several EEG measures, in addition to opposing relationships between EEG measures and memory task 
performance in 22q11.2DS, again suggesting a complex relationship between sleep physiology and 
cognition in carriers of this genotype.

Although the physiological bases of 22q11.2DS-associated changes in sleep architecture are 
unknown, genes in the deleted region of chromosome 22 have been implicated in sleep regulation, 
potentially via a role in sleep promoting GABA-ergic signaling (Maurer et al., 2007). GABA signaling 
is also integral to the mechanisms of spindle and slow wave oscillations (Feld et al., 2013; Feld and 
Born, 2020; Ulrich et al., 2018). Although a study using magnetic resonance spectroscopy did not 
demonstrate gross changes in GABA levels in the anterior cingulate cortex in 22q11.2DS (Vinger-
hoets et al., 2020), a mouse model of 22q11.2DS does harbor a reduction in GABA-ergic parval-
bumin containing cortical interneurons in 22q11.2DS (Al-Absi et al., 2020). Therefore, a potential 
mechanism of altered sleep and sleep-associated EEG oscillations may involve neurodevelopmental 
changes to cortical structure and GABAergic signaling in cortical inhibitory networks in 22q11.2DS.

Limitations and future directions
In this study we made a single overnight EEG recording. Although there were no differences between 
groups in terms of total sleep time, or awakenings overnight – indicating minimal disruption by the 
EEG recording setup – it is possible that the recording protocol caused undetected effects that 
differed between groups, contributing to our EEG findings. A future study which included a baseline 
night where participants become familiar with the recording equipment would help to address this 
possibility.

We used interaction and mediation analyses to infer associations between genotype, psychiatric 
measures or FSIQ, memory task performance, and a wide range of sleep EEG measures. These initial 
findings should be replicated in a larger sample to confirm sleep EEG measures as intermediate 
phenotypes that predict behaviour and cognition. Here we need to emphasise that the discovered 
correlations between sleep EEG measures and memory performance in the morning do not directly 
relate to processes associated with sleep dependent memory consolidation.

Sleep architecture is heterogenous in young people with ADHD and ASD, as it is in adult schizo-
phrenia patients (Chouinard et al., 2004; Cohrs, 2008); it therefore may be unlikely that sleep macro-
structure alone (i.e. percentages of different sleep stages, sleep efficiency etc.) will prove a useful 
biomarker or prognostic indicator of later neurodevelopmental diagnoses in 22q11.2DS. However, 
our results suggest that the use of quantitative measurements of sleep microstructure, such as of 
spindles, SWs and their coupling could be mediators of genotype effects on psychiatric symptoms 
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and therefore be useful as biomarkers of neurodevelopmental disorders in future studies (Manoach 
and Stickgold, 2019).

As expected, age had a large influence on EEG properties in our between-subject, cross-sectional 
study (Hahn et al., 2020; Markovic et al., 2020; Purcell et al., 2017). It has previously been demon-
strated that psychopathology changes with age in 22q11.2DS, including that ADHD symptoms decline 
with age (Chawner et al., 2019). Therefore, a longitudinal cohort study of sleep EEG biomarkers in 
22q11.2DS from childhood and adolescence into adulthood is an important extension of the present 
study, to elucidate developmental trajectories, as has been achieved with brain imaging (Bagautdi-
nova et al., 2021; Ramanathan et al., 2017). Further, a retrospective cohort study of EEGs for those 
with 22q11.DS who go on to develop schizophrenia-spectrum disorders could dissociate which EEG 
features relate to the development of psychosis.

Conclusion
In conclusion, in this study quantifying sleep neurophysiology in 22q11.2DS, we highlight differences 
that could serve as potential biomarkers for 22q11.2DS-associated neurodevelopmental syndromes. 
Future longitudinal studies should clarify the relationship between psychiatric symptoms, sleep EEG 
measures, and development in 22q11.2DS, with a view to establishing mechanistic biomarkers of 
circuit dysfunction that may inform patient stratification and treatment.

Materials and methods
Participants and study recruitment
Participants were recruited as part of the previously described, ongoing Experiences of Children 
with cOpy number variants (ECHO) study (Moulding et al., 2020). Where available, a sibling (n=17) 
without the deletion closest in age to the participant with 22q11.2DS (n=28) was invited to participate 
as a control. As this study was an exploratory cross-sectional study of a rare neurodevelopmental copy 
number variant, our sample size was taken as the maximum number of participants who agreed to 
have an EEG recording.

The presence or absence of the deletion was confirmed by a Medical Genetics laboratory and/
or microarray analysis in the MRC Centre for Neuropsychiatric Genetics and Genomics laboratory at 
Cardiff University.

Prior to recruitment, primary carers consented for all participants and additional consent was 
obtained from participants aged ⩾16  years with capacity. The protocols used in this study were 
approved by the NHS Southeast Wales Research Ethics Committee.

Age and sex characteristics of the study sample are shown in Table  1. Of participants with 
22q.11.2DS, four were prescribed melatonin, one was prescribed methylphenidate (Medikinet) for 
ADHD and one was prescribed sertraline for ‘mood’. No controls were prescribed psychiatric medica-
tion. No study participant reported a diagnosis of epilepsy or seizure disorder.

All data were collected during study team visits to participants’ family home. Data collection, 
including EEG recordings from sets of siblings were carried out on the same visit, which were typically 
on weekends or school holidays.

Psychiatric characteristics and IQ
Psychopathology and subjective sleep quality was measured by the research diagnostic Child and 
Adolescent Psychiatric Assessment (CAPA) interview (Angold et al., 1995) with either the participant 
or primary carer. Interviews were carried out during the same visit as EEG recordings. Participants 
were also screened for Autism-Spectrum Disorder (ASD) symptoms using the Social Communication 
Questionnaire [SCQ, (Rutter et al., 2003)], completed by the primary carer. Full-Scale IQ FSIQ was 
measured using the Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999), as the combination 
of all subscores.

Sleep-dependent memory consolidation task
The effect of sleep on participants’ memory performance was evaluated using a 2D object loca-
tion task (Wilhelm et al., 2008) implemented in E-Prime. Participants completed a learning and test 
session the evening before the EEG recording, and a recall session the next morning. In the task, a 
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5x6 grid of covered square ‘cards’ was presented on a laptop screen. During learning, successive pairs 
(n=15) of cards were revealed for 3 s, showing matching images of everyday objects and animals. 
During recall, one of each pair was uncovered, and subjects were required to select the covered loca-
tion of the matching pair.

In the evening, learning and recall sessions alternated until participants reached a performance 
criterion of 30% accuracy. The next morning a test session was carried out with a single recall session.

Polysomnography data acquisition
High-density EEG and video recordings were acquired with a 60 channel Geodesic Net (Electrical 
Geodesics, Inc Eugene, Oregon, USA) and a BE Plus LTM amplifier running the Galileo acquisition 
software suite (EBNeuro S.p.A, Florence, Italy). Additional polysomnography channels including EOG, 
EMG, ECG, respiratory inductance plethysmography, pulse oximetry and nasal airflow were recorded 
with an Embla Titanium ambulatory amplifier. PSG signals were acquired at 512 Hz sampling rate with 
a 0.1 Hz high pass filter. The online references was electrode Cz.

On recording visits, a member of the study team came to the participant’s home, set up the EEG 
and PSG recording systems and left; participants went to be at their normal bedtime, slept in their 
own beds, and as the system was ambulatory, were able to move freely during recordings for example 
to use the bathroom overnight. The experimenter returned the following morning to end the record-
ings, collect equipment and carry out the morning memory task test session.

Sleep scoring
Sleep scoring was performed by an experienced scorer on a standard PSG montage (6 EEG + all PSG 
channels) according to Academy of American Sleep Medicine criteria. Artefact and Wake epochs of 
EEG were discarded from further analysis. Sleep architecture was quantified using standard derived 
variables: total sleep time, sleep efficiency, latencies to N1 and REM sleep and proportion of time 
spent in N1, N2, N3, and REM sleep.

EEG data analysis
All pre-processing, spectral analysis and event detection algorithms employ methods validated in 
previously published sleep EEG studies, using the same MATLAB code where available.

Pre-processing
Following acquisition and prior to analysis, EEG data was pre-processed using the following steps: ​
EEG.​edf files were imported into MATLAB (Mathworks, Nantick, MA, USA) using the EEGLAB toolbox 
(Delorme and Makeig, 2004). Next, signals were downsampled to 128 Hz and processed: detrended 
with a high pass filter (cut off 0.25 Hz), 50 Hz line noise removed using the EEGLAB PREP plugin 
(Bigdely-Shamlo et  al., 2015), artefacts were removed with the Artifact Subspace Reconstruction 
method (Mullen et al., 2015) implemented in the clean_rawdata EEGLAB plugin and re-referenced 
to a common average. Two additional automated artefact removal steps were then applied. Firstly, 
full 60-channel recordings were decomposed with independent components analysis (ICA) using the 
AMICA EEGLAB plugin (Delorme et al., 2012) and non-brain components were removed using the 
ICLabel plugin, including ECG, EMG, and EOG artifacts (Pion-Tonachini et al., 2019).

Second, we applied an automated iterative epoch-level artefact removal process to N2 and N3 
epochs (pooled together) using two sets of criteria, similar to that described by Purcell et al., 2017: 
firstly, we applied the method described by Buckelmüller et al., 2006, removing epochs where the 
beta (16–25 Hz, 2 SD) or delta (1–4 Hz, 2.5 SD) power exceeded a threshold of 2 or 2.5 SD relative to 
the flanking 14 epochs (7 before and 7 after). The resulting set of epochs were then further filtered 
based on whether an epoch had >5% clipped signals (e.g. >5% of values in the epoch equal to the 
minimum or maximum possible value) and then a three-cycle iterative process of removing epochs 
based on their having a signal RMS or score on the first3 parameters (Hjorth, 1970) that exceeded 
2 SD of the whole-signal SD. These processes appeared to remove epochs randomly across the 
night, although may have removed N3 epochs more than N2. There were no group differences in the 
proportion of N2 or N3 sleep removed from each recording (mixed models fit to proportion of epochs 
in N2 and N3 separately, with group as independent variable and gender and age as covariates, both 
p>0.05). This process was applied to each channel independently as this study did not investigate 
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any cross-channel EEG measures. Sleep montages were then prepared for sleep scoring, and thirty 
second epochs containing artefacts were flagged for removal after manual review.

Time-frequency Analysis
We calculated whole-night spectrograms using the multitaper method (Bokil et  al., 2010) with a 
30 second window advanced in steps of 10 seconds and a bandwidth of 1 Hz. The EEG power spec-
tral density (PSD) was calculated for frequencies between 0.25 and 20  Hz using Welch’s periodo-
gram (MATLAB function pwelch with a 4 second Hanning window advanced in 2 second steps, then 
averaged over time to give one value per frequency per epoch) and converted to decibels (10*log10 
(microvolts2)). We then repeated this analysis with EEG signals after z-scoring in signals in the time 
domain (subtracting the overall signal mean and dividing by the signal standard deviation).

Next we used the Irregular Resampling Auto-Spectral Analysis (IRASA) method (Wen and Liu, 
2016) to decompose EEG signals into oscillatory and aperiodic (also known as 1 /f or fractal) compo-
nents, using the MATLAB code published by the method’s authors. In brief, this method consists of 
sequentially resampling time domain signals to odd numbered sampling rates and calculating the 
PSD for this set of stretched or compressed data. The sum of these resampled datasets cancels out 
oscillatory activity, but the aperiodic component is retained. The oscillatory component of the signal 
can then be recovered by subtracting the aperiodic component from the full PSD in the frequency 
domain. We calculated differences in PSD between groups through linear mixed models fit at each 
frequency, and corrected p-values for multiple comparisons using cluster-based correction [where 
adjacent frequencies were considered to be neighbors (Maris and Oostenveld, 2007), with 500 
permutation iterations].

From the oscillatory component of the signal, we calculated average power in slow delta (<1.5 Hz) 
and sigma bands (10–16 Hz), and the sigma-band frequency with maximum power, averaging over all 
epochs in N2 and N3 sleep separately for each subject. From the aperiodic component of the signal, 
we calculated two measures – a slope and an intercept measure, from fitting an exponential of y=e-

slope+intercept to the aperiodic data in the frequency domain. We calculated these measures from all 
N2, N3 and REM epochs separately for all individuals. This gave a total of 12 spectral measures per 
electrode per subject (Table 7).

Spindle detection
Sleep spindles were automatically detected from artefact-free epochs of N2 and N3 sleep EEG data 
using a relative-threshold detector based on previously reported methods using the continuous 
wavelet transform (Djonlagic et al., 2021; Purcell et al., 2017). To enhance spindle detection signal-
noise ratio a Complex-Frequency B-Spline wavelet was used in the place of the more typical Complex 
Morlet wavelet (Bandarabadi et al., 2020).

We determined the wavelet frequency to use for spindle detection from the peak sigma frequency 
calculated using the IRASA method, for each individual. As we observed almost all participants to 
have unimodal distributions of sigma power (Figure 1—figure supplement 1), and as has been previ-
ously suggested in a study of similarly aged participants (Hahn et al., 2020), we did not differentiate 
between ‘fast’ and ‘slow’ spindles. Therefore, for spindle detection, we used a single wavelet with an 
individualized centre frequency, a bandwidth parameter of 2, and an order parameter of 2.

Putative spindle cores were identified from the magnitude of the continuous wavelet transform 
of the EEG signal (smoothed with a 0.1 s moving average), with a main threshold of 3 x the median 
(calculated over the whole signal) and a secondary threshold of 1.5 x the median. We took putative 
spindles to be crossings of the main threshold flanked with secondary threshold crossings with a 
minimum event duration of 0.5 s and a maximum duration of 3 s. Further, putative spindles had to 
be separated by at least 0.5 s; events closer than this were merged unless their combined duration 
exceeded 3 s.

Putative spindles were further selected based on a quality metric where the power increase in the 
sigma band (10–16 Hz) during the putative spindle event (calculated as the FFT of the signal, relative 
to the whole-night baseline PSD) had to exceed the average increase in the delta, theta and beta 
bands during the same period, relative to their whole-night baselines.

From each putative spindle we extracted the amplitude (maximum peak-to-trough voltage differ-
ence in the sigma filtered-EEG, filtered using a least-squares linear-phase FIR filter using MATLAB’s 
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firls command with 10–16 Hz passband filter, an order of 960, and transition frequency width of 0.5 Hz) 
and frequency (reciprocal of the mean time difference between positive voltage peaks within the 
spindle). We also calculated the average density of spindles over the whole duration of all epochs 
investigated in each participant, in events per minute, giving a total of three spindle-related measures 
per electrode per subject (Table 7).

Slow-wave detection
Slow waves were detected from epochs of N2 and N3 sleep using a previously validated method 
(Djonlagic et  al., 2021) as follows: first the EEG signal was band-pass filtered between 0.25 and 
4 Hz using a Hamming windowed sinc FIR filter (pop_eegfiltnew from the EEGLAB toolbox), Next, 
negative half-waves were detected from positive-to-negative zero crossings and selected as putative 
SWs if: the putative SW had an amplitude greater 2 x the signal median for all negative half-waves, a 
minimum length of 0.5 s and a maximum length of 2 s. These were liberal criteria which detected large 
numbers of negative half waves; this approach was chosen as we wished to investigate SW-spindle 
interactions, and therefore wished to maximise our sample of putative SWs. Furthermore, as it has 
been observed that the overall power of the EEG signal decreases from childhood to adolescence 
(Hahn et al., 2020), the use of an absolute threshold for SW detection could introduce bias in detec-
tions based on participant age. We therefore considered a relative threshold most appropriate for our 
dataset.

From each SW we extracted the amplitude (as the peak negative deflection), the duration (the time 
between the initial positive-to-negative zero crossing to the negative-to-positive zero crossing), and 
from the total set of SWs calculated the average SW density in events per minute, giving a total of 3 
SW-related measures per electrode per subject (Table 7).

To explore the polarity of EEG signals across the scalp at the time of SWs detected on individual 
channels, we made topoplots of the average EEG voltage at all electrodes at the time of detected SW 
troughts at a range of seed electrodes which were selected for being placed evenly across the scalp.

Spindle–SW coupling
Spindle - SW coupling was measured using three metrics. First, we calculated the simple proportion 
of detected spindles whose peaks overlapped with any detected SWs, where overlap was defined as 
spindles whose peak sample fell within a window of +/- 1.5 s of the negative peak of a detected SW. 
Second, we calculated the mean resultant length (MRL) vector of the phase of the slow oscillation at 
the time of peak spindle amplitude, for spindles which overlapped an SW. The MRL metric was calcu-
lated as follows: the phase angle of the filtered slow oscillation signal was calculated using the Hilbert 
transform (where 0 degrees was the first positive-to-negative crossing of the SW). The phase value at 
the index of each spindle peak was taken, and the overall MRL for that signal was calculated as mrl 
= abs(mean(exp(1i*phase))), where phase is a vector of all spindle peak phase values in a recording. 
Third, we took the mean angle of the SW phase at the peak of all SW-overlapping spindles where angle 
= angle(mean(exp(1i*phase))). For the overlap and MRL measures, we converted the raw measure to a 
z-score relative to a resampling distribution calculated by randomly shuffling each spindle peak either 
within its local 30-s epoch (overlap measure) or shuffling only within the overlapping detected SW 
(MRL measure). This resampling procedure was repeated 1000 times to create a null distribution from 
which the mean and standard deviation was calculated for deriving the z-score for each signal. We 
then calculated these three measures for each electrode, for each subject (Table 6).

As an additional analysis to explore the relationship between SWs and sigma-frequency activity, we 
made scalograms of SW-trough-locked EEG signals, using a set of frequencies evenly spaced between 
8 and 16 Hz, and a Complex-Frequency B-Spline wavelet with bandwidth 2 and order 2. Scalograms 
were normalised by z scoring relative to the average signal in the window 2 – 1.5 seconds prior to SW 
troughs. Normalised scalograms were calculated for all SWs detected at each electrode and partici-
pant, then averaged.

Statistical analysis
Following acquisition, preprocessing and feature identification and extraction, summary data were 
exported into R 4.1.0 (R Development Core Team, 2017) for statistical analysis.
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Psychiatric, sleep architecture, and memory data
Psychiatric and sleep architecture data were analyzed using a mixed model approach, with subject 
family entered into models as a random (varying) intercept, to account for the shared genetic and 
environmental influences within sibling pairs. Mixed models are also robust to missing data.

For memory task data, the number of learning cycles to reach the 30% performance criterion were 
modeled using mixed effects Cox Proportional Hazard Regression (coxme in the coxme package), 
with right censoring as some participants (22q11.2DS n=6, siblings n=0) completed numerous training 
cycles but never reached criterion before stopping the task.

Accuracy in the morning memory test was measured using a binomial model [glmer with family = 
binomial(link = “logit”) in the lme4 package (Bates, 2010)] with the number of hits from the 15 trials 
as the dependent variable. In both models, genotype was the independent variable and age and sex 
were included as covariates, with family as a random intercept.

High-density sleep EEG data
Our EEG dataset consisted of 21 EEG measures across 60 channels recorded in 45 participants 
(Table 7). As we used a high-density electrode array, we used multilevel generalized additive models 
(GAMM) applied to EEG data from all 60 electrodes in one model. The generalized additive model 
can model non-linear relationships, including spatial relationships, between variables using splines or 
other smoothers (Wood, 2004; Wood, 2017) and can, for example, be used to model complex or 
spatial relationships in models that also include covariates and random effects structures (Pedersen 
et al., 2019). In the case of EEG data, this allowed the estimation of a model than included the value 
of an EEG measure of interest (e.g. spindle density) at all 60 electrodes, with genotype, gender and 
age as a covariates and participant identity nested in their family identity as a random intercept, giving 
overall statistics for group differences.

This approach represents an extension of traditional EEG topographical plots, which present a 
smoothed interpolation of an EEG measure onto a 2D grid representing the head, by allowing the 
modelling of the relationship between multiple independent variables (and random effects) across the 
2D representation of the head.

In order to fit these computationally intensive models consistently, we adopted a Bayesian approach, 
fitting the models using Hamiltonian Monte Carlo using the R BRMS package and Stan (Bürkner, 2017; 
Carpenter et al., 2017), with 4000 iterations (1000 warm up) on four chains, and regularizing priors 
[in keeping with (McElreath, 2018)]. All model posterior information was inspected manually, and all 
Gelman-Rubin statistics (measures of model convergence) were close to 1.00, which is considered the 
optimal value. The formula used for all models (except for angular data) was value ~s(x, y, by = group, 
bs = "tp", k=20, m=2)+gender + age_eeg +group + (1|family) + (1|family:subject), where value was a 
placeholder for each EEG feature of interest, and x and y represented the 2D-projected x and y co-or-
dinate for each EEG electrode. This model fits an isotropic smooth with thin plate regression splines 
to the EEG measure across electrodes, with a separate smooth being estimated for 22q11.2DS and 
sibling controls. The model was fit was a normal distribution and an identity link function.

This approach allowed us to generate topographic plots of group differences by taking draws from 
the posterior fitted values of each model across a grid of spatial locations, for both 22q11.2DS and 
Siblings. From these posterior samples, we then calculated the genotype difference distribution, and 
from this, calculated the probability of direction statistic (Makowski et al., 2019), selecting spatial 
locations where the value of the statistic was less than 0.05 for further plotting.

Spindle-SW coupling angle model
We modelled Spindle-SW Coupling angle (in radians) with a GAMM with a von Mises distribution 
(equivalent to a normal distribution on the circle) and a half tan link function. We modelled both the 
mean angle and kappa (the circular concentration parameter) to improve model fitting. The formula 
used for the angle model was: overlap_angle ~0 + group + gender + age_eeg +s(x,y,by = group, bs 
= "tp", k=20, m=2) + (1|family) + (1|family:subject), kappa ~0 + group + gender + age_eeg + s(x,y,by 
= group, bs = "tp", k=20, m=2) + (1|family) + (1|family:subject). We plot both the mean angle for 
coupling across the scalp, and model estimated angle differences between groups on topoplots with 
a circular color scale.

https://doi.org/10.7554/eLife.75482


 Research article﻿﻿﻿﻿﻿﻿ Medicine | Neuroscience

Donnelly, Bartsch et al. eLife 2022;0:e75482. DOI: https://doi.org/10.7554/eLife.75482 � 25 of 32

Memory task – EEG correlation models
We analyzed the correlation between Sleep EEG measures and performance in the test session of 
our behavioral task the next morning. For each EEG measure and EEG electrode, we fit a generalized 
linear mixed model, with number of hits in the morning session as dependent variable, the interaction 
between an EEG measure and genotype as independent variable, and gender and age as covariates, 
with family identity as a random intercept, and a binomial distribution with logit link function. We 
then took p-values for the interaction term, corrected using a cluster-correction permutation testing 
approach with 500 permutations (Maris and Oostenveld, 2007), and plotted those electrodes where 
the EEG measure * genotype interaction was significant (cluster-corrected p<0.05).

EEG mediation models
We analyzed whether genotype effects on psychiatric symptoms or FSIQ were mediated by EEG 
measures using mediation models (Imai et  al., 2010). Mediation analysis is a statistical technique 
which allows the estimation of whether the effect of one exposure (genotype) on an outcome (here 
a psychiatric measure or FSIQ) occurs via an effect of the exposure on a third variable (known as the 
mediator, here an EEG measure) or via a direct effect on the exposure. These models can be estimated 
by the combination of two statistical models predicting (1) the outcome from the exposure, mediator, 
and other covariates (including random effects) and (2) the mediator from the exposure, other covari-
ates and random effects.

In our mediation analysis, we fit models for each pair of a psychiatric measure or IQ (ADHD, 
anxiety, ASD symptoms, psychotic experiences, CAPA sleep problems or FSIQ) and an EEG 
measure (focusing on the four measures where we observed raw group differences: REM constant, 
spindle amplitude, SW amplitude and spindle-SW MRL): one linear mixed model predicting the 
EEG measure from genotype, age and gender as covariates, and family as a random intercept; 
and one model predicting the psychiatric measure/IQ from genotype, EEG measure, age and 
gender, and family as a random intercept. The link function of the second model depended on the 
measure; poisson count models were used for symptom count data (ADHD, anxiety and ASD), a 
binomial model for psychotic experiences, or a linear model for FSIQ. These models were fit using 
the lme4 package as above, then combined in a mediation analysis using the mediate function in 
the R mediation package (Imai et al., 2010). From each model we extracted the estimated direct 
and mediated effects, and the proportion mediated (the proportion of the total effect of genotype 
on the psychiatric measure/FSIQ mediated via the EEG measure) and constructed topographic 
plots of the proportion mediated. We derived p-values from mediation models using the cluster 
correction method by generating 500 shuffled datasets at each electrode, where group identity 
was permuted, and refit the models to each. We then plotted those electrodes where there was a 
cluster-corrected significant mediated effect by the given measure and a significant total effect on 
the same electrode.
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produce the analysis and figures presented in the manuscript. Note that data files are in the .rds 
file format, which can be opened using the free open source R statistic programming language. 
Source data 1: eLife Submission ​Data.​zip ​sleep_​study_​beh_​psych_​demographic_​data.​rds: Contains 
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data for participant performance on the memory task, psychiatric and cognitive assessments and 
demographic data ​sleep_​study_​eeg_​coupling_​example.​rds: Contains EEG data of an example 
spindle-SW interaction event, used to construct Figure 4A ​sleep_​study_​eeg_​locations.​rds: Contains 
the standardized locations of the EEG electrodes used throughout the study ​sleep_​study_​eeg_​
neighbours.​rds: Contains the neighboring electrode for all 60 electrodes in the recording system 
used in our study, used in the cluster correction statistics utilized in Figure 5B and Figure 6B ​sleep_​
study_​eeg_​spectrogram_​example.​rds: Contains example whole night spectrograms for a sibling 
pair, with hypnogram and spindle and SW detection counts over the night, used in Figure 3A-B ​
sleep_​study_​eeg_​summary_​data.​rds: Contains summary EEG measures (one value per measure 
per electrode per participant) for the measures in Table 7. Data are in their own standard units. ​
sleep_​study_​eeg_​summary_​data_​z.​rds: Contains summary EEG measures (one value per measure 
per electrode per participant) for the measures in Table 7. Data are z scored. ​sleep_​study_​epoch_​
removal.​rds: Contains data on the number of epochs removed by our artefact removal process (See 
Methods and Materials/EEG data analysis/Pre-processing) ​sleep_​study_​example_​so_​waveforms_​
bootci.​rds: Contains example slow wave waveforms and bootstrapped 95% confidence intervals, 
used in Figure 3D ​sleep_​study_​example_​spindle_​waveforms_​bootci.​rds: Contains example spindle 
waveforms and bootstrapped 95% confidence intervals, used in Figure 3C ​sleep_​study_​interaction_​
clusters.​rds: Contains the electrode locations and statistics for clusters of significant group*EEG 
measure interactions, used in Figure 5B ​sleep_​study_​interaction_​models.​rds: Contains fitted 
mixed models for group*EEG measure interactions, used in Figure 5B ​sleep_​study_​mediation_​
plot.​rds: Contains cluster-corrected mediation models, used in Figure 6B ​sleep_​study_​psd_​bootci.​
rds: Contains power spectral density plot data, with bootstrapped 95% confidence intervals, used 
in Figure 2A-D ​sleep_​study_​psd_​clusters.​rds: Contains the location of clusters of frequencies with 
significant group differences, used in Figure 2A-D ​sleep_​study_​psd_​data.​rds: Contains PSD data 
used to calculate group differences and for cluster correction, to derive the data in ​sleep_​study_​
psd_​bootci.​rds and ​sleep_​study_​psd_​clusters.​rds ​sleep_​study_​topoplot_​angle_​data.​rds: Contains 
posterior samples from the GAMM model fit to the coupling angle data. Used to construct the 
topoplot found in Figure 4D ​sleep_​study_​topoplot_​posterior_​data.​rds: Contains posterior samples 
from the GAMM models used to construct group difference topoplots for the EEG measures in 
Table 7 (except angular data, which is found in) ​sleep_​study_​topoplot_​angle_​data.​rds. Used to 
construct the topoplots found in Figure 2E-G, Figure 3E-F and Figure 4C                                                                                            
                                                                                                                                             

•  Source code 1. The .zip file “eLife Submission ​Scripts.​zip” contains R scripts that produce the main 
figures and analysis. Scripts beginning with the prefix “Analysis” run computations which produce 
data used in tables and figures (and may run slowly); scripts beginning with the prefix “Figure” 
produce the figures themselves. The following files are included: Analysis-Artefact-Removal.R: 
Code to analyze the effect of artefact removal (See Methods and Materials/EEG data analysis/
Pre-processing) Analysis-Common-Utilities.R: Code that contains common variables and functions 
used in the paper Analysis-fitGAMMs.R: Code that fits the Bayesian GAMMs and extracts posterior 
samples which produce the topoplots of group differences in Figure 2E-G, Figure 3E-F and Figure 
4C Analysis-fitMediationModels.R: Code that fits the mediation models and performs cluster-based 
correction for multiple comparisons, producing data used to plot Figure 6B Analysis-Interaction-
Clusters.R: Code that fits the EEG*genotype interaction models and performs cluster-based 
correction for multiple comparisons, producing data used to plot Figure 5B Analysis-PSD-Clusters.R: 
Code that fits models to the PSD data across multiple frequencies, and performs cluster-based 
correction for multiple comparisons, producing the data used to plot Figure 2A-D Analysis-Tables-
1-5.R: Code that produces Tables 1-5, including the statistical tests presented in those tables 
Figure-1-Revised.R: Code to produce the elements of Figure 1 and associated figure supplements 
Figure-2-Revised.R: Code to produce the elements of Figure 2 and associated figure supplements 
Figure-3-Revised.R: Code to produce the elements of Figure 3 and associated figure supplements 
Figure-4-Revised.R: Code to produce the elements of Figure 4 and associated figure supplements 
Figure-5-Revised.R R: Code to produce the elements of Figure 5 Figure-6-Revised.R R: Code to 
produce the elements of Figure 6 and Table 7                                                                                           

Data availability
All data generated or analysed during this study are included in the manuscript and supporting file; 
Source Data files have been provided as a .zip file. Extensive additional information collected as part 
of the ongoing IMAGINE-ID study, of which the ECHO study forms part, can be obtained via https://​
imagine-id.org/healthcare-professionals/datasharing/.
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