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Humanmotion tracking is a fundamental building block for various applications including computer animation,
human-computer interaction, healthcare, etc. To reduce the burden of wearing multiple sensors, human
motion prediction from sparse sensor inputs has become a hot topic in human motion tracking. However,
such predictions are non-trivial as i) the widely adopted data-driven approaches can easily collapse to average
poses. ii) the predicted motions contain unnatural jitters. In this work, we address the aforementioned issues
by proposing a novel framework which can accurately predict the human joint moving angles from the signals
of only four flexible sensors, thereby achieving the tracking of human joints in multi-degrees of freedom.
Specifically, we mitigate the collapse to average poses by implementing the model with a Bi-LSTM neural
network that makes full use of short-time sequence information; we reduce jitters by adding a median pooling
layer to the network, which smooths consecutive motions. Although being bio-compatible and ideal for
improving the wearing experience, the flexible sensors are prone to aging which increases prediction errors.
Observing that the aging of flexible sensors usually results in drifts of their resistance ranges, we further
propose a novel dynamic calibration technique to rescale sensor ranges, which further improves the prediction
accuracy. Experimental results show that our method achieves a low and stable tracking error of 4.51 degrees
across different motion types with only four sensors.

CCS Concepts: • Computing methodologies→Motion capture.

Additional Key Words and Phrases: flexible sensors, sparse signal processing, temporal convolutional network,
median pooling

1 Introduction
Human motion tracking is widely used in the animation industry [19, 43], computer games [30, 47],
human-computer interaction [3] and medical rehabilitation applications [21, 24, 28, 41]. Currently,
optical solutions and inertial measurement units (IMUs) are the most popular approaches to tracking
human motion that have mature applications [18, 31]. Between them, optical solutions suffer from
bad environmental conditions (e.g. occlusions or poor lighting [5]) and are restricted by the clothes
worn for the placement and visibility of optical markers [22]; inertial measurement unit (IMU)
bypasses the above limitations and stands out as a better alternative [48]. For example, Yasuo and
Hirotaka proposed a method that can perform 3D motion tracking with 32 IMUs [14]. Although
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effective, their method based on a dense arrangement of IMUs is intrusive. The commercial system
also employs even more than 10 IMUs [32]. Nonetheless, measuring by multiple flexible sensors is
time-consuming and laborious work, because of the long-wearing time and the expensive cost for
the facilities, and it is also inconvenient for users to wear multiple flexible sensors [12]. Recently,
researchers have validated the feasibility of using a small set of sensors to track human motion
[40]. Even though this method adopts 6 IMUs, their method requires a heavy computational cost,
needing offline optimization of a non-convex problem over the entire sequence; The following
work, DIP [12], achieves real-time performance with higher tracking accuracy with a bidirectional
RNN. Their approach also uses 6 IMUs. However, their frame rate is 30 fps, which is not sufficient
to capture fast movements. TransPose [46] leverages 6 IMUs to realize fast and realistic movements.
With the same amount of IMUs, TIP [13] further improved the tracking result with the structure
of the transformer. While researchers have adopted 6 IMUs to realize good tracking results, it is
meaningful to explore tracking human motion with less number of sensors for better usability.
Compared to works based on 6 sensors, motion tracking based on 4 sensors set more constraints for
tracking motions currently. Schwarz et al. [35] proposed Gaussian Process regression to reconstruct
a full-body human pose. However, their method is limited to 6 types of motion. Ha et al. [9] utilized
2 pressure sensing platforms and a hand tracking device to track the user’s locomotion. But their
method requires the users’ feet to be bound to a small area. Thus, we propose to leverage 4 sensors
to avoid the inconvenience of wearing multiple sensors, decrease cost and facility requirements,
and achieve human motion tracking with good usability [46]. Considering that IMUs are easily
affected by electromagnetic interference [11] and less flexible as they require a drift-avoidance
configuration that prevents position deviation and inaccurate direction measurement [2, 33], we
employ four flexible sensors to track human motion.
Albeit flexible sensors have the characteristics of good malleability, robustness in indoor and

outdoor environments, bio-compatibility, and supporting long-time monitoring, they detect less
information than IMUs without the fusion of gyroscopes, accelerometers and magnetometers and
ordinarily show high nonlinearity and hysteresis in response [26]. Besides, since flexible sensors
are attached to the clothes, it inevitably deforms as the body moves, causing sensor aging. To
realize restoration from the low-dimensional inputs of flexible sensors to high-dimensional human

Fig. 1. Left: sensor locations. Right: jumpsuit configuration.
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motion information, we employed four flexible sensors (placed in a jumpsuit lastly (Figure 1)) and
adopted a data-driven method which is a Bi-LSTM neural network to regress human motion. Apart
from that, considering the aging sensors, we utilized average pooling layers and a min pooling
layer to estimate the changing baseline (the readings when the sensor is static without any bending
caused by human motion) and calibrate them. To cope with some unnatural shaking movements,
we leveraged a median pooling layer to smooth the movements. Our method improves the wearing
experience of the motion-tracking flexible sensors’ suit while keeping the stable tracking of human
daily activities through only four sensors. Besides, our work supports the aging and replacement of
flexible sensors. Our core contribution lies in three aspects:

• A data-driven method based on flexible sensors to track human daily activities. With
several pooling layers, our method improves the robustness against sensor aging and sensor
replacement.

• An approach to ease the jitters of the predicted output and deal with the sparse input. The
Bi-LSTM model and the median pooling not only help to reduce the jitters of the output
but also generalize well on the testing set. The tracking error is 4.51 degrees with only four
sensors on the testing set.

• A system prototype based on four flexible sensors to track human daily activities. This
system combines the data collecting, recording and visualizing modules, establishing the
technical route from the flexible sensor to visual presentation.

2 Related Work
Full-body motion tracking has a long history. In this work, we focus on sparse motion tracking and
will review its two mainstream solutions, i.e. multi-type sensors and single-type sensors, as follows.

2.1 Sparse Motion Tracking based on Multi-type Sensors
The multi-type sensor approach was proposed to make the most of the advantages of different
types of sensors, which minimizes the number of sensors placed on the human body and is thus less
intrusive [46]. For example, Zhang et al. [49] explored the tracking of human motion with 3 optical
cameras attached to the rear wheel of a bicycle, 2 IMUs on the bicycle and 4 small size tri-axial
gyroscopes on the human body under specific motion constraints. Andrews et al. [1] proposed
another human motion tracking method using a combination of 6 IMUs and 5 optical marker
sensors. Guzov et al. introduced a joint optimization [8] which integrates camera localization,
8 IMUs-based tracking and scene constraints, resulting in smooth and accurate human motion
estimation. To further relax experimental constraints, and improve accuracy and user experience,
some works resort even more to easily-accessible optical data and make less use of IMUs. For
example, [39] combined 4-8 cameras and 5 IMUs to track human motion. [50] adopted a single depth
camera and 8 IMUs to capture human motion. [38] formulated the tracking as a novel graph-based
optimization problem that associated the 2D pose detection to only the persons equipped with
IMUs in each frame.

In summary, most multi-type sensor methods use optical sensors for higher accuracy and better
user experiences, together with IMUs to get accurate limb orientations that can be challenging for
pure optical systems under fast motion or occlusion scenarios. Even though researchers have made
efforts to reduce the hardware setup, the facility requirements (eg. the equipment maintenance cost
and user familiarity with the cost) of such an integrated technical route are higher than a single-type
sensor system. The method combined with the optical system is susceptible to occlusions and
lightning. Therefore, we follow the single-type sensor approach that is much easier to deploy in
real-world scenarios.



111:4 Xiaowei, et al.

Table 1. Overview of existing single-type sensor solutions for human motion tracking.

Passage Year Types and quantity of
sensors

Limitation

Tautges et al. 2011 5 accelerometers i) The acceleration data are noisy. ii) The space of
possible postures was huge.

Schwarz et al. 2009 4 IMUs Limited to only 6 types of motion.
Ha et al. 2011 2 pressure sensing

platforms and a hand
tracking device

Users’ feet are required to be bounded to a small
area.

Mousas 2017 1 IMU Can only reconstruct simple periodic motion.
von Marcard
et al.

2017 6 IMUs Their method does not support real-time tracking.

Yang et al. 2021 4 IMUs on upper
limbs

Do not support lower body tracking.

Huang et al. 2018 6 IMU sensor on
limbs and pelvis

Relatively low accuracy (17.54 degrees).

Yi et al. 2021 6 IMU sensor on
limbs and pelvis

The sensor number and tracking error can be fur-
ther reduced.

Jiang et al. 2022 6 IMU sensor on
limbs and pelvis

The sensor number and tracking error can be fur-
ther reduced.

2.2 Sparse Motion Tracking based on Single-type Sensors
To extend the applications of human motion tracking beyond laboratory settings, massive efforts
were made to reduce the number of sensors used that not only reduce costs but also increase
wearing comfort. Table 1 shows an overview of previous single-type sensor solutions. Specifically,
Tautges et al. [36] used 4 accelerometers to track human motion. They leveraged a cross-domain
retrieval procedure to build up a lazy neighborhood graph in an online fashion. However, their
method is relatively less accurate as the acceleration data obtained by their sensors are noisy and
the huge space of possible postures makes it difficult to train a machine learning model reliably.
Improving the type of sensors, Schwarz et al. [35] proposed using Gaussian Process regression
to reconstruct full-body human pose using only 4 IMUs. Since the models are trained on specific
movements of individual users for each activity of interest, which greatly limits its applicability,
their method is limited to 6 types of motion. Ha et al. [9] utilized 2 pressure sensing platforms and a
hand tracking device to track the user’s locomotion. The adopted method based on ground reaction
forces and cascade ANN makes the process effective. However, the users’ feet are bound to a small
area. Mousas et al. [25] employed Hidden Markov Model (HMM) to reconstruct human motion
with only one IMU. However, their method can only be used to capture periodic motions. Marcard
et al. [40] exploited a statistical body model and jointly optimized pose over multiple frames to fit
both orientation and acceleration data. Since they adopted an iterative optimization-based method,
their method is offline that does not support real-time tracking. Yang et al. [44] introduced a deep
neural network (DNN) based method for real-time prediction of the lower body pose only from the
tracking signals of the upper-body joints with an average error of 8.53 degrees. As they mainly
placed sensors on the upper limb, their tracking result performs not well on the lower body. Even
though those methods deal with human motion reconstruction with sparse sensors, they are not
applicable to realistic scenarios since they set limits on tracking only several kinds of motions
or the tracking accuracy should be further improved. Besides, the sensor number and placement
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should be seriously judged. There are some researchers adopting 6 IMUs with sensor placement
that is enough to produce good tracking results. Huang et al. [12] placed the sensors on limbs
and pelvis. They proposed a deep neural network using 6 IMUs that was trained with a novel
loss function based on normal distributions. Even though they produced results that were smooth
and generally without penetrating the human model, the average joint angle error can be further
improved. With the same sensor placement, Yi et al. [46] proposed a supporting-foot-based method
and an RNN-based method to robustly solve human motion tracking as well as global translations.
Their confidence-based fusion technique achieved a better result than [12]. The state-of-the-art
method [13] leveraged an attention-based deep learning neural network together with a physics-
based learning objective to predict “stationary body points” to track human motion with 6 IMUs
(The placement is the same as [46] and [12]) and their neural network is easy to implement and
supports fast running.
As above-mentioned, it can be observed that researchers mainly adopt IMUs to track human

motion due to their small size, low cost, and that they can be easily configured outside a laboratory
environment [7, 16, 20, 29, 49]. Nonetheless, IMUs have some inherent problems: i) although the
number of sensors used is reduced, they are inflexible and thus still intrusive for human motion;
ii) they are prone to be affected by the electromagnetic environment; iii) the data captured by the
sensors can be quite noisy: the motions are occasionally exaggerated too much because of the
errors in the measured acceleration. Addressing these limitations, in this work, we propose to use
flexible sensors instead of IMUs for human motion tracking, which yields better user experiences.
Existing solutions either adopt dense flexible sensors [15] that are not user-friendly or focus on
tracking local motion [4, 15, 21, 23]. In contrast, our method uses only 4 flexible sensors but can
track 48 types of full-body human motion covering most of those in our daily lives. Thanks to the
sparse flexible sensors, our method enables a better user experience without sacrificing motion
tracking accuracy.

Fig. 2. Method overview. Our framework includes an offline training stage and an online inference stage: in
the offline training stage, we trained a concatenation of a bidirectional LSTM neural network with pooling
layers to learn the relationship between sensor signals and human motion data; in the online inference stage,
we applied the trained model to predict motion from sensor readings in real-time.
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3 Method
3.1 Method Overview
As Fig. 2 shows, our solution consists of an offline training stage and an online inference stage. In
the offline training stage, we first guided each user to wear our jumpsuit and collected paired sensor
data (via our PCB board) and motion data (via a Qualisys motion-capture system at a rate of 100
fps). During training, we fitted the training data obtained above with a bidirectional LSTM neural
network (Bi-LSTM) [12] that learns the mapping between sensor signals and full-body human joint
angles. To mitigate the sensor aging problem, we added a sequence of min and average pooling
layers to calibrate aged flexible sensors. We also adopted a median pooling layer [17] to smooth
the prediction, thereby decreasing the jitters. In the online inference stage, the predicted motion
can be obtained in real-time by feeding the sensor readings through the Bi-LSTM model.

3.2 Prototype
Our work designs and develops a prototype containing a jumpsuit, flexible sensors and PCB board.
We will introduce each of them below.

Jumpsuit Design Before we design the suit, we conducted a pilot study to decide the sensor
placement given that the quantity of sensors is 4. Based on [46] and [13] that places sensors on the
pelvis and limbs, we collected joint motion with an optical system and adopted a Bi-LSTM neural
network to validate the optimal placement. The result shows placing sensors on limbs (Y-axis of
Forearm and X-axis of Legs) will achieve the best tracking result. Thus, as a hardware prototype of
our sparse-joint motion tracking solution, we placed four flexible sensors on the four joint positions
(X-axis of two knees and Y-axis of two elbows) of a jumpsuit that can tightly fit different user bodies
(Figure 1). Specifically, we reduced harmful sensor displacement by placing the sensors in four long
cloth bags which are sewn on the jumpsuit. These sensors were secured on the cloth bags using
velcros and hot-glue balls placed on wires. Note that we intentionally made the connection between
a sensor and a wire pluggable as it facilitates: i) washing; ii) sensor replacement upon damage; iii)
unnecessary damage caused by excessive bending and collisions of sensors when wearing. The
conductor is a single strand of tinned copper conductor with an insulating layer, which was welded
to the sensor at a temperature of 350 degrees. We placed the circuit board in front of users to
facilitate interactions during data collection. The conductor was also designed to be pluggable

Inner side

Outer side
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Fig. 3. (a) The inner and the outer sides of our flexible sensor. (b) Sensor resistance vs. bending angles during
extension and flexion.
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against the circuit board with its end wrapped in plastic. Without sacrificing performance, we
increased the aesthetic of our prototype by concealing most of the wires in either the garment’s
seam lines or the double-layer cloth bags attached to the seam lines.

Flexible Sensor Characteristics The sensors we adopted are resistive, bought from Spectra Symbol1
(Fig. 3a). As Fig. 3b shows, although the sensor resistance monotonically rises when the side on
which the grid is located (the inner side) is extended outward, the relationship between the resistance
and the bending angle is non-linear, which makes it difficult to analytically derive their relationships.
On the other hand, the resistance-bending relationships are different in the extension and flexion
processes, which makes it challenging to learn a regression model. Since only the inner side of
the flex sensor is designed to change dramatically with the bending, the inner side must be put
outwards when put on.

PCB Board We designed a PCB board (the outlook and design are illustrated in Fig. 4a and Fig. 4b
respectively) for sensor data collection. Specifically, our PCB board saves the collected sensor data
to an SD card every 0.05 seconds. During data collection, we employed a multi-channel voltage
divider to select the channels in order. The reference voltage is obtained via a pair of uniform
resistance units that are depicted in the left bottom of Fig. 4b. We applied the Wheatstone bridge
structure to compute the difference between the voltage of each sensor and reference voltage
(𝑉𝑟𝑒 𝑓 = 𝑉𝐶𝐶/2), where 𝑉𝐶𝐶 (Voltage Common Collector) denotes the access voltage of the circuit.
Ignoring the effect of the low-pass filter, the input voltage to the digital-to-analog conversion can
be defined as follows:

𝑉𝑎𝑑𝑐𝑖𝑛 = (𝑉𝐶𝐶 ∗ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑖
𝑅𝑖 + 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑖

−𝑉𝐶𝐶/2) ∗𝐺𝑎𝑖𝑛, (1)

where 𝑅𝑖 represents the divider resistor, 𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑖 denotes the resistance of the 𝑖𝑡ℎ flexible sensor, and
𝐺𝑎𝑖𝑛 indicates the magnification factor of the amplifier unit. The amplified voltage measurements
are handled by a low-pass filter with a bandwidth of 300Hz. Eventually, the output signal is
converted to a digital form within [0, 4096].
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Fig. 4. (a) Outlook and (b) design of our PCB board.

1https://www.spectrasymbol.com/product/flex-sensors/

https://www.spectrasymbol.com/product/flex-sensors/
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3.3 Data Collection and Preparation
Data Collection We invited ten subjects, including four males and six females, whose ages ranged

from 19 to 41. With their consent, we asked them to put on the jumpsuits, install the sensor
and the PCB board to the corresponding positions, and turn on the PCB board switch. Then, we
simultaneously collected sensor data via the PCB board and human motion data using our optical
measuring system (i.e. Qualisys Motion Capturing System). For human motion data, we only
collected those of arm joints, forearm joints, upper leg joints, leg joints and spine joints (including
all three spine joints). We did not collect the motion data of the head joint, thumb joints, finger
joints, foot joints, hand joints, neck joints and the rotation of hips as the movements of these joints
are independent of that of other joints. For example, a person’s head can turn to the left or right
independently while he is walking. The collected data were aligned into (sensor data and motion)
pairs according to the system time and relative coefficient of the two collected sequences. Every
subject was asked to repeat a set of pre-defined motions twice (listed in the appendix). To compare
our solution with that using IMUs, we further asked two of our subjects to wear clothes with IMUs
on top of our jumpsuit. The data collection of IMUs was synchronized with our sensors and optical
measuring system.

Dataset Preparation Our dataset combined with optical measuring data and resistance data
contains about 128,000 sequences of motion data (50Hz). For each action of each subject, we
separated its data in a 0.1:0.1:0.8 split as the testing setD𝑇𝐸 , the validation setD𝑉𝐴 and the training
set D𝑇𝑅 respectively.

3.4 Model Implementation and Training
3.4.1 Network Architecture and Training Details We borrowed the Bi-LSTM network architecture
comprising one hidden layer from [12] and implemented it using PyTorch [27]. Specifically, we
used linear input and output layers together with one bidirectional LSTM layer containing 512
hidden units. We stopped the training when the decreasing of the average tracking error fell below
0.1 degrees over 10 consecutive epochs. We adopted an Adam optimizer with an initial learning
rate of 0.001, decaying by a factor of 0.1 after every 10 epochs. To avoid the exploding gradient
problem that damaged the training, we applied gradient clipping. Besides, we set the batch size to
64.

3.4.2 Dynamic Calibration for Sensor Aging Mitigation During data collection, we observed irre-
versible deformation of flexible sensors with bending (i.e. aging). As a result, the resistance values
of our flexible sensors tend to increase with the collection, that is, the sensor baseline is increasing.
This phenomenon can confuse the neural network during training.

To mitigate the influence of such sensor aging, we propose a novel dynamic calibration module:
𝑌𝑜𝑢𝑡 = 𝑌𝑖𝑛 − (LN(ave(min(𝑌𝑖𝑛)))) (2)

where 𝑌𝑖𝑛 denotes the normalized sensor readings with time sequence (the sensor readings are
normalized with min-max normalization). Specifically, we adopted a sliding window to deal with
the raw sensor readings. The sequence length is 100. The sliding window moved by two steps every
time. 𝑌𝑜𝑢𝑡 denotes the calibrated sensor readings, LN is a linear layer, min is a min pooling layer
and ave is an average pooling layer. The kernel sizes of min- and average-pooling layers are set to
25 and 10, respectively; the padding sizes of min- and the average-pooling layer are set to 0 and 8,
respectively; 𝐿𝑁 recovers the number of features that are reduced by the min- and average-pooling
layers and further learn the linear mapping between sensor baseline and ave(min(𝑌𝑖𝑛)); 𝑌𝑜𝑢𝑡 is
passed through another two linear layers before being fed into the Bi-LSTM layer. Namely, the
ave(min(𝑌𝑖𝑛) represents for the sensor baseline in every sample with sequence length of 100. Note
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that only adopting either a min pooling layer or an average pooling layer will introduce a negative
effect on tracking results. Thus, we assume that the sensor baseline computed by only the min
pooling layer is not accurate enough because people sometimes may still be moving their joints
to a lesser extent. Thus, the local-minimum sensor reading cannot represent for sensor baseline
enough. However, averaging the result passing through the min pooling layer can reduce this
effect. Similarly, sensor reading passing through the average pooling layer also cannot represent
the baseline because the average value is susceptible to human changing moving ranges. Therefore,
combining both of them is helpful for sensor calibration.

3.4.3 Model Training Before training, we normalized the sensor readings through min-max normal-
ization. Then, we only fetched𝑌𝑜𝑢𝑡 of five sequence length from𝑌𝑜𝑢𝑡 (denoted as X=(𝑥0,𝑥1,. . . ,𝑥𝑡 ,. . . ,𝑥𝑇 )
and fed both X and its corresponding ground-truth motion data Y=(𝑦0,𝑦1,. . . ,𝑦𝑡 ,. . . ,𝑦𝑇 ) into Bi-LSTM
(To distinguish the input sequence length of data from the sequence length of sensor readings
before calibration, we used input sequence length and calibrated sequence length to represent them
below). Finally, we optimized the parameters of Bi-LSTM and saved the one that performs the best
on D𝑉𝐴. The loss function used during training is:

LS = ∥𝑿 (𝑡) − 𝒀 (𝑡)∥22 (3)

where𝑿 (𝑡) represents the sensor reading; 𝒀 (𝑡) denotes themeasured full-body joint angles collected
by the optical system. Even though using future frames (the last data in the X series precedes the
corresponding Y) is helpful for the tracking result, different from [12], we did not utilize the future
frames because there is almost no difference whether to learn the future frames or not given that
the sequence length of our data is 5. Moreover, we would not suffer from the decay caused by the
learning of future frames.

3.4.4 Jitter Mitigation We observed jitters in our predicted motions that indicate a lack of smooth-
ness and naturalness [6]. To mitigate such jitters, we embedded a median pooling layer to smooth
the predicted value and get natural-looking results. The kernel size is set to 3 and the padding
number is set to 1.

4 Results
4.1 Experimental Setup
We ran our experiments in a server configured with a three-core CPU with GPU support (NVIDIA
GTX Titan Xp, 12G). The operating system was 64-bit Ubuntu 16.04. We measured jitters with the
average jerk of all the joints we have predicted, which is the third derivative of the position (i.e.
the degree changes in our task). The structures and parameters of models and techniques used are
included in the appendix.

4.2 Quantitative Evaluation
4.2.1 Overall and Detailed Performance Overall, our model achieves a low average tracking error of
4.51◦. To get more insights, we further break down the evaluation of our model into sub-evaluation
tasks according to motion types (Table 2) and joint positions (Table 3):
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Table 2. Average tracking errors of different mo-
tion types.

Motion Error
(Degree) Motion Error

(Degree)
walk

forward 3.67 swing 2.40

bend
over 5.92 spin

motion 2.26

two handed
dribble 5.07 stride 4.09

climb 6.96 tai chi 5.76
walk

backward 3.89 veer left 2.43

throw a
baseball 4.15 punch 5.34

kick 3.80 sweep
floor 4.97

Table 3. Average tracking errors of different
joint positions.

Joint Error
(Degree) Joint Error

(Degree)
Right-

Shoulder 1.83 Spine1 1.07

Left-
Shoulder 1.65 Spine2 1.07

Right-
UpLeg 6.68 RightArm 8.88

RightLeg 5.28 Right-
ForeArm 6.58

Left
UpLeg 5.69 LeftArm 8.22

LeftLeg 4.78 Left-
ForeArm 5.91

Spine 0.79

• As Table 2 shows, it can be concluded that i) for the full-body movements with larger moving
range (e.g. climbing), and motions of low limb utilization (e.g. bending over), the average
tracking errors of our model are relatively high; ii) For motion involving only limb joints
(e.g. throw a baseball), or full-body movements with smaller moving range (e.g. swing), the
average tracking errors of our model are relatively low. iii) It can be observed that: apart
from bending over, all the other common human motions have low tracking errors that are
less than 7◦. This indicates the superiority of our method in tracking human daily motions.

• As Table 3 shows, it can be observed that the average tracking errors of the arm joints
and leg joints are larger than those of the shoulder and spine joints. We ascribe this to the
greater motion range of arm and leg joints.

Table 4. Comparison with IMU solution.

IMUs Our Method
Error (Degree) 6.04 4.51

Jitter (104degree/s3) 4.451 2.450

4.2.2 Comparison with IMU solution To demonstrate the superiority of our method against its
IMU alternative, we evaluated their tracking errors and jitters using the same motion data collected
from two subjects respectively. Specifically, we used an IMU jumpsuit produced by Beijing Noitom
Technology Ltd. named Perception Legacy 2. This jumpsuit contains 18 IMU sensors in total. As
Table 4 shows, it can be observed that the average tracking error of our method is lower than that
of the IMU alternative by 1.53 degrees and the jitter of ours is lower than that of the IMU alternative
by 2.090×104m/s3. Hence, it can be concluded that our solution is more accurate and more stable
than its IMU alternative.

4.2.3 Ablation Study To justify the effectiveness of the different components in our method, we
conducted an ablation study as shown in Table 5:
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Table 5. Ablation study.

Method Tracking Error
(Degree)

Training Time
(Min)

Run Time
(Millisecond)

Jitter
(104degree/s3)

BiLSTM 4.75 3.80 0.002 3.168
Transformer 5.11 4.12 0.001 0.713

FCN 5.23 2.30 0.0001 1.51
TCN 5.02 5.11 0.001 0.691

BiLSTM-C 4.58 4.98 0.001 3.157
BiLSTM-M 4.69 4.50 0.001 2.443
BiLSTM-CM 4.51 5.18 0.001 2.452

• Row 1-4 justify the effectiveness of our Bi-LSTM network against other neural network
architectures used in previous works [12, 13, 42, 45]. Specifically, we compared three al-
ternatives: LSTM [34], Transformer [37] and fully-connected neural network. We trained
each network solely for the motion prediction task. It can be observed that our Bi-LSTM
network performs the best in all metrics.

• Row 5-7 justify the effectiveness of our median pooling layer (denoted as M) and dynamic
calibration (denoted as C). It can be observed that adding our median pooling layer and
dynamic calibration improves the accuracy and mitigates the jitter.

To further investigate the impact of our median pooling layer, we draw the distribution of the
jitters in Fig. 5a. It can be observed that the jitters of predicted result with median pooling layer
is mainly distributed between 0 and 0.5. Besides, the jitter percentage is lower with the median
pooling layer, which indicates that our median pooling layer reduces jitters effectively. Fig. 5b
depicts the change of the left forearm over 5 seconds. It can be observed that with a median pooling
layer, the curve becomes smoother and closer to the ground truth, which justifies the necessity of
the median pooling layer.
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Fig. 5. (a) The distributions of jitters and (b) the bending angles of left up leg with and without the median
pooling layer.
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4.2.4 Justification of the Choice of Calibrated Sequence Length As Table 6 shows, we justified the
hyper-parameters of our method by conducting the human motion prediction experiments with
different calibrated sequence lengths and comparing the result. We fixed the kernel size of the min
pooling layer and average pooling layer to 15 and 10; then, we changed the input length of data
at one time. The result is shown in Table 6. It can be observed that when the calibrated sequence
length is 100, the error on the D𝑇𝐸 is the smallest. Besides, when the calibrated sequence length is
equal to 120 or 80, the error becomes slightly larger. When the calibrated sequence length is 60
or 40, the average tracking error goes up dramatically. In conclusion, the most suitable calibrated
sequence length is equal to 100. Thus, we input data that sequence length is 100. After the sensor
reading passes through two pooling layers, we only fetch the last 5 samples as input since the
Bi-LSTM network performs best when the sequence length is equal to 5. There is no obvious
difference between different kernel sizes of the min pooling layer and average pooling layer overall.
However, when the kernel size of the min pooling layer is equal to 15 and the kernel size of the
average pooling layer is equal to 10, the error is slightly lower than others. As a result, we adopted
the kernel size of 15 and 10 for the min pooling layer and average pooling layer, respectively.

Table 6. Relationship between the calibrated sequence length and the average tracking error on testing
dataset.

Calibrated Sequence Length 120 100 80 60 40

Error on D𝑇𝐸 (Degree) 4.58 4.51 4.58 4.56 5.6

4.3 Qualitative Evaluation

Fig. 6. Visual evaluation of our method against different motion types.

We also evaluated our method qualitatively by visualizing its output motions on virtual human
bodies2. We show the overall performance of our method against different motion types in Fig. 6.
Please see the supplementary materials for the accompanying videos.
2Note that we cloned the hip rotation from the ground truth to facilitate understanding.
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Reference FCN Transformer TCN Bi-LSTM Ours

Fig. 7. Qualitative comparisons between different methods and ours.

4.3.1 Ablation Study The visual result of the ablation study is shown in Fig. 7. It can be observed
that the approach of Bi-LSTM and our method will have obvious actions in most cases, especially
when the subject is moving arm, the tracking is closer to the ground truth. By contrast, even though
the TCN, FCN and Transformer networks will also track the large range and fast arm motion, they
tend to move slightly or move at wrong angles. This may be due to their limited fitting power for
the small range motion, which makes it collapse to the average pose slightly. The performance of
our method is closer to the effect of Bi-LSTM. However, when there are some large arm movements,
our method performs better than Bi-LSTM.

4.3.2 Tracking Results with and Without Median Pooling Layer Fig. 8a shows the effect of adopting
the median pooling layer. From the static figure, we can not find obvious differences between the
method with a median pooling layer and the method without a median pooling layer. While in the
video, the effect of easing the jitter is easier to be observed (i.e. decreasing the extra bending angle
that comes from jitters), it still takes some careful observation to see where the improvements are.
Hence, although the median pooling layer takes the effect of decreasing the jitters numerically as
well as increasing the accuracy, the visual effect of easing the jitter is not obvious.

4.3.3 Subjective Results Compared to IMU Alternative From Fig. 8b, it can be concluded that our
method is better than the IMUs, especially in arm and leg joints. It is noticeable that the gait of
IMUs is different from the ground truth sometimes, which could be due to the magnetic environ-
ment underground and the noisy data captured by the sensors. So the motions are occasionally
exaggerated too much by the errors in the acceleration term of IMUs. Compared to IMUs, our
method is unaffected by magnetic fields. Besides, we adopted the dynamic calibration as well as
median pooling layers to mitigate sensor aging and potential jitters and our tracking is much closer
to the ground truth.

4.4 Results Compared with IMUs
Procedure In order to quantify the convenience of wearing the IMU jumpsuit and ours, we

invited five participants to evaluate the wearing time of our jumpsuit and IMU jumpsuit. They
were required to do motions mentioned in Table 9 after we recorded the wearing time. Since we
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randomly decided the order they put on the IMUs jumpsuit or ours, they were assigned to wear a
different type of jumpsuit in a different order and perform daily exercises for 20 minutes when
wearing every jumpsuit. Then, they ranked the comfort level with a 5-point Likert Scale (1 = very
uncomfortable, 5 = very comfortable).

Results The result is shown in Table 7. Lastly, we interviewed the 5 participants on four aspects:
comfort, the convenience of wearing, whether it would affect sports and possible suggestions for
improvement. Table 8 records the ranking scores of the comfort level of the IMU jumpsuit and ours.
All our scores on the jumpsuit are higher than IMU’s, which proves that our comfort level is higher
than IMU’s.

Without MPReference With MP

(a)

IMUReference Ours

(b)

Fig. 8. (a)Qualitative comparisons between our method and method without median pooling layer. MP refers
to the median pooling layer. (b) Qualitative comparisons between our method and IMUs.

During the interview, all five participants agreed that our jumpsuit was more comfortable than
the IMU jumpsuit even though they had several concerns related to foreign body sensation. P1,
P2 and P3 said there are no obvious differences between the jumpsuit and daily wearing clothes
(P2:“it’s like a daily wearing base, a bodysuit.”). However, although some participants mentioned
some foreign body sensations and some psychological concerns brought by sensors, visible wires
and circuit boards, it was not affect their motion (P1:“There will still be a little bit of foreign body
sensation, but I do not think it will affect motion.” P2:“I was worried that the circuit board would
be knocked by my movement.”). As for the degree of tightness, all users said they did not feel tight
(P3: “the tightness is equal to the tightness of ordinary undergarments.”).
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Table 7. The Likert point according to thewearing
comfort of the IMU jumpsuits and ours.

Subject IMU jumpsuit Our jumpsuit
Subject1 1 4
Subject2 2 5
Subject3 2 4
Subject4 2 4
Subject5 2 3

Table 8. Comparison on wearing convenience
with IMU solution.

Subject IMU jumpsuit
(Min)

Our jumpsuit
(Min)

Subject1 21 6
Subject2 15 4
Subject3 10 7
Subject4 12 6
Subject5 11 4

By contrast, we received more negative feedback for the IMU jumpsuit, mainly on comfortability
and tightness. Users generally reported that the IMU was too tight and they felt “weird” (P1: “The
IMU jumpsuit is too tight, which makes me uncomfortable. Besides, I can feel the presence of many
wires which is strange”). Participants also reported that the IMU jumpsuits impeded them from
doing motion freely (P1: “there are so many velcro strips on the surface that they can easily stick
to each other out of sight during movement. Hence, I had to stop and wait for other’s help.”). In
addition, P1, P2 and P3 felt that the IMU suit was heavy (P3: “Perhaps because of the equipment
embedded in the IMU suit, the suit was bulky, which made me not free to move.”). When talking
about the wearing process, our clothes also received a relatively positive response. P1, P2, P3 and
P4 acknowledged that our jumpsuit was convenient to wear and they could wear it independently.
However, they could not wear the IMU jumpsuit by themselves (P4: “We need to adjust the sensors
that slip away when wearing the IMU jumpsuit, and we need help within that process. By contrast,
the jumpsuit with only four sensors is much simpler than the IMU jumpsuit.”). P5 mentioned that
he could wear an IMU jumpsuit by himself but it would take a long time.
In conclusion, by using fewer, lighter and more flexible sensors, our clothes do not need fussy

fixtures and the weight of our jumpsuit is small. Hence, our jumpsuit is superior to the IMU jumpsuit
in the aspect of the wearing experience and wearing process.

5 Limitation
This work broadens the application of flexible sensors in human motion tracking. However, if we
want to further decrease the tracking error, some factors like the interference from the external
environment such as electromagnetic radiation, static electricity from the human body and so on
should be taken into consideration. These factors limit the design of the circuit board, which makes
it read sensor data with low precision, attributing to more one-to-more mappings of the sensor
value to human joint angle. In future work, we will wrap the circuit board with insulation and
revise the design of the circuit board to read sensor data with high precision. Additionally, although
the CM-BiLSTM method is helpful to regress human motion accurately, the leg tracking result will
collapse to the average pose when the range of leg movement is small. Besides, since our method is
based on a time-sequence model, the movement of the predicted joints would have some interaction
effects on each other. For example, the tracking is not accurate during some challenging motion
types, such as climb, Tai Chi and so on, which can be seen in the video. It may be further improved
by some context awareness (e.g., the subject is doing some exercise or some daily activities) from
the long-term observation.

6 Conclusion
This work proposes a route of human daily activities tracking with sparse flexible sensors, which
can be used as a reference for context-awarding in terms of human motion. The current average
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tracking error is 4.51 degrees by using readings of only four flexible sensors across daily motion.
To achieve this, we employed a Bi-LSTM neural work. Then, we adopted the min pooling layer
and average pooling layer to calibrate the sensor readings dynamically. In addition, we leverage a
median pooling layer to ease the jitters of the predicted output. This work presents the significance
of the Bi-LSTM neural network in extracting the sequence features of the motion data, and the
ability to regress the motion data. Besides, this work presents a solution to deal with aging or
broken flexible sensors. In terms of specific application, this work is meaningful to rehabilitation (It
is not convenient for patients to wear many sensors) or training of the athletes (wearing too many
sensors will impede them from doing accurate movements), etc. Furthermore, its auto-calibration
based on pooling layers further increases the possibility of leveraging flexible sensors for long-time
tracking, mitigating the limitations of the flexible sensors. Hence, this work can be a reference for
the choosing of the neural network, filtering method and flexible sensor calibration when dealing
with the predicting of human motion with sparse flexible sensors.

Future work should focus on tracking the movements of other body parts such as heads. Since the
current sensor readings are sparse, it is promising to judge those movements from prior knowledge
related to the law of human movement to judge joints. Besides, under the popularity of the meta-
universe and big data, it will be interesting to address human emotion annotation through the
sensor readings collected from sparse flexible sensors. Unlike the EMG signal, which is easy to
introduce noise [10], the soft sensor readings may be a potential solution to predict human emotion.
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A Motion List
Table 9 shows all of the motion types subjects have performed when collecting the dataset. Among
them, some basic movements are subdivided to ensure a variety of movements, which are listed in
Table 10

Table 9. Motion types collected from subjects.

climb run veer right veer left shake hands
90-degree left turn shoot basketball swordplay dribble lay-up shot

Punch spin kick straight kick spin motion jumping jacks
squats bend over putt throw a frisbee mop floor

skip rope scoop up turn around pick up freestyle
play the violin get dressedt hrow a baseball underhand toss hop on one foot

tennis dance swing golf sweep floor boxing
swing drum jump tai chi balance

jump up to grab point laugh pull shoot a gun
arm toss wash windows explain with hand gestures dribble

Table 10. The subdivided motion of some basic movements.

Basic motion Subdivided motion

walk walk stiffly, tiptoe, walk and 90-degree left turn, walk and 90-degree right turn
walk forward, walk backward, brisk walk, slow walk, stride, hobble

jump 180 jump, 2 jump, high jump, long jumps, hop on one foot, forward jump
backward jump, jump and 90-degree left turn

dribble

two handed dribble, forward dribble, backward dribble, sideways dribble
dribble and go forward, crossover dribble forward dribble and turn left

forward dribble and turn right, shoot basketball
dribble and shoot, lay-up shot

B Implementation Details
• TCN: We implemented it with Pytorch. A linear layer was added before the TCN block to
change in input size to 64. The kernel size is 7, the number of hidden units is 64 and the
dilation factor is [1],[2]. The sequence length is 5.

• Bi-LSTM: The structure of this neural network can be referred to 2. The number of hidden
units of Dense1, Dense2, Dense3, Dense4 is 100, 512, 1024,150, respectively.

• Transformer: We adopted the encoder structure and one linear layer (output layer) as the
decoder. The number of the head is 4. There is one layer in the encoder. The sequence length
is 5.

• FCN: There are two hidden layers in total. The number of hidden units is 200 and 100,
respectively.
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