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ABSTRACT

The link between brain structural connectivity and schizotypy was explored in two healthy
participant cohorts, collected at two different neuroimaging centres, comprising 140 and
115 participants, respectively. The participants completed the Schizotypal Personality
Questionnaire (SPQ), through which their schizotypy scores were calculated. Diffusion-MRI
data were used to perform tractography and to generate the structural brain networks of the
participants. The edges of the networks were weighted with the inverse radial diffusivity.
Graph theoretical metrics of the default mode, sensorimotor, visual, and auditory subnetworks
were derived and their correlation coefficients with the schizotypy scores were calculated. To
the best of our knowledge, this is the first time that graph theoretical measures of structural
brain networks are investigated in relation to schizotypy. A positive correlation was found
between the schizotypy score and the mean node degree and mean clustering coefficient of
the sensorimotor and the default mode subnetworks. The nodes driving these correlations were
the right postcentral gyrus, the left paracentral lobule, the right superior frontal gyrus, the left
parahippocampal gyrus, and the bilateral precuneus, that is, nodes that exhibit compromised
functional connectivity in schizophrenia. Implications for schizophrenia and schizotypy are
discussed.

AUTHOR SUMMARY

We investigated the topological organisation of the structural brain networks, derived via
tractography, of healthy participants with varying schizotypy scores, in two independent
cohorts comprising 140 and 115 participants, respectively. In order to capture the possible
impact of myelination or axonal density on the structural networks, we used the inverse radial
diffusivity as the edge weight. We observed that participants with the higher schizotypy scores
exhibited higher node degree and clustering coefficient in the sensorimotor and default mode
networks. This provides evidence of stronger structural connectivity in participants with higher
schizotypy, which could indicate a possible protective mechanism against schizophrenia, or
imply that structural alterations observed in schizophrenia are a correlate or consequence of
the disease rather than its cause.
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INTRODUCTION

Schizophrenia is a serious psychiatric disorder of unknown aetiology, while schizotypy
encompasses a set of stable personality traits that are thought to reflect the subclinical expres-
sion of schizophrenia. Specifically, people with high levels of schizotypy show cognitive and
neural patterns resembling the deficits observed in schizophrenia (Ettinger et al., 2014, 2015).
Studying schizotypy is, therefore, important for a number of reasons. Firstly, given that partly
overlapping factors underlie both conditions (Fanous et al., 2007), studying schizotypy can
shed light on the aetiology of schizophrenia. In addition, people with high schizotypy suffer
from lower social, educational, and professional levels of functioning, and high levels of dis-
tress (Barrantes-Vidal et al., 2010; Cohen & Davis, 2009); therefore, studying schizotypy can
help us better understand these problems and develop interventions to ameliorate them. More-
over, studying schizotypy can reveal characteristics (in the brains of healthy high-schizotypy
participants) that protect or compensate against schizophrenia; those characteristics may be
used to inform the development of novel treatments (Ettinger et al., 2014, 2015). Finally,
the study of schizotypy is free from any confounds that stem from pharmacological interven-
tions, and as such it is of value to both clinical and nonclinical research.

Given this similarity of schizophrenia and schizotypy, in building our aims for this study, we
looked to the topological properties of the structural and functional brain networks of schizo-
phrenia patients.

The functional brain networks of schizophrenia patients are compromised and generally
exhibit lower connectivity and less efficient organisation, with few exceptions, compared to
healthy individuals. For example, a meta-analysis of 13 studies of functional whole-brain net-
works, in which the functional connectivity was measured via functional MRI (fMRI), magne-
toencephalography (MEG), or electroencephalography (EEG), showed significantly lower
small-worldness and measures of local organisation (Kambeitz et al., 2016). Additional studies
that were not included in this meta-analysis corroborate the findings. For example, fMRI-
measured functional connectivity was lower within the default mode network in schizophre-
nia patients compared to healthy controls (Pankow et al., 2015). Schizophrenia patients
showed lower activation compared to healthy controls in the lateral frontal cortex bilaterally,
in the left basal ganglia and the cerebellum (Landin-Romero et al., 2014). The lateral default
mode network exhibited lower functional connectivity with the sensorimotor cortex, but
higher connectivity with association areas in schizophrenia patients (Wang et al., 2015).
The anterior and posterior default mode networks exhibited higher and lower connectivity
with the right control and lateral visual networks, respectively, in schizophrenia patients
(Wang et al., 2015). Analysis of dynamic functional connectivity showed that schizophrenia
patients activated the default mode network less frequently than healthy controls, but each
activation lasted 4–5 s longer than in the healthy controls (Kottaram et al., 2019). Altered func-
tional connectivity was observed in sensorimotor, visual, auditory, social, high level cognitive,
and motor processing nodes in schizophrenia patients compared to controls (Berman et al.,
2016; Jimenez et al., 2019; Kaufmann et al., 2015), with most of the alterations indicating
lower functional connectivity. Schizophrenia patients exhibited lower clustering coefficient,
global efficiency and local efficiency, and higher characteristic path length of functional net-
works (Zhu et al., 2016). Finally, compared to healthy controls, significant hypoconnectivities
were observed between seed regions and the areas in the auditory, default mode, self-
referential, and somatomotor network in schizophrenia patients (Li et al., 2019).

The structural brain networks of schizophrenia patients have been shown predominantly to
have a less central and less efficient organisation compared to those of healthy controls, but

Clustering coefficient:
A measure of how interconnected
the neighbours of that node are.

Network Neuroscience 214

Increased structural connectivity in high schizotypy

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/7/1/213/2072088/netn_a_00279.pdf by guest on 13 April 2023



there are some exceptions. For example, the global efficiency, local efficiency, clustering coef-
ficient, and mean connectivity strength of structural networks weighted by the connectivity
probability were significantly lower in schizophrenia patients compared to controls, while
the mean betweenness centrality was significantly higher (Shon et al., 2018). Significantly lon-
ger path lengths of frontal and temporal regions were observed in structural networks (with
edges weighted by the magnetisation-transfer ratio) of schizophrenia patients compared to
controls, and frontal hubs of patients showed a significant reduction of betweenness centrality
(van den Heuvel et al., 2010). Structural networks of schizophrenia patients with auditory
visual hallucinations showed higher characteristic path length compared with those of healthy
controls (Zhu et al., 2016).

Additionally, studies have shown that schizophrenia patients have higher radial diffusivity
and mean diffusivity in some white matter tracts (left thalamo-occipital tracts, right uncinate
fascicle, right middle longitudinal fascicle) compared to healthy controls (Abdul-Rahman
et al., 2011; Joo et al., 2018). Another study showed that schizophrenia patients have higher
mean diffusivity in the right anterior thalamic radiations, the forceps minor, the bilateral infe-
rior fronto-occipital fasciculus, the left superior longitudinal fasciculus, and the bilateral unci-
nate (Clark et al., 2011). Radial diffusivity, although nonspecific in principle, can be influenced
by myelination and/or axonal density (Chen et al., 2009; Cykowski et al., 2010; Jones et al.,
2013), with higher values potentially indicating lower myelination or axonal density.

In this study we used tractography-derived structural brain networks to investigate possible
differences in the organisation of the brain networks of healthy participants with varying schi-
zotypy scores. Various microstructural metrics, such as the number of reconstructed stream-
lines or the fractional anisotropy, have been used in past studies to assign connectivity strength
to structural network edges (Caeyenberghs et al., 2016; Messaritaki et al., 2019, 2021). In this
study, in order to capture the possible impact of altered myelination or axonal density on the
strength of the connections, we used the inverse radial diffusivity to assign edge weights. The
aims of the study were to explore whether previously reported alterations of white matter con-
nectivity in schizophrenia could also be observed in relation to high-schizotypy scores,
thereby providing a test of the (dis)continuity between high schizotypy and schizophrenia.

METHODS

Two datasets were collected at the Cardiff University Brain Research Imaging Centre (CUBRIC)
between 2014 and 2016 (Cardiff data) and at the University of Munich between 2009 and
2011 (Munich data). The scanners and sequences used were different, and the sensitivity of
the data to microstructural parameters is, therefore, different. For that reason, the two datasets
were analysed separately.

Data Collection

Cardiff data. One hundred forty healthy participants (92 female, 19–55 years old, mean =
24.7 years, SD = 5.0 years) were recruited in and around Cardiff, UK. All procedures were
given ethical approval by the Cardiff University School of Psychology Ethics Committee. All
participants gave written informed consent before taking part and received financial compen-
sation for their participation. All participants had normal or corrected-to-normal vision and
had no history of neurological or neuropsychiatric disorders.

All participants completed the English version of the Schizotypal Personality Questionnaire
(SPQ) (Raine, 1991), through which their total schizotypy score was calculated. The schizo-
typy score is the sum score of nine subscales: ideas of reference, odd beliefs or magical

Tractography:
A computational method that uses
diffusion-MRI data to reconstruct and
visualize the white matter tracts of
the brain.
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thinking, unusual perceptual experiences, suspiciousness, excessive social anxiety, no close
friends, constricted affect, odd or eccentric behaviour, odd speech. The higher the schizotypy
score, the more pronounced the schizotypal traits in a participant. For the questionnaire, ade-
quate internal consistency and criterion validity have been demonstrated (Fonseca-Pedrero
et al., 2018; Klein et al., 2001). In the Cardiff data, the SPQ subscales showed acceptable
to good reliability; the Cronbach’s alpha for the total score was 0.815.

MRI was carried out on a GE Signa HDx 3T scanner (GE Healthcare, Milwaukee, WI). T1-
weighted structural data were acquired using an axial three-dimensional fast spoiled gradient
recalled sequence with the following parameters: TR = 8 ms, TE = 3 ms, TI = 450 ms; flip
angle = 20°; voxel size = 1 mm; field of view (FOV) ranging from 256 × 192 × 160 mm3 to
256 × 256 × 256 mm3 (anterior-posterior/left-right/superior-inferior). The T1 images were
downsampled to 1.5-mm isotropic resolution. Diffusion-weighted MRI data were acquired
using a peripherally cardiac-gated sequence with b = 1,200 s/mm2, TR = 20 s, TE = 90 ms,
voxel size 2.4 × 2.4 × 2.4 mm3, zero slice gap, FOV = 230 mm. Data were acquired along
30 unique and isotropically distributed gradient orientations. Three images with no diffusion
weighting were also acquired. The diffusion images were coregistered to the T1-weighted
images and corrected for head movement and eddy current distortions. Free-water correction
was also performed (Metzler-Baddeley et al. 2012; Pasternak et al., 2009).

Munich data. One hundred fifteen healthy participants (55 female, aged 18–50 years, mean
age = 27.6 years, SD = 8.0 years) were recruited through advertisements in and around
Munich, Germany. All experimental procedures were approved by the research ethics com-
mittee of the Faculty of Medicine at the University of Munich, in accordance with the current
division of the Declaration of Helsinki. Participants were included after thorough clinical
screening and only if they did not meet any of the exclusion criteria: any DSM-IV Axis I dis-
orders, first-grade relatives with psychotic disorders, former or current neurological disorders,
current physical conditions, current medication except for contraceptives, uncorrected visual
impairments. Further inclusion criteria were age between 18 and 55 and German as a first
language. All subjects volunteered to take part in the study, gave written informed consent,
and received financial compensation for their participation.

All participants completed the German version (Klein et al., 1997) of the SPQ (Raine, 1991)
to yield their total schizotypy score. In the Munich data, the SPQ subscales showed acceptable
to good reliability; the Cronbach’s alpha for the total score was 0.882.

High-resolution T1-weighted structural images were acquired on a 3T MAGNETOM Verio
scanner (Siemens, Erlangen, Germany) using a 12-channel head matrix Rx-coil. A three-
dimensional MPRAGE sequence was used, with repetition time TR = 2,400 ms, echo time
TE = 3.06 ms, flip angle = 9° with 160 slices, slice thickness = 1.0 mm, voxel size = 1.0 ×
1.0 × 1.0 mm, FOV = 256 mm. Diffusion-weighted data were acquired using a diffusion-
weighted interleaved spin-echo, echo planar imaging sequence with the following parameters:
25 axial slices; slice thickness = 5.2 mm; TE = 107 ms; TR = 5 s; gap between slices = 5.2 mm;
FOV= 230mm;matrix = 128 × 128; flip angle = 90; bandwidth = 1,395Hz/Px; voxel size = 1.8 ×
1.8 × 5.2 mm. Diffusion gradients were applied in 20 directions with b = 1,000 s/mm2, with each
image acquired three times. Three images with no diffusion weighting were also acquired.

Tractography

Probabilistic, anatomically constrained streamline tractography was performed using MRtrix
(Tournier et al., 2019), employing the iFOD2 algorithm (Smith et al., 2012, 2015; Tournier
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et al., 2010). The maximum angle between successive steps was 50°, the minimum and max-
imum streamline lengths were 30 mm and 25 0mm, respectively, and the FOD amplitude cut-
off was 0.06. Two million streamlines were generated for each participant, with the seed points
on the interface between grey matter and white matter. Visual inspection of the tractograms
was performed to verify that the white matter was adequately covered and that streamlines did
not extend outside of the white matter.

Parcellation and Network Construction

To validate our analysis against the use of different cortical/subcortical parcellations (Parker
et al., 2014), two atlases were employed to identify the areas of the cerebrum that formed
the nodes of the structural brain areas: (i) the AAL atlas (Tzourio-Mazoyer et al., 2002), which
comprises 90 areas, and (ii) the Desikan–Killiany atlas (Desikan et al., 2006), which comprises
84 areas. FreeSurfer (https://surfer.nmr.mgh.harvard.edu) was used to parcellate the T1-
weighted anatomical scans (Fischl et al., 2002, 2004) and the Desikan–Killiany atlas was used
to identify the 84 areas of the cerebrum that formed the nodes of the structural brain networks.
The AAL parcellation was calculated using ExploreDTI 4.8.6 (Leemans et al., 2009). Each
dataset was analysed with both atlas parcellations. However, ExploreDTI failed to give a reli-
able parcellation for the Munich data, possibly due to the lower resolution of the MRI images
in that dataset. For that reason, the subsequent analysis for the Munich data was done only
using the Desikan–Killiany atlas.

In order to exclude tracts that are not reliable due to having been recovered with a small
number of streamlines, we applied a threshold NSthr and excluded edges with fewer than NSthr
streamlines. Because that threshold is arbitrary (Buchanan et al., 2020), we repeated the anal-
ysis for thresholds that correspond to mean network sparsity over participants in the range of
0.85 to 0.25.

Edges that survived thresholding were weighted with the inverse mean radial diffusivity
calculated along the voxels spanning the corresponding white matter tracts. Networks were
constructed for the auditory, sensorimotor, visual, and default mode systems, that is, for sub-
networks that have consistently been shown to be altered in schizophrenia patients compared
to controls. Three graph theoretical metrics, namely the mean node degree, mean clustering
coefficient and mean nodal strength, were calculated for all networks using the Brain Connec-
tivity Toolbox (Rubinov & Sporns, 2010). These metrics provide insight about different aspects
of the topological organisation of the brain networks. Specifically, the node degree and the
nodal strength measure the connectivity of a node within the network, while the clustering
coefficient measures the connectivity within the neighbours of each node. We also note that
the node degree is independent of the edge weighting, while the clustering coefficient and the
nodal strength do depend on it. In order to identify any graph theoretical metrics that were
correlated with each other, correlation coefficients were calculated between graph theoretical
metrics for each subnetwork. The mean nodal strength exhibited correlation coefficients with
absolute values higher than 0.85 with the mean node degree, and for that reason it was
removed from the analysis.

Statistical Analysis

Correlation coefficients and the corresponding p values were calculated between the demo-
graphic characteristics of the participants, that is, schizotypy score, age, and sex, to verify that
those were not correlated with each other.

Sparsity:
The number of edges in the network
divided by the total possible edges
in it.

Node degree:
The number of edges that connect
the node to the rest of the network.

Nodal strength:
The sum of the weights of the edges
connected to the node.
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Partial correlation coefficients and the corresponding p values were calculated between the
schizotypy score and the graph theoretical metrics of the participants, correcting for age and
sex. The mean Cook’s distance (Cook, 1977) was used to identify outliers, which were
subsequently investigated further. Data points with Cook’s distance greater than four times
the mean Cook’s distance were excluded from further analysis, because they either had
isolated (unconnected) nodes in their structural connectivity matrices, or were outliers in the
degree distribution. The p values that resulted from the correlation analysis were corrected for
multiple comparisons using the false discovery rate algorithm (Benjamini & Yekutieli, 2001),
applied over all graph theoretical measures of all subnetworks.

In order to understand whether any correlations between the graph theoretical metrics and
the schizotypy score are due to all the nodes of each subnetwork, or whether they are driven
by a few specific nodes of it, we calculated the correlation coefficients between the schizotypy
score and the node-specific graph theoretical metrics for those graph theoretical metrics that
exhibited statistically significant correlations. We considered that a node is driving the corre-
lations if the related p value was lower than 0.05. The analysis pipeline is shown in Figure 1.

RESULTS

Demographic Information

The schizotypy scores (i.e., SPQ total scores) of the participants in the Cardiff data ranged
between 0 and 43 (mean: 12.4, SD: 10.1), while for the Munich data they ranged between
0 and 35 (mean: 8.2, SD: 7.0). No statistically significant correlations were found between
schizotypy score and age or sex, or between age and sex of the participants, for the Cardiff
or the Munich data. The correlation coefficients and p values between these variables are
given in Table 1 for the two datasets.

Network Analysis

The NSthr required to achieve a given mean sparsity for the whole-brain network in the three
cases investigated is shown in Figure 2. In order to achieve sparsities as low as 0.25, we use
NSthr of [0, 160] for the Cardiff/AAL pair, [0, 60] for the Cardiff/Desikan–Killiany pair, and [0,
120] for the Munich/Desikan–Killiany pair. In the following subsections, in addition to show-
ing the correlation coefficients and p values for all these thresholds, we also show scatter plots
for the networks that correspond to a sparsity of 0.3, that is, NSthr = 86 for the Cardiff/AAL case,
NSthr = 36 for the Cardiff/Desikan–Killiany case, and NSthr = 55 for the Munich/Desikan–
Killiany case.

Figure 1. Analysis pipeline.
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Cardiff Data: AAL Atlas

Significant positive correlations that survived multiple comparison correction and persisted
across NSthr were identified between schizotypy score and the mean node degree and mean
clustering coefficient for the sensorimotor and the default mode networks. The correlation
coefficients and p values across NSthr are shown in Figure 3. Scatter plots for these correlations
are shown in Figure 4.

Cardiff Data: Desikan–Killiany Atlas

Significant positive correlations that survived multiple comparison correction and persisted
across NSthr were identified between schizotypy score and the mean node degree of the sen-
sorimotor network, and between the schizotypy score and the mean clustering coefficient of
the default mode network. The related correlation coefficients and p values are shown in
Figure 5. The corresponding scatter plots are shown in Figure 6.

Munich Data: Desikan–Killiany Atlas

Significant positive correlations were identified between the schizotypy score and the mean
node degree of the sensorimotor network, and the mean node degree of the visual network.
These correlations were nominally significant, that is, did not survive multiple comparison cor-
rection, but persisted across NSthr. The correlation coefficients and p values are shown in
Figure 7. The corresponding scatter plots are shown in Figure 8.

Table 1. Correlation coefficients and p values (the latter in parentheses) between the demographic
data in the two datasets

Sz score vs. age Sz score vs. sex Age vs. sex
Cardiff data 0.05 (0.59) −0.10 (0.25) −0.07 (0.43)

Munich data −0.14 (0.15) 0.17 (0.06) −0.10 (0.29)

Figure 2. NSthr required to achieve a given sparsity in the whole-brain structural networks for the
three dataset/atlas combinations.
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Node-Specific Analysis

Cardiff data, AAL atlas. The node-specific analysis for the sensorimotor network showed that
the correlations between the schizotypy score and the mean node degree are driven by the
right middle frontal gyrus and the right postcentral gyrus, while the correlations between the

Figure 3. Correlation coefficients and p values between graph theoretical metrics and schizotypy
score for the Cardiff data and the AAL atlas. Only the two subnetworks that showed persistent cor-
relations across thresholds are shown. Coloured markers indicate correlation coefficients and p
values that survived multiple comparison correction, while blank (fainter coloured) markers indicate
correlations that were nominally significant ( p < 0.05), but did not survive multiple comparison
correction.

Figure 4. Scatter plots for the correlations observed in the Cardiff data for the AAL atlas parcella-
tion for NSthr = 86. The best fit line and its 95% confidence interval are also shown.
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schizotypy score and the mean clustering coefficient are driven by the right precentral gyrus
and the right postcentral gyrus. For the default mode network, the correlations between schi-
zotypy score and mean node degree are driven by the left middle frontal gyrus, the right infe-
rior frontal gyrus (opercular part), the left inferior frontal gyrus (orbital and triangular parts), the
left and right middle cingulate, the left hippocampus, and the left thalamus. Also, for the
default mode network, the correlations between schizotypy score and the mean clustering
coefficient were driven by the left and right superior frontal gyrus, the right inferior frontal
gyrus (triangular part), the left anterior cingulate, the left and right middle cingulate, the left
posterior cingulate, the left parahippocampal area, the left middle occipital gyrus, the left

Figure 5. Correlation coefficients and p values between graph theoretical metrics and schizotypy
score for the Cardiff data and the Desikan–Killiany atlas. Only the two subnetworks that show per-
sistent correlations across thresholds are shown. Coloured markers indicate correlation coefficients
and p values that survived multiple comparison correction, while blank (fainter coloured) markers
indicate correlations that were nominally significant ( p < 0.05), but did not survive multiple com-
parison correction.

Figure 6. Scatter plots for the correlations observed in the Cardiff data for the Desikan–Killiany
parcellation for NSthr = 36. The best fit line and its 95% confidence interval are also shown.
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angular gyrus, and the left and right precuneus. These areas are shown in Figure 9. Their
correlation coefficients and respective p values are given in Table S1 in the Supporting Infor-
mation section.

Cardiff data, Desikan–Killiany atlas. The node-specific analysis showed that the correlations
between the schizotypy score and the mean node degree of the sensorimotor network were
driven by the left paracentral lobule, the right postcentral gyrus, and the right superior frontal
gyrus. For the default mode network, the correlations between schizotypy score and the mean
clustering coefficient were driven by the left caudal middle frontal gyrus, the left isthmus cin-
gulate, the left lateral orbitofrontal gyrus, the left and right parahippocampal area, the left and

Figure 7. Correlation coefficients and p values between graph theoretical metrics and schizotypy
score for the Munich data and the Desikan–Killiany atlas. Only the sensorimotor and the visual
subnetworks showed persistent, nominally significant correlations across thresholds.

Figure 8. Scatter plots for the correlations observed in the Munich data for the Desikan–Killiany
parcellation for NSthr = 55. The best fit line and its 95% confidence interval are also shown.
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right precuneus, the left and right thalamus, the right hippocampus, the right pars triangularis,
and the right rostral anterior cingulate. These areas are shown in Figure 10. Their correlation
coefficients and p values shown in Table S1 in the Supporting Information section.

Munich data, Desikan–Killiany atlas. The node-specific analysis showed that the correlations
between schizotypy score and the mean node degree of the sensorimotor network were driven
by the left paracentral lobule, the left and right postcentral gyrus, the left supramarginal gyrus,
the right precentral gyrus, and the right superior frontal gyrus. The correlations between

Figure 9. Cardiff data: AAL atlas. Nodes that drive the correlations between the schizotypy score
and the sensorimotor mean node degree (top left), sensorimotor mean clustering coefficient (top
right), default mode mean node degree (bottom left), and default mode mean clustering coeffi-
cient (bottom right). The large markers indicate the nodes of each network that drive the corre-
lations; these nodes are also labelled. The small markers indicate the remaining nodes of each
network.
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schizotypy score and the mean node degree of the visual network were driven by the left lin-
gual gyrus, the right cuneus, and the right fusiform area. These areas are shown in Figure 11.
Their correlation coefficients and p values shown in Table S1 in the Supporting Information
section. The visualizations of the nodes were done using BrainNet Viewer (Xia et al., 2013).

Figure 10. Cardiff data: Desikan–Killiany atlas. Nodes that drive the correlations between the
schizotypy score and the sensorimotor mean node degree (left) and default mode mean clustering
coefficient (right). The large markers indicate the nodes of each network that drive the correla-
tions; these nodes are also labelled. The small markers indicate the remaining nodes of the
network.

Figure 11. Munich data: Desikan–Killiany atlas. Nodes that drive the correlations between the
schizotypy score and the sensorimotor mean node degree (left) and visual mean node degree
(right). The large markers indicate the nodes of each network that drive the correlations; these
nodes are also labelled. The small markers indicate the remaining nodes of the network.
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DISCUSSION

We used graph theoretical metrics to investigate the topology of the structural brain networks
of healthy participants with a range of schizotypy scores. To the best of our knowledge, this is
the first time these properties are investigated in relation to schizotypy. We used two large
datasets, comprising 140 and 115 participants, respectively, collected at different locations,
in different MRI scanners and with different scanning parameters.

Our results provide evidence that higher levels of schizotypy in healthy participants relate
to higher structural connectivity in the sensorimotor and default mode networks, with some
increases also possibly present in the visual network. No evidence of any alterations was found
for the auditory network. The edges of the networks were weighted by the inverse radial dif-
fusivity, which partly reflects differences in myelination or axon density (Chen et al., 2009;
Cykowski et al., 2010). Both myelination and axon density support effective communication
in the brain (Drakesmith et al., 2019; Lebel & Deoni, 2018). The edge weighting chosen
impacts our results because the clustering coefficient (which exhibited statistically significant
correlations with the schizotypy score for the sensorimotor and default mode network)
depends on the values of the edges. On the other hand, the node degree (which also exhibited
statistically significant correlations with the schizotypy score) is independent of the edge
weights and is only impacted by the number of edges. This means that had we used a different
measure to weight the edges (such as, for example, the number of streamlines or the fractional
anisotropy of the diffusion tensor, which are sometimes used in network studies), the results
pertaining to the node degree would have been the same.

The positive correlations observed between the schizotypy score and the graph theoretical
metrics of the sensorimotor network were replicated across the two datasets and atlases. Even
though they only reached nominal statistical significance in the Munich data, they were per-
sistent across a large range of values of NSthr. On the other hand, the positive correlations
observed for the default mode network were not replicated in the Munich data. This could
be due to the slightly smaller sample or the lower resolution of the Munich data, or the fact
that there were fewer diffusion directions acquired in the diffusion data, as well as a lower
b-value—the latter two facts can impact the calculation of the radial diffusivity.

A recent study (Wang et al., 2020a, 2020b) showed that high-schizotypy participants exhib-
ited increased white matter connectivity probability between the right middle frontal gyrus and
the right insula, and within the default mode network. Higher strength values were found
between the left superior frontal gyrus and the right rolandic operculum area, and between
the right superior frontal gyrus and the right medial superior frontal gyrus (Wang et al.,
2020a, 2020b). This pattern of higher structural connectivity in high schizotypy agrees with
our results. The same study also showed that this enhanced structural connectivity appears
alongside lower static functional connectivity in the sensorimotor and default mode networks
in the higher schizotypy participants. While the general pattern of higher white matter connec-
tivity in relation to higher schizotypy agrees with our finding, we note that differences between
the studies include that the study of Wang et al. (2020a, 2020b) had participants with higher
schizotypy scores than the ones in our study, they did not use graph theory in their analysis,
and their connectivity measure is more closely related to the number of streamlines rather than
to the myelination or to axonal density in the white matter tracts that we used.

Other studies (Hazlett et al., 2012; Nakamura et al., 2005; Pfarr & Nenadic, 2020) have
shown altered microstructural properties in white matter tracts in various schizotypy dimen-
sions. For example, reduced fractional anisotropy (FA) of the cingulum bundle and the unci-
nate fasciculus was related to symptom severity in schizotypal personality disorder (Hazlett

Network Neuroscience 225

Increased structural connectivity in high schizotypy

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/7/1/213/2072088/netn_a_00279.pdf by guest on 13 April 2023



et al., 2011, 2012). Also, the FA of the right superior longitudinal fasciculus (SLF) was nega-
tively correlated with disorganised schizotypy (Pfarr & Nenadic, 2020). In the same study (Pfarr
& Nenadic, 2020), the axial diffusivity of the right SLF, right anterior thalamic radiation (ATR),
right uncinate fasciculus (UF), and forceps minor was positively correlated with negative schi-
zotypy. Finally, the mean diffusivity of the right UF, the right ATR, and the forceps minor was
positively correlated with negative schizotypy. It should be pointed out that these results per-
tain to specific white matter tracts, in contrast to our results which pertain to the topological
organisation of the entire brain. Those studies also predominantly refer to specific schizotypy
dimensions rather than overall schizotypy.

As mentioned in the Introduction, a pattern of lower functional connectivity has been
reported in the literature for schizophrenia patients compared to healthy controls, except for
some evidence of higher connectivity in the default mode network. This higher connectivity,
however, can be responsible for a failure to completely deactivate the default mode network
during tasks (as happens in healthy participants; Raichle et al., 2001), which can lead to com-
promised task performance in schizophrenia. Structural connectivity has also been observed
to be lower in schizophrenia, although the findings are less coherent, most likely due to dif-
ferences in the analysis pipelines used. In this context, there are two possible interpretations for
our results.

The first possible interpretation is that our results support the notion that higher structural
connectivity (in the presence of higher schizotypy scores) is a protective characteristic against
schizophrenia. Specifically, the higher structural connectivity in the sensorimotor network of
healthy high-schizotypy participants could be enhancing communication among sensorimotor
regions, that is, regions implicated in action observation and imitation (Caspers et al., 2010),
which are functions crucial for successful social interactions. Additionally, the higher structural
connectivity in the default mode network could be leading to more effective communication
among regions that are responsible for the emotional engagement during social interactions
and the understanding others’ mental states (Li et al., 2014), or enhancing self-referential acti-
vation (Davey et al., 2016). This more effective communication could be protecting these
participants from the development of schizophrenia. This interpretation also indicates that
structural deficiencies in the sensorimotor and default mode networks should be further inves-
tigated as potential causes of schizophrenia. We note that such potential compensatory effects
have been previously reported. For example, increased frontal grey matter and higher frontal
activity in schizotypal personality disorder have been suggested as a possible reason for the
lower magnitude of cognitive and deficit symptoms in the disorder compared to schizophrenia
(Siever et al., 2002; Siever & Davis, 2004). At the same time, we also note that schizophrenia is
normally diagnosed in the late teenage years to the early 20s in men and in the late 20s to
early 30s in women. Some participants in the two samples we used were under 30 years old at
the time that the data were acquired. Therefore, some of the higher schizotypy participants in
our samples may, at some time after the data were acquired, develop schizophrenia, which
would indicate that the increased structural connectivity in the sensorimotor and default mode
networks could not fully protect them from developing the disease.

A second possible interpretation is that the white matter structural alterations that have been
reported in schizophrenia (Abdul-Rahman et al., 2011; Joo et al., 2018; Shon et al., 2018; van
den Heuvel et al., 2010; Zhu et al., 2016) may be the pathophysiological correlate or conse-
quence of worsening schizophrenia symptoms and/or pharmacological treatment, particularly
in chronic schizophrenia, rather than the cause of the disease. This is in agreement with the
dysconnection hypothesis (Friston et al., 2016), indicating that functional deficiencies precede
structural ones in the disease.
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Our findings relating to the nodes of the subnetworks that drive the higher structural con-
nectivity can also be put in the context of existing findings in the literature. We note that there
were some similarities and some differences in the nodes driving the correlations for the three
dataset/atlas pairs. For example, the right postcentral gyrus drove the correlations between
schizotypy score and mean node degree for the sensorimotor network in all three cases
(Cardiff/AAL, Cardiff/Desikan–Killiany, and Munich/Desikan–Killiany), while the left paracen-
tral lobule and right superior frontal gyrus drove those correlations for the two cases (Cardiff/
Desikan–Killiany and Munich/Desikan–Killiany). Additionally, the left parahippocampal gyrus
and the left and right precuneus drove the correlations between the schizotypy score and the
mean clustering coefficient of the default mode network for both the Cardiff/AAL and
Cardiff/Desikan–Killiany cases. We now discuss the nodes that consistently drove our
observed correlations.

The right postcentral gyrus has been shown to have lower functional connectivity with its
left counterpart in schizophrenia patients (Kaufmann et al., 2015). It has also been shown to
have lower grey matter density in schizophrenia patients (Glahn et al., 2008; Li et al., 2015).
Additionally, the global brain functional connectivity of the postcentral gyrus was lower in
adolescent-onset schizophrenia patients compared to controls (Zhao et al., 2022).

The left paracentral lobule was found to have lower regional homogeneity, a quantity that
reflects local functional connectivity and integration of information processing in adolescent-
onset schizophrenia patients (Wang et al., 2018). It was also shown to have lower cortical
thickness in psychosis patients compared to healthy participants (van Lutterveld et al.,
2014), along with the left pars orbitalis, the right fusiform gyrus, and the right inferior temporal
gyrus.

The resting-state global brain functional connectivity (measured via fMRI) of the right supe-
rior frontal gyrus was higher in schizophrenia patients and their siblings compared to controls
(Ding et al., 2019). The right superior frontal gyrus also showed lower grey matter in schizo-
phrenia patients compared to controls (Xiao et al., 2013). In healthy participants, the grey
matter volume of the superior frontal gyrus correlated positively with their SPQ-measured
schizotypy scores (Wang et al., 2020a, 2020b). Differential functional performance of the right
superior frontal gyrus in low versus high-schizotypy individuals (albeit measured via the
Unusual Experiences subscale of the short form of the Oxford and Liverpool Inventory of
Feelings and Experiences, O-LIFE; Mason et al., 2005) has also been reported (Premkumar
et al., 2012), where it was observed that in viewing rejection scenes, low schizotypy partici-
pants activated that gyrus, while high-schizotypy participants deactivated it.

The higher node degree of these brain areas (right postcentral gyrus, left paracentral lobule,
and right superior frontal gyrus) within their respective subnetworks (sensorimotor and default
mode) could be responsible for enhanced neural communication in higher schizotypy individ-
uals. This could be protective against some of the functional deficiencies relating to these sub-
networks which have been observed in schizophrenia.

Abnormalities in the left parahippocampal gyrus region are a ubiquitous finding in schizo-
phrenia (Friston et al., 1992). In an EEG study (Soni et al., 2020), the left parahippocampal
gyrus was found to have higher power spectral density in patients compared to controls. Sev-
eral structural MRI studies have also reported lower volume in the bilateral parahippocampal
gyrus in schizophrenia (Honea et al., 2005; Lawrie & Abukmeil, 1998; Sim et al., 2006; Soh
et al., 2015; Wright et al., 2000).

The precuneus was shown to have higher connectivity with the posterior cingulate cortex in
schizophrenia patients (Sendi et al., 2021). The resting-state functional connectivity between
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precuneus and hippocampus was found to have deficits in unmedicated patients with schizo-
phrenia compared to healthy controls (Kraguljac et al., 2014). The functional connectivity
between the precuneus and the bilateral Heschl’s gyri was found to be abnormal in first-
episode schizophrenia (Guo et al., 2014). In healthy participants, the schizotypy score
was positively associated with gyrification in the precuneus in a study that used the Munich
data used in our study (Meller et al., 2019). The precuneus is involved in self-processing,
mental imagery, episodic memory retrieval, and discrimination of self versus others (Cavanna
& Trimble, 2006); all these processes might be related to inferring the intention of others,
which corroborates the possible role of the precuneus for symptoms within the psychosis
spectrum.

The higher clustering coefficient of the left parahippocampal gyrus and the precuneus
within the default mode network implies that their neighbourhoods are better connected in
higher schizotypy individuals. This could be compensating for the functional abnormalities
observed in these brain areas in schizophrenia. Specifically, if the nodes connected to the pre-
cuneus can be used to bypass it, then any functional deficiencies of the precuneus would not
affect the brain’s performance in the related functions.

The differences in the nodes that drive the correlations for the different atlases used can be
attributed to the fact that the two atlases allocate the cortical and subcortical areas differently,
with the AAL atlas comprising 90 cortical and subcortical areas while the Desikan–Killiany
atlas comprising 82 cortical and subcortical areas with the remaining two areas corresponding
to the two hemispheres of the cerebellum. It has been shown that there are differences in the
network sparsity (and therefore the node degree) and in the clustering coefficient as a result of
the choice of atlas, for example, AAL versus Desikan–Killiany, for the same tractography
methods (Parker et al., 2014). We note, however, that the study presented by Parker et al.
(2014) used a different edge weight (i.e., connection density) in contrast to the inverse radial
diffusivity used in our analysis.

A strength of our study stems from the fact that we used two large datasets, comprising 140
and 115 participants. Despite the differences in scanners, scanning sequences, and the lan-
guage in which the SPQ was administered, the findings of stronger structural connectivity in
the sensorimotor network were replicated in the two datasets, and employing two different
atlases for brain parcellation. Additionally, the finding of stronger structural connectivity in
the default mode network was replicated when using the two different atlases in the Cardiff
dataset. Our tractography generation is state of the art, utilising an algorithm that limits the
presence of false positive tracts. Using the inverse radial diffusivity to assign strength to the
structural connections relates them to the myelination and the axonal density of the white
matter tracts, which are measures that better reflect efficient brain communication than the
more frequently used number of streamlines or FA (Messaritaki et al., 2021). One limitation
of our study is the fact that the schizotypy scores went only up to 43, when the maximum
possible value of the SPQ total score is 74. This is a typical range for studies of healthy vol-
unteers but indicates that our results should be interpreted with regards to that population,
while generalisations to individuals with very high-schizotypy levels need to be drawn with
caution. In the future, MRI studies should include dedicated sequences with differential sen-
sitivity to myelin (e.g., magnetization-transfer imaging (Wolff & Balaban, 1989) or myelin-
water-based imaging (Mackay et al., 1994)) and to axonal properties, including higher b-value
acquisitions, to provide higher sensitivity to the intra-axonal signal fraction and therefore mea-
sures such as apparent axon density (Assaf & Basser, 2005; Zhang et al., 2012) and axon
diameter (Barazany et al., 2009). This will allow us to further investigate structural connectiv-
ity in high schizotypy.
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CONCLUSIONS

We investigated the topological properties of structural brain subnetworks in healthy partici-
pants of varying schizotypy scores. We found evidence of higher structural connectivity of the
sensorimotor and default mode networks in participants with high-schizotypy score. This may
indicate a possible protective mechanism against schizophrenia or could provide further sup-
port for the hypothesis that functional (rather than structural) dysconnection could be the
underlying cause of schizophrenia.
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