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ABSTRACT

Optimal material resource planning is crucial to run safe and cost-efficient hospital
services. In this paper, we investigate a real problem in hospitals, motivated by an
environmental and economically inefficient use of disposable, single-use, endoscopes.
We develop a mathematical model and create a decision support tool to determine
when reusable, multi-use, bronchoscopes should be sent for inspection including in-
formation to what extent single-use bronchoscopes can cover the remaining demand.
Results show that the proposed approach can contain operational costs which con-
sist of costs for buying single-use devices, inspection costs and reprocessing costs,
i.e., sterilization of reusable devices. Our tool can assist hospitals to predict when
reusable bronchoscopes should undergo inspection and whether the current inven-
tory of reusable devices is sufficient to cover the demand. Finally, we evaluate the
impact of variation in demand on total costs.
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1. Introduction

Endoscopes are an important piece of hospital equipment. Usually, they are long,
thin, and flexible tubes that have a light and a camera at one end. Endoscopes display
images of the inside of the human body on a screen for a wide range of diagnostic
procedures, such as gastroscopy to visualize the upper part of the digestive system. In
this paper, we focus on better planning the use of bronchoscopes which are a specific
type of endoscopes used to diagnose abnormalities in a patient’s lung.

Since the first bronchoscopy performed in 1897 (Becker (2009)), the advances of the
uses of bronchoscopes have had huge effects on the medical field. Safer bronchoscopy
techniques have replaced many invasive or surgical techniques. This development has
led to a reduction of surgical complications (Ong, Debiane, and Casal (2016)). A
limiting application of this technology is the excessive cost of purchasing a reusable
bronchoscope (Panchabhai and Mehta (2015)). The invention of the disposable or
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single-use bronchoscope filled this gap in technology, making it economically efficient
if this type of device is rarely needed. While reusable devices need sterilization and
decontamination after each use, reprocessing of disposable devices is unnecessary. The
reprocessing of reusable bronchoscopes is a time-consuming procedure which follows
high standards of infection control. Thus, running a safe service on reusable broncho-
scopes can only be guaranteed if infection/contamination control measures are in place.
In an international survey on procedures for reprocessing flexible bronchoscopes, 50%
of respondents agreed that the need for regular bronchoscopes reprocessing training
and education was a main concern (Kenters et al., 2018). The use of the disposable
bronchoscopes eliminates the labour and economic cost of the reusable devices’ re-
processing and inspection. However, due to the single-use nature of the devices, they
are not always cost effective. The optical quality of reusable devices is often better
when compared to the disposable technology (Châteauvieux et al., 2018). However,
research gaps remain such as: If hospitals plan to carry out their bronchoscopies using
reusable devices, what happens if some of the devices undergo scheduled inspection
and is there a cost-efficient way to cover the demand with disposable or the remaining
reusable device inventory?

1.1. Real Hospital Problems

Our research addresses a real-world problem in a major university hospital in Munich,
Germany. The hospital has thirty-three individual departments which treats patients
from Munich and the surrounding region. The problem, the inefficient use of dispos-
able bronchoscopes, was discussed and defined with emergency medicine physicians,
anaesthesiologists and intensive care physicians. The economic and environmental sus-
tainability issues (Kleindorfer, Singhal, & Van Wassenhove, 2005) resulting from the
inefficient use of disposable bronchoscopes create a major challenge for the hospital.

Environmental Issues Every year, the department for anaesthesiology and inten-
sive care performs around 950 bronchoscopies. Before introducing our modelling
approach and decision support tool to the hospital in 2015, disposable devices
were the predominant bronchoscopy method. This led to an increased waste of
single-use devices and packaging, leading to increased incineration. We assume
a 6kg CO2 emission per kg of plastic and the service runs on disposable devices
only. Assuming 1kg of plastic per disposable bronchoscope this would equal to
a CO2 emission of 5.7 tons, not including the emissions for manufacturing and
shipping all the disposable devices.

Economic and Process Inefficiency Disposable bronchoscopy devices can be eco-
nomically inefficient compared to reusable devices. At the start of our collabora-
tion, the hospital ran exclusively on disposable bronchoscopes. One issue was the
ordering process and determining an optimal number of devices to stock. The
e240 costs per disposable device challenged the hospital, reducing the contribu-
tion margin of each patients’ Diagnosis Related Group (DRG) value, as German
hospitals are reimbursed through DRG codes.

1.2. Contributions of the Paper

In this paper, we develop a mixed-integer program (MIP) to determine given a set
of reusable bronchoscopes, when these bronchoscopes should undergo inspection and
whether it is cost-efficient to cover the demand using disposable devices in a Ger-
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man university hospital. The proposed model is an extension of Edenharter, Gartner,
and Pförringer (2017)’s strategic model which determined at which hospital size it is
economically efficient to switch from disposable to reusable devices. Following multi-
ple model extensions, a decision support tool to help managers make better decisions
regarding how many disposable devices are required per week to cover the demand
and when the inspection of reusable devices should take place was developed. The
contribution of this study to the body of knowledge and practice is threefold:

(1) We expand on Edenharter et al. (2017)’s approach by introducing a discrete-
time planning horizon, creating a schedule that informs decision makers when
a disposable device is used and whether reusable devices have been used to
satisfy weekly demand. This analytical model helps inform hospital’s purchasing
decisions and forecasts the weekly demand for the hospital’s sterilization and
decontamination unit.

(2) For each reusable device, we generate an inspection schedule. Depending on the
inspection duration, it may be necessary to cover the demand using disposable
devices, something that Edenharter et al. (2017)’s model ignores.

(3) We develop a decision support tool which can assist hospitals to solve this de-
cision problem. A hospital’s planning department can input parameters such as
purchasing disposable devices and inspection costs of reusable devices. The num-
ber of available reusable devices, and weekly demand in the financial year can
be parameterized. Our tool will then perform a cost analysis and determine the
optimum number of disposable and reusable devices to use in each week. The
manager can then procure the number of devices needed to meet the demand
effectively and reduce costs for the hospital. In this way, the tool would help to
run the hospital’s intensive care unit (ICU) more efficiently.

We structure the remainder of our paper accordingly. In the next section, we provide
an overview of related work followed by the presentation of our mathematical model
and its implementation as a decision support tool. Then, we will evaluate variations
in the stochastic demand and their impact on the actual costs accrued when planning
with the results produced by our deterministic model. A discussion section will then
highlight model limitations, its generalisability, and benefits for the hospital. Our paper
closes with conclusions and potential areas of further research.

2. Related Work

Volland, Fügener, Schoenfelder, and Brunner (2017) provide a literature review on ma-
terial logistics in hospitals. In accordance with their taxonomy, our planning approach
has similarities with the following three streams: supply and procurement, inventory
management, and distribution and scheduling decisions of sterile medical devices. In
the remainder of this section, we will highlight the relevance and importance of the
mentioned literature to the current research. Similarities and differences of our work
with respect to publications in each of these three streams are stressed.

2.1. Supply and Procurement

Journal articles in which optimization approaches were used in the area of supply
and procurement of goods in healthcare and which were categorized in Volland et al.
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(2017)’s review are Hu and Schwarz (2011); Iacocca, Zhao, and Fein (2013); Rego,
Claro, and de Sousa (2014); Ross and Jayaraman (2009), and Zhao, Xiong, Gavirneni,
and Fein (2012). More recently, Edenharter et al. (2017) can be added to this category.
In what follows, we examine the identified publications in greater detail and stress
similarities and differences with our work.

Hu and Schwarz (2011) examine Group Purchasing Organizations (GPOs) in health-
care. They develop a mathematical model to determine under which circumstances the
presence of GPOs lower prices. Group purchasing is important for a network of hos-
pitals on the strategic level. However, our problem is a tactical planning problem to
determine when reusable bronchoscopes are sent for inspection and how many dispos-
able devices must be purchased on a weekly basis. As disposable bronchoscopes have a
fixed price per item, group purchasing decisions are not decision relevant in our case.

Iacocca et al. (2013) focus on a multi-period production-inventory planning model
with time varying parameters in the pharmaceutical industry. Their objective is profit
maximization while considering manufacturer and the wholesaler inventory and order-
ing decisions. Not only is our focus on the consumer-side but, our modelling approach
is different because the objective is not on maximizing production but minimizing
costs.

Rego et al. (2014) develop a flexible approach for recommending the number, size,
and composition of purchasing groups. They consider a set of hospitals willing to coop-
erate, while minimizing their shared supply chain costs. This problem has similarities
with Hu and Schwarz (2011), but again, group purchasing orders are not relevant for
our case.

Ross and Jayaraman (2009) focus on a health care purchasing problem for bundling
new and refurbished products and propose a methodology for evaluating the trade-
offs involved in bundling decisions for refurbished health care products. By exploiting
useful properties of the problem structure, their results provide buyers with insights
for examining and selecting suppliers who are willing to offer bundles of new and
refurbished products. However, their model operates on a strategic level, whether it is
beneficial to use refurbished vs. new products. Our approach is on a tactical level in
which we want to find out when purchased reusable devices undergo inspection.

Zhao et al. (2012) formulate a multi-period stochastic inventory problem faced by
a manufacturer and the distributor under a fee-for service contract. Our problem is
different as we focus on the consumer side who needs to determine when to sched-
ule inspection of bronchoscopy devices and how the remaining devices can cover the
demand.

Most related to our work is Edenharter et al. (2017) who developed a strategic
decision support tool to determine the optimal supply of reusable and disposable
bronchoscopes. Their work builds on findings from Aı̈ssou et al. (2013); Mager et al.
(2018); Perbet et al. (2017); Tvede, Kristensen, and Nyhus-Andreasen (2012), and
Gupta and Wang (2011) who indicated that when the number of bronchoscopies per-
formed is small, total costs begin to favour disposable devices. Like our work, their
decision support tool is based on a mathematical model. However, our model expands
on their model by considering weekly variations in demand. Furthermore, our model
provides feedback to the decision maker when the best period is to schedule reusable
devices inspection.
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2.2. Inventory Management

In addition to supply and procurement problems, Volland et al. (2017) reviewed opti-
mization approaches applied to inventory management. Most publications in this field
focus on a periodic inventory review policy rather than a continuous one, which is
common hospital practice (Nicholson, Vakharia, & Erenguc, 2004). Our model focuses
on point-of-use inventory. Optimization approaches for point-of-use problems and pe-
riodic inventory policy are, for example, Bijvank and Vis (2012), Little and Coughlan
(2008), Rosales, Magazine, and Rao (2014), and Rosales, Magazine, and Rao (2015).
In what follows, we examine these publications in greater detail and stress similarities
and differences with our work.

Bijvank and Vis (2012) develop two types of exact models that deal with lost sales,
periodic reviews with short lead times, and limited storage capacity. In a capacity
model, the service level is maximized subject to a capacity restriction, and in a service
model the required capacity is minimized subject to a service level restriction. The
authors formulate approximation models applicable for any lost-sales inventory system
(e.g., cost objective, no lead time restrictions). For the capacity model, they develop
a simple inventory rule to set the reorder levels and order quantities.

Little and Coughlan (2008) develop a constraint-based model for determining op-
timal stock levels for all products at a storage location, with restrictions on space,
delivery, and criticality of items considered. They validate their model on sterile and
bulk items in a real-life setting. From a methodological point of view, our approach
differs because we use mixed-integer programming and evaluate the inspection sched-
ule using discrete-event simulation. As the ICU is a small space, we assume that we
only have one storage location where the disposable and reusable devices are stored.

Rosales et al. (2014) evaluate a hybrid replenishment policy for medical supplies.
It combines a low-cost periodic replenishment epoch with a high-cost continuous re-
plenishment option to avoid costly stockouts. They develop a parameter search engine
using simulation to optimize the long-run average cost per unit time.

Rosales et al. (2015) model an inventory system under periodic and continuous
review. For periodic review, the authors show that the long-run average cost per unit
time is quasi-convex, enabling a simple search for the optimal review cycle.

Our model allows for a periodic review policy since the user can use the model
to predict the inventory required for a specified number of weeks, and then order
accordingly. The user could adapt the use of the model depending on their hospital
policy. While our model’s objective function only considers costs relating to purchasing,
reprocessing and inspection, other models also try to minimize variables such as the
number of refills or stock on hand, considering inventory storage costs and constraints,
for example, (Rosales et al., 2014) and (Rosales et al., 2015) which are closest to our
approach in terms of inventory management.

2.3. Distribution and Scheduling

The literature on hospital resource planning tends not to take preventive maintenance
of the medical equipment into account, it is assumed that the equipment is available
throughout the planning horizon. Furthermore, in the distribution and scheduling lit-
erature specific issues are discussed, such as routing and scheduling problems of com-
bined storage/delivery material management systems, e.g., mobile medicine delivery
closets. Effective maintenance scheduling of hospital equipment is a practice which
could improve service delivery (Mwanza & Mbohwa, 2015), and preventive mainte-
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nance can reduce costs and improve reliability (Marmolejo-Correa, Juarez-Valdivia, &
Rodriguez-Navarro, 2016). Existing scheduling models, similarly, to our model, con-
sider the inspection of the medical equipment (Ma, Chu, & Zuo, 2010; Schmidt, 2000;
Wu, Dong, & Zheng, 2014). Lapierre and Ruiz (2007) propose an approach to sched-
ule replenishments, purchasing activities, and supplier activities to avoid stockouts
and respect resource availability. The authors formulate a mixed-integer non-linear
scheduling problem that balances employees’ workload. They develop a tabu search
meta-heuristic algorithm for solving the problem.

The MIP model proposed in this paper can be placed into and differentiated from
the literature as follows. Our approach extends (Edenharter et al., 2017)’s strategic
problem by discretizing the planning horizon. The model provides information when
reusable bronchoscopes must undergo inspection and the decision support tool provides
feedback, when and how many disposable devices are used. Furthermore, (Lapierre &
Ruiz, 2007) is related because they developed a mixed-integer model for purchasing
activities. In contrast to our model, workload constraints are not decision relevant.

3. Mathematical Model

In what follows, we will introduce the parameters of our MIP, the decision variables,
objective function, and constraints. An example cost analysis is given in the supple-
mentary material. A summary of all parameters and decision variables is provided in
Table 1.

3.1. Sets, Indices and Parameters

We present the parameters in the following parts: i) devices, planning horizon and
demand, ii) cost parameters and iii) other operational parameters.

3.1.1. Devices, Planning Horizon and Demand

We introduce I as the set of reusable devices and W denotes the set of weeks to
schedule the use of disposable and the inspection of the reusable devices. Furthermore,
let bw be the demand in week w ∈ W. We established that the set of weeks should
be 8-12 weeks due to: 1) seasonal patterns in demand which makes it hard to forecast
demand and 2) tactical financial planning is often broken down into quarters of a year.

3.1.2. Cost Parameters

We introduce the following three cost terms: cdisposable denote the purchasing cost of
a disposable device, cinspection is the inspection cost of a reusable device and crep is
the reprocessing costs of a reusable device. Mouritsen, Ehlers, Kovaleva, Ahmad, and
El-Boghdadly (2020) provide example cost parameters.

3.1.3. Other Operational Parameters

Let ki ∈ N denote the number of remaining uses for device i ∈ I that recently returned
from inspection. Furthermore, let kstarti ∈ N be the number of uses remaining on a
reusable device i ∈ I at week 1. We introduce nreusable as the maximum number of
bronchoscopies that can be carried out in a week, with both technologies. Further-
more, let O denote the inspection duration for a reusable device and let Wmax be the
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Table 1. Sets, indices, constants, and decision variables.

Parameter Description

I Set of reusable devices
W Set of weeks in a financial year
bw Demand in week w ∈ W
cdisposable Purchasing cost of a disposable device
cinspection Inspection cost of a reusable device
crep Reprocessing costs of a reusable device
ki ∈ N Number of remaining uses for reusable i ∈ I that just came

back from inspection
kstarti ∈ N Number of remaining uses on a reusable device i ∈ I at week 1
nreusable Maximum number of bronchoscopies that can be carried out in

a week, for both technologies (reusable and disposable)
O Inspection duration for a reusable device (in weeks)
Wmax Maximum number of weeks a reusable device can be used with-

out inspection

Decision variable Description

qi,w ∈ N Number of actual uses of reusable device i ∈ I in week w ∈ W

xdisposablew ∈ N Number of disposable devices used in week w ∈ W

xreusable,availablei,w = 1 if reusable device i ∈ I is available in week w ∈ W , 0
otherwise

xstarti,w = 1 if the inspection for reusable device i ∈ I starts at the
beginning of week w ∈ W, 0 otherwise

xstopi,w = 1 if the inspection for reusable device i ∈ I stops at the
beginning of week w ∈ W, 0 otherwise

maximum number of weeks device i can operate without inspection. Naturally, Wmax

cannot exceed the planning horizon, so we have to restrict Wmax ≤ |W|.

3.2. Decision Variables

We introduce qi,w ∈ N which is the number of actual uses of reusable device i ∈ I in

week w ∈ W. Next, let xdisposablew ∈ N denote the number of disposable devices used in

week w ∈ W. Binary variables xreusable,availablei,w = 1 if reusable device i ∈ I is available

in week w ∈ W and 0 otherwise. We introduce another binary variable xstarti,w = 1 if
the inspection for reusable device i ∈ I starts at the beginning of week w ∈ W, 0
otherwise. Finally, let binary variables xstopi,w = 1 if the inspection for reusable device
i ∈ I stops at the beginning of week w ∈ W, 0 otherwise.

3.3. Objective Function

The objective function (1) minimizes the sum of the total cost of purchasing the
disposable devices, the total cost of inspection of reusable devices and total cost of
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reprocessing the reusable devices.

Minimize z =
∑

w∈W

cdisposable ·xdisposable
w +

∑

i∈I

∑

w∈W

cinspection ·xstart
i,w +

∑

i∈I

∑

w∈W

crep ·qi,w (1)

3.4. Constraints

Constraint (2) ensures that an inspection will take place on a reusable device if the
number of remaining uses before an inspection reduces to zero. Note that we use the
convention that if xstopi,w variables are 1, then the device is available in the beginning
of week w and throughout that week but not in the entire week w − 1. We could also
interpret it as the device is back from inspection and fully available in week w. To
avoid confusion, we provide an example in the Supplementary Material.

kstarti −

w
∑

τ=1

qi,τ +

w
∑

τ=1

xstarti,τ · ki ≥ 0 ∀i ∈ I, w ∈ W (2)

Constraint (3) ensures that the inspection for reusable devices lasts for the inspec-
tion duration O. However, if the device does not go under inspection, the constraint is
not binding which is why we multiply it with

∑

w∈W

xstarti,w . Furthermore, by multiplying

with the index w within the term
∑

w∈W
w · xstopi,w , this gives us the week in which the

inspection stops. For example if xstop1,7 = 1 (see Table 1 in the Supplementary Material),
the result is 1 · 0 + 2 · 0 + 3 · 0 + 4 · 0 + 5 · 0 + 6 · 0 + 7 · 1 + 8 · 0 = 7. This concept
is similar to the one used in event-based job shop scheduling and has been applied in
patient scheduling (Gartner and Kolisch (2014)).

∑

w∈W

w · xstopi,w −
∑

w∈W

w · xstarti,w =
∑

w∈W

xstarti,w ·O ∀i ∈ I (3)

Constraint (4) ensures that a reusable device is not available if it is in inspection and
is available if it is not in inspection. The part in the bracket indicates whether or not
device i is under inspection in week w. Gartner and Padman (2020) used this modelling
concept previously for modelling patients’ lengths of stay on beds for multiple days.

xreusable,availablei,w +

(

w
∑

τ=1

xstarti,τ −

w
∑

τ=1

xstopi,τ

)

= 1 ∀i ∈ I, w ∈ W (4)

Constraint (5) ensures that the total number of reusable and disposable devices
used in week w meets the demand for that week.

∑

i∈I

qi,w + xdisposablew ≥ bw ∀w ∈ W (5)

Constraint (6) ensures that if a reusable device is used in a week, it must be available.
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The parameter for the big M formulation can be set to the upper bound M = nreusable.

qi,w −M · xreusable,availablei,w ≤ 0 ∀i ∈ I, w ∈ W (6)

Constraints (7)–(8) ensure that there is at most 1 inspection in the planning horizon.

W
∑

w=1

xstopi,w ≤ 1 ∀i ∈ I (7)

W
∑

w=1

xstarti,w ≤ 1 ∀i ∈ I (8)

Sometimes, the inspection of a device is not optional but mandatory. In this case,
we must ensure that the inspection is scheduled well before the end of the planning
horizon which is ensured by constraints (9).

Wmax−Omin

∑

w=1

xstarti,w = 1 ∀i ∈ I (9)

(10)–(12) are the decision variables and their domains. (10) are bounded because of
hospitals’ sterilisation and decontamination capacity.

0 ≤ qi,w ≤ nreusable ∀i ∈ I, w ∈ W (10)

xreusable,availablei,w , xstarti,w , and xstopi,w ∈ {0, 1} ∀i ∈ I, w ∈ W (11)

xdisposablew ∈ N ∀w ∈ W (12)

The model creates an inspection schedule for each reusable device by keeping a
usage count since its last inspection and ensures that inspection occurs before the
number of remaining uses drops to zero. Using this inspection schedule, the model can
determine which reusable devices are available in each week.

The entire model can be summarized using (13)–(24):

Minimize z =
∑

w∈W

cdisposable · xdisposablew +
∑

i∈I

∑

w∈W

cinspection · xstarti,w +
∑

i∈I

∑

w∈W

crep · qi,w

(13)

subject to
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kstarti −

w
∑

τ=1

qi,τ +

w
∑

τ=1

xstarti,τ · ki ≥ 0 ∀i ∈ I, w ∈ W (14)

∑

w∈W

w · xstopi,w −
∑

w∈W

w · xstarti,w ≥
∑

w∈W

xstarti,w ·O ∀i ∈ I (15)

xreusable,availablei,w +

(

w
∑

τ=1

xstarti,τ −

w
∑

τ=1

xstopi,τ

)

= 1 ∀i ∈ I, w ∈ W (16)

∑

i∈I

qi,w + xdisposablew ≥ bw ∀w ∈ W (17)

qi,w −M · xreusable,availablei,w ≤ 0 ∀i ∈ I, w ∈ W (18)

W
∑

w=1

xstopi,w ≤ 1 ∀i ∈ I (19)

W
∑

w=1

xstarti,w ≤ 1 ∀i ∈ I (20)

Wmax−Omin

∑

w=1

xstarti,w = 1 ∀i ∈ I (21)

0 ≤ qi,w ≤ nreusable ∀i ∈ I, w ∈ W (22)

xreusable,availablei,w , xstarti,w , xstopi,w ∈ {0, 1} ∀i ∈ I, w ∈ W (23)

xdisposablew ∈ N ∀w ∈ W (24)

4. Decision Support Tool and its Benefits for the Hospital

Before we developed the model, we evaluated the usability of the tool presented
by Edenharter et al. (2017) in UK’s National Health Service (NHS). Since there was
no option to use a commercial solver, we implemented Edenharter et al.’s model in the
GNU Linear Programming Kit (GLPK) (Makhorin (2018)). Subsequently, we evalu-
ated the usability of the decision support tool in practice with decision makers. The
feedback received was that the tool, preferably in Microsoft Excel, should cover each
reusable device independently and, it should split the planning horizon into at least
quarters to assist device procurement decisions.

With this feedback, we developed the mathematical model, in an iterative process.
We implemented the model as a decision support tool in Microsoft Excel. As the
classical Microsoft Excel solver can only manage a limited number of decision variables
and constraints, we used OpenSolver (Mason, 2012) and COIN-OR (Lougee-Heimer,
2003) as a back-end to solve the mathematical model. Figure 1 shows the decision
support tool which includes an 8-week planning horizon and 3 reusable devices. All
parameters are customisable depending on characteristics of the hospital using the tool.
Figure 1 also reveals that the user can input the specific costs of buying disposable
devices, and inspection and reprocessing reusable devices.

The user inputs, for example, the maximum weekly number of bronchoscopies per-
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Figure 1. The user can input the cost parameters for disposable devices as well as the inspection and
reprocessing costs for reusable devices (see Sohrt et al. (2019) for example figures). Other parameters such as

the expected demand can be updated. Note that costs for purchasing reusable devices cannot be parameterised
as this is a tactical decision-level tool which assumes that the decision maker would have used (Edenharter et

al., 2017)’s approach to determine the number of reusable devices.

formed per reusable device, limited due to reprocessing time. The user specifies the
number of weeks without inspection per device. Finally, they input the inspection du-
ration and the number of uses after the inspection the device can perform. With all
the parameters input, the decision support tool then interacts with COIN-OR and
produces the inspection schedule with cost information.

Figure 2 shows which reusable devices are available in each week. It displays a table
of the “Remaining uses of reusable device”, a variable showing the number of uses left
on each reusable device before inspection is required, which the model ensures does
not drop below zero for each device. Our example in the Supplement Material explains
the constraint used on this table. The remaining uses for each device “At start of week
1” should be input by the user depending on the starting condition of each device.

Figure 2. Reusable bronchoscopes availability and number of remaining uses.

Figure 3 shows the inspection schedule. During inspection a device is not available,
and the model will not schedule it for use. The model devised inspection schedule for
each device are displayed using start/stop variables and the “Device in Inspection”
table shows for each reusable device whether it is in inspection or not each week.

Finally, in Figure 4 the proposed schedule reveals which devices to use each week
to minimize costs. In this example, we can see that the model recommends using
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Figure 3. Reusable bronchoscopes inspection schedules.

disposable devices in addition to reusable devices to satisfy the demand.

Figure 4. The tool provides the device schedule. Cost types by device type and weeks are presented.

5. Demand Variation Results

To study the impact of demand variation on total costs, we developed a discrete-event
simulation (DES) model using Simul8 (Mc Gregor and Cain (2004)).

5.1. Simulation Model Parameters

The model structure is shown in the Supplementary Material and in the following, we
highlight how we set up the demand and the capacities in the simulation model. We
used Simul8’s trial calculator for the Uniform distribution and Log-normal distribution
setting. Our experiments revealed that a maximum of 3,013 runs were required to
determine a 99% confidence interval for the number of uses broken down by device
types.
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5.1.1. Demand

To set up the inter-arrival time parameter, we used a Uniform distribution with a
lower bound of 0 and an upper bound of 2 · (1/29.625 weeks) leading to an expected value
of 1/29.625 weeks between two consecutive arrivals. This figure is obtained by averaging
the 8 weeks demand figures from Figure 1.

To add variation, we used a Log-normal distribution with an expected value of
1/29.625 weeks and standard deviation of 0.1. While the activity which represents the
disposable item use in the Simul8 has a zero duration because these items are available
straight away, for the reusable devices we assumed 1 day reprocessing time.

5.1.2. Reusable Devices

To set up the reusable device capacities in the simulation model, we incorporated the
week-dependent schedule from Figure 2 using the resource scheduler. Furthermore, the
activity representing the use of the reusable devices would only pull in demand if there
is no queue. In other words, disposable devices would be used if the reusable devices
are all busy.

5.2. Simulation Results

Table 2 shows the results of our sensitivity analysis when running the DES model
using the data from Figure 4 and the aforementioned demand of, on average, 29.625
bronchoscopies are performed each week. The table includes lower, average, and upper
confidence interval limits on the number of uses of each device technology. We also
provide the cost figures using data from Figure 1 and incorporating the number of
uses per device technology.

Table 2. Simulation model results with uniformly and log-normal distributed demand and average (lower-
upper 99% confidence interval)

Demand distribution

U(0, 2

29.625
) Log-normal ( 1

29.625
,0.1) Log-normal ( 1

29.625
,0.2)

Disposable uses 132.72 (131.54-133.90) 163.01 (161.38-164.64) 185.15 (183.30-187.00)
Reusable uses 100.65 (99.65-101.66) 74.88 (74.23-75.54) 62.98 (62.42-63.54)
Costs (in e) 28,991 (28,750 - 29,234) 30,049 (29,789-30,311) 31,516 (31,238-31,794)

The figures reveal that in the Uniformly distributed demand case, 132.72 broncho-
scopies were performed by disposable devices while 100.65 bronchoscopies were carried
out using a reusable device(s). In contrast, in the Log-normal case where demand vari-
ation is higher, 163.01 disposable devices are used which is an increase by almost 62%.
At the same time, reusable devices are used only 74.88 times which is a drop by
approximately 25%. Furthermore, the costs are higher in the Uniformly distributed
demand case which are e28,991 as compared to the figure in the deterministic model
which was e28,920, see Figure 4. Although this is only a 0.2% difference, it increases
substantially to e30,049 and e31,516 if demand variation is introduced. This equals
to an almost 4 and 8% increase for the 0.1 and 0.2 cases, respectively. Note also, that,
in the Log-normal case the e28,920 is below the lower confidence interval bound. As
a conclusion, this highlights the usefulness of taking variation in demand into account
when planning the optimal mix of reusable and disposable devices.
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6. Discussion and Limitations

6.1. Benefit of the Proposed Solution for the Hospital

Since using the proposed model and the decision support tool, the hospital has been
able to invest in reusable devices and drastically reduce the use of disposable devices.
The hospital has reported an annual reduction in the environmental footprint, mea-
sured by CO2 emission to be six tons/year. The hospital disposed of 950 disposable
bronchoscopes/year before implementing the model. The hospital has modified their
inventory policy substantially reducing the number of disposable bronchoscopes kept
in stock. Hence, this policy has resulted in actual substantial environmental and eco-
nomic savings.

The previous policy to stock disposable devices cost e228,000. In contrast, the
new policy to use reusable devices has led to a purchasing and reprocessing cost of
e45,650. This translates into an actual saving of e182,350/year thanks to the proposed
approach. Note that these figures do not include the staff involved in the inefficient
ordering process. However, the costs include washing and inspection but also costs for
reusable devices which is a decision made by Edenharter et al. (2017)’s approach.

6.2. Model Limitations

Our model schedules at most one inspection for each reusable device over the planning
horizon. To overcome this limitation, the inspection start and stop variables could be
adjusted (first, second, third inspection etc.).

We assume that the activity prescribed by the decisions is directly proportional to
the costs. This means that we ignore, for example, that the seller of bronchoscopes
might have a free of charge first inspection and then charge for subsequent inspections.
At present, there is no economies of scale when purchasing bundles of disposable
devices nor processing batches of reusable devices.

The model does not consider the storage capacity for the disposable devices. We
assume that there is no maximum number of devices or holding costs for the disposable
devices. We assume weekly purchases of devices and there are enough devices available,
which may not always be true due to storage constraints. Using a production scheduling
modelling approach may remedy this assumption.

We assumed that the hospital’s demand prediction model is dependable. Naturally,
there is an upper bound of demand due to the size of the ICU which dictates the
number of bronchoscopies required each week. However, to build a more accurate
model and decision support tool, stochastic demand should be considered. This would
mean that the hospital has a safety stock of disposable devices in case of emergency,
and the model would inform the decision maker about the size of the stock.

6.3. Generalizability of our Approach

Our model and decision support tool might be useful to plan the inspection of other
types of endoscopes (e.g., gastroscopes). Consequently, our decision support tool can
link information about multiple devices to schedule inspection ahead of time and avoid
delayed surgeries. However, given the type of the device the model might need to be
adapted to allow for multiple inspection activities. Our model may be generalisable to
schedule decisions for the inspection of vehicle fleets such as ambulances or vans that
collect specimens. Usually, vehicles display the number of days/miles left before the
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next service. Information about the expected use of vehicles paired with our decision
support tool can help better plan scheduled services. It is helpful to know whether a
replacement vehicle is needed during an inspection period.

6.4. Usability of the Planning Approach in Practise

Our model deals with a tactical planning problem, not a strategic one. When the
setup cost of a reusable system of the bronchoscopy is included verse a system with
purely disposable devices, the decision problem becomes richer and could provide
more insights to the management team. On the other hand, under the Covid-19 threat,
patients/doctors may have put different weights on the reusable and disposable devices.
This might affect how decision makers adopt the results of the model in practise.

7. Conclusions, Lessons Learned, and Further Research

In what follows, we summarise the development of our approach and lessons learned
when transitioning from a policy of using disposable bronchoscopes only, towards mix-
ing the two technologies in practice. The section closes with potential areas of further
research.

7.1. Summary

We have presented an analytical model for scheduling the mix of reusable and dis-
posable bronchoscopes. The model has two significant extensions of Edenharter et
al. (2017)’s strategic problem: the presented MIP discretizes the planning horizon
into weeks allowing decision makers to plan the availability of disposable and reusable
bronchoscopes. The model considers service intervals and durations of reusable devices
providing information when reusable bronchoscopes are unavailable, which results in
some cases where emergency physicians needing to perform a diagnostic procedure will
use disposable devices. Our objective function extends Edenharter et al. (2017) be-
cause it considers temporal information about procuring disposable devices, the costs
of reprocessing and inspection costs of reusable devices.

Due to feedback, we implemented the mathematical model in a more user-friendly
decision support tool which uses OpenSolver (Mason, 2012) and the COIN-OR
(Lougee-Heimer, 2003) open-source solver as a back-end. The application of our math-
ematical model in the collaborating university hospital revealed significant cost savings
by using our tactical decision support system.

7.2. Lessons Learned

Before the introduction of reusable bronchoscopes, there were concerns when disposing
of a bronchoscope after one use. Therefore, the new system, using reusable broncho-
scopes had significant impact on the stock policy for disposal bronchoscopes in the
hospital. This lesson was also transferable to other settings, for example, when using
disposal surgical scissors. For most nurses and doctors, it requires a major effort to
dispose single-use items after one use. So, the results of the study were not limited to
financial and environmental improvement but also a game changer in terms of the re-
duction of single-use items. The introduction of reusable bronchoscopes was welcomed
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and alleviated the concerns of the staff. Additionally, the performance of disposable
bronchoscopes was lower than the reusable devices. Doctors prefer to use high qual-
ity equipment to gain the best results possible. In conclusion, we learned that the
model helped to supply the medical team and make a more informed choice of which
equipment type to use and when.

7.3. Behaviour Change Beyond the Model

The results of our mathematical modelling had significant impact on the stock policy
for bronchoscopes in the hospital. It has been reported that the acceptance of any
single-use items (not only bronchoscopes) becomes reduced. This is true, in particu-
lar, when the single-use items become more and more costly and valuable. This phe-
nomenon is known in the literature as “behaviour beyond the model”, see Kunc, Mal-
pass, and White (2016) and White, Kunc, Burger, and Malpass (2020). This demon-
strates that our modelling has provided deeper insight into the throwaway culture
issues and we have shown that our results are transferable to other situations (Eden
and Ackermann (2006); Laughlin, Bonner, and Miner (2002)). Almost every time when
disposing single-use items, between nurses and doctors there was a discussion why
single-use items are used. So the results of our study revealed a behavioural shift from
single-use items towards the use of reusable items.

7.4. Identify new Directions for Further Research

Future work will expand on the following three streams: using Design Science principles
to improve the usability and acceptability of our decision support system. We will
apply our tool in another healthcare system. Finally, another interesting avenue of
future research is to link our mathematical model with forecasting techniques.

7.4.1. Evaluation of the Usability and Acceptability of our Decision Support Tool

Using the Think Aloud Protocol (Singhee et al., 2016) with senior managers, we will
evaluate the usability and acceptability of our decision support tool. Although, we
have qualitative feedback from our partners at the university hospital in Munich, it
would be useful to develop a structured Design Science approach to measure the actual
acceptance of the system. The managers’ feedback will then be incorporated into an
updated version of the tool.

7.4.2. Use in Other Healthcare Systems

In future work, we will evaluate the use in UK’s NHS, with existing partners who have
demonstrated significant interest in using the decision support tool.

7.4.3. Expanding on Linking Predictive and Prescriptive Modelling

The mathematical model relies on weekly-based demand forecasts. Given that the
ICU is very busy, we assume that we will not run into challenges such as intermittent
demand which would need different modelling and demand forecasting approaches.
However, if we applied of our model to other use cases, linking forecasting approaches
with discrete optimization models could be another area of future research.
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