Make Your Own Sprites: Aliasing-Aware and Cell-Controllable Pixelization

Supplementary Materials

ZONGWEI WU, South China University of Technology, China
LIANGYU CHAI, South China University of Technology, China
NANXUAN ZHAO, University of Bath, United Kingdom
BAILIN DENG, Cardiff University, United Kingdom
YONGTUO LIU, University of Amsterdam, Netherlands and South China University of Technology, China
QIANG WEN, Hong Kong University of Science and Technology, China and South China University of Technology, China
JUNLE WANG, Tencent, China
SHENGFENG HE∗, South China University of Technology, China

CCS Concepts: · Applied computing → Fine arts; · Computing methodologies → Image processing

Additional Key Words and Phrases: Pixelization, Generative Adversarial Networks, Image-to-Image Translation

1 COMPARISON WITH THE ORIGINAL MODEL OF [Han et al. 2018]
Since the dataset in [Han et al. 2018] consists mainly of simple clip arts with white background, the original deep pixelization model from [Han et al. 2018] does not perform well on complex scenes that are common in our testing set. This was confirmed by the authors of [Han et al. 2018] through private communication. Therefore, we re-train their model using our dataset to improve the performance. Fig. 1 shows a comparison between the deep pixelization models trained with the original dataset and our dataset, respectively. We can see that the original model results in loss of details and color distortion, while the re-trained model leads to notable improvement of the results.

2 MORE RESULTS FOR CELL-CONTROLLABLE PIXELIZATION
Figs. 2 and 3 show more pixelization results from our method for various cell sizes. Our method is effective across different types of input images and different cell sizes.

∗Corresponding author.

Authors’ addresses: Zongwei Wu, South China University of Technology, Guangzhou, China, zongweiwu999@gmail.com; Liangyu Chai, South China University of Technology, Guangzhou, China, icepoint1018@gmail.com; Nanxuan Zhao, University of Bath, United Kingdom, nanxuanzhao@gmail.com; Bailin Deng, Cardiff University, Cardiff, United Kingdom, DengB3@cardiff.ac.uk; Yongtuo Liu, University of Amsterdam, Amsterdam, Netherlands and South China University of Technology, Guangzhou, China, yliu6@uva.nl; Qiang Wen, Hong Kong University of Science and Technology, Hong Kong, China, chinesequangwen@gmail.com; Junle Wang, Tencent, Shenzhen, China, jljunlewang@tencent.com; Shengfeng He, South China University of Technology, Guangzhou, China, hesfe@scut.edu.cn.

REFERENCES
Chu Han, Qiang Wen, Shengfeng He, Qianhui Zhu, Yinjie Tan, Guoqiang Han, and Tien-Tsin Wong. 2018. Deep unsupervised pixelization. ACM TOG 37, 6 (2018), 1–11.
Fig. 1. Results obtained from a deep pixelization model trained with the original dataset and our dataset, respectively. (© Nintendo Co., Ltd., © Tencent, © Bee Square, © Rendered Ideas.)
Fig. 2. More results from our method in different cell sizes. Better viewed in digital version with zooming. (© Tencent, © morganaOanagrom, © Pablo Hernández and © Bee Square.)
Fig. 3. More results from our method in different cell sizes. Better viewed in digital version with zooming. (© Tencent, © Extend Interactive Co., Ltd, © Rendered Ideas.)