Integrating histology in the analysis of multispecies cremations: A case study from early medieval England

Katherine McCullough French1,2 | Christian Crowder3 | Pam Jean Crabtree1

1Center for the Study of Human Origins, New York University, New York, New York, USA
2School of History, Archaeology and Religion, Cardiff University, Cardiff, UK
3Tarrant County Medical Examiner’s Office, Fort Worth, Texas, USA

Abstract
Methodological options for differentiating commingled human from nonhuman calcined remains are limited. A zooarchaeological analysis of human cremations from three early medieval sites in the Avon Valley (Warwickshire, England) identified commingled animal remains in burials from the site of Bidford-on-Avon, but not at the contemporary sites of Wasperton and Alveston Manor. A histological study was conducted to further investigate whether additional fragments of nonhuman bone could be identified and to quantify potential differences in preservation or cremation intensity between the sites. Bone fragments (n = 92) were selected from 44 cremation burials across the three sites for thin section preparation. Histological cross sections were observed to record the presence of fibrolamellar plexiform bone and secondary osteon banding, as well as to categorize the histological preservation and cremation intensity. The analysis did not identify any nonhuman remains from Wasperton or Alveston Manor, but nonhuman bone fragments were identified in the Bidford-on-Avon histology sample. These data supplement and support the findings of the macroscopic analysis that multispecies commingled cremations were only prevalent at Bidford-on-Avon. No statistically significant differences were identified in histological preservation or cremation intensity between the cemeteries. Variability in animal use in funerary rites between cemetery sites, rather than preservation bias, is therefore the likely explanation for the differential recovery of commingled nonhuman bone from excavated cremation burials. These results confirm that histomorphology is a useful tool to incorporate in the analysis of multispecies commingled cremations.

KEYWORDS
bone histology, cremations, histomorphology, medieval archaeology, mortuary archaeology

1 INTRODUCTION

Commingled multispecies cremations present complex methodological challenges. Under ideal conditions, osteologists classify bone fragments to species based solely upon gross morphology. Cremated bone is challenging given the high rates of fragmentation, cracking, and deformation (Shipman et al., 1984). Taxonomic identification is therefore not always possible when dealing with thermally-altered...
bone, and species differentiation must be considered through other means. At a minimum, efforts should be made to distinguish human from nonhuman bone to comply with relevant legal and ethical frameworks.¹

Methodological options are limited for differentiating human from nonhuman cremated bone. Proteomic and aDNA methods cannot be utilized due to the destruction of bone's organic fraction during the burning process (Cattaneo et al., 1999; Harbeck et al., 2011; Imaizumi et al., 2014; Mckinnon et al., 2021; Naihul et al., 2021). Therefore, histological methods developed for undecalcified bone should be considered to evaluate bone fragments. This can include histomorphometry or histomorphology.

Histomorphometric techniques use measurements of microstructural features, such as osteon circularity or osteon area, to differentiate human from nonhuman bone (Cattaneo et al., 1999; Dominguez & Crowder, 2012; Jowsey, 1966; Martinakova et al., 2007; Urbanova & Novotny, 2005). Although these techniques have previously been attempted in archaeological contexts (Gigante et al., 2021; Sazelova et al., 2021), they were developed on samples of known anatomical position and have not been validated on fragmentary bone of unknown anatomical location. Variation in osteon size and geometry has been documented across elements and even within histological sections; therefore, controlling for anatomical location is essential (Cummaudo et al., 2018; Nganvongpanit et al., 2017). Additionally, histomorphometric techniques have not been validated for bone subjected to unknown cremation intensity (e.g., Cattaneo et al., 1999), which affects osteon size and circularity (Hanson & Cain, 2007). While some studies attempt to account for shrinkage (e.g., Sawada et al., 2014), this correction is insufficient without a priori knowledge of cremation intensity. Current histomorphometric methods are therefore not appropriate for discriminating human from nonhuman bone in archaeological cremation assemblages (Lagace et al., 2020).

Histomorphological techniques use qualitative observations of bone microstructure and have been employed successfully in both forensic and archaeological contexts to differentiate human from nonhuman skeletal remains (Cuypers, 2006, 2009; Dixon et al., 2011; Gigante et al., 2021; Hanson & Cain, 2007; Owlsley et al., 1985; Sawada et al., 2014; Sazelova et al., 2021). Species differentiation by histomorphology is based on long-held observations that bone modeling rate determines primary bone organization (Amprino, 1947; de Margerie et al., 2002, 2004). Humans have a relatively long juvenile period and a slower rate of bone growth than nonhumans² (Bojin, 2020; Kuzawa et al., 2014; Zoetis et al., 2003). Therefore, the primary bone of humans and nonhuman animals differs in appearance microscopically. There are no bone types that are unique to humans, so histomorphological analysis cannot definitively identify human bone (Defense POW/MIA Accounting Agency, 2015); however, bone organization can be used to identify nonhuman bone. Fibrolamellar plexiform primary bone and osteon banding (Mulhern & Ubelaker, 2001) are the two most common diagnostic characteristics of bone organization for identifying nonhuman bone.

Primary fibrolamellar plexiform bone has a mixed matrix structure composed of a woven (fibrous) bone frame that is laid down quickly around primary blood vessels. Large voids in the bone matrix are slowly filled with lamellar bone to enclose vessel canals (Currey, 2002, p. 18). The vascular plexus is an interconnected, web-like network of blood vessels that extends three-dimensionally, with primary osteons oriented circumferentially, longitudinally, reticularly, and radially (de Riqles et al., 1991). Reports of plexiform bone in subadult humans complicate the simplistic identification of plexiform bone as definitively nonhuman (e.g., Hillier & Bell, 2007; Pfeiffer, 2006). A study of subadult femur and skull fragments positively identified primary fibrolamellar plexiform bone in three out of eight individuals under the age of one and none from other age groups (n = 23) (Caccia et al., 2016). Additional research incorporating larger samples with greater anatomical diversity is required to confirm, but evidence to date suggests that plexiform is rare in individuals older than 1 year. The possibility of plexiform bone in fetal or infant humans is important to consider when sampling.

Osteon banding is a common characteristic used to discriminate nonhuman bone and is defined as a row of five to six secondary osteons lining up in a field of otherwise lamellar bone (Mulhern & Ubelaker, 2001). Limited osteonal banding can be present in human bone (Andronowksi et al., 2017), but multiple, long bands of osteons that are part of overall linearly organized histological field are characteristic of nonhuman bone, particularly when observed in conjunction with primary fibrolamellar tissue.

One potential application of histomorphology is in the analysis of commingled cremations where multiple species may be present, as in early medieval (fifth to seventh century CE) cemeteries in England. Research on early medieval multispecies cremations has traditionally been limited to what Hills and Lucy (2013) have termed the “Core Cremation Zone” of eastern England where the cremation rite predominates and cemeteries include several hundred to thousands of cremation burials (Bond, 1996; Bond & Worley, 2006; Squires et al., 2011; Rainsford, 2021). In contrast, mentions of multispecies cremation burials are extremely rare further inland where mixed-rite or inhumation cemeteries predominate (e.g., Dickinson & Speake, 1992), although it is unclear whether this discrepancy is a function of differential research efforts or this rite was in fact not practiced at inland cemeteries.

Three inland mixed-rite cemetery sites were chosen for zooarchaeological analysis to investigate whether animal bone was present within archived cremation burials. Sites were selected for availability of material, geographical and chronological proximity, and no record of previous zooarchaeological analysis. The macroscopic analysis produced disparate results: Animal bone was macroscopically identified in six of 25 burials (24%) from Bidford-on-Avon (Bidford), zero out of 21 burials from Alveston Manor (Alveston), and a single unburnt fragment from one of 28 burials (3.5%) at Wasperton. The macroscopic analysis identified other fragments suspected to be nonhuman, but which could not be confirmed morphologically. A histological analysis was therefore conducted to (1) confirm suspected nonhuman bone fragments and (2) determine whether differences in histological...
preservation or cremation intensity between the sites could account for the differences in animal bone identification.

2 | MATERIALS

2.1 | Background

Alveston, Bidford, and Wasperton are early medieval inhumation and cremation mixed-rite cemeteries lying within a 12-mile radius in the Avon River Valley, Warwickshire (Figure 1). Alveston and Bidford were excavated in the 1920s (Dickinson, 2021; Humphreys et al., 1923, 1925), while the Wasperton burials were excavated using modern methods in the 1990s (Carver et al., 2009). Initial osteological investigations did not identify animal remains in cremation burials (Wellstood, n.d.; Carver et al., 2009; Dickinson, 2021; Humphreys et al., 1923, 1925), although animal remains were reported in non-burial contexts. For example, 21 hearths with animal remains were dispersed throughout the Alveston cemetery and interpreted as evidence of graveside funerary feasting (Wellstood, n.d., p. 8).

Systematic analysis of available cremation burials from these sites identified commingled, burned animal remains in Bidford in six burials (24%) from at least four taxa: horse, ovicaprid, chicken, and goose (Figure 2a–d, Table 1). Burial number 2 had at least three species present. Results contrasted with Alveston (zero nonhuman fragments) and Wasperton (one unburnt fragment). Obvious and overt differences in excavation protocols (e.g., sieving) or post-exavcation analytical techniques cannot account for the discrepancy, as Wasperton was the only site excavated using modern methods (Carver et al., 2009). Less obvious preservation biases may also exist between cemetery assemblages, such as differences in burial environment or intensity of cremation. Given the similarities between the sites in terms of chronology, location, mixed-rite burial practices, and cultural affinity, the difference in animal bone recovery deserved further consideration (Stodder, 2018).

2.2 | Histology sample selection

A total of 92 bone fragments (Bidford: n = 36, Alveston: n = 23, Wasperton: n = 33) from 44 burials were sampled for histological analysis (Table S1). Per agreement with the archives, fewer than four bone fragments could be sampled from a single burial for destructive analysis. Each was a morphologically unidentifiable long bone fragment and at least 1 cm long. All fragments identified as possible nonhuman during the macroscopic zooarchaeological analysis were sampled. Tentative identifications were based on cortical thickness relative to the human bone fragments from the same burial. Thicker cortical bone is suggestive but not diagnostic of non-human bone (Croker et al., 2016; Nor et al., 2015), as cortical thickness varies with anatomical location and individual robustness (Skedros et al., 1994). Relatively thicker cortical bone was also chosen to exclude possible fetal or infant human bone. Additional
unidentifiable, but probable human, fragments were sampled as controls \((n = 86)\), with an approximately equal amount of control samples taken from each site. Specimens were assigned a random sample number (e.g., KF.01) so that prior knowledge would not influence the analyst.

3 | METHODS

3.1 Thin section preparation

Slide preparation followed protocols established for fresh bone (Crowder et al., 2012) and revised as required to process calcined bone, such as omitting sample dehydration. Bone samples were embedded in Buehler Epothin epoxy resin. A Buehler IsoMet 1000 saw was used to create a transverse waste cut. Cut blocks were polished and mounted to a slide using 3M Scotch Weld CA7 adhesive. An Exact 300 diamond band saw was used to cut a thick section approximately 100–300 \(\mu m\) thick. A Buehler MetaServ250 wheel was used to grind then polish the sample using P800 and P1200 grit paper. Slides reached the desired thickness when individual histological structures were clearly defined, 70–100 \(\mu m\) thick. Detailed methodology is available in Methods S1.

3.2 Nonhuman identification

Each sample was recorded as probable human (H) or nonhuman (NH) during the zooarchaeological analysis. Cortical bone was measured at the thickest location with sliding calipers. The entire available cross-sectional area was observed under bright field, plane-polarized light, and cross-polarized light conditions. Histological samples were assumed human unless extensive fibrolamellar plexiform bone or multiple instances of secondary osteon banding was observed. Secondary
osteon bands were recorded because the mineralized reversal line remains clearly defined in cremated samples whereas primary osteon banding can be more difficult to identify due to opaque carbon deposition.

3.3 | Preservation and cremation intensity

Taphonomic data were collected to determine whether differences in nonhuman bone identification correlated with differences in histological preservation or cremation intensity (Table 2). Bright field provided optimal contrast to observe burnt bone, but birefringence is assessed under polarized light. Birefringence loss is a function of collagen combustion and correlates with cremation intensity (Harbeck et al., 2011). Histological preservation was recorded using the Oxford Histological Index (OHI), which is the standard method in histotaphonomy to quantify destruction of histological structures in archaeological bone (Hedges et al., 1995). Developed to characterize bone diagenesis, the method has been used to quantify burning impacts on histological structures (e.g., Cuijpers, 2009). Cremation effects are not uniform throughout a bone cross section (Cambra-Moo et al., 2018) so OHI values were recorded for the endosteal, midcortical, and periosteal zones using an overlay grid to divide the section into thirds of overall cortical surface area and averaged. Cremation intensity was recorded using Squires et al.’s method, which provides an illustrated catalogue of burning stages developed for recording early medieval cremations (Squires et al., 2011, p. 2401).

4 | RESULTS

4.1 | Nonhuman bone identification

None of the samples from Alveston or Wasperton were assessed as nonhuman (Table S2). Eight specimens from five Bidford burials were confirmed to be nonhuman (Table 3). Nonhuman remains were confirmed from two burials (97 and 145) in which no animal bone had been identified in the macroscopic zooarchaeological analysis. Six samples were identified as nonhuman because of the predominance of fibrolamellar bone tissue in the cross section (Figure 3). Two remaining samples had multiple observable secondary osteon bands. All other samples were assessed as human because the histological appearance was consistent with adult human tissue—primary lamellar bone with dense, nonlinearly organized secondary osteons. The complete dataset is available in Data S1–S3.

Mean cortical bone thickness was higher for the nonhuman sample from Bidford ($x = 6.073$ mm, $SD = 2.692$), but with significant overlap with the human sample ($x = 4.24$ mm, $SD = 1.291$) (Figure 4, Table S2). Single outliers in both groups (KF.13 and KF.47) had cortical thickness measurements nearly twice the respective median values, disproportionately increasing the means for both groups but with a greater effect on the nonhuman sample due to the smaller sample size ($n = 8$) compared with the human sample ($n = 83$). Results support the conclusion of Croker et al. (2016) that cortical bone thickness, when anatomical location is unknown, is not an independently discriminating factor between human and nonhuman bone.

| TABLE 2 | Description of the data collected |
|-----------------|-----------------------|-------------------|
| **Nonhuman identification** |
Cortical bone thickness	In millimeters (mm)	Thicker cortical bone is generally associated with nonhuman mammals
Fibrolamellar plexiform bone (Cuijpers, 2009; de Ricqlès et al., 1991)	Presence/absence	If histologically observed, diagnostic of nonhuman sample
Secondary haversian bone – osteon banding (Mulhern & Ubelaker, 2001)	Presence/absence	If multiple instances histologically observed, diagnostic of nonhuman sample
Preservation bias and cremation intensity		
Cremation stage (Squires et al., 2011, Table 2)	2 = less intensely cremated	Measure of thermal alteration based on histological observations
	1 = intensely cremated	
	0 = completely cremated	
OHI value (Hedges et al., 1995, Table 1)	5 = <95% intact bone	Measure of preservation of histological (microscopic) structures
	4 = <85% intact bone	
	3 = <67% intact bone	
	2 = <33% intact bone	
	1 = <15% intact bone	
	0 = <5% intact bone	

Fetal and infant human bone may also have fibrolamellar plexiform bone.
4.2 Preservation bias and cremation intensity

All samples exhibited histological characteristics of extensive burning, including color change, carbon deposition, microcracking, and partial or complete loss of birefringence. Cross-section color ranged from whitish-beige to reddish-ochre to dark black from carbon deposition. Microcracks concentrate along open space, such as between vascular canals or along secondary osteon reversal lines (also noted by Bhat et al., 2021; Lemmers et al., 2020).

OHI and cremation intensity results did not show significant differences between cemeteries (Figure 5). Mean OHI values for Alveston ($x = 2.2, SD = 1.51$), Bidford ($x = 2.4, SD = 1.12$), and Wasperton ($x = 2.3, SD = 0.96$) are virtually identical. ANOVA results demonstrate that the between-group variance is not statistically significant, $F(2, 89) = 0.249, p = 0.78$. All cremations averaged in

<table>
<thead>
<tr>
<th>Sample</th>
<th>Bidford burial</th>
<th>Preliminary assessment</th>
<th>Primary fibrolamellar plexiform</th>
<th>Secondary osteon banding</th>
<th>Final determination (H/NH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KF.47</td>
<td>2</td>
<td>NH</td>
<td>N/A</td>
<td>Y</td>
<td>NH</td>
</tr>
<tr>
<td>KF.54</td>
<td>55</td>
<td>NH</td>
<td>Y</td>
<td>Y</td>
<td>NH</td>
</tr>
<tr>
<td>KF.55</td>
<td>97</td>
<td>H</td>
<td>Y</td>
<td>N</td>
<td>NH</td>
</tr>
<tr>
<td>KF.62</td>
<td>55</td>
<td>H</td>
<td>Y</td>
<td>Y</td>
<td>NH</td>
</tr>
<tr>
<td>KF.65</td>
<td>55</td>
<td>NH</td>
<td>Y</td>
<td>N</td>
<td>NH</td>
</tr>
<tr>
<td>KF.67</td>
<td>145</td>
<td>H</td>
<td>Y</td>
<td>Y</td>
<td>NH</td>
</tr>
<tr>
<td>KF.76</td>
<td>2</td>
<td>NH</td>
<td>N/A</td>
<td>Y</td>
<td>NH</td>
</tr>
<tr>
<td>KF.90</td>
<td>39</td>
<td>H</td>
<td>Y</td>
<td>Y</td>
<td>NH</td>
</tr>
</tbody>
</table>

Note: N/A indicates that poor histological preservation or carbon deposition obscured the sample so that this characteristic could not be assessed.
the Squires et al. (2011) “Intensely Cremated” stage (see Table 2): Alveston (x̄ = 0.6, SD = 0.66), Bidford (x̄ = 0.7, SD = 0.64), and Wasperton (x̄ = 0.7, SD = 0.59). This suggests that the fragments were calcined, although residual carbon deposition was noted in many fragments. ANOVA results show the between-group variance is not significant, F(2, 89) = 0.487, p = 0.67, and there is no statistically significant difference in cremation intensity between cemeteries.

5 | DISCUSSION

Results confirmed and expanded upon the macroscopic zooarchaeological assessment. Histological analysis did not identify nonhuman fragments from Wasperton or Alveston, but nonhuman fragments were confirmed from Bidford, including burials the zooarchaeological assessment had not previously identified as multispecies. This increased the percentage of total cremation burials at Bidford that are multispecies from 24% to 32% (8 out of 25 burials), which is comparable to cemeteries in the Core Cremation Zone such as Loveden Hill, Spong Hill, and Sancton I (Bond, 1996; Hills & Lucy, 2013; McKinley & Bond, 1993).

Taphonomic analysis results indicate that there is no statistically significant difference in preservation between the cemeteries. Therefore, the difference in nonhuman bone identification from Bidford cannot be attributed to differences in bone preservation as measured by the OHI or cremation intensity. Results support the finding that early medieval funerary rites were variable even within very close distances (McKinley, 1994; Squires, 2016). Variability in early medieval funerary rites were traditionally attributed to ethnic differences, with “Anglian” groups cremating their dead and incorporating animals into the practice (Meaney, 1964). Subsequent research has revealed complex and heterogeneous cremation practices throughout the landscape and proved that earlier models based on ethnicity were overly simplistic (Mason & Williamson, 2017; Williams, 2010). In fact, this heterogeneity of practice may be a defining characteristic of early medieval paganism (Carver, 2010), a conclusion supported by our data from the Avon Valley.

Histological analysis provided meaningful data to broaden our understanding of the frequency of multispecies cremations outside of the Core Cremation Zone. However, it is not without limitations. Namely, histological techniques cannot positively identify human bone considering that the density and organization of secondary osteons is age- and mechanical load-dependent (Crowder & Stout, 2012; Gocha & Agnew, 2016) rather than species dependent. Logistically, the chief drawbacks are the time it takes to create thin sections and the high failure rate when working with friable calcined bone, although both issues are alleviated by well-honed laboratory protocols (French et al., 2022). Thin section production is destructive, which archaeologists have an ethical obligation to minimize, particularly when working with human remains (Advisory Panel on the Archaeology of Burials in England [APABE], 2013). However, sampling bone fragments with inconclusive identifications for histology would allow for higher confidence in human/nonhuman determinations.

Bone charring, or incomplete combustion of the organic fraction, is a confounding factor in the microscopic analysis of burned bone because deposited carbonate obscures histological structures (Figure 6). Isotopic studies show that deposited carbon is derived from both endogenous and exogenous sources, such as pyre fuel (Zazzo et al., 2012). Charred bone has been subjected to lower cremation intensities than calcined bone, but in practice charred bone tends to have lower OHI values because deposited carbon obscures

FIGURE 5 Distribution of average OHI values (Hedges et al., 1995) and cremation stages (Squires et al., 2011) at each cemetery site

FIGURE 6 Example of charred bone micrograph with substantial carbon deposition obscuring the histological structures (average OHI value = 0.8). Bright field, ×4 objective lens. Source: Wasperton, Sample KF.24, Burial 9 [Colour figure can be viewed at wileyonlinelibrary.com]
histological structures and a smaller percentage appears intact. Levels of exogamous carbon uptake in charred and calcined bone is highly variable and may not directly correlate with cremation intensity (Snoeck et al., 2014). In calcined samples where collagen is completely combusted but prior to melting of the hydroxyapatite, the mineralized scaffolding of the histological structures is maintained without extensive, opaque carbon deposition. In practice, this means a completely calcined bone could have an OHI value of 5 and a merely charred bone could have an OHI value approaching 0, which is the inverse of the actual cremation intensities. For this reason, OHI is a poor proxy for intensity of cremation and should be narrowly applied to quantifying other histotaphonomic impacts such as bioerosion or diagenesis (e.g., Booth & Madgwick, 2016; Lemmers et al., 2020).

6 | CONCLUSION

This case study illustrates how histological approaches to commingled assemblages help produce more precise skeletal inventories and detailed investigations of taphonomic impacts. Results demonstrated that nonhuman cortical bone was indeed overall thicker than human, but there was substantial overlap with the human distribution (Figure 4). This confirms cortical thickness is not a reliable discriminating factor to categorize human from nonhuman bone. In contrast, histological analysis successfully discriminated fragmentary nonhuman bone that would have otherwise been assumed human based on the burial context. Histomorphological analysis confirmed the results of the macroscopic analysis. Nonhuman remains were only identified from Bidford, but two additional multispecies cremations were confirmed, increasing the percentage of this burial type from 25% to 32% (8 of 25 burials). A future interobserver study using histomorphological methods for the analysis of commingled, thermally-altered deposits is warranted to assess its reproducibility.

Bone fragments are generally calcined with no statistically significant difference in cremation intensity observed between cemeteries. Disparate identification of nonhuman remains between sites cannot be attributed to differences in histological preservation or cremation intensities. Data demonstrate that multispecies cremation burials at Bidford were relatively common, making up about a third of all cremation burials, which mirrors cemetery data from the Core Cremation Zone (Bond, 1996). Results support the conclusion that there was heterogeneity of cremation practice in the Avon Valley but within the range of variation observed in the Core Cremation Zone of eastern England.

As a research tool, histological analysis provides valuable information not available through other approaches; however, this must be weighed against the time commitment required to produce and evaluate samples as well as the destructive nature of the process. While histological analysis can confirm the presence of nonhuman bone in archaeological contexts, it cannot positively identify human bone or discriminate nonhuman bone fragments to the genus or species level. Without comprehensive data on species or skeletal elements included on the pyre, we are unable to move beyond presence/absence studies towards understanding the role particular species or food items played within mortuary ritual. These limitations must be considered when developing a research design. Active research in applied bone histology continues to advance histomorphometric methods (see Maggiano et al., 2021; Franklin & Marks, 2022). With robust data available to model shrinkage and warping effects of cremation on histological structures, objective metrics may one day be available to identify bone fragments to specific taxa through metric analysis of secondary osteons, spatial analysis of dense Haversian bone organization or relative abundance of histological morphotypes (Lagacé et al., 2020).

Multispecies cremations in early medieval cemeteries are now a well-recognized phenomenon, although questions remain about the ritual treatment and symbolism of the animal deposits (Rainsford, 2021; Williams, 2001). According to current standards for human remains recording, zooarchaeologists or comparative osteologists should be brought in early during excavation or post-excavation, with information about cremated animal bone documented in skeletal inventory reports (McKinley, 2017). A histological approach should be considered to supplement the macroscopic investigation to confirm the identification of nondiagnostic, but probable, nonhuman bone fragments and to document any differences in the cremation intensity between human and nonhuman fragments.

ACKNOWLEDGMENTS

Invaluable feedback was provided by Drs. Randall White (NYU), Susan Antòn (NYU), Aleksander Pluskowski (University of Reading), Richard Madgwick (Cardiff University), and our anonymous reviewers. Dr. Bradley Adams and staff at the Forensic Anthropology Lab at the New York City Office of the Chief Medical Examiner provided equipment and histological slides for training and comparative purposes. Dr. Timothy Bromage and staff at the NYU Dental School Hard Tissue Research Unit Laboratory provided training and equipment. The Shakespeare Birth Trust and Warwickshire Museum granted access and workspace to analyze the cemetery assemblages.

CONFLICT OF INTEREST

There is no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available in the supporting information of this article.

ORCID

Katherine McCullough French https://orcid.org/0000-0002-3965-4269

ENDNOTES

1 In the United Kingdom, these may include Human Tissue Act (2004); British Association for Biological Anthropology and Osteoarchaeology (BABA0) Code of Ethics (2019), CIfA Updated Guidance for Human Remains (Mitchell & Brickley, 2017), and DCMS Guidance for the Care of Human Remains in Museums (Swain, 2005).

2 More precisely, these methods differentiate primate from non-primate bone. Primates have broadly similar biomechanics and life histories when
compared to fast-growing quadrupeds (Hillier & Bell, 2007; McFarlin, 2006), but the forensic and archaeological literature generally conflates nonhuman with non-primate. Considering the very low probability of nonhuman primate bone in early medieval English burial contexts, nonhuman primate histology is not considered here.

REFERENCES

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.
