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The design of bionic bone scaffolds tomimic the behaviors of native bone tissue

is crucial in clinical application, but such design is very challenging due to the

complex behaviors of native bone tissues. In the present study, bionic bone

scaffolds with the anisotropic mechanical properties similar to those of native

bone tissues were successfully designed using a novel self-learning

convolutional neural network (CNN) framework. The anisotropic mechanical

property of bone was first calculated from the CT images of bone tissues. The

CNN model constructed was trained and validated using the predictions from

the heterogonous finite element (FE) models. The CNNmodel was then used to

design the scaffold with the elasticity matrix matched to that of the replaced

bone tissues. For the comparison, the bone scaffold was also designed using the

conventional method. The results showed that the mechanical properties of

scaffolds designed using the CNN model are closer to those of native bone

tissues. In conclusion, the self-learning CNN framework can be used to design

the anisotropic bone scaffolds and has a great potential in the clinical

application.
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1 Introduction

Every year, millions of bone replacement surgeries have to be performed worldwide to

fix the large bone defects (Dang et al., 2018). In these surgeries, the autograft and allograft

are the techniques widely used in the clinic, but in autograft there is the issue associated

with the lack of bone supply and in allograft there are issues, such as the disease

transmission (Finkemeier, 2002; Laurencin et al., 2006). Because of these, the bone

scaffold has emerged as a promising method for fixing large bone defects. However, there
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are still many issues to be solved, such as the stress shielding. The

structural design is one of the main approaches to solve these

challenges but it is still in its early stage and requires extensive

research.

In the structural design of bone scaffolds, the design target is

to have a bionic scaffold which can mimic the behaviors of the

defected native bone tissues in all aspects including the

geometrical features, the mechanical and biological functions,

etc. However, it should be noted that geometrically the native

bone possesses irregular shapes and mechanically the bone is

anisotropic in different scales, which poses a big challenge in the

bionic design of bone scaffolds. In the past, many efforts have

been made to achieve the bionic design of bone scaffolds. For

example, the microstructure of bone scaffolds has been evolved

from the periodic regular lattices to the triply periodic minimal

surface (TPMS) based structures and further to the irregular,

non-periodic structures (Vijayavenkataraman et al., 2018; Huo

et al., 2021). The periodic regular lattices (e.g., the cube, the

hexagon) are widely used in the early stage of the design of bone

scaffold (Bucklen et al., 2008). The TPMS based scaffold is one of

the main types of structures widely used nowadays because of the

bionic features of the TPMS, such as a mean curvature of zero.

Most recently, the focus of the scaffold design has been put on the

anisotropic behaviors of TPMS scaffolds (Ataee et al., 2018;

Bonatti and Mohr, 2019; Kang et al., 2020; Peng et al., 2021).

For example, Peng et al. (2021) has managed to increase the range

of scaffold anisotropy by modifying the geometrical parameters

of Gyroid cellular structure. In addition, the techniques such as

grading and hybrid design, etc. are used to design the scaffolds

with anisotropic mechanical properties (Liu et al., 2018; Al-Ketan

et al., 2019; Chen et al., 2019). However, because the TPMS based

scaffolds are based on the periodic units and additionally the

number of design variables in the TPMS scaffolds is limited, the

design space for the anisotropic mechanical properties of the

TPMS scaffolds is limited. Designing the irregular and non-

periodic bone scaffolds using some advanced mathematical

algorithms (e.g., the Voronoi algorithm) (Gómez et al., 2016;

Wang et al., 2018) is one of the strategies to achieve a larger

design space for the anisotropic mechanical properties, but high

complexities are involved in the advanced mathematical

algorithms which hinders its development and application.

Therefore, a novel and efficient approach for designing the

scaffolds with controllable anisotropy is still highly needed.

In recent years, the machine learning has been evolved as a

novel and fast-growing technique, which has been successfully

applied in many fields, e.g., the accurate prediction of

musculoskeletal force (Rane et al., 2019), the automatic

tracking of joint kinematics (Burton et al., 2021), etc. In the

design of porous materials, the machine learning based technique

has also been widely explored in the recent years. For example,

Zheng et al. (2021) has managed the inverse design of auxetic

metamaterials using deep learning; Gu et al. (2018) has managed

the design of bioinspired hierarchical composite using machine

learning; a deep-learning based model was proposed by Tan et al.

(2020) for the efficient design of microstructural materials. The

advantage of the machine learning technique is that once the

machine learning model is well trained and validated, it can serve

as an efficient surrogate model for generating the real-time

outputs from new inputs. Additionally, the machine learning

based technique is able to deal with structural design involving a

large number of design variables, which is extremely crucial in

the design of porous scaffolds, because the design space for the

scaffold anisotropy can be easily expanded by adding more

design variables. Therefore, the machine learning technique

has the great potential in designing the fully bionic bone

scaffolds. Nevertheless, to the best of our knowledge, the

design of bone scaffolds with anisotropic mechanical

properties using the machine learning technique has not been

fully elaborated. The aim of the present study was to design

bionic bone scaffolds with the mechanical properties similar to

those of native bone tissues using the emerging machine learning

technique.

This paper is organized in the following scheme. The

calculation of the elasticity matrix of native bone tissue and

the details on the self-learning convolutional neural network

based design framework are illustrated in Section 2. In Section 3,

the performance of the developed framework is demonstrated

using a two-dimensional (2D) bone sample. In Section 4, the

predictive accuracy of the machine learning based model and the

design results are discussed and conclusions are drawn in

the end.

2 Materials and methods

2.1 Calculation of the elasticity matrices
for the native bone and bone scaffold

In the present study, a 2D bone example is presented to

demonstrate the application of the machine learning based

method in the design of the anisotropic porous bone scaffold.

The anisotropic bone scaffold to be designed is to replace the

defected bone tissues and an ideal scaffold should possess the

mechanical properties similar to those of the replaced bone

tissue. Therefore, the first step in the scaffold design is to

work out the mechanical properties of bone tissue, which are

calculated from the CT images of native human bone tissue. The

CT images used were acquired in the previous studies (Lu et al.,

2015). Briefly, thirty-five cadavers were harvested from the

female patients with a mean age of 81.3 ± 7.2 year-old (range:

65 to 90 year-old). The spinal segments of T11/T12/L1 were

dissected and the specimens were scanned in the frozen state

using the HR-pQCT scanner (XtremeCT, Scanco Medical AG,

Bruettisellen, Switzerland) operated at 59.4 kV, 900.0 μAs with

an image voxel size of 82.0 × 82.0 × 82.0 μm3. In the present

study, only the cancellous fraction was used and thus the volumes
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of interest covering only the cancellous bone were cropped out

from the CT images of the spinal segments (Figure 1A).

Because the native bone tissue exhibits the anisotropic

mechanical properties, the homogenized elasticity matrix of

the bone was calculated to describe the anisotropic

mechanical properties of the native bone tissue, which were

calculated from the finite element (FE) analysis as follows

(Figure 1). First, the heterogeneous FE models of the

cancellous fraction were generated using the standard method

previously developed (Lu et al., 2019a). Briefly, the cancellous

fraction (Figure 1A) with the dimension of 14.9 × 14.9 mm2 was

cropped out from the HR-pQCT images of human vertebral

body. The grayscale image was first smoothed using a Gaussian

filter (sigma = 1.2, support = 2.0) to reduce the influence of image

noise. Then, the grayscale values were converted to vBMD values

based on the linear calibration equation provided by the HR-

pQCT scanner. The vBMD values were further converted into

bone ash density according to the relationship of ρash �
0.877 × ρHA + 0.079 , where ρash is the bone ash density, unit

in mg/cm3 and ρHA is the HA-equivalent vBMD, unit in mg/cm3.

Heterogeneous FE model (Figure 1B) was generated by

converting the bone ash density to the elastic modulus for

each bone element using the density-modulus relationship

previously published. Poisson’s ratio for the bone elements

was set to 0.30. The FE meshes were generated by converting

each bone pixel into 2D 4-node plane stress element

(PLANE182). The elastic modulus calculated at each image

pixel was mapped to the FE mesh using an in-house

developed MATLAB (R2017a, MathWorks, Natick,

Massachusetts, United States) code. It should be noted that to

ensure the connectivity of bone tissues in the FE analysis, the 2D

FE bone models were generated from the processed 2D images,

each of which was created by keeping the maximal grayscale

values in the pixels calculated from 15 2D images randomly

selected from the original 2D image datasets. The 2D images and

the corresponding 2D FE models were derived from the

transverse plane of the human vertebral plane.

The plane stress problem is assumed and the following

constitutive model is used to describe the anisotropic

mechanical behavior of the bone tissue (Xiao et al., 2021):

⎡⎢⎢⎢⎢⎢⎣ σx
σy
τxy

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ c11 c12 c13
c12 c22 c23
c13 c23 c33

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣ εx
εy
γxy

⎤⎥⎥⎥⎥⎥⎥⎦ (1)

where σx and σy are the normal stresses in the x and y directions,

respectively, τxy is the shear stress in the x-y plane, εx and εy are

the normal strains in the x and y directions, respectively, γxy is

the shear strain in the x-y plane and c11, c12, . . . , c33 are the elastic

constants. Because of the symmetric property of the elasticity

matrix, there are six independent constants in the constitutive

model, which can be determined using the following three

loading scenarios (the FE model was solved three times for

the following three loading scenarios to obtain the elastic

constants) (Figure 2).

First, the strain in the x direction is set to −0.1 while the other

two strains are set to zeros, i.e., εx = −0.1, εy = 0.0, γxy = 0.0

(Figure 2A). Under this loading scenario, the elastic constants of

c11, c12 and c13 can be calculated as below:

FIGURE 1
(A) Extraction of the CT data of the human cancellous bone. (B) Establishment of the heterogeneous finite element model for calculating the
effective elastic mechanical modulus of bone tissue.
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c11 � σx
εx
, c12 � σy

εx
, c13 � τxy/εx (2)

Second, the strain in the y direction is set to −0.1 and other

two strains are set to zeros, i.e., εx = 0.0, εy = −0.1, γxy = 0.0

(Figure 2B). Under this loading scenario, the elastic constants of

c22 and c23 can be calculated as:

c22 � σy
εy
, c23 � τxy/εy (3)

Third, the shear strain is set to 0.1 and other two strains are

set to zeros, i.e., εx = 0.0, εy = 0.0, γxy = 0.1 (Figure 2C). Under

this loading scenario, the elastic constants of c33 can be

calculated as:

c33 � τxy/γxy (4)

It should be noted that the same loading scenarios (Figure 3)

and procedure described above was used to calculate the elasticity

matrix of the bone scaffold (also meshed using PLANE182) in the

subsequent analysis.

2.2 Design setting for the bone scaffold

In the present study, the 2D bone scaffold with the

anisotropic mechanical properties was intended to be

designed. The porous bone scaffold with 3 × 3 cells was

used for the demonstration (Figure 4). Nevertheless, the

readers can also use the same framework to design the

scaffolds with more cells. The dimension of the scaffold

was set to 18.0 × 18.0 mm2, which is the size similar to the

defected human vertebral part. In each cell of the scaffold, the

four dimensional parameters, i.e., the four thicknesses, were

set as the independent design variables. Therefore, there are

36 independent design variables ( t1 ~ t36 ) for the entire

scaffold. It is obvious that it is very time consuming to

FIGURE 2
Three loading scenarios used for calculating the elasticitymatrix of bone tissue. (A)Uniaxial compression in the x direction (εx = −0.1), (B) uniaxial
compression in the y axis (εy = −0.1) and (C) shear loading in the x-y plane (γxy = 0.1).

FIGURE 3
Three loading scenarios used for calculating the elasticitymatrix of bone scaffold, (A) uniaxial loading in the x direction, (B) uniaxial loading in the
y direction and (C) shear loading in the x-y plane.
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perform the structural optimization involving 36 independent

design variables using the conventional optimization

methods, such as the solid isotropic material with

penalization (SIMP) method and the level set method

(LSM) (Davoodi et al., 2021). In order to demonstrate the

advantage of using 36 independent design variables in the

scaffold design, the design using the conventional design

framework, i.e., using the periodic cell and four design

variables in each cell, was also performed for the

comparison purpose (Figure 5).

Considering the minimal structural thickness, which can

be produced by the additive manufacturing (e.g., the selective

laser melting), is approximately 0.2 mm, the minimal

dimension of the design variable was set to 0.2 mm and the

thickness of the scaffold was increased or decreased by 0.2 mm

in the iterations. The scaffold designed was intended to replace

the defected bone tissues. Therefore, to make the scaffold

clinically relevant and to increase the computational

efficiency, three discrete values, i.e., 0.2, 0.4 and 0.6 mm,

were set as the design ranges for both the 36 design

FIGURE 4
The scheme for designing the bone scaffold using the convolutional neural network (CNN) model (36 independent design variables).

FIGURE 5
The scheme for designing the bone scaffold using the conventional framework (periodic cell and four independent design variables in each
cell).
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variables in the CNN method and the four design variables in

the conventional design framework. Because of the constraint

on the structural dimensions, the porosity of the scaffold is

consequently constrained.

Regarding the characterization of the mechanical property of

the bone scaffold, because all the dimensional parameters were

set as the independent design, the scaffold designed can exhibit

the anisotropic mechanical behavior and thus the constitutive

relation presented Eq. 1 was used to describe the mechanical

properties of scaffold. In the present study, the Ti-6Al-4V was

considered as the base material for producing the porous scaffold.

Therefore, in the FE models of 2D bone scaffolds, the Young’s

modulus of the solid part was set to 113.8 GPa and the Poisson’s

ratio was set to 0.34 (Niinomi, 1998).

In the design of bone scaffolds, the differences in the six

elastic constants calculated from the bone and scaffolds may

be very large. The constant with a large difference will make a

significantly large contribution to the design objective

function, leading to the ignorance of the constants with

small differences. It is revealed in the authors’ previous

study that the contributions of the elastic constants c13 and

c23 to the anisotropic properties of the scaffold are ignorable

(Lu et al., 2019b; Li et al., 2019). Therefore, to make the

influencing role of each constant approximately the same in

the optimization process, the following weighting factors were

introduced:

wij �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1 − ]2
] · 1

1 − ]2
0

] · 1

1 − ]2
1

1 − ]2
0

0 0
1

2(1 + ])

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where ] is the Poisson’s ratio of the base material.

The relative differences between the elastic constants of the

bone scaffold and those of the bone tissue were calculated using

the following formula:

aij � ⎛⎝cij′ − cij
cij

⎞⎠2 (i, j � 1, 2, 3) (6)

where cij′ are the elastic constants of the bone scaffold and cij are

the elastic constants of the bone tissue. In the equation above, a

power of two is used to magnify the difference between

different samples. Additionally, it is used to convert the

negative values to positive values so as to increase the

prediction accuracy.

Then the objective function used in the optimization process

was defined as:

f � ∑ wij

ŵ
aij (i, j � 1, 2, 3) (7)

where ŵ �∑wij
.

2.3 Machine learning based framework for
the optimization of bone scaffold

In the design of anisotropic bone scaffold, there are

36 independent design variables and each variable has three

values to be chosen from. Therefore, there are 336 possible

designs. It will take a long time to perform the optimization

using the FE simulations and the calculation time will be

exponentially increased when the number of design variable is

increased. To increase the calculation efficiency and make the

design clinically practical, a novel self-learning convolutional

neural network (CNN) based optimization framework was

developed to design the scaffolds. The CNN model

constructed is shown in Figure 6, where three convolutional

layers and three full-connection layers were used in the model.

The convolution kernels were trained in a hierarchical manner,

which consisted of low-level features to generate more complex

patterns. All convolution kernels were set to a size of 3 × 3. The

maximal pooling was applied after the convolutional layers to

simplify the information of the output neurons (Li et al., 2019).

To improve the accuracy of the CNN model, a dropout rate of

10% was used in the three pooling layers. Each new design of

scaffold was converted into the 6 × 6 matrix expressed in Matlab

(Figure 7) and serve as the input for the CNN model. The

conversion of the design into Matlab matrix enabled the

automation of the entire optimization process and increased

the calculation process. The output of the CNN is the objective

function given in Eq. 8. It should be noted that the CNN

architecture presented in the present study is not new but is

guided by the work done by Li et al. (2019), which was created to

solve a similar problem. Different CNN architectures or machine

learning techniques may also be used to achieve the same

purpose, i.e., designing anisotropic bone scaffolds. The CNN

model presented in the present paper can take the image (in

terms of the matrix) as the input and is just one demonstration of

the technique in designing anisotropic porous bone scaffolds.

The reason that the convolutional layers are used in the CNN

architecture is that the computational efficiency can be largely

increased, because the convolutional layer can deal with the two-

dimensional input while the fully connected layer can only deal

with the one-dimensional input.

The training and cross-validation of the CNN model is

shown in Figure 8. In the training of the CNN model, first,

10,000 bone scaffolds were randomly generated, 8,000 of which

were used for the training of the CNNmodel (Figure 8A) and the

remaining 2,000 were used for the cross-validation of the CNN

model (Figure 8B). The elastic constants of bone scaffolds

calculated from the FE analysis were served as the ground

truths for the training and cross-validation. In the training

process, the CNN model learned a valid representation

describing the geometric features of the bone scaffolds. A loss

function was defined to quantify the differences between the

elastic constants predicted from the CNN model and those
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calculated from the FE analysis. The kernels and biases in the

convolutional layers and weights in the fully connected layers

were then adjusted using the backpropagation algorithm (Rubio

et al., 2011). Iterative adjustments were made to minimize the

loss function using a large datasets of bone scaffolds. In the

present study, the mean absolute error (MAE) between the FE

prediction and the CNN prediction was set as the objective (loss)

function:

MAE[Y, f(X)] � 1
n
∑n
i�1

∣∣∣∣Yi − fi(X)∣∣∣∣ (8)

where Yi is the objective function presented in Eq. 7 which was

calculated using the FE method, fi(X) is the corresponding

value calculated using the CNN method and n is the number of

the samples used for the cross-validation of the CNN model (n =

2,000).

To assess the predictive power of the CNN model

constructed, 500 new bone scaffolds were processed. The

values of these bone scaffolds, calculated as the objective

function for optimization, i.e., that presented in Eq. 8, were

calculated using the trained CNN model and the FE method,

respectively. The FE predictions were served as the ground truths

and the predictive power of the CNN model was obtained by

comparing the values obtained from the CNN and the FEmodels.

The linear correlation analysis was performed between the CNN

and FE predictions using the 500 data samples. Because the

FIGURE 6
The CNN model developed in the present study.

FIGURE 7
Conversion of the scaffold design into the matrix expressed in Matlab.
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variance between the CNN and FE predictions increased with the

amplitude of the values, the log transformed values were plotted

and analyzed, in which the following transformation formula was

used:

Log f � (log(f) + 1)/log (f max) (9)

where f is the objective function, calculated using Eq. 7, before

the log transformation, Log_f is the corresponding value after the

log transformation and fmax is the maximal value in the optimal

sample dataset.

In summary, the CNN-based framework for designing the

anisotropic scaffold is shown in Figure 9. It should be noted that a

self-learning process was introduced into the scaffold design to

accelerate the optimization process. The self-learning process

consists of two parts: unsupervised learning (Figure 9A) and

optimization variable (Figure 9B). Specifically, the process can be

briefly explained as below: in the iterations, 10,000 new samples

were generated from which the first 100 optimal designs were

selected as the initial optimal samples. The process was repeated

and the first 100 optimal designs were updated after each

iteration, i.e., if the design is better than those in the

FIGURE 8
Training and cross-validation of the convolutional neural network model for predicting the elastic constants of bone scaffold, (A) generation of
the training data and (B) cross-validation of the CNN model.

FIGURE 9
The design of the anisotropic scaffold using the self-learning CNN model, (A) unsupervised learning and (B) optimization variable.
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100 optimal designs and then it is used to replace the worst design

in the 100 designs. Because some errors are presented in the CNN

model and the MAE is the average prediction error between the

prediction and the actual values, to avoid the exclusion of the

optimal samples, all the designs with the error less than MAE

remained in the iterations.

Using the framework presented in Figure 9, the bone scaffold

was designed to mimic the anisotropic mechanical behavior of a

specific defected bone sample, which is one of the main design

objectives in scaffold design (Gómez et al., 2016; Kang et al.,

2020). To demonstrate the ability of the CNN based framework

in designing the scaffolds for different bone samples and also to

take into account the variances among different bones, 12 bone

samples with different porosities and structures, obtained from

the HR-pQCT images, were processed and the corresponding

scaffolds were designed using the CNN and conventional

methods. Statistical analysis was performed and the normality

check for all the data samples was performed using the statistical

program PASW statistics (SPSS Inc., Chicago, IL) and the

probability of type I error was set to α = 0.05, i.e., p <
0.05 was considered normal distribution.

To quantify the differences between the mechanical

properties of the bone scaffolds and those of the bone

samples, the relative error (RE) was used, which is defined as

below:

RE � PCNN − PRVE

PRVE
× 100% (10)

where PRVE is the elastic constant calculated from the bone

samples, PCNN is the corresponding elastic constant calculated

from the bone scaffold designed using the self-learning CNN or

conventional method.

To enable the process of a large amount of bone scaffolds, all

the pre-processing and post-processing were automated using

the in-house developed Matlab (R2019, MathWorks, Natick,

Massachusetts, United States) code and the FE analysis was

performed using the Ansys (v18.0, ANSYS, Inc., Canonsburg,

PA, United States). The CNN model was constructed using the

Tensorflow 2.0 module in Python 3.7. The training process was

conducted on a desktop computer setting to i7-8700 CPU, 32G

RAM, and the Nvidia GTX1060. The batch size was set to

128 and the training was iterated for 200 epochs. The training

process took approximately 2.0 h.

3 Results

3.1 Cross-validation and prediction power
of the convolutional neural network
model

The relationship between the mean absolute error (MAE)

and the training iterations is shown in Figure 10. Because the

initial values of the weights and biases are randomly assigned, the

MAEs of the first a few iterations are high. However, after several

iterations, the MAE descends rapidly and the MAE is below

1.0 after 120 training epochs. Therefore, no over-fitting is

observed in the cross-validation of the CNN model developed.

In the process of self-learning accelerated optimization, the

changes of samples were recorded. It can be seen that this

procedure ensured the errors in all the 100 optimal designs

are less than MAE after some iterations (Figure 11).

Afterwards, an optimal sample can be obtained from these

100 samples.

The linear correlation between the log transformed objective

functions obtained from the CNN and FEM is shown in

Figure 12A. A high coefficient of determination (R2) has been

achieved, i.e. R2 = 0.95, implying a good prediction power of the

CNNmodel. To further demonstrate the prediction power of the

CNN model, Bland-Altman diagram of the objective function (f)

FIGURE 10
The relationship between the log transformedmean absolute
error, where Y = ln (MAE)+1 is used, and the epoch.

FIGURE 11
The evolution of the maximummean absolute error (MAE) in
100 optimal samples with the number of iterations.
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FIGURE 12
(A)The relationship between the log transformed objective functions predicted from the convolutional neural network (CNN) model and those
calculated from the finite element method (FEM). (B) Bland-Altman diagram of the objective function (f) between the FEM and CNN predictions.

FIGURE 13
Bland-Altman diagram of elastic constants between the scaffold designed from CNN model and the corresponding bone samples (n = 12).
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between the FEM and CNN predictions is presented in

Figure 12B, where the values in the x axis represent the mean

objective functions obtained from the CNN and FEM predictions

(both calculated using Eq. 8 and the values in the y axis represent

the difference between the objective functions. It is shown in the

figure that the mean difference, represented in the blue line, is

very close to zero. Additionally, 493 out of 500 samples (98.6%)

fall in the confidence interval from −1.96 standard deviation (SD)

to +1.96 SD (corresponding to 6.28) and only seven samples are

out of this interval, implying a high degree of agreement between

the CNN and the FEM predictions.

3.2 Design results from the self-learning
convolutional neural network model

Twelve different bone samples are selected as the tissues to be

replaced and the corresponding 12 bone scaffolds are designed

using the self-learning CNN model developed. To assess the

performance of the self-learning CNN model, the agreement

between the elastic constants of the bone samples and those of the

designed scaffolds was assessed using the Bland-Altman diagram

(Figure 13), where the values in the x axis represent the mean

elastic constants obtained from the bone samples and the bone

scaffolds and the values in the y axis represent the differences

between the elastic constants of the bone samples and those of

bone scaffolds. It is shown in the figure that for the constants c22
and c33, the mean differences are very close to zero. The mean

differences are −94.0 and 40.5 for the constants c11 and c12,

respectively, which are also close to zero. The 95% confidence

intervals for c11, c12, c22 and c33 are [−565, 377], [−76, 157],

[−427, 482] and [−156, 161], respectively. 91.7% samples of c11
and all the c12, c22 and c33 samples fall in the 95% confidence

intervals, implying a high degree of agreement in these constants

between the bone samples and the bone scaffolds.

To further demonstrate the differences between bone

scaffolds and bone samples, the relative errors in the four

elastic constants, calculated using Eq. 10, are presented in

Figure 14, where MAX and MIN represent the maximum and

minimum values in the dataset, respectively. Q1, Q2 and Q3

represent the lower quartile, the median and the upper quartile

values in the dataset and AVG represents the average value in the

dataset. It is shown in the figure that the average errors are −0.01,

0.03, 0.01 and 0.05 for c11, c12, c22 and c33, respectively. The

ranges from Q1 to Q3 are much smaller for c11 and c22 ([−0.02,

0.01] and [−0.03, 0.03], respectively) than those for c12 and c33
([−0.02, 0.13] and [−0.03, 0.16], respectively), implying c11 and

c22 can be better matched to those of the native bone tissue using

the self-learning CNN model.

3.3 Comparison of the results obtained
from the convolutional neural network
and conventional methods

To demonstrate the superior performance of the self-learning

CNN model over the conventional method, the relative errors in

the four elastic constants are presented in Figure 15. It is shown

in the figure that for all the four constants, the average errors are

closer to zero in the CNN group than those in the conventional

method group. Furthermore, the relative errors fromQ1 toQ3 are

much smaller in the CNN group than those in the conventional

method group, implying the relative errors are more scattered

distributed in the scaffold designed using the conventional

method. Figure 15 revealed that using the self-learning CNN

model developed, not only a larger range of bone scaffolds can be

designed, but also the mechanical properties of bone scaffolds

designed from the CNN model are closer to those of the targeted

bone samples. Distribution of the von Mises stress in one

representative optimal scaffold designed from the CNN model

is shown in Figure 16, where variable thicknesses are present in

the structure.

4 Discussion

In the present study, a novel self-learning convolutional

neural network (CNN) model was developed and its

performance in designing the bone scaffolds with the

anisotropic mechanical properties matched to the targeted

bone tissue was demonstrated. The novelty of the present

study lies in the novel design of anisotropic bone scaffolds

using the emerging self-learning CNN technique.

The present study was motivated by the fact that it is crucial

to design bone scaffolds with the anisotropic mechanical

properties matched to those of the replaced defected bone

FIGURE 14
The relative errors in the four elastic constants designed by
the self-learning CNN model.
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tissues, but it is very challenging to realize this using the

conventional design approaches because of the large amount

of design variables involved. The emerging machine learning

technique has the potential to solve the challenges. Indeed, it is

revealed in the present study that the design and optimization of

one anisotropic scaffold took approximately only 20 min

excluding the time used in the training and cross-validation of

the CNN model, which took approximately 2 days (including

FIGURE 15
Comparison of the relative errors in the four elastic constants between the self-learning CNN and conventional methods (n = 12).

FIGURE 16
Distribution of the von Mises stress in one representative optimal scaffold under the three different loading cases.
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pre-processing of the 10,000 bone scaffolds, the model

generation, the FE calculation, the post-processing, etc.). In

contrast, it would take much more time to complete the

design and optimization involving the same number of design

variables, i.e., 36, using the conventional method, such as LSM. It

should be noted that the more the independent design variables

are involved in the design (e.g., in the 3D case), the more obvious

efficient the self-learning CNNmethod is. The other advantage of

the CNN technique is that because there is no constraint on the

number of design variable, the design space can be largely

expanded. As a consequence, new novel material designs can

be made possible using the CNN model. Therefore, the CNN

method has the great potential to be used as a novel and crucial

tool in the design of 3D porous implants.

Regarding the ability of the self-learning CNN model in

designing the scaffolds with anisotropic mechanical properties

matched to those of the defected bone, a high ability has been

achieved in the present study, which was assessed using the

elasticity matrix. It should be noted that when evaluating the

mechanical properties of bionic bone scaffolds, it is crucial to use

the elasticity matrix of the structure, because the porous scaffolds

are not isotropic. Nevertheless, in most previous studies (Dang

et al., 2018; Zheng et al., 2021), the mechanical properties of

scaffolds under just one or two loading scenarios are investigated

and consequently their conclusions are limited to certain

conditions.

The bionic scaffold with the mechanical properties matched to

those of the native bone tissue is crucial in the clinical application,

because when the scaffold is implanted in the human body, it has to

be working together with the surrounding soft and hard tissues. If

the mechanical properties of the implanted scaffold are too high, the

stress shieldingmay occur and eventually affect the life expectance of

the scaffold [ (Gómez et al., 2016), (Bloyer et al., 2007)]. If the

mechanical properties of the implanted scaffold are too low, the

scaffold may fail to afford the external loadings. Additionally,

because of the daily activities of human body, all sorts of loading

scenarios may occur in the bone (Huang et al., 2017) and

consequently the anisotropic mechanical properties should be

taken into account in the design of scaffold. Over the thousand

years’ evolution, the native bone tissues have been optimized to be

the best structures in daily activities. Therefore, the designed

artificially bone scaffold should possess the mechanical properties

similar to those of the native bone tissues. The present study has

advanced the design of bone scaffold towards this goal and it is

demonstrated that the bone scaffolds designed using the CNN

model indeed possess the anisotropic mechanical properties very

similar to those of the native bone tissue.

Some shortcomings in the present study should be noted. First,

only one topology (i.e., rectangular) of the scaffold was

investigated. The primary aim of the present study was to

demonstrate the application of the CNN technique in the

design of scaffolds with anisotropic mechanical properties.

Nevertheless, in the future, the scaffolds with other topologies,

such as sphere shape, etc. should also be investigated. Second, the

simplified method (Figures 2, 3) for reconstructing the elastic

matrices of bone and anisotropic scaffolds is used in the present

study. More rigorous method such as periodic boundary condition

should be incorporated in the future to have an accurate

representation of the elastic matrix of the fully anisotropic

structure. Third, due to the complexities in the design problem,

only the 2D examples were presented and the plane stress scenario

was assumed. In the current setting, there are 36 independent

design variables and 336 possible designs. Extending the current

framework to the 3D scenario will create the computational

“disaster.” The authors of the present study are in the process

to solve this technical challenge for 3D case. Nevertheless, the

present study is the first towards the application of the self-learning

CNN technique in designing bionic scaffolds with the anisotropic

mechanical properties. Regarding the assumption of plane stress

scenario, it is believed to be reasonable for the purpose of the

present study, i.e., demonstrating the feasibility of the CNNmodel

in designing the anisotropic scaffold involving many design

variables. Fourth, only the elastic mechanical properties of the

scaffolds were investigated. It should be noted that some other

mechanical properties, especially the long-term properties of the

bone scaffold, such as the fatigue (Huo et al., 2022), are the crucial

factors influencing the life performance of the scaffold and thus

should also be investigated in the future. Additionally in the

clinical application of bone scaffolds, not only the mechanical

properties but also other properties, such as the permeability, the

cell behavior, should also be taken into account. Therefore, one of

the future works in this direction is to investigate the overall

performance of the anisotropic scaffold designed by CNN using

the permeability test, the cell culture, the animal testing, etc. Last

but not the least, the image datasets from the elderly patients

(81.3 ± 7.2 year-old) are used. Nevertheless, this is a methodology

paper, in which the high resolution images, i.e., HR-pQCT of

human vertebrae (not possible in the clinic scenario so far), are

used to obtain the accurate representation of the anisotropic

mechanical properties of vertebral body. In the future, the 3D

analysis using the images with the clinic resolution needs to be

performed and tested before the clinical translation of the method.

In conclusion, 2D bone scaffolds with the anisotropic

mechanical properties matched to those of the defected native

bone tissue were successfully designed using a self-learning

convolutional neural network model. It is revealed in the

present study that not only the design space of the scaffolds

can be expanded using the CNN method, but also the scaffolds

designed by the CNN model possess the anisotropic mechanical

properties better matched to those of the native bone tissue.

Furthermore, the CNN model is efficient, because once the CNN

model is well trained, it takes approximately only 20 min to

complete the design of bone scaffold involving 36 independent

design variables. Therefore, the CNN model developed possesses

great potentials in the design of anisotropic bone scaffolds in the

clinical setting.
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