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Abstract

In neuroscience, parameter recovery refers to the prob-

lem of finding the best parameters of a model for fit-

ting the experimental data. The developing of more bi-

ologically plausible computational models of cognition

has offered a significant improvement in the predictive

power at the cost of a higher complexity posing increas-

ing challenges on parameter recovery. Here, we present

a deep learning approach to recover parameters of a two-

variables neural mass model simulating evidence accu-

mulation during perceptual decision-making. We show

that our algorithm is able to recovery well specific set of

parameters but might fail when trying to predict combi-

nations of parameters with a high degree of interaction,

i.e. parameters that have inherently similar effects on

the model’s output. Thus, our study suggests that deep

learning for parameter recovery should go together with

a carefully designed experiment to study the effects of

different parameters that are not richly interacting.

Keywords: parameter recovery; deep learning; neural mass
model; perceptual decision making; evidence accumulation

Introduction

In cognitive neuroscience, an increasing attention has been

put into biologically more realistic models able to capture the

cellular and circuit mechanisms instead of relying only on

more abstract behavioral models. In general, these models

are more complex than behavioral ones meaning that they

may have a higher number of parameters and more complex

differential equations. Therefore, although they fit the behav-

ioral data very well, it is not straightforward to recover their pa-

rameters. Recent works have tackled the problem of parame-

ter recovery from non-differentiable behavioral decision mak-

ing models like the diffusion model for conflict tasks (White,

Servant, & Logan, 2018) or the leaky competing accumula-

tor (Miletić, Turner, Forstmann, & van Maanen, 2017). How-

ever, the problem of parameter recovery of biologically realis-

tic models of decision making remains under-represented in

literature. In this study, we perform parameter recovery of a

neural model using deep learning as it is more computation-

ally efficient and reliable than other global optimization proce-

dures (Stonkute, 2019).

Methods

We simulated the data using the two competing variables neu-

ral mass model designed by Wong and Wang (2006) which

reproduces the evidence accumulation involved in decision-

making during a random dot leftward or rightward motion dis-

crimination task. The two populations interact via mutual in-

hibitory connections and self excitatory mechanisms. The in-

put is modeled as two different synaptic currents generated by

the stimulus and it is stronger at higher dot movement coher-

ence level. The model also considers a common non-selective

background input and a noisy current. Here, we used an ex-

tension of the model where the common background current

is modulated by a factor β to take into account the speed-

accuracy trade-off (Standage, Wang, & Blohm, 2014; Heitz &

Schall, 2012). The equations describing the output synaptic

currents of the two populations l and r are:

Isyn,l = JllSl − JlrSr + Il +βI0 + Inoise,l (1)

Isyn,r = JrrSr − JrlSl + Ir +βI0 + Inoise,r (2)

where Il,r are the stimulus-generated input currents, rl,r are

the firing rates of the neurons of the two populations, Sl,r are

the gating variables representing the activity of the two popu-

lations and Inoise,l,r Gaussian noise currents. These variables

are described by differential equations which are not reported

for simplicity, see (Wong & Wang, 2006) for a full description

of the model. For the parameters, Jll = Jrr = 0.2609nA is

the self-excitatory coupling strength, Jlr = Jrl = 0.0497nA the

mutual inhibitory coupling strength and β is the modulation of

the background current I0 = 0.3255nA.

We focused on recover four parameters: the excitatory

and inhibitory coupling strengths Jll and Jlr, the background

current modulation β and we defined a new parameter τnd

called non-decision time as a simple constant of time added

to the reaction time for each decision. Initially, the parame-

ter values have been drawn from the following uniform dis-

tributions: Jll = Jrr ∈ [0.25,0.30]nA; Jlr = Jrl ∈ [0,0.25]nA;

β ∈ [0.95,1.05]; τnd ∈ [100,500]ms.

To determine the intervals we searched for parameter val-

ues that gave a biologically plausible outputs. For example,

we expected the accuracy to be around 0.5 at 0% coherence

and increasing following a sigmoid-like function to saturate at

1 for higher coherence levels (Wong & Wang, 2006; Roitman

& Shadlen, 2002).

For each set of parameters, we computed the equations for

a total of 10,000 trials. Each trial had a maximum duration of

2.5s for a total of 2,500 iterations of 1ms each. A decision is

made if the activity Sl,r of one of the two accumulators reached

a threshold set at 15Hz. For simplicity, we assumed a positive

value for the coherence meaning that the correct direction of
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the points was always leftward. The output for each trial was

then 0 for rightward/wrong decisions, or 1 for leftward/correct

decisions. If the trial ended without either accumulators activ-

ities reaching the threshold, an output of −1 indicating a non-

decision has been generated. If the non-decision rate was

higher than 0.2 we discarded the sample. The results were

used to compute a set of features describing the performance

of the model for each set of parameters. We used the fol-

lowing 13 features: the accuracy calculated as the fraction of

correct choices over the total choices made, average reaction

times for correct and wrong choices and the 10th, 30th, 50th,

70th and 90th percentiles of the reaction times distributions for

wrong and correct choices.

We performed training and hyperparameter optimization

on a deep neural network with three fully connected lay-

ers using the 13 features as input and the four parame-

ters as outputs (all the Python scripts for data sampling and

deep learning training are publicly available at the repository

https://github.com/Emalude/wwparrecdl.

Results

The model fails to predict Jll values (R2 = 0.11) and performs

slightly better for the other parameters with R2 scores of 0.86,

0.69 and 0.88 for Jlr, β and τnd respectively. We hypothesized

that the difficulty of prediction might be due to the concur-

rency of Jll and β with a similar influence on the outputs of the

model. To test this hypothesis, we generated two new batches

of samples; in the first, we kept Jll = 0.2609 constant. In the

second we set β = 1. We repeated hyperparameter tuning

and training separately for the two batches with three param-

eters as output. The results with the absence of modulation

β are shown in Figure 1. The R2 scores are 0.95, 0.99 and

0.99 for Jll , Jlr and τnd respectively. When Jll is constant, R2

scores are 0.94, 0.90 and 0.92 for Jlr, β and τnd respectively.

Discussion

Our results suggest that parameters with a similar influence on

the output are difficult to recover with high accuracy. There-

fore, it is important to carefully design an experiment and com-

bine the parameter selection with previous knowledge about

the effects of those parameters and their variability across

subjects or conditions. For example, suppose that by analyz-

ing the behavioral outputs of a random dot motion experiment

on healthy and pathological subjects, our algorithm recovers

a significantly lower self-excitatory synaptic strength in sub-

jects with a certain pathology compared to healthy ones. We

could not use this as a final proof of the fact that the pathology

lowers Jll because we first need to address the possibility that

such difference in the behavioral output is caused by other pa-

rameters having a similar effects on the outputs in their range

of values (for example β).

Acknowledgments

This work was funded by the European Research Council

(716321).

Figure 1: Predictions for Jll , Jlr and τnd with other parameters

kept constant. Real parameters are on the x-axis and pre-

dicted values on the y-axis.
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