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Abstract
The paper considers the problem of unique recovery of sparse finite-valued integer 
signals using a single linear integer measurement. For l-sparse signals in ℤn , 2l < n , 
with absolute entries bounded by r, we construct an 1 × n measurement matrix with 
maximum absolute entry Δ = O(r2l−1) . Here the implicit constant depends on l and 
n and the exponent 2l − 1 is optimal. Additionally, we show that, in the above set-
ting, a single measurement can be replaced by several measurements with absolute 
entries sub-linear in Δ . The proofs make use of results on admissible (n − 1)-dimen-
sional integer lattices for m-sparse n-cubes that are of independent interest.

Keywords Sparse recovery · Finite-valued signals · Admissible lattices · Sparse 
hypercubes

1  Unique recovery of sparse bounded integer signals

Fix a set S ⊂ ℤ
n which will be referred to as a signal space. We will consider the 

problem of unique recovery of a signal x0 ∈ S from a relatively small number of 
noisy linear integer measurements, in the form introduced by Fukshansky et al. [9]. 
Specifically, given a number of measurements m with m < n , we aim to construct an 
integer measurement matrix A ∈ ℤ

m×n such that any signal x0 ∈ S can be uniquely 
recovered from m measurements represented by the vector b ∈ ℝ

m of the form

with an unknown noise vector e ∈ ℝ
m . To allow unique recovery we assume that

b = Ax0 + e

 * Iskander Aliev 
 alievi@cardiff.ac.uk

 Abdullah Alasmari 
 alasmariaa@cardiff.ac.uk

1 Mathematics Institute, Cardiff University, Cardiff, Wales, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-022-01927-0&domain=pdf


 A. Alasmari, I. Aliev 

1 3

where ‖ ⋅ ‖2 denotes the �2-norm and c is a suitably chosen constant.
Based on [9], we will use the following recovery approach. For a set Q ⊂ ℤ

n we 
denote by R(Q) the set of all matrices A ∈ ℤ

k×n with k < n , such that

Recall that the difference set D(X) of a set X ∈ ℝ
n consists of all points x − y with 

x, y ∈ X . We set c = 1∕2 and consider m × n measurement matrices A ∈ R(Q) with 
Q = D(S) . In this case, for any e ∈ ℝ

m with ‖e‖2 < c = 1∕2 , the signal x0 is the 
unique point of S satisfying the bound

Indeed, for any x ∈ S , x ≠ x0 , satisfying (2), we would have

contradicting (1). Therefore, x0 can be recovered by any algorithm that, given input 
b ∈ ℝ

m computes a vector x ∈ S satisfying (2).
We will now introduce some basic notation needed for stating our results. Given 

x = (x1,… , xn)
T ∈ ℝ

n , we will denote by ‖x‖0 = �{i ∶ xi ≠ 0}� the 0-“norm”, 
widely used in the theory of compressed sensing [5, 6], which counts the cardinality 
of the support of x . A vector x ∈ ℝ

n is called l-sparse if ‖x‖0 ≤ l . By ℤn
l
 we denote 

the set of l-sparse n-dimensional integer vectors:

Given positive integers n, r, we denote by Cn(r) the n-dimensional cube defined as 
Cn(r) = {x ∈ ℝ

n ∶ ‖x‖∞ ≤ r} , where ‖ ⋅ ‖∞ stands for the �∞-norm.
We will be interested in unique recovery of l-sparse signals with entries from a 

finite integer alphabet [−r, r] ∩ ℤ . Specifically, we will work with the signal space

where 2l < n.
The signal space Sn

l
(r) is finite and hence allows using a single measurement for 

unique recovery of its signals. From the computational and error-correcting perspec-
tives (see [9] for more details), the measurement should have as small as possible 
absolute integer entries. Hence, given l, n ∈ ℤ with 1 ≤ l < n∕2 , r ∈ ℤ>0 and letting 
Q = D(Sn

l
(r)) , we face the optimisation problem

‖e‖2 < c ,

(1)‖Ay‖2 ≥ 1 for any nonzero y ∈ Q .

(2)‖Ax − b‖2 ≤ 1

2
.

‖A(x − x0)‖2 = ‖Ax − b − (Ax0 − b)‖2
= ‖Ax − b + e‖2
≤ ‖Ax − b‖2 + ‖e‖2 < 1 ,

ℤ
n
l
= {z ∈ ℤ

n ∶ ‖z‖0 ≤ l} .

Sn
l
(r) = Cn(r) ∩ ℤ

n
l
,

(3)min{‖H‖∞ ∶ H ∈ ℤ
1×n, H ∈ R(Q)} .
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In this paper, we will obtain general estimates for the minimum in (3). Using condi-
tion (1), to get an upper bound for (3), it is sufficient to find an 1 × n measurement 
matrix H such that its kernel space does not share any nonzero integer points with 
the convex hull of D(Sn

l
(r)) . This straightforward approach, however, results in the 

estimate

where the implicit constant depends on l and n.
The first result of this paper shows that the exponent n − 1 in (4) can be replaced 

with 2l − 1 . Let

where Δ(m, n) = min(n − 1, ⌈(2n)(m−1)∕m⌉).

Theorem  1 For any l, n ∈ ℤ with 1 ≤ l < n∕2 and r ∈ ℤ>0 there exists an 1 × n 
integer matrix H such that H ∈ R(Q) with Q = D(Sn

l
(r)) and

The proof of Theorem  1 is constructive. To obtain the bound (5) we combine 
known results on unique recovery over ℤn

l
 , outlined in Sect.  2, with aggregation 

techniques, outlined in Sect. 4.
The second result gives a lower bound for the minimum in (3). Notably, it shows 

that the polynomial p2l,n(2r) in (5) cannot be replaced by a polynomial in r with 
degree smaller than 2l − 1.

Theorem  2 For any l, n ∈ ℤ with 1 ≤ l < n∕2 , r ∈ ℤ>0 and 1 × n integer matrix 
H ∈ R(Q) with Q = D(Sn

l
(r)) the bound

 holds.

Based on Theorems 1 and 2 we pose the following question. Let us fix the spar-
sity level l and dimension n. In this setting, it would be interesting to find optimal 
upper bounds for minimal ‖H‖∞∕r2l−1 when r tends to infinity. Specifically, given 
l, n ∈ ℤ>0 with 1 ≤ l < n∕2 , to estimate

where the supremum limit is taken over all positive integers r and the infimum is 
taken over all 1 × n integer matrices H ∈ R(Q) with Q = D(Sn

l
(r)) . Theorems 1 and 

2 give a large interval for values of this quantity

(4)‖H‖∞ = O(rn−1) ,

pm,n(r) = (mΔ(m, n)r + 1)m−1 + Δ(m, n)

m−2∑
i=0

(mΔ(m, n)r + 1)i ,

(5)‖H‖∞ ≤ p2l,n(2r) .

(6)‖H‖∞ >
r2l−1√
2l

(7)c1(l, n) = lim sup inf
‖H‖∞
r2l−1

,
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Although for finite signal spaces a single measurement is sufficient for unique 
recovery, one can ask whether allowing extra measurements would result in reduc-
ing measurements’ entries. In this vein, we obtain the following general result. Let 
Q ⊂ ℤ

n be an arbitrary set. Suppose that we have an 1 × n matrix H ∈ R(Q) . We 
show that, for any integer m with 1 < m < n , there exists an m × n matrix A = (aij) 
such that A ∈ R(Q) and the maximum absolute entry ‖A‖∞ = maxi,j �aij� is sub-lin-
ear in ‖H‖∞.

Let �r,s be the generalised Hermite constant, as defined by Rankin [14], that is 
the least number such that every lattice Λ of rank r in ℝr has a sublattice Γ of rank 
s and determinant

Here �r,1 = �r,r−1 = �r is the ordinary Hermite constant. For known results on the 
Rankin constant we refer the reader to the papers [14, 17, 19].

Theorem 3 Let Q ⊂ ℤ
n and let H be an 1 × n matrix such that H ∈ R(Q) . For any 

integer m with 1 < m < n , there exists an m × n matrix A such that A ∈ R(Q) and

where c2(m, n) = �
1∕2

n−1,n−m
n(n−m)∕(2(n−1)).

The proof of Theorem 3 makes use of results on rational subspaces obtained 
in [2]. Note that (8) improves the immediate bound ‖A‖∞ ≤ ‖H‖∞ when 
‖H‖∞ > c2(m, n)

(n−1)∕(m−1).

2  Unique recovery over ℤn

l

The papers [8, 9, 11, 12] consider the problem of unique recovery over the signal 
space ℤn

l
 , where l is a positive integer with 2l < n . In this setting, the difference 

set D(ℤn
l
) consists of 2l-sparse integer vectors, D(ℤn

l
) = ℤ

n
2l
. The unique recovery 

of signals from ℤn
l
 involves constructing matrices A ∈ ℤ

m×n with m = 2l and as 
large as possible n, that belong to R(ℤn

m
) . From the computational and error-cor-

recting perspectives (see [9] for more details), it is also desirable to fix or bound 
the maximum absolute entry ‖A‖∞ of the matrix A.

Konyagin [12, Theorem 3] proved the following theorem.

Theorem 4 For integers k,m ≥ 2 , and integer n with

1√
2l

≤ c1(l, n) ≤ (4lΔ(2l, n))2l−1 .

det(Γ) ≤ �1∕2
r,s

(det(Λ))s∕r .

(8)‖A‖∞ ≤ c2(m, n)‖H‖
n−m

n−1

∞ ,
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there exists an integer m × n matrix A ∈ R(ℤn
m
) such that ‖A‖∞ = k , where c is an 

absolute constant.

The proof of Theorem  4 employs probabilistic arguments to show existence of 
the desired measurement matrices. Subsequently, Konyagin and Sudakov [11, Theo-
rem 1.3] (see also Ryutin [16]) proved the following result using an explicit and easily 
computable construction.

Theorem 5 Let k ∈ ℤ>0 , m ∈ ℤ>0 , m ≥ 2 , and

Then there is an m × n integer matrix A ∈ R(ℤn
m
) such that ‖A‖∞ ≤ k.

Theorem 5 implies the following corollary.

Corollary 6 For any given m, n ∈ ℤ>0 , 2 ≤ m < n there exists an m × n integer 
matrix A ∈ R(ℤn

m
) with

3  Admissible lattices of m‑sparse n‑cubes

By a rational subspace  of ℝn we understand a subspace generated by integer vec-
tors. A rational hyperplane can be written as P = {x ∈ ℝ

n ∶ Hx = 0} , where 
H = (H11,… ,H1n) is an 1 × n integer matrix with gcd(H) ∶= gcd(H11,… ,H1n) = 1 . 
We say that P has height h(P) = ‖H‖∞.

For linearly independent b1,… , bl in ℝd , the set Λ = {
∑l

i=1
xibi, xi ∈ ℤ} is an 

l-dimensional lattice with basis b1,… , bl . Denoting by B the matrix with columns 
b1,… , bl , the determinant of Λ is defined as det(Λ) =

√
det(BTB) . A lattice Λ ⊂ ℝ

d is 
(strictly) admissible for a set X ⊂ ℝ

d if Λ does not contain any nonzero point of X, that 
is Λ ∩ X ⊂ {0} . For a comprehensive introduction to the theory of lattices we refer the 
reader to [7, 10].

Let r be a positive integer and m be a positive integer with 1 < m < n . We will con-
sider an m-sparse n-dimensional cube

Constructing single measurements for unique recovery of sparse integer signals 
is closely linked to constructing admissible (n − 1)-dimensional lattices for Cn

m
(r) . 

From the unique recovery perspective, it is desirable to find a rational hyperplane 
P of smallest possible height such that the lattice P ∩ ℤ

n is admissible for Cn
m
(r) . 

m < n ≤
c−mkm∕(m−1)

log(k)

(9)m < n ≤ max(k + 1, km∕(m−1)∕2) .

‖A‖∞ ≤ Δ(m, n) = min(n − 1, ⌈(2n)(m−1)∕m⌉) .

Cn
m
(r) = {x ∈ Cn(r) ∶ ‖x‖0 ≤ m} .
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Similarly to (3), we consider the following optimisation problem. Given m, n ∈ ℤ 
with 1 < m < n and r ∈ ℤ>0 , find

The proofs of Theorems 1 and 2 will be based on the following estimates for the 
minimum in (10) that are of independent interest.

Proposition 7 For any m, n ∈ ℤ with 1 < m < n and r ∈ ℤ>0 there exists a rational 
hyperplane P in ℝn such that the lattice P ∩ ℤ

n is admissible for Cn
m
(r) and

To prove Proposition 7 we combine constructions from the proof of Theorem 5 
with aggregation techniques outlined in Sect. 4. The next result shows that the poly-
nomial pm,n(r) in (11) cannot be replaced by a polynomial in r of degree smaller 
than m − 1.

Proposition 8 For any m, n ∈ ℤ with 1 < m < n , any r ∈ ℤ>0 and any rational 
hyperplane P in ℝn such that the lattice P ∩ ℤ

n is admissible for Cn
m
(r) the bound 

holds.

Similarly to (7), for m, n ∈ ℤ with 1 < m < n , it would be interesting to estimate

where the supremum limit is taken over all positive integers r and the infimum is 
taken over rational hyperplanes P in ℝn such that P ∩ ℤ

n is admissible for Cn
m
(r) . 

Propositions 7 and 8 imply the bounds

4  Consolidation/aggregation of linear Diophantine equations

The proof of Proposition 7 is based on consolidation/aggregation of linear Diophan-
tine equations. This topic has been extensively studied in the literature. We refer the 
reader to the papers [13, 15] and references within.

(10)

min{h(P) ∶ P is a rational hyperplane in ℝ
n such that the lattice P ∩ ℤ

n is

admissible for Cn
m
(r))} .

(11)h(P) ≤ pm,n(r) .

(12)h(P) >
rm−1√

m

c3(m, n) = lim sup inf
h(P)

rm−1
,

1√
m

≤ c3(m, n) ≤ (mΔ(m, n))m−1 .
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Let D ⊂ ℤ
n be a set of integer points, A ∈ ℤ

m×n , 2 ≤ m < n , be a matrix of rank 
rank(A) = m , and b ∈ ℤ

m.
Let B ∈ ℤ

l×m , l < m , be a matrix of rank l such that

Following [15], we will call B an m-into-l consolidating matrix and (BA)x − Bb = 0 
an m-into-l consolidation of Ax − b = 0 with respect to the set D.

Let further C ∈ ℤ
m×(m−l) be an integer matrix of rank(C) = m − l such 

that, for some consolidating matrix B, the columns of C span the kernel 
ker(B) = {x ∈ ℝ

m ∶ Bx = 0} . That is, denoting by span
ℝ
(C) the subspace spanned 

by the columns of C, we have span
ℝ
(C) = ker(B) . We will call C an aggregating 

matrix for Ax − b = 0 with respect to the set D.
We will write

and denote by Fi(x) the ith entry of the vector F(x) , that is F(x) = (F
1
(x),… ,F

m
(x))⊤.

Consider the set

This is the image of D under the linear mapping determined by the matrix A trans-
lated by the vector −b . The following well-known lemma describes very important 
properties of the consolidation/aggregation.

Lemma 9 Let B ∈ ℤ
l×m , l < m , be a matrix of rank l and C ∈ ℤ

m×(m−l) be a matrix 
of rank m − l . Then 

 (i) B an m-into-l consolidating matrix for Ax − b = 0 if and only if 
Fo ∩ ker(B) ⊂ {0}.

 (ii) C is an aggregating matrix of Ax − b = 0 if and only if Fo ∩ span
ℝ
(C) ⊂ {0}.

We will need the following lemma, given in [3, Theorem 6]. For completeness, 
we include a proof of this result as given in [15, Example 4.1].

Lemma 10 Assume that qi ∈ ℤ satisfy |Fi(x)| < qi for every 
x ∈ D such that F1(x) = ⋯ = Fi−1(x) = 0 , i = 1,… ,m − 1 . Then 
F1(x) + q1F2(x) + q1q2F3(x) +⋯ + q1 ⋯ qm−1Fm(x) = 0 is an m-into-1 consolida-
tion of F(x) = 0 with respect to the set D.

Proof We have to show that B = (1, q1,… , q1 ⋯ qm−1) is an m-into-1 consolidat-
ing matrix for F(x) = 0 . Let C = (cij) ∈ ℤ

m×(m−1) be defined by c1,k = q1�1,k for 
k = 1,… ,m − 1 and cij = qi�i,j − �i−1,j for i = 2,… ,m , j = 1,… ,m − 1 . Here �i,j 
stands for the Kronecker delta. That is

{x ∈ D ∶ (BA)x − Bb = 0} = {x ∈ D ∶ Ax − b = 0} .

F(x) = Ax − b ,

Fo = {F(x) ∶ x ∈ D} = {Ax ∶ x ∈ D} − b .
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We will show that C is an aggregating matrix for F(x) = 0 . It is sufficient to check 
that the inclusion Fo ∩ span

ℝ
(C) ⊂ {0} in the part (ii) of Lemma 9 holds. Suppose

for some v ∈ ℝ
m−1 and x ∈ D.

Observe that the greatest common divisor of (m − 1) × (m − 1) subdeterminants 
of C is equal to one. It follows that the columns of C form a basis of the lattice 
span

ℝ
(C) ∩ ℤ

m . Next, by (13) we have Cv ∈ ℤ
m . Therefore, v ∈ ℤ

m−1 . The first 
coordinate of Cv is q1v1 , hence |q1v1| = |F1(x)| < |q1| implies v1 = F1(x) = 0 . The 
second coordinate of Cv is q2v2 − v1 = q2v2 = F2(x) . Now by definition of q2 we 
have |q2v2| = |F2(x)| < |q2| and, consequently, v2 = 0 . Proceeding in this way we 
get v = 0.

Finally, it is easy to see that the columns of C span ker(B) . Hence B is an m-into-1 
consolidating matrix for F(x) = 0 .   ◻

5  Proofs of Proposition 7 and Theorem 1

We will begin with proving Proposition 7. The proof of Theorem 5 (Konyagin and 
Sudakov [11, Theorem  1.3]) gives two explicit constructions that can be used to 
obtain matrices A ∈ R(ℤn

m
) that satisfy conditions of Corollary 6. For completeness, 

we will outline these constructions here.
Observe first that A ∈ R(ℤn

m
) if and only if all m × m subdeterminants of A are 

nonzero. Therefore, if for some d satisfying m < n < d there exists an m × d matrix 
A ∈ R(ℤd

m
) , then an m × n matrix in R(ℤn

m
) can be obtained by removing any d − n 

columns from A. Set first k = n − 1 . The first construction gives A = (aij) ∈ R(ℤd
m
) 

with d ≥ k + 1 . The dimension d is chosen as an odd prime number satisfy-
ing k + 1 ≤ d ≤ 2k + 1 . Subsequently, the entries of the matrix A are defined as 
aij ≡ ji−1(mod d) with |aij| ≤ (d − 1)∕2 ≤ k . In particular, for all j we have a1j = 1 . 
Next, set k = ⌈(2n)(m−1)∕m⌉ . The second construction gives A = (aij) ∈ R(ℤd

m
) 

with d ≥ km∕(m−1)∕2 . The dimension d is chosen as a prime number with 
km∕(m−1)∕2 ≤ d ≤ km∕(m−1) . The entries of the matrix A satisfy aij ≡ lijj

i−1( mod d) , 
where lij are certain integers not divisible by d chosen in a such way that |aij| ≤ k . In 
particular, for all j one can take l1j = 1 , so that a1j = 1.

In both constructions above, renumbering the rows of A, we may assume that 
amj = 1 for all j. Set k = Δ(m, n) and for s = mk r + 1 take

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

q1 0 ⋯ 0 0

−1 q2 ⋯ 0 0

0 − 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ − 1 qm−1
0 0 ⋯ 0 − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(13)Cv = F(x)
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and

We will show that the hyperplane P = ker(H) satisfies the conditions of Proposition 
7.

Let F(x) = Ax and let Fi(x) denote the ith entry of F(x) , that is

For any x ∈ Cn
m
(r) and any i ∈ {1,… ,m} , we have

Lemma 10, applied with D = Cn
m
(r) ∩ ℤ

n and qi = s for i = 1,… ,m − 1 , implies that

Since A ∈ R(ℤn
m
) we have

Consequently, combining (14) and (15), the lattice P ∩ ℤ
n is admissible for Cn

m
(r).

Finally, we obtain the bound

that implies (11).

Remark 1 For given sparsity level m, dimension n and cube size r the set 
{F(x) ∶ x ∈ D} constructed in the proof will likely allow a more accurate choice of 
parameters qi in Lemma 10, resulting in an improvement on the bound (11). Further, 
aggregation techniques can be also applied to the matrices in R(ℤn

m
) obtained using 

a probabilistic approach from the proof of Theorem 4 (Konyagin [12, Theorem 3]).

5.1  Proof of Theorem 1

Let m = 2l . By Proposition 7, there is a rational hyperplane P in ℝn such that the lat-
tice P ∩ ℤ

n is admissible for Cn
m
(2r) ∩ ℤ

n and the bound

holds.
We can write P = ker(H) for an 1 × n integer matrix H with h(P) = ‖H‖∞ . The 

inclusion

B = (1, s,… , sm−1)

H = BA .

F1(x) = a11x1 +⋯ + a1nxn ,

⋮

Fm(x) = am1x1 +⋯ + amnxn .

Fi(x) ≤ ‖x‖0‖A‖∞r ≤ mk r < s .

(14){x ∈ Cn
m
(r) ∩ ℤ

n ∶ Hx = 0} = {x ∈ Cn
m
(r) ∩ ℤ

n ∶ Ax = 0} .

(15){x ∈ Cn
m
(r) ∩ ℤ

n ∶ Ax = 0} = {0} .

h(P) ≤ ‖H‖∞ ≤ sm−1 + k

m−2�
i=0

si

(16)h(P) ≤ pm,n(2r)
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implies the condition (1) with A = H and Q = D(Sn
l
(r)) . Hence H ∈ R(Q) . Finally, 

the bound (5) immediately follows from (16).

6  Proofs of Proposition 8 and Theorem 2

We will first prove Proposition 8. Let A ∈ ℤ
m×n , m < n , and let 

𝜏 = {i1,… , ik} ⊆ {1,… , n} with i1 < i2 < ⋯ < ik . We will denote by A� the m × k 
submatrix of A with columns indexed by � . In the same manner, given x ∈ ℝ

n , we 
will denote by x� the vector (xi1 ,… , xik )

⊤ . The complement of � in {1,… , n} will be 
denoted as 𝜏 . For matrices A of rank m, the notation gcd(A) will be used for the greatest 
common divisor of all m × m subdeterminants of A.

The proof makes use of the following version of Siegel’s Lemma obtained by Bom-
bieri and Vaaler [4, Theorem 2].

Theorem 11 Let M ∈ ℤ
m×n , m < n , be a matrix of rank m. There exist n − m lin-

early independent integer vectors y1,… , yn−m ∈ ker(M) satisfying

Suppose, to derive a contradiction, that Proposition 8 does not hold. Then for some 
m, n ∈ ℤ>0 with 1 < m < n , and r ∈ ℤ>0 there exists a rational hyperplane P in ℝn 
such that P ∩ ℤ

n is admissible for Cn
m
(r) and

There exists an 1 × n integer matrix H such that P = ker(H) and h(P) = ‖H‖∞ . Take 
� = {1,… ,m} . Observe that H cannot have zero entries, as otherwise its kernel P 
would contain the corresponding standard basis vectors. Hence, H� ≠ 0 . By Theo-
rem 11, applied with M = H� , there exists an integer vector x� ∈ ker(H� ) such that

By the upper bound (17) we have

Consequently, the lifted vector

D(Sn
l
(r)) ⊂ Sn

m
(2r) = Cn

m
(2r) ∩ ℤ

n

n−m�
i=1

‖yi‖∞ ≤

√
det(MMT )

gcd(M)
.

(17)h(P) ≤
rm−1√

m
.

(18)0 < ‖x𝜏‖m−1∞
≤

‖H𝜏‖2
gcd(H𝜏)

≤
√
m‖H𝜏‖∞ ≤

√
m h(P) .

‖x�‖∞ ≤ r .

(
x𝜏
0𝜏

)
∈ Cn

m
(r) ∩ P ∩ ℤ

n,
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contradicting the assumption that P ∩ ℤ
n is admissible for Cn

m
(r) . The obtained con-

tradiction completes the proof of Proposition 8.

Remark 2 A minor improvement of (18) can be obtained using a refinement of 
Siegel’s lemma proved in [1]. Further, the last inequality in (18) can be slightly 
strengthened using the following observation. Since P ∩ ℤ

n is admissible for Cn
m
(1) 

and m ≥ 2 , we may assume that H11 < H12 < ⋯ < H1n . This allows choosing H� 
with ‖H�‖ ≤ ‖H‖∞ − n + m.

6.1  Proof of Theorem 2

Take any l, n ∈ ℤ>0 with 1 ≤ l < n∕2 , r ∈ ℤ>0 and any 1 × n integer matrix 
H ∈ R(Q) with Q = D(Sn

l
(r)) . Consider the hyperplane P = ker(H) . Set m = 2l and 

observe that

Therefore, the lattice P ∩ ℤ
n is admissible for Cn

m
(r) and (12) implies (6).

7  Proof of Theorem 3

The proof of Theorem 3 is based on the following result, which is a special case of 
Proposition 1 (ii) in [2].

Proposition 12 Let S be an one-dimensional rational subspace of ℝn . When 
1 < m < n , there is a rational subspace T ⊃ S of dimension m in ℝn with

The constant �1∕2
n−1,n−m

 here is best possible.

Take any Q ⊂ ℤ
n and suppose that we are given an integer 1 × n matrix 

H ∈ R(Q) . Let m be an integer with 1 < m < n and let T be the subspace from Prop-
osition 12, applied to the rational subspace S of ℝn spanned by the row vector H.

By Theorem 11, applied with any (n − m) × n integer matrix M with T = ker(M) , 
there exist m linearly independent integer vectors g1,… , gm ∈ T  such that

For a proof of the last equality in (20) we refer the reader to [18, Corollaries 5I-J]. 
Now we can form a matrix A with rows g⊤

1
,… , g⊤

m
 , so that S ⊂ span

ℝ
(A⊤) . Observe 

that ker(A) ⊂ ker(H) and hence, A ∈ R(Q).
Finally, combining (20), (19) and the bound det(S ∩ ℤ

n) ≤
√
n‖H‖∞ , we get the 

estimate (8):

Cn
m
(r) ∩ ℤ

n ⊂ Q .

(19)det(T ∩ ℤ
n) ≤ �

1∕2

n−1,n−m
det(S ∩ ℤ

n)(n−m)∕(n−1) .

(20)‖g1‖∞ ⋯ ‖gm‖∞ ≤

√
det(MMT )

gcd(M)
= det(T ∩ ℤ

n) .
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