SEMG investigation of lower limb and abdominal muscles during progressions of a core stability exercise

Karen Jones Sophie Adcock Holly McCarthy

Background

What is core stability?

 Segmental extension – (Arokoski et al, 2001 and Akuthota and Nadler, 2004)

Minimal compensation

Background

- Clinical presentations
- Low level exercises
 - Posterior pelvic tilt exercise

Evidence

- SEMG of Abdominals
 - Vezina and Hubley-Kozey (2000) healthy
 - Hubley-Kozey and Vezina (2002) LBP
 - Drysdale et al (2004) healthy
 - Urquhart et al (2004) healthy

Gaps in evidence base

- PPTE investigating IO and EO activity
- Progression of PPTE exercises
- Consideration of compensatory activity

Aim

 Investigate bilateral IO and EO during a low level core stability exercise (PPTE), with two progressions (right leg drop out and a bilateral arm raise) and to monitor LL (bilateral hamstrings and Quadriceps) activity.

Design and method

- Same subject experimental design
- Convenience Sample healthy (n=22, females= 19 (mean 21.9 yrs)
- Measure SEMG bipolar, Bilaterally, Skin prep (Turker, 1993)
- Same day standard protocol Intra tester reliability for abdominals - (Ng et al, 2003 - ICC = 0.75-0.89)
- MVC (Dankaerts et al, 2003 ICC 0.91)
- Ethical approval / Data protection Act (1998)

Add electrodes LL

(Freriks et al, 1999)

Data processing / analysis

RSM average requested

Normalised

Averaged over three repetitions

Repeated measures ANOVA (p=< 0.05)

Bar graph showing abdominal muscle activity levels from Baseline to right leg drop out

Left IO decreased (p=0.667)

Right IO increased (p=0.185)

Left EO increased (p=0.05) *

Right EO increased (p=0.356)

Bar graph showing abdominal muscle activity levels from Baseline to arm raise

Left IO increased p=0.013) *

Right IO increased (p=0.03) *

Left EO increased (p=0.011) *

Right EO increased (p=0.007) *

Bar graph showing leg muscle activity levels from Baseline to leg drop out

Left hams decreased (p=0.742)

Right hams decreased (p=0.001) *

Left quads increased (p=0.091)

Right quads increased (p=0.001) *

Bar graph showing leg muscle activity levels from Baseline to arm raise

Left hams increased (p=0.018) *

Right hams increased (p=0.065)

Left quads increased (p=0.016) *

Right quads increased (p=0.002) *

Conclusions

Clinical relevance

Abdominals

Role of increased leg activity

Normal stabilising

DYNAMIC MVT

Abnormal compensation

ISOLATE

Limitations

- Small sample
- Quality of PPT
- Evaluation of back extensors

QUESTIONS?