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Summary

In recent years computer power has increased massively which consequently has led

to an increase in the size of data. The steep increase in size has led to a vast

need for more modern ways of analysing this data. Classical methods for analysing

data were intended for a low dimensional setting, hence an increasingly popular

method of analysing large data is to perform a dimension reduction technique �rst

to project the data into a lower dimension. A `good' dimension reduction technique

accurately predicts the correct dimension reduction subspace, without having a sig-

ni�cant impact on the computational e�ciency of the calculations. There are many

dimension reduction methods already developed but few have successfully achieved

a high level of accuracy without sacri�cing the computation time. Our aim is to

develop a method that rivals previous methods with high accuracy and those which

are e�cient computationally.

Another common drawback with classic methods is that not many are realistic

options for data where the dimension size exceeds the sample size, many depend

on calculating the inverse of the covariance matrix of the predictor variables which

becomes singular as the dimension size surpasses the sample size. It has also been

shown that many classic estimators of the central dimension reduction subspace do

not remain consistent when the dimension size is larger than the sample size.

There are two main contributions from this work, we have developed a dimen-

sion reduction method using Distance-Weighted Discrimination (DWD) which has

increased accuracy compared with classic methods and is computationally faster than

more recent methods. We have also developed a dimension reduction method which

can tackle larger datasets without being restricted by the dimension, and further

improved the computational e�ciency compared with classic methods in the form of

a feature partitioning algorithm.
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Chapter 1

Introduction

The computer capability available to the general population is increasing daily. The

average hard-drive capacity and memory of a computer is constantly increasing due

to technological growth and mass production causing a positive e�ect on the price of

large hard-drive capacity and memory. The speed of computers, and thus the overall

power, is also on the rise which has led to more and more data being collected every

day. It is predicted that each day approximately 2.5 quintillion bytes of data is

produced. We have seen an increase in not only the amount of data collected but

also the size of the data being collected. Big data is here, and we need e�cient ways

to analyse it.

1.0.1 Large data in the real world

Large data causes a plethora of problems from a dissemination standpoint, this is

commonly referred to as the curse of dimensionality. With a constantly changing

world what we class as high dimensional data is relative and continuously increasing.

Common occurrences of high dimensional data are medical records, web logs and

DNA analysis. Some of the common obstacles faced when handling high dimensional

data are explained below.

When the dimension is high using standard software and algorithms can be un-

realistic in normal time. For example, most vector optimisation algorithms require

optimising for each feature. For data with a dimension of 10 this can be costly but

realistic. If instead you have data with a dimension of 100,000 then the number of

possible vectors that need to be considered is extremely high.

If the dimension is higher than the sample size we refer to this data as high

dimension low sample size (hdlss) data. When this occurs then often over-�tting of

a model can happen. This refers to the model being to strongly �tted to the sample

data and therefore unable to generalise well. If this is the case then the model

is inaccurate for other samples of the data. The problem increases (inaccuracies

1



1. INTRODUCTION

increase) as the dimension size increases or the sample size decreases. This can occur

for smaller dimension data if the sample size is particularly small. For example, data

with a sample size of 50 and a dimension of 100 is far more likely to su�er from

over-�tting than data with a 100,000 samples and 20,000 features.

Another problem that occurs when the dimension is high in comparison to the

sample size is sparsity in the data. This can cause a reduction in statistical signi�-

cance as the data �lls less of the data space. If you require all data points to be a

maximum distance away from another data point then the number of sample required

to achieve that increases signi�cantly with each additional dimension. Alternatively

if you are measuring the distance between points, an aim common to clustering anal-

ysis, then the distance between each point will increase as the dimension increases.

This can be seen in the below plots.

Figure 1.1: Simulated normal 1-dimensional data with 50 samples.

Figure 1.2: Simulated normal 2-dimensional data with 50 samples.

In the 1-dimensional case it appears as though much of the data sit close to one

another. In the 2-dimensional case the distance between each point has increased

considerable and once again the distance between the points in the 3-dimensional

case is visibly higher than in the 1-dimensional and the 2-dimensional case.

2



Figure 1.3: Simulated normal 3-dimensional data with 50 samples.

Finally, visualisation is not as simple when the dimension of the data exceeds 3.

If the dimension of the data is larger than 3 it is often useful to attempt to visualise

di�erent slices of the data. Again, this is not realistic for larger dimensions. For

example, the number of combinations of 3 dimensional views possible is equal to(
dimension size

3

)
. For data with 10 features this is equal to 120. If the dimension is

10,000 then there are 166,616,670,000 di�erent combinations of 3 features.

1.0.2 Established dimension reduction methods

A popular way to reduce the problems caused by high dimensional data is to perform

a dimension reduction (DR) technique �rst. Reducing the data can lead to the di-

mension being a more manageable size for visualisation needs and classical analysing

tools. Therefore, it is more important than ever that accurate and computationally

e�cient DR methods are developed.

Numerous classical methods already exist for DR, Li (1991), Cook and Weisberg

(1991) and Li (1992). These methods are computationally e�cient, however often

produce less accurate results than many modern methods. The basic idea of dimen-

sion reduction is to �nd a linear combination of data which has a smaller dimension

and retains all of the information. The more information that is retain the more ac-

curate the method is. Producing a method which is computationally faster has never

been more important but it is vital that we achieve this without loss of accuracy.

A more recent method, developed by Li et al. (2011), proved e�ective at increasing

the accuracy in comparison to other methods, however was signi�cantly slower. We

3



1. INTRODUCTION

aim to extend the work developed by others to produce a method for linear models

which maintains the accuracy of newer methods and preserving the computational

e�ciency of the classical methods discussed.

The work produced by Li et al. (2011) combined linear DR methods and non-

linear DR methods under a uni�ed framework, which was the �rst method developed

of this kind. Many data models are linear, however often a linear model is not su�-

cient for capturing the data. When this occurs non-linear DR is required to correctly

reduce the dimension of the data. This motivates a need for a further extension of

our method, to produce a non-linear method which mirrors the advantages of the

linear method. Analogous to the work produced by Li et al. (2011), we will combine

the linear and non-linear method under a uni�ed framework.

In recent years, a considerable amount of focus has been put into adapting meth-

ods that separate the sample space or separating the feature space. The motivation

for the separation of the sample space is to help improve the computational e�ciency

of results produced from big data. All the methods we have already considered have

restrictions on the dimension size with respect to the sample size. By separating

the feature space, the restriction that is often present in classical methods can be

reduced, whilst ideally also improving or at least maintaining the computational e�-

ciency. When separating the feature space in order to perform DR, one can proceed

with a sequential based method or a parallel programming method. Previous work

had been produced which performs DR directly, with few assumptions, by sub-setting

the features and sequentially performing classical methods on the subsets.

We propose sub-setting the data by �rst decorrelating the variables which will

allow us to use classical methods simultaneously on multiple machines and subse-

quently reducing the calculation time. Decorrelating the variables of a dataset will

lead to restrictions on the dimension, similar to those found in classical methods.

A method which is accurate, computationally e�cient and has looser restriction on

the dimension size is extremely desirable. For this reason, further investigation will

be performed to evaluate the impact of replicating the previously de�ned method

without the decorrelation step.

1.1 Research aims

The main aims of this work are as follows:

1. To develop a new linear method of DR that maintains the accuracy of modern

methods while improving the computational e�ciency.

2. Extend the method as a uni�ed framework for linear and non-linear models.

4



1.2. THESIS STRUCTURE

3. Develop a new approach for DR through feature space partitioning by decor-

relating the variables.

4. Investigate the e�ects of reproducing a method of DR through feature space

partitioning, without decorrelating the variables.

1.2 Thesis structure

This work focuses solely on developing new DR techniques of di�erent types. Each

of the following chapters will take a similar form. Chapter 2 will concentrate on

adapting a new linear DR method. We will look to extend the work produced by

Li et al. (2011) in an attempt to improve the computational e�ciency. The chapter

will begin with a detailed literature review of previous work to help provide a clear

background to the work which follows. The sections describing our new linear method

will clearly outline the methodology with an estimation algorithm, an asymptotic

analysis which will de�ne any consistency restrictions, and an extensive simulation

study to highlight the bene�ts of our method compared with similar methods.

Chapters 3 is a smaller chapter describing di�erent types of order determination

with particular attention paid to our chosen method. It will also include some simu-

lation studies of our linear method using the chosen method for order determination.

The extension of our method into a uni�ed framework for linear and non-linear

models will be considered in chapter 4. Similar to chapter 2 we will begin with

a small literature review of previous work before giving more detail describing our

extension. The end of chapter 4 will contain simulation studies which will once again

compare our method with similar methods.

Chapter 5 will once again begin with a literature review which will consider DR

methods which separate the sample space and methods that separate the feature

space. Chapter 5 will continue with the methodology for our proposed method which

will begin with a method involving decorrelating the variables. We will then extend

this adaption to include separation of both the feature space and the sample space,

which will be concluded with a broad analysis of the method through synthetic

and real data examples. Following from this we will investigate an extension to

the method already developed, in which we skip the decorrelation step introduced.

Included will be an estimation algorithm for separating only the feature space and

whilst also separating the sample space. More simulation studies will be produced

to further access the impact of not decorrelating the variables. The �nal analysis

of this chapter will give a comparison between the methods with and without the

decorrelation step.

5



1. INTRODUCTION

The �nal chapter will consist of a conclusion and summary of all �ndings. A

short explanation of future extensions will also be included.

1.3 Publications from this work

Randall et al. (2020):

Hayley Randall, Andreas Artemiou and Xingye Qiao (2020). Su�cient dimension

reduction based on distance-weighted discrimination. Scandinavian Journal of Statis-

tics.

1.4 Contributions

The contributions from this work are:

1. Much of this work focuses heavily on increasing computational e�ciency which

is bene�cial for big data and real time data.

2. We have developed a simulation based dimension reduction method which sep-

arates the feature space without decorrelation the variables. This reduces the

restriction on requiring the starting dimension size to be smaller than the sam-

ple size.
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Chapter 2

Linear Su�cient Dimension

Reduction

Let n denote the sample size and p denote the dimension of the data. In a regression

setting, we have a p-dimensional predictor variable X and a response variable Y ,

where X is the data. Without loss of generality we only consider a univariate

response variable. Our aim is to �nd a p× d matrix β, where d < p, such that

Y X|βTX. (2.1)

In simple terms, we aim to �nd a set of linear combinations of the predictor vari-

ables, with dimension less than p, which can replace X without loss of information

on the conditional distribution of Y |X. In practice, we �nd the intersection of all

the subspaces spanned by the columns of all the β's, frequently named the dimension

reduction directions, that satisfy (2.1). We call this intersection the Central Dimen-

sion Reduction Subspace (CDRS) and is denoted by SY |X . The CDRS is proven to

exist and to be unique under mild conditions in Cook (1996) and Yin et al. (2008).

We will assume the CDRS to exist for the remainder of this work. If Y |βTX has the

same conditional distribution as Y |X, then this is known as Su�cient Dimension

Reduction (SDR).

Many dimension reduction methods rely on �rst standardisingX. This is possible

since the central subspace transforms equivariantly under a�ne transformations of

X, proved in Cook (1998). The following theorem de�nes this condition more clearly.

The proof is given in Li (2018) and is thus omitted.

Theorem 2.1 If A ∈ Rp×p is a nonsingular matrix and b ∈ Rp, then

SY |X = ATSY |ATX+b

All of the linear dimension reduction methods we discuss in this chapter have a

common assumption described below.
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2. LINEAR SUFFICIENT DIMENSION REDUCTION

Assumption 2.2 (Linear Conditional Mean (LCM) assumption) For β de�ned in

(2.1), we assume E[X|βTX] is a linear function of X.

This assumption has been proved to be equivalent toX having an elliptically con-

toured distribution and consequently allows E[X|βTX] to be expressed as P β(Σ)X,

where P β is the projection matrix β(βTΣβ)−1βTΣ. Another condition which is of-

ten, but not always, assumed in dimension reduction is described below.

Assumption 2.3 (Constant Conditional Variance (CCV) assumption) For β de-

�ned in (2.1), the conditional variance var[X|βTX] is a non-random matrix.

This assumption is satis�ed if X has a Gaussian distribution with a nonsingu-

lar covariance matrix. This condition combined with the LCM assumption de�ned

previously allows us to write var[X|βTX] as ΣQβ(Σ), where Qβ = I − P β(Σ).

One of the tricks many classic algorithms use for SDR is the idea of slicing the

response, which in most regression settings is a continuous random variable (see for

example Li (1991) and Li et al. (2011)). When the response is discrete this step is

ignored as each discrete value is considered a slice. This is performed as follows, let

ΩY be the support of Y . We then slice ΩY into h slices to give a disjoint subset Ai

of ΩY , where i = 1, . . . , h. The work produced by Li et al. (2011) uses classi�cation

and therefore the author de�nes A1 and A2 to be disjoint subsets of ΩY , to give

Ỹ = I(Y ∈ A1)− I(Y ∈ A2). (2.2)

The main di�erence is the requirement of two subsets at a time since the classi�cation

step depends on a response variable with at least two levels.

Throughout this section we assume the e�ective dimension d to be known. We

will discuss the literature on estimating d in the next chapter where we will also run

simulations to demonstrate how one of the methods to estimate d works without

proposed algorithm.

2.1 Previous work

Some literature on linear SDR includes and is not limited to Sliced Inverse Regres-

sion (SIR) by Li (1991), Sliced Average Variance Estimation (SAVE) by Cook and

Weisberg (1991), principal Hessian directions (pHd) by Li (1992), Contour Regres-

sion (CR) by Li et al. (2005), Slice Inverse Mean Di�erence by Artemiou and Tian

(2015) and Slice Inverse Median Di�erence by Babos and Artemiou (2020), among

others. A brief summary of some of the methods is given below.
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2.1.1 Sliced inverse regression

In a seminal work by Li (1991), Sliced Inverse Regression (SIR) was proposed. SIR

aims to �nd vectors of length p known as the su�cient dimension reduction directions,

βi's, using the inverse regression curve. The author de�nes the dimension reduction

under the regression model:

Y = f(βT1X,βT2X, . . . ,βTdX, ε) (2.3)

Remark 2.4 The work by Li (1991) was developed before the existence of the dimen-

sion reduction subspace was proved. This work instead de�nes an e�ective dimension

reduction (EDR) space and the directions that span the space (βi's) to be the EDR

directions.

Ordinarily in regression we regress Y against X (forward regression), whereas

we can instead choose to regress X against Y . By switching the roles of X and

Y we are then dealing with p one-dimensional regression problems rather than one

p-dimensional regression problem. The inverse regression curve is given by E[X|Y ]

as Y varies. The centre of the inverse regression curve is located at E[X|Y ] = E[X]

and therefore the centred inverse regression curve is given by E[X|Y ] − E[X]. The

following theorem is the basis for the SIR methodology.

Theorem 2.5 Under assumption 2.2 and model (2.3), the centred inverse regression

curve E[X|Y ] − E[X] is contained in the linear subspace spanned by βTi Σ, for i =

1, . . . , d and Σ is the covariance of X.

This is also true for standardised X denoted by Z.

Corollary 2.6 Under assumption 2.2 and model (2.3), the centred inverse regression

curve E[Z|Y ] is contained in the linear subspace spanned by ηi, where i = 1, . . . , d

and the ηi's are the standardised EDR directions.

Consequently, the covariance matrix cov[E[Z|Y ]] is degenerate in any direction

orthogonal to the ηi's. This is because an eigenvalue decomposition of a covariance

matrix gives the variation of the space. There will be no variation in any direc-

tions orthogonal to ηi's since E[Z|Y ] is contained within the space spanned by the

ηi's. Therefore, the d eigenvectors of cov[E[Z|Y ]], corresponding to the d largest

eigenvalues, are the standardised EDR directions.

To align the notation and terminology with later work, the above can be rewritten

as follows.

Corollary 2.7 Under assumption 2.2 and model (2.3), the centred inverse regression

curve E[X|Y ] ∈ SY |Z . Consequently, the column space of cov[E[Z|X]] ∈ SY |Z .
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2. LINEAR SUFFICIENT DIMENSION REDUCTION

The general method for the data (Yi,Xi) i = 1, . . . , n, as described in Li (1991)),

is as follows:

1. Standardise X by an a�ne transformation to get

Z = Σ̂
−1/2

(Xi − X̄) i = 1, . . . , n,

where X̄ and Σ̂ are the sample mean and sample variance of X, respectively.

2. Divide the range of Y into h slices, A1, . . . , Ah; let the proportion of the Yi

that falls in slice r be p̂r, where r = 1, . . . , h; that is

p̂r =
1

n

n∑
i=1

δr(Yi) δr(Yi) =

1, Yi ∈ Ar

0, otherwise

3. Within each slice, compute the sample mean of the Zi's denoted by m̂r, r =

1, . . . , h, so that

m̂r =
1

np̂r

n∑
i=1

Ziδr(Yi).

4. Conduct a (weighted) principal component analysis for the data m̂r, r =

1, . . . , h in the following way: Form the weighted covariance matrix

V̂ =

h∑
r=1

p̂jm̂rm̂
T

r

then �nd the eigenvalues and eigenvectors for V̂

5. Let the d largest eigenvectors (row vectors) be the standardised directions,

denoted by η̂k, k = 1, . . . , d. Therefore the su�cient dimension reduction

directions are

β̂k = η̂kΣ̂
−1/2

.

Even though SIR is the �rst method of its kind it still yields faster results when

compared with many modern methods. However, it is not generally as accurate as

newer methods, described below.

2.1.2 Sliced average variance estimate (SAVE)

In a comment following Li (1991), Cook and Weisberg (1991) considered the case

where SIR fails when E[Z|Y ] = 0 for all Y . Since var[Z|Y ] does di�er from slice to

slice, this led them to the conclusion that the dimension reduction directions can be

determined by using the second or higher moments.
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Remark 2.8 This work was also developed before the existence of the dimension

reduction subspace was proved. It has been shown that the SAVE method can also be

used to estimate the CDRS. Therefore, instead of de�ning the below using the EDR

space we will use the CDRS for consistency.

Theorem 2.9 Under assumption 2.2, 2.3 and model (2.3), the column space of

(I − var[Z|Y ])2 is a subspace of SY |Z .

Therefore following a similar method as SIR, the eigenvalues corresponding to

the d largest eigenvectors of ∑
r

(I − var[Z|Y ∈ Ir])2

span the CDRS.

This method has similar advantages and disadvantages as SIR when comparing

speed and accuracy. The additional CCV assumption required for SAVE is more

restrictive than the LCM alone. This makes SIR a more desirable choice when

E[Z|Y ] 6= 0. This does not negate the value of the work but does highlight the

limitations compared with other methods.

2.1.3 Principal Hessian directions (pHd)

Further study of SIR indicated that the inverse regression curve was always degen-

erate when g, as de�ned in (2.3), is symmetric about X. In addition to SAVE, pHd

o�ered an alternative remedy for this limitation.

The Hessian matrix H is a square matrix given by the second order partial

derivatives of a function. We denote the average hessian matrix as E[H] = Ĥ.

It was determined that the Hessian matrix, and consequently the average hessian

matrix, of E[Y |X] will be degenerate in any directions orthogonal to the CDRS. We

de�ne the eigenvectors of Ĥ to be the principal hessian directions (pHd's).

Theorem 2.10 Under assumption 2.2, 2.3 and model (2.3), the rank of the average

Hessian matrix,Hx, is at most d. Moreover, the pHd's corresponding to the non-zero

eigenvalues span the CDRS.

Corollary 2.11 Using Stein's Lemma, when X is normal, the average Hessian

matrix H̄x is related to the covariance matrix

Σyxx = E[(Y − µy)(X − µx)(X − µx)T]

through the identity

H̄x = Σ−1x ΣyxxΣ−1x ,
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2. LINEAR SUFFICIENT DIMENSION REDUCTION

where Σx denotes the covariance of X and µy and µx are the means of Y and X

respectively.

Using this the author then found that whenX is normal, the dimension reduction

directions can be found by obtaining the eigenvectors for the eigenvalue decomposi-

tion of Σyxx with respect to Σx. Let X̄ and Σ̂ denote the sample mean and sample

variance of X, respectively. The general method for the data (Yi,Xi) i = 1, . . . , n,

given in Li (1992), is as follows:

1. Form the matrix

Σ̂yxx =
1

n

n∑
i=1

(Yi − Ȳ )(Xi − X̄)(Xi − X̄)T.

2. Conduct an eigenvalue decomposition of Σ̂yxx with respect to Σ̂x:

Σ̂yxxβ̂yj = λ̂yjΣ̂xβ̂yj , j = 1, . . . , p.

2.1.4 Contour regression

As discussed previously, earlier methods were found to be computationally inexpen-

sive bit not always exhaustive of the central dimension reduction space. It was found

that SIR failed when the regression curve was symmetric and SAVE and pHd are

only exhaustive when normality is assumed which is a restrictive assumption. In-

stead contour regression was introduced in an aim to predict the central dimension

reduction subspace without the additional normality assumption.

Contour regression, Li et al. (2005), aims to predict the central dimension reduc-

tion subspace by �nding the contour directions (directions along which the response

surface is �at) and these direction will span the orthogonal central subspace, S⊥Y |X .

Two approaches are proposed, SCR (Simple Contour Regression) and GCR (General

Contour Regression) which will both be described below.

2.1.4.1 Simple contour regression (SCR)

To de�ne the methodology for simple contour regression (SCR) we �rst need to de�ne

the below assumption.

Assumption 2.12 For any choice of vectors v ∈ SY |X and w ∈ S⊥Y |X such that

‖v‖ = ‖w‖ = 1, and some constant c > 0, we have

var
[
wT(X̃ −X)||Ỹ − Y | ≤ c

]
> var

[
vT(X̃ −X)||Ỹ − Y | ≤ c

]
(2.4)

where (X̃, Ỹ ) is an independent copy of (X, Y ).
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2.1. PREVIOUS WORK

Now we de�ne the matrix

K(c) = E
[
(Z̃ −Z)(Z̃ −Z)||Ỹ − Y | ≤ c

]
where Z and Z̃ are the standardised versions of X and X̃, respectively.

The following theorem is taken from Li et al. (2005).

Theorem 2.13 Under assumptions 2.1 and 2.12, the eigenvectors of K(c) corre-

sponding to the d smallest eigenvalues span the central subspace SY |Z .

The estimation procedure for SCR, as described by Li et al. (2005), is as follows:

1. Compute the sample mean and sample variance matrix of the predictor X,

denoted X̄ and Σ̂, respectively.

2. Compute the matrix-valued U -statistic:

Ĥ(c) =
1(
n
c

) ∑
(i,j)∈N

(Xj −Xi)(Xj −Xi)
TI(|Yj − Yi| ≤ c),

where N is the index set {(i, j) : i = 2, . . . , n; j = 1, . . . , i− 1}.

3. Compute the spectral decomposition of Σ̂
−1/2

Ĥ(c)Σ̂
−1/2

and let β̂p−d+1, . . . , β̂p

be the eigenvectors corresponding to the smallest d eigenvalues.

4. The span of these eigenvectors estimates SY |Z , where Z is the standardised

version of X. Thus, the estimate of the CDRS is

ŜY |X = span(Σ̂
−1/2

βp−d+1, . . . , Σ̂
−1/2

βp).

2.1.4.2 General contour regression (GCR)

SCR uses the inequality |Ỹ − Y | ≤ c. If the regression function is nonmonotone

then this method can be less accurate than other methods since this inequality also

picks up other directions. These directions are averaged out which ensures that SCR

remains
√
n-exhaustive however it can decrease the e�ciency of the method. In an

aim to reduce the ine�ciencies introduced by using this inequality the author also

introduced general contour regression (GCR). Similar to SCR, GCR depends on an

additional assumption.

Assumption 2.14 For any choice of vectors v ∈ SY |X and w ∈ S⊥Y |X such that

‖v‖ = ‖w‖ = 1, and some constant c > 0, we have

var
[
wT(X̃ −X)|V (X, X̃) ≤ c

]
> var

[
vT(X̃ −X)|V (X, X̃) ≤ c

]
(2.5)

where (X̃, Ỹ ) is an independent copy of (X, Y ).
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2. LINEAR SUFFICIENT DIMENSION REDUCTION

Once again we de�ne a matrix

G(c) = E
[
(Z̃ −Z)(Z̃ −Z)|V (Z, Z̃) ≤ c

]
where Z and Z̃ are the standardised versions of X and X̃, respectively.

Theorem 2.15 Under assumptions 2.1 and 2.14, the eigenvectors of G(c) corre-

sponding to the d smallest eigenvalues span the central subspace SY |Z .

2.2 Using classi�cation for su�cient dimension

reduction

It was shown in Li et al. (2011) that classi�cation methods could be used as a tool

for su�cient dimension reduction. We will give an overview of the classi�cations

methods �rst and then we will discuss how these can be used for dimension reduction.

There are many successful methods with regards to classi�cation, a common

method is Vector Machines (SVM), Vapnik (1998). The basic idea behind classi�-

cation, is to construct a set of hyperplanes to separate the observations, or classify,

using the predictor variables. A `good' separation is de�ned to be a hyperplane that

is of maximum distance from the points closest to the hyperplane vectors of both

classes. When creating a classi�cation model, it is common practice to split your

data into training data and testing data. The size of the split will depend on the

number of samples you begin with, but the size of the training data is usually much

larger than the testing data. The model is then built on the training data and tested

for inaccuracies on the testing data.

2.2.1 Linear support vectors machines (SVM)

For SVM, the points on the boundary of each class (closest to the separating hyper-

plane) are called the support vectors. In the linear setting a hyperplane takes the

form

ψTx− t = 0,

where ψ is the normal to the hyperplane and the parameter t is proportional to the

distance of the hyperplane from the origin. Depending on whether the training data

is linearly separable or not, determines how the best hyperplane is constructed.

When the data is linearly separable, we use what is called the hard-margin

approach. Assuming the yi's take the values 1 and -1, we create two parallel hy-

perplanes, given by the equations ψTx − t = ±1, which separate the data and are

of maximum distance from one another. The margin between these hyperplanes is

2/‖ψ‖ and thus to maximise the distance we need to minimise ‖ψ‖. Finally, we
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2.2. USING CLASSIFICATION FOR SUFFICIENT DIMENSION REDUCTION

need to ensure that all data point remain outside of the margin. Thus the constraint

yi(ψ
Txi − t) ≥ 1 is introduced and our problem becomes

minψTψ subject to yi(ψ
Txi − t) ≥ 1, for i = 1, . . . , n.

When the data is not linearly separable, we now have to use what is known as

the soft-margin approach. In this case the optimisation problem takes the form

minimise ψTψ +
λ

n

n∑
i=1

ξi among (ψ, t, ξ) ∈ Rp × R× Rn

subject to Yi[ψ
T(Xi − X̄)− t] ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n,

(2.6)

where λ > 0 is a cost parameter and ξ is the vector of ξi's. The penalisation vector,

ξ, takes values ξi = 0 for correctly classi�ed points and ξi > 0 for misclassi�ed points.

The constraints are equivalent to

ξi ≥ max{1− Yi
[
ψT(Xi − X̄)

]
, 0} =

(
1− Yi

[
ψT(Xi − X̄)

])+
. (2.7)

Hence the optimisation problem can be rewritten as

ψTψ +
λ

n

n∑
i=1

(1− yi(ψTxi − t))+. (2.8)

There have been a number of extensions of the SVM classi�cation technique,

including least square SVM, Suykens et al. (2002), and LqSVM �rst proposed by

Burgess and Crisp (1999).

2.2.2 Linear distance-weighted discrimination (DWD)

One of the most interesting variations of SVM was proposed by Marron et al. (2007)

and is known as Distance-Weighted Discrimination (DWD). It was recognised that

the generalisation performance of SVM in many high dimension low sample size

(hdlss) cases was poor. This is due to the fact that SVM su�ers from data piling

when the dimension of the predictor space is large (see Figure 2.1).

It was predicted that if the dimension is much larger than the sample size then the

SVM model is over-�tted to the training data. Therefore, it will be extremely useful

for describing the training data but not general enough to be used with other data.

We have previously discussed how SVM works by maximising the distance between

the support vectors which sit on two orthogonal boundary planes. When the data

are projected onto the normal vectors, which are orthogonal to the boundary planes,

the support vectors will be projected to one of two common points. With hdlss data,

the number of support vectors can be quite large and therefore a large amount of

data is projected to the two common points.
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2. LINEAR SUFFICIENT DIMENSION REDUCTION

To try and prevent this from occurring Marron et al. (2007) chose to estimate the

hyperplane that was of maximum distance from each point by optimising the sum

of the inverse distances. Using this method, it is clear that the points closest to the

hyperplane will in�uence the direction, more than the points further away, while at

the same time the points further away still have some in in�uence, unlike in SVM.

Figure 2.1: Density of projections for n = 1000. Top panel: p = 500; bottom panel: p = 1000. The
datasets consists of two classes of points taken from the model Y = X1 + ε.

2.2.2.1 Flexible high-dimensional classi�cation machines and their

asymptotic properties (FLAME)

We have already described that a strength of DWD compared with SVM is the lack of

data piling. However, DWD is more sensitive to imbalanced data than SVM which

was highlighted by Qiao and Zhang (2015). Imbalanced data, in a classi�cation

setting, is data that contains more samples in one class than another. The work by

Qiao and Zhang (2015) aimed to take advantage of this by constructing a composite

function which included the strengths of both DWD and SVM. By �rst rewriting

the DWD loss function as

V (u) =

2
√
λ− λu, if u ≤ 1√

λ

1/u, otherwise
(2.9)

and producing a modi�ed hinge loss function

H∗(u) =


√
λ− λu, if u ≤ 1√

λ

0, otherwise
. (2.10)
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2.2. USING CLASSIFICATION FOR SUFFICIENT DIMENSION REDUCTION

The composite function takes the form

L(u) =
(
V (u)− θ

√
λ
)+

=


(2− θ)

√
λ− λu, if u ≤ 1√

λ

1/u− θ
√
λ, if 1√

λ
≤ u < 1

θ
√
λ

0, otherwise

, (2.11)

where 0 ≤ θ ≤ 1.

2.2.2.2 Review of DWD problem

Let (Xi, Yi), i = 1, . . . , n be an i.i.d sample of (X, Y ). Denote X̄ = n−1
∑n

i=1Xi

and Σ = var(X). Now suppose Y is a binary random variable, which takes values

±1. DWD is de�ned by the following optimisation problem:

minimise
n∑
i=1

1

ri
+
λ

n

n∑
i=1

ξi among (r,ψ, t, ξ) ∈ Rp × R× Rn

subject to ri = Yi[ψ
T(Xi − X̄)− t] + ξi ≥ 0, ξi ≥ 0, i = 1, . . . , n, ‖ψ‖ ≤ 1,

(2.12)

where r is a vector of all ri's and ξ is the vector of all ξi's. Here λ > 0 is a tuning

parameter also called the cost (or misclassi�cation penalty) and ξ is a penalisation

vector where ξi = 0 for correctly classi�ed points and ξi > 0 for misclassi�ed points.

The above optimisation problem can be written slightly di�erently using the

following vector form (for details, see Qiao and Zhang (2015):

ψTψ +

n∑
i=1

[ [
Yi[ψ

T(Xi − X̄)− t] +
(

1√
λ
− Yi[ψT(Xi − X̄)− t]

)+]−1
+λ
(

1√
λ
− Yi[ψT(Xi − X̄)− t]

)+ ]
,

(2.13)

where the �rst term comes from the constraint ‖ψ‖ ≤ 1 and the rest from replacing

ξi with the hinge loss
(

1√
λ
− Yi[ψT(Xi − X̄)− t]

)+
.

2.2.2.3 Another look at DWD - A novel algorithm

The main aim of the work produced by Wang and Zou (2015) was to produce an

alternative algorithm for DWD that would be faster than the second-order-cone pro-

gramming (SOCP) problem that was proposed by Marron et al. (2007) and develop

more work in relation to non-linear DWD. Wang et al. (2016) utilise the majorisation-

minimisation (MM) principal whilst developing their computationally superior algo-

rithm, which calculates the solution to the generalised DWD loss function. Before

we consider the general DWD loss function we will rewrite the DWD function that

we have already considered as:
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2. LINEAR SUFFICIENT DIMENSION REDUCTION

De�nition 2.16 The loss function for the generalised DWD classi�er is written as

min
ψ,t

C(ψ, t) = min
ψ,t

[
1

n

n∑
i=1

Vq(yi(ψ
Txi + t)) + λψTψ

]
(2.14)

for some λ, where

Vq(u) =

1− u if u ≤ q
q+1

1
uq

qq

(q+1)q+1 if u > q
q+1

(2.15)

Now since this function is di�erentiable everywhere, Wang and Zou (2015) com-

pleted all the steps of the MM algorithm to produce the computationally faster DWD

algorithm shown below.

1. Initialise (t̃, ψ̃), the common choice is 0p+1.

2. Compute P−1(λ):

P−1(λ) =

(
n 1TX

XT1 XTX + 2nλ
M Ip

)−1
.

3. Compute z = (z1, . . . , zn) : zi = yiV
′
q (yi(ψ̃

T

xi + t̃))/n.

4. Compute: (
t

ψ

)
=

(
t̃

ψ̃

)
− nq

(q + 1)2
P−1(λ)

(
1T

XTz + 2λψ̃

)
.

5. Set (t̃, ψ̃) = (t,ψ).

6. Repeat steps 2-5 until convergence condition is met. A commonly used con-

vergence condition is to continue until ‖(t̃, ψ̃) − (t,ψ)‖2 is less than a given

tolerance.

Each test that Wang and Zou (2015) performed showed that this algorithm was

considerable quicker than the algorithm proposed by Marron et al. (2007).

2.2.3 Linear principal support vector machines (PSVM)

Principal Support Vector Machines (PSVM), Li et al. (2011), proposes a new ap-

proach to SDR using SVM as a tool. It was established by Li et al. (2005) that

the contours of the regression function span S⊥Y |X , the space orthogonal to the cen-

tral space SY |X . The authors of PSVM proposed that classi�cation methods, more

speci�cally SVM, can be used to estimate the contours of the regression function and

therefore estimate the central space. An example showing the relationship between

the hyperplanes produced using SVM and the contours of the regression function is

given later.
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The basic idea behind PSVM is to splitX1, . . . ,Xn into h slices according to the

values of the response variable. SVM is then used to to �nd the optimal hyperplanes

to split these slices. Next Principal Component Analysis (PCA) is used on the

normal vectors of the hyperplanes. It can be shown that the principal components

are an unbiased estimator of the central SDR subspace. More detail of the method

is described below.

Consider the regression model

Y = f(2X1 +X2) + ε. (2.16)

Here the central subspace is spanned by (2, 1)T and thus the contours for this regres-

sion function are de�ned as the set {(x1, x2) : 2x1 + x2 = c}. Our aim is to estimate

the contours using the hyperplanes generated from performing SVM or DWD on

multiple slices of X, corresponding to the values of Y . As described in Li et al.

(2011), the normals of these hyperplanes are approximately aligned with the direc-

tions that form the central subspace. Therefore, the the principal components of

these normals can be used to estimate the central subspace.

Figure 2.2: Linear contours for model Y = 2X1 +X2 + ε. Left panel: true contours; centre panel:
contours from SVM; right panel: contours from DWD.

To show this, using model (2.16) with f as the identity mapping, we generate

100 replicates. X1, . . . ,X100 is then split corresponding to the 25th, 50th and 75th

sample quantiles of Y , which are shown by di�erently coloured dots in Figure 2.2.

The centre panel and right panel show the hyperplanes formulated from these slices

using SVM and DWD respectively and the left panel shows the true contours. We

can see that the contours estimated using both SVM and DWD closely resemble

the contours derived directly from the model. Therefore we can determine that the
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normals of these hyperplanes gives relatively accurate approximations of the central

subspace.

The PSVM objective function is given as:

L(ψ, t) = ψTΣψ + λE[1− Ỹ [ψ̃T(X − E[X])− t]]+ (2.17)

where a+ = max{a, 0}, Σ = var[X] and Ỹ is the sliced Y described in (2.2).

Theorem 2.17 Let (ψ∗, t∗) be the minimisers of (2.17) for all (ψ, t) ∈ Rp×R, then
under assumption 2.1, ψ∗ ∈ SY |X .

In linear PSVM there were two ways proposed to choose the slices; left versus

right (LVR) and one versus another (OVA). Generally, one would choose LVR if the

response is continuous and OVA if the response is categorical.

2.2.3.1 Estimation algorithm

The estimation algorithm, given by Li et al. (2011), is as follows:

1. Compute the sample mean X̄ and sample variance matrix Σ̂.

2. (LVR) Let qr, r = 1, . . . h − 1, be h − 1 points that will be used to slice the

data and let

Ỹ r
i = I(Yi > qr)− I(Yi ≤ qr)

for i = 1, . . . , n. Let (ψ̂r, t̂r) be the minimisers of the SVM objective function

ψTΣ̂ψ + λEn

[
1−

(
Ỹ r(ψT(X − X̄)− t)

)+]
.

(OVA) Apply SVM to each pair of slices from the h slices. More speci�cally,

let q0 = min{Y1, . . . , Yh} and qh = max{Y1, . . . , Yh}. Then for each (r, s) such

that 1 ≤ r < s ≤ h, let

Ỹ rs
i = I(qs−1 < Yi ≤ qs)− I(qr−1 < Yi ≤ qr).

Let (ψ̂rs, t̂rs) be the minimisers of the SVM objective function

ψTΣ̂ψ + λEn

[
1−

(
Ỹ rs(ψT(X − X̄)− t)

)+]
.

3. Let v̂1, . . . , v̂d be the d leading eigenvectors of one of the matrices

M̂n =

h−1∑
r=1

ψ̂rψ̂
T

r or M̂n =

h−1∑
r=1

h∑
s=r+1

ψ̂rsψ̂
T

rs.

We can now estimate SY |X using the subspace spanned by v̂ = (v̂1, . . . , v̂d).
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Similar to SVM in a classi�cation setting, there are many extensions of PSVM us-

ing the extensions of SVM. Principal LqSVM (PLqSVM) was introduced by Artemiou

and Dong (2016), which investigates for q > 1. When q > 1 the objective function

for LqSVM becomes strictly convex and ensures the uniqueness of the solution which

was highlighted by the author. Another extension, developed by Artemiou et al.

(2020), named principal least square SVM (PLSSVM) substitutes the classic SVM

objective function with the least square SVM function. This leads to an explicit

function rather than an optimisation problem. Others include Zhou and Zhu (2016)

who used a minimax variation for sparse SDR, Shin and Artemiou (2017) replaced

the hinge loss with a logistic loss to achieve the desired result, Shin et al. (2017) used

weighted SVM approach for binary responses and both Artemiou and Shu (2014) and

Smallman and Artemiou (2017) focused on removing the bias due to imbalance.

2.3 Linear principal distance-weighted

discrimination(PDWD)

The results in this section also appeared in Randall et al. (2020). Our aim is to

investigate whether DWD has similar advantages over SVM in the SDR framework,

as the ones it has in the classi�cation framework. We will create a similar method

as the one in Li et al. (2011) with the di�erence that the objective function of

DWD will replace the objective function of SVM. We call our method Principal

DWD (PDWD) following a similar pattern to Li et al. (2011) calling their method

Principal SVM. Interestingly, results show that actually DWD works better than

SVM for low-dimensional problems and as the dimension increases two methods

converge. Thus, data piling seems to help the dimension reduction framework in the

regression setting. This observation may be explained due to the fact that in the

regression setting we are more interested in a hyperplane alignment than reducing

misclassi�cation error. Therefore, data piling may help �stabilise� the alignment of

the hyperplane on the correct direction for PSVM.

2.3.1 Linear su�cient dimension reduction using

distance-weighted discrimination (DWD)

In the dimension reduction framework, we are interested to work with the population

version of the DWD objective function. The version of the DWD population function,
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�rst introduced in Qiao and Zhang (2015), is as follows:

ψTψ + E

[ [
Y [ψT(X − E[X])− t] +

(
1√
λ
− Y [ψT(X − E[X])− t]

)+]−1
+λ
(

1√
λ
− Y [ψT(X − E[X])− t]

)+ ]
.

(2.18)

There were a number of extensions of the DWD algorithm. Some include the

weighted DWD approach by Qiao et al. (2010) and the sparse DWD approach by

Wang and Zou (2016). Marron et al. (2007) as well as the extensions discussed

above used cone programming to solve the optimisation problem in (2.12) (or the

respective one for each extension). More recently, Wang and Zou (2015) proposed

the generalised DWD algorithm which allows for faster computational calculations.

In this work, we utilise their idea and thus our estimation algorithm is much faster

than previous methodology in the SVM-based SDR framework.

Analogous to PSVM there are two ways one can choose the slices; left versus

right (LVR) and one versus another (OVA). Replacing Y in the population objective

function of DWD with Ỹ de�ned in (2.2), we get the following objective function in

the SDR framework:

L(ψ, t) = E

[[
Ỹ [ψT(X − E[X])− t] +

(
1√
λ
− Ỹ [ψT(X − E[X])− t]

)+ ]−1
+ λ

(
1√
λ
− Ỹ [ψT(X − E[X])− t]

)+ ]
+ψTΣψ.

(2.19)

Following Li et al. (2011) we note that we have also inserted Σ into the �rst term to

ensure the resulting DWD estimate is unbiased and to provide the uni�ed framework

for non-linear SDR. Assuming E[X] = 0 without loss of generality, and by setting

u = Ỹ [ψTX − t] we can simplify the above objective function to:

ψTΣψ + E

[[
u+

(
1√
λ
− u
)+]−1

+ λ
(

1√
λ
− u
)+]

. (2.20)

The following Lemma is used to prove the convexity of the objective function.

This Lemma will be crucial in proving the theorem which shows that the normal

vector ψ of the optimal hyperplane, developed by the PDWD, is indeed in the CS.

Lemma 2.18 If f(u) =

[
u+

(
1√
λ
− u
)+]−1

+ λ
(

1√
λ
− u
)+

, then f is convex for

all λ > 0.

Proof. To prove convexity, we need to show

f(αu1 + (1− α)u2) ≤ αf(u1) + (1− α)f(u2)
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for all u ∈ R and α ∈ [0, 1]. Firstly, we can rewrite f as

f(u) =


1
u u ≥ 1√

λ

2
√
λ− λu u < 1√

λ

.

For u ≥ 1√
λ
we have 2

√
λ− λu ≤ 1

u and for u1 ≤ u2 we have f(u1) ≥ f(u2) since f

is a decreasing function. We need to consider three cases:

(i) When u1 <
1√
λ
and u2 <

1√
λ
we have αu1 + (1− α)u2 <

1√
λ
, hence

f(αu1 + (1− α)u2) = 2
√
λ− λ(αu1 + (1− α)u2)

= α(2
√
λ− λu1) + (1− α)(2

√
λ− λu2)

= αf(u1) + (1− α)f(u2)

(ii) Since the gradient of f is equal when approaching from the left and right of
1√
λ
when u1 <

1√
λ
and u2 ≥ 1√

λ
we can assume without loss of generality that

αu1 + (1− α)u2 <
1√
λ
and so

f(αu1 + (1− α)u2) = 2
√
λ− λ(αu1 + (1− α)u2)

= α(2
√
λ− λu1) + (1− α)(2

√
λ− λu2)

≤ α(2
√
λ− λu1) +

(1− α)

u2

= αf(u1) + (1− α)f(u2)

(iii) When u1 ≥ 1√
λ
and u2 ≥ 1√

λ
we have αu1 + (1 − α)u2 ≥ 1√

λ
. In this case we

can simply prove that the second derivative of f(u) = 1
u only gives positive

values as follows

f ′′(u) =
2

u3
> 0 since λ > 0.

Hence we have

f(αu1 + (1− α)u2) ≤ αf(u1) + (1− α)f(u2)

for all u ∈ R, and therefore f is convex.

Having veri�ed the convexity of the objective function then one can prove the

following theorem which demonstrates that the normal vector of the hyperplane is in

SY |X . This follows directly from the proof in Li et al. (2011) due to the fact that the

hinge loss in SVM is replaced with another convex function and as Li et al. (2011)

claim their proof holds for every convex function.

Theorem 2.19 If E(X|βTX) is a linear function of βTX, where β is de�ned as in

(2.1) and if (ψ∗, t∗) minimises the objective function (2.19) among all (ψ, t) ∈ Rp×R,
then ψ∗ ∈ SY |X .
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Proof. It is important to note that under the conditions of the theorem we can write

the conditional expectation

E[X|βTX] = P T

β(Σ)X,

where P β(Σ) is the projection matrix β(βTΣβ)−1βTΣ.

Our objective function then takes the form

L(ψ, t) = ψTΣψ + E

[[
u+

(
1√
λ
− u
)+]−1

+ λ
(

1√
λ
− u
)+]

.

Beginning with the �rst term we have

ψTΣψ = var[ψTX]

= var[E[ψTX|βTX]] + E[var[ψTX|βTX]]

≥ var[E[ψTX|βTX]]

= var[ψTP T

βX]

= (P β(Σ)ψ)TΣ(P β(Σ)ψ).

Hence

ψTΣψ ≥ (P βψ)TΣ(P βψ). (2.21)

Now let us look at the second term. Again, we can write

E

[[
u+

(
1√
λ
− u
)+]−1

+ λ
(

1√
λ
− u
)+]

= E

[
E

[[
u+

(
1√
λ
− u
)+]−1

+ λ
(

1√
λ
− u
)+ ∣∣∣∣Ỹ ,βTX

]]
.

If we de�ne the function f such that f(a) =

[
a+

(
1√
λ
− a
)+]−1

+ λ
(

1√
λ
− a
)+

then this gives

E

[[
u+

(
1√
λ
− u
)+]−1

+ λ
(

1√
λ
− u
)+ ∣∣∣∣Ỹ ,βTX

]
= E[f(u)|Ỹ ,βTX].

Since f is a convex function, we can use Jenson's inequality as follows:

E[f(u)|Ỹ ,βTX] ≥
[
E[u|Ỹ ,βTX] +

(
1√
λ
− E[u|Ỹ ,βTX]

)+]−1
+ λ

(
1√
λ
− E[u|Ỹ ,βTX]

)+
=

[
Ỹ (E[ψTX|βTX]− t) +

(
1√
λ
− Ỹ (E[ψTX|βTX]− t)

)+]−1
+ λ

(
1√
λ
− Ỹ (E[ψTX|βTX]− t)

)+
=

[
Ỹ (ψTP T

β(Σ)X − t) +
(

1√
λ
− Ỹ (ψTP T

β(Σ)X − t)
)+]−1

+ λ
(

1√
λ
− Ỹ (ψTP T

β(Σ)X − t)
)+

.
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Thus combing this with (2.21) we get

L(ψ, t) ≥ L(P β(Σ)ψ, t). (2.22)

If ψ does not belong to SY |X , then var[ψTX|βTX] > 0 and the inequality in (2.21)

becomes strict. Hence the inequality in (2.22) is strict. Therefore, such ψ cannot be

the minimiser of L(ψ, t).

2.3.2 Sample estimation algorithm

Having established the theoretical properties of the minimiser of the objective func-

tion in PDWD we now investigate the sample estimation algorithm of our method.

Before giving the algorithm though we look at available packages in solving the op-

timisation problem of DWD. As the available packages solve the objective function

of DWD which does not include Σ in the �rst term, we demonstrate below that by

standardising the data the objective function of PDWD becomes equivalent to the

objective function of DWD and therefore available packages can be used.

As was mentioned above the objective function of DWD

ψTψ + E

[ [
Ỹ (ψTX − t) +

(
1√
λ
− Ỹ (ψTX − t)

)+]−1
+λ
(

1√
λ
− Ỹ (ψTX − t)

)+ ] (2.23)

and the one for PDWD is

ψTΣTψ + E

[ [
Ỹ (ψTX − t) +

(
1√
λ
− Ỹ (ψTX − t)

)+]−1
+λ
(

1√
λ
− Ỹ (ψTX − t)

)+ ]
.

(2.24)

Now if we let ζ = Σ1/2ψ and Z = Σ−1/2
(
X − X̄

)
, and substitute these into (2.24)

we have

ζ
T

ζ + E

[ [
Ỹ (ζTZ − t) +

(
1√
λ
− Ỹ (ζTZ − t)

)+]−1
+λ
(

1√
λ
− Ỹ (ζTZ − t)

)+ ]
,

(2.25)

which we can see is of the same form as (2.23). Hence, as we stated above, we can see

that standardising X modi�es the PDWD in a desired way. We emphasise here that

this fact allows us to use existing algorithms for DWD in the literature to estimate

the PDWD solution. Hence, in our algorithm below we require the standardisation

of the data.

The estimation procedure is as follows:
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1. Compute the sample mean X̄ and sample variance matrix Σ̂.

2. We �nd the minimiser using the algorithm in Wang and Zou (2015). In more

detail:

(LVR) Let qr, r = 1, . . . h− 1, be h− 1 dividing points and let

Ỹ r
i = I(Yi > qr)− I(Yi ≤ qr)

for i = 1, . . . , n. Then using DWD, let (ψ̂r, t̂r) be the minimisers of

ψTΣ̂ψ + En

[[
Ỹ r(ψTX − t) +

(
1√
λ
− Ỹ r(ψTX − t)

)+]−1
+λ
(

1√
λ
− Ỹ r(ψTX − t)

)+ ]
.

(OVA) Apply DWD to each pair of slices from the h slices. More speci�cally,

let q0 = min{Y1, . . . , Yh} and qh = max{Y1, . . . , Yh}. Then for each (r, s) such

that 1 ≤ r < s ≤ h, let

Ỹ rs
i = I(qs−1 < Yi ≤ qs)− I(qr−1 < Yi ≤ qr).

Let (ψ̂rs, t̂rs) be the minimisers of

ψTΣ̂ψ + En

[[
Ỹ rs(ψTX − t) +

(
1√
λ
− Ỹ rs(ψTX − t)

)+]−1
+λ
(

1√
λ
− Ỹ rs(ψTX − t)

)+ ]
.

3. Let v̂1, . . . , v̂d be the d leading eigenvectors of one of the matrices

M̂n =
h−1∑
r=1

ψ̂rψ̂
T

r or M̂n =
h−1∑
r=1

h∑
s=r+1

ψ̂rsψ̂rs
T

. (2.26)

We can now estimate SY |X using the subspace spanned by v̂ = (v̂1, . . . , v̂d).

2.3.3 Asymptotic analysis of linear principal distance weighted

discrimination (PDWD)

In this section we discuss the asymptotic properties of PDWD. We �nd the Hessian

matrix and the in�uence function before proving consistency. We demonstrate the

consistency when p is �xed, as well as when p is not �xed and tends to in�nity,

although we still require it to be less than n. To make the proofs easier to read we

use the following notation. Let θ = (ψT, t)T, Z = (XT, Ỹ )T, X∗ = (XT,−1)T and

Σ∗ = diag(Σ, 0), then u = θTX∗Ỹ and thus
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ψTΣψ +

[
u+

(
1√
λ
− u
)+]−1

+ λ
(

1√
λ
− u
)+

= θTΣ∗θ +

[
θTX∗Ỹ +

(
1√
λ
− θTX∗Ỹ

)+]−1
+ λ

(
1√
λ
− θTX∗Ỹ

)+
.

We denote this function by m(θ,Z). Let ΩZ be the support of Z and let h :

Θ × ΩZ → R+ be a function of (θ,Z). Let Dθ denote the (p + 1)-dimensional

column vector of di�erential operators (∂/∂θ1, . . . , ∂/∂θp+1)
T.

Before we consider the gradient of the DWD objective function, we prove that

the function f is di�erentiable at all points.

Lemma 2.20 The function f , as de�ned in Lemma 2.18, is di�erentiable at all

points.

Proof. We need to prove that the gradient of f as we approach 1√
λ
from below is

equal to the gradient as we approach from the above. We have

f ′(a) = −
[
a+

(
1√
λ
− a
)+]−2

=

−a−2 a ≥ 1√
λ

−λ a < 1√
λ

.

Hence lim
a↓ 1√

λ

f ′(a) = −λ = lim
a↑ 1√

λ

f ′(a). Therefore f is di�erentiable everywhere.

The next theorem gives the gradient of the DWD objective function E[m(θ,Z)].

The proof follows straight from Lemma 2.20 and is therefore omitted. Let D2
θ denote

the operator DθD
T

θ . Thus, D
2
θm(θ,Z) is the (p+ 1)× (p+ 1) matrix whose (i, j)th

entry is ∂2m/∂θi∂θj .

Theorem 2.21 The gradient of m(θ, z) takes the form

DθE[m(θ, z)] = 2Σ∗θ − E

[
X∗Ỹ

[
θTX∗Ỹ +

(
1√
λ
− θTX∗Ỹ

)+]−2]
. (2.27)

The next step is to �nd the Hessian matrix. Before doing so, we state some helpful

results. First we use the following notation. Let n(θ, z) = Dθm(θ, z) and for each

θ ∈ Θ, let Nθ(n) be the set of X for which a function n(z, ·) is not di�erentiable at
θ. That is,

Nθ(n) = {z : Dθn(·, z) is not di�erentiable at θ}.

Lemma 2.22 Suppose that n : Θ× ΩZ → R satis�es the following conditions
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2. LINEAR SUFFICIENT DIMENSION REDUCTION

1. (almost surely di�erentiable) for each θ ∈ Θ, P[Z ∈ Nθ(n)] = 0.

2. (Lipschitz condition) there is an integrable function c(z), independent of θ,

such that for any θ1,θ2 ∈ Θ,

|n(θ2, z)− n(θ1, z)| ≤ c(z)‖θ2 − θ1‖.

Then Dθ[n(θ,Z)] is integrable, E[Dθn(θ,Z)] is di�erentiable and

DθE[n(θ,Z)] = E[Dθn(θ,Z)]. (2.28)

Lemma 2.23 For c > 0 we have the following inequality∣∣∣∣∣(a+ (c− a)+)
2 − (b+ (c− b)+)

2

(a+ (c− a)+)2(b+ (c− b)+)2

∣∣∣∣∣ ≤ 2

c3
|b− a|.

Proof. It is clear that the result holds if a > b or if b > a so we will assume a > b.

To proof this inequality hold we need to consider three case.

When c ≤ a and c ≤ b, we have a+ (c− a)+ = a and b+ (c− b)+ = b. Therefore∣∣∣∣∣(a+ (c− a)+)
2 − (b+ (c− b)+)

2

(a+ (c− a)+)2(b+ (c− b)+)2

∣∣∣∣∣ =

∣∣∣∣a2 − b2a2b2

∣∣∣∣ < ∣∣∣∣(a− b)(a+ b)

a2b2

∣∣∣∣
<
|a− b|
c2

∣∣∣∣a+ b

ab

∣∣∣∣ =
|a− b|
c2

∣∣∣∣1b +
1

a

∣∣∣∣
<
|a− b|
c2

∣∣∣∣1c +
1

c

∣∣∣∣ =
2

c3
|a− b|.

When c ≤ a and c > b, we have a+ (c− a)+ = a and b+ (c− b)+ = c. Therefore∣∣∣∣∣(a+ (c− a)+)
2 − (b+ (c− b)+)

2

(a+ (c− a)+)2(b+ (c− b)+)2

∣∣∣∣∣ =

∣∣∣∣a2 − c2a2c2

∣∣∣∣ < ∣∣∣∣(a− c)(a+ c)

a2c2

∣∣∣∣
<
|a− c|
c2

∣∣∣∣a+ c

ac

∣∣∣∣ =
|a− c|
c2

∣∣∣∣1c +
1

a

∣∣∣∣
<
|a− c|
c2

∣∣∣∣1c +
1

c

∣∣∣∣ =
2

c3
|a− c|

<
2

c3
|a− b|.

When c > a and c > b, we have a+ (c− a)+ = c and b+ (c− b)+ = c. Therefore∣∣∣∣∣(a+ (c− a)+)
2 − (b+ (c− b)+)

2

(a+ (c− a)+)2(b+ (c− b)+)2

∣∣∣∣∣ =

∣∣∣∣c2 − c2c2c2

∣∣∣∣ = 0 <
2

c3
|a− b|.

Since this holds for the three cases we can assume the result is true for and a

and b and for any c > 0.

28



2.3. LINEAR PRINCIPAL DISTANCE-WEIGHTED
DISCRIMINATION(PDWD)

Now we have the necessary results which will be helpful in �nding the Hessian

matrix as the following theorem states.

Theorem 2.24 Suppose, for each ỹ = −1, 1, the distribution of X|Ỹ = ỹ is domi-

nated by the Lebesgue measure and E[‖X‖2] <∞. Then

DθE[n(θ,Z)] = 2Σ∗ − E

[
X∗X∗TI

(
θTX∗Ỹ < 1√

λ

) [
θTX∗Ỹ

]−3]
. (2.29)

Proof. Let H(ψ, a) denote the hyperplane {x : ψTx = a}. We �rst need to verify

the two assumptions in Lemma 2.22. In our case,

P[(X, Ỹ ) ∈ Nθ(n)] =
∑

ỹ∈{−1,1}

P(Ỹ = ỹ)P

[
X ∈ H

(
ψ, t+

ỹ√
λ

) ∣∣∣Ỹ = ỹ

]
.

Since the Lebesgue measure of H
(
ψ, t+ ỹ√

λ

)
is 0 for ỹ ∈ {−1, 1}, by assumption

1 of the theorem, the above probability is 0. Thus condition 1 of Lemma 2.22 is

satis�ed.

Let n1(θ, z) = Σ∗θ and n2(θ, z) = x∗ỹ

[
θTx∗ỹ +

(
1√
λ
− θTx∗ỹ

)+]−2
. Then

n(θ, z) = 2n1(θ, z) + n2(θ, z). Since n1 is non-random and di�erentiable, it ob-

viously satis�es E[Dθn1(θ, z)] = DθE[n1(θ, z)]. To verify that n2 is Lipschitz, let

θ1,θ2 ∈ Rp+1. Then

‖n2(θ2, z)− n2(θ1, z)‖

=

∥∥∥∥∥x∗ỹ

[
θT2x

∗ỹ +
(

1√
λ
− θT2x∗ỹ

)+]−2
− x∗ỹ

[
θT1x

∗ỹ +
(

1√
λ
− θT1x∗ỹ

)+]−2∥∥∥∥∥
≤ ‖x∗‖

∥∥∥∥∥∥∥∥
(
θT1 x

∗ỹ+

(
1√
λ
−θT1 x∗ỹ

)+
)2

−
(
θT2 x

∗ỹ+

(
1√
λ
−θT2 x∗ỹ

)+
)2

(
θT1 x

∗ỹ+

(
1√
λ
−θT1 x∗ỹ

)+
)2(

θT2 x
∗ỹ+

(
1√
λ
−θT2 x∗ỹ

)+
)2

∥∥∥∥∥∥∥∥.
From Lemma 4 we get:

‖n2(θ2, z)− n2(θ1, z)‖ ≤ 2λ3/2‖x∗‖‖θT1x∗ − θT2x∗‖

≤ 2λ3/2(1 + ‖x‖2)‖θT1 − θT2‖.

Since E[‖X‖2] <∞,

E
[
1 + ‖X‖2

]
= 1 + E[‖X‖2] <∞.

This veri�es condition 2 of Lemma 3. Finally, by direct calculations we �nd that,

for z /∈ Nθ(n),

Dψ[n(θ, z)] = 2Σ + 2x∗xTI
(
ỹ(ψTx− t) ≥ 1√

λ

) [
ỹ(ψTx− t)

]−3
,

Dt[n(θ, z)] = −2x∗I
(
ỹ(ψTx− t) ≥ 1√

λ

) [
ỹ(ψTx− t)

]−3
.

Hence

Dθ[n(θ, z)] = 2Σ∗ − 2x∗x∗TI
(
θTx∗ỹ ≥ 1√

λ

) [
θTx∗ỹ

]−3
.

The theorem follows now from Lemma 3.
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2. LINEAR SUFFICIENT DIMENSION REDUCTION

The following theorem gives the in�uence function of PDWD. A similar result in

the SVM literature can be found in Jiang et al. (2008).

Theorem 2.25 Let θ0 = (ψT

0 , t0)
T be the minimiser of E[m(θ,Z)]. Suppose, for

each ỹ = −1, 1, the distribution of X|Ỹ = ỹ is dominated by the Lebesgue measure

and E[‖X‖2] <∞. Then

θ̂ − θ0 = −n−1H−1
n∑
i=1

Bi(z) + op(n
−1/2), (2.30)

where Bi(z) = 2Σ∗θ0 − x∗
i ỹi

[
θT0x

∗
i ỹi +

(
1√
λ
− θT0x∗

i ỹi

)∗]−2
and H is the Hessian

matrix de�ned previously.

Proof. Let a = (ψa
T, ta)T) and now we write

m(z,θ0 + a)−m(z,θ0)

= (θ0 + a)TΣ∗(θ0 + a)− θT0Σ∗θ

+

[
(θ0 + a)Tx∗ỹ +

(
1√
λ
− (θ0 + a)Tx∗ỹ

)+]−1
−
[
θT0x

∗ỹ +
(

1√
λ
− θT0x∗ỹ

)+]−1
+λ
(

1√
λ
− (θ0 + a)Tx∗ỹ

)+
− λ

(
1√
λ
− θT0x∗ỹ

)+
= aTΣ∗a+ 2aTΣ∗θ

+

[
(θ0 + a)Tx∗ỹ +

(
1√
λ
− (θ0 + a)Tx∗ỹ

)+]−1
−
[
θT0x

∗ỹ +
(

1√
λ
− θT0x∗ỹ

)+]−1
+λ
(

1√
λ
− (θ0 + a)Tx∗ỹ

)+
− λ

(
1√
λ
− θT0x∗ỹ

)+
= aTDθ0m(z,θ0) +R(z,a),

where

R(z,a) = aTΣ∗a+

[
(θ0 + a)Tx∗ỹ +

(
1√
λ
− (θ0 + a)Tx∗ỹ

)+]−1
−
[
θT0x

∗ỹ +
(

1√
λ
− θT0x∗ỹ

)+]−1
+ λ

(
1√
λ
− (θ0 + a)Tx∗ỹ

)+
− λ

(
1√
λ
− θT0x∗ỹ

)+
− aTx∗ỹ

[
θT0x

∗ỹ +
(

1√
λ
− θT0x∗ỹ

)+]−2
,

DaR(z,a) = 2Σ∗a− x∗ỹ

[
(θ0 + a)Tx∗ỹ +

(
1√
λ
− (θ0 + a)Tx∗ỹ

)+]−2
+ x∗ỹ

[
θT0x

∗ỹ +
(

1√
λ
− θT0x∗ỹ

)+]−2
,

Da[DaR(z,a)] = 2Σ∗ + 2xxTI
(

(θ0 + a)Tx∗ỹ ≥ 1√
λ

) [
(θ0 + a)Tx∗ỹ

]−3
.

This gives, R(z,0) = 0, DaR(z,0) = 0 and E [Da[DaR(z,0)]] = H. By de�nition

we also have E [Dθ0m(z,θ0)] = 0. Hence

E[m(z,θ0 + a)−m(z,θ0)] = E[R(z,a)] =
aTHa

2
+ o(‖a‖2) (2.31)
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and since H is the Hessian of a strictly convex function we can establish that it is

symmetric and positive de�nite. Now let s = (ψs
T, ts)

T and

An(s) =
n∑
i=1

{
m(zi,θ0 + n−1/2s)−m(zi,θ0)

}
.

We can see that An(s) is convex with respect to s and is therefore minimised by
√
n(θ̂ − θ0). Now we can write

An(s) =
n∑
i=1

{
n−1/2sTB(zi) + R(zi, n

−1/2s)− E[R(zi, n
−1/2s)]

}
+ nE[R(z, n−1/2s)]

= n−1/2
n∑
i=1

sTB(zi) +
1

2
sTHs+ rn,0(s) + rn,1(s),

where rn,0(s) = o(‖s‖2) → 0 for �xed s and rn,1(s) =
∑n

i=1 R(zi, n
−1/2s) −

E[R(zi, n
−1/2s)] → 0 in probability since it has mean zero and variance o(‖s‖2).

Since H is positive de�nite, and the covariance matrix var[X] is �nite, it follows

from the basic corollary of Hjort and Pollard (1993) that (2.30) holds.

Let θ0r = (ψT

0r, t0r)
T be the minimiser of E[m(θ,Zr] and θ̂r = (ψ̂

T

r , tr)
T be the

minimiser of En[m(θ,Zr)]. Let Hr be the Hessian matrix of E[m(θ,Zr)] and let

F r be the �rst p rows of H
−1
r . By the last theorem we have

ψ̂r = ψ0r − n−1F r

n∑
i=1

B̃i(z) + op(n
−1/2), (2.32)

where B̃i(z) = 2Σψ0 − xiỹi
[
θT0rx

∗
iỹi +

(
1√
λ
− θT0rx∗

iỹi

)+]−2
. Now let

M̂n =
h−1∑
r=1

ψrψ
T

r M0 =
h−1∑
r=1

ψ0rψ
T

0r. (2.33)

Then it can be shown that

M̂n = M0 +
h−1∑
r=1

{
ψT

0rD(θ0r, z) + DT(θ0r, z)ψ0r + D(θ0r, z)DT(θ0r, z)
}
, (2.34)

where D(θ0r, z) = −n−1F r
∑n

i=1 B̃i(z) + op(n
−1/2).

Having the in�uence function we can now demonstrate the consistency when p

is �xed.

Theorem 2.26 Let θ0 = (ψT

0 , t0)
T be the minimiser of E̊[(θ,Z)]. Suppose for each

ỹ = −1, 1, the distribution of X|Ỹ = ỹ is dominated by the Lebesgue measure and

E̊[‖X‖2] < ∞. Then θ̂ is a consistent estimate of θ0 as long as p and n tend to

in�nity.
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Proof. To begin, we �rst state the following identity:

‖θ̂ − θ0‖2 ≤
√
pmax

i
|[θ̂ − θ0]i|. (2.35)

Using this and (2.30) we can write

‖θ̂ − θ0‖2 ≤
√
pmax

i

∣∣∣∣∣∣n−1H−1i
n∑
j=1

Bj(z)

∣∣∣∣∣∣+ op(n
−1/2). (2.36)

We know the �rst term on the right tends to 0 as n → ∞, by the consistency

of sample mean. Therefore, θ̂ is a consistent estimator of θ0 if op(n
−1/2) → 0 as

n→∞.

2.3.4 Numerical studies

In this section we demonstrate the advantages of PDWD over PSVM through a

simulation study and through a real data experiment.

2.3.4.1 Simulation studies

We use the following three synthetic models:

Model I: Y = X1 +X2 + 0.2ε

Model II: Y =
X1

0.5 + (X2 + 1)2
+ 0.2ε

Model III: Y = X1(X1 +X2 + 1) + 0.2ε

where X ∼ N(0, Ip) and ε ∼ N(0, 1). We choose n = 100, p = 20, 30, 50, 100 and

h = 20 unless stated otherwise.

We will use the distance method de�ned in Li et al. (2005) to estimate the

performance of the algorithms. Let β ∈ Rp×d denote the basis of the central space
and let β̂ be its estimator. Then we estimate the performance of β̂ as with the

following distance measure

dist(β, β̂) = ‖P β − P β̂‖, (2.37)

where PA = A(ATA)−1A
T

, that is the projection matrix, and ‖ ·‖ is the Frobenius
norm.

We compare our method with PSVM and the results are shown in Table 2.1.

The results show that PDWD and PSVM have similar performance for values of p

close to n or close to 0 but for values in between PDWD has a clear advantage.

In the classi�cation literature (see Marron et al. (2007)) it was shown that DWD
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clearly outperforms SVM for larger p due to the SVM su�ering from data piling.

The fact that here the two methods are equivalent as p tends to n we believe is due

to the di�erent nature of the problem. We emphasise that we are not interested in

classi�cation where the performance of the classi�er is measured on the percentage of

correctly classi�ed points, and which will be hindered by data piling. Instead, we are

interested in dimension reduction through hyperplane alignment. It seems that on

the various iterations of the algorithm data piling actually �hinders� the performance

of both PSVM and PDWD by causing them to over�t the data and that's why the

performance of the two algorithms is becoming equivalent as p gets closer to n

Model p PSVM PDWD

I

20 0.20 (0.044) 0.17 (0.038)
30 0.27 (0.051) 0.24 (0.052)
50 0.45 (0.072) 0.39 (0.069)
100 1.30 (0.101) 1.28 (0.114)

II

20 1.01 (0.182) 1.01 (0.156)
30 1.33 (0.128) 1.15 (0.135)
50 1.51 (0.115) 1.42 (0.106)
100 1.95 (0.038) 1.95 (0.039)

III

20 1.46 (0.235) 1.31 (0.202)
30 1.70 (0.120) 1.51 (0.164)
50 1.88 (0.061) 1.74 (0.121)
100 1.97 (0.021) 1.97 (0.021)

Table 2.1: Comparison of estimation performance between PDWD and PSVM. The table reports
the mean performance of 100 iterations (standard errors in parenthesis) for the two methods.

2.3.4.2 Computational time

As was mentioned earlier using a newly developed algorithm for DWD by Wang

and Zou (2015) there is a computational advantage as the computation of Principal

DWD is much less than the one for Principal SVM. We emphasise here that when Li

et al. (2011) proposed Principal SVM they identi�ed that the fact that PSVM needs

quadratic programming leads to higher computational cost and that was probably

the only disadvantage of PSVM over earlier methods which were based on inverse

moments. As Figure 2.3 indicates there is a huge di�erence in time as n increases

(and p is constant) while the di�erence stays relatively the same as p increases (and

n is constant).
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2. LINEAR SUFFICIENT DIMENSION REDUCTION

Figure 2.3: Left panel: time of two algorithms as n increases; right panel: time of two algorithms
as p increases.

2.3.5 Real data analysis

p̃ 20 40 60 80 100

PSVM 0.70 (0.244) 0.64 (0.227) 0.64 (0.206) 0.61 (0.170) 0.56 (0.080)
PDWD 0.03 (0.024) 0.09 (0.196) 0.15 (0.266) 0.13 (0.185) 0.13 (0.236)

Table 2.2: Distances as extra predictors are added in the dataset, for 100 simulations. Each column
adds a di�erent value of data, and we report the mean distance, standard deviation in parenthesis,
of the estimated CS from the �oracle� CS, that is, the one when only the original predictors are
used.

We now turn our attention to real data analysis. Our aim is to assess the e�ect of

introducing random variables to the data. This will help us understand how robust

our estimator is against unrelated data. Consider the Concrete slump data analysed

in Yeh (1998). We have evaluated the response variable Compressive Strength. The

data consists of 103 samples and 7 predictor variables called cement, slag, �y ash,

water, superplasticizer (SP), coarse aggregate, and �ne aggregate. Let p̃ = p+

number of added predictors and we �x λ = 0.1 and h = 20. We �rst run the two

methods and we calculate

β̂
T

PDWD = (0.01,−0.001, 0.009,−0.024, 0.048,−0.005,−0.003)

β̂
T

PSVM = (0.013, 0.002, 0.01,−0.02, 0.033,−0.003,−0.001)

which span the CS estimated by each method. Then we add extra predictors in

the dataset, which are randomly distributed from a standard Normal distribution,
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and calculate the new β's that span the Central Space using the two methods. We

calculate the distance of the new vector from the original one, that is the one that was

calculated based on the original predictors. Table 2.2 shows the distances between

the estimator and the original estimator for each of the two methods, PDWD and

PSVM, and for di�erent number of added predictors p̃ = 20, 40, 60, 80, 100. We can

see that the estimator of the PDWD moves a lot less than the PSVM predictor.

This implies that as unrelated features are added our estimates shows little change.

This is what we would hope to see as the random features that have been added will

give no information about the response variable and should therefore not a�ect the

estimator. Therefore, we deduce that the PDWD estimator is more robust against

random predictor variables.
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Chapter 3

Order determination

Our theory so far has treated the dimension of the central subspace d as known,

however in practice this is extremely unlikely. Developing an e�ective method for

determining the dimension is vital when developing methods for SDR and plays

an important role in the performance of such methods. This is ordinarily achieved

through further analysis of the eigenvalues and eigenvectors of the candidate matrix

produced.

3.1 Literature review

Many methods for order determination have been produced, Li (1991) proposed a

sequential based method of order determination which relies on using the eigenvalues

of the candidate matrix. Zhu et al. (2006) proposed the BIC type criteria for order

determination, which once again takes advantage of the eigenvalues of the candidate

matrix to �nd the optimum number of dimensions. There are many variations of the

BIC criteria, see Wang and Yin (2008), Li et al. (2010) and Guo et al. (2015).

3.1.1 Sequential test

The sequential test, �rst discussed in Li (1991), was one of the �rst order determina-

tion estimators developed for dimension reduction and was further uni�ed by Bura

and Yang (2011). We de�ne a candidate matrix to be a matrix whose columns span

the CDRS. Let M to be a candidate matrix produced through a su�cient dimen-

sion reduction technique, then for any number r = 0, . . . , p − 1, the sequential test

statistic takes the form

Br = n

p∑
i=r

λi, (3.1)

where the λi's are the eigenvalues ofM . When r is equal to the rank ofM it is clear

that Br will be negligible, therefore the asymptotic distribution under the hypothesis
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that r is the rank ofM would be much larger than Br. We then perform a sequence

of hypothesis tests

Hr
0 : rank(M) = r, r = 0, . . . , p− 1, (3.2)

with the alternative hypothesis being rank(M) > r. We can estimate the rank of

M to be the �rst r for which the hypothesis is not rejected. If the hypothesis is not

accepted for all r = 0, . . . , p − 1, then the rank is assumed to be p. Therefore, we

estimate the dimension to be

d̂ = min{r : Hr
0 is accepted} for r = 0, . . . , p− 1, (3.3)

where minr{∅} = p. The generality of this method means that is can be adapted to be

a compatible order determination estimator for most dimension reduction techniques.

3.1.2 BIC criteria

A form of BIC criteria was proposed in Li et al. (2011) which was an extension

of a criterion introduced in Wang and Yin (2008). De�ne r to be the rank of the

candidate matrix found using an SDR method. Using the form developed in Li et al.

(2011) and the BIC criteria introduced in Zhou and Zhu (2016), Li (2018) developed

a general form of BIC criteria given by

Bn(k) = ρk(λ1, . . . , λp) + c1(n)c2(k), k = 0, . . . , p, (3.4)

where c1(n) is a sequence of positive numbers, c2(k) is an increasing function of k

with c2(0) = 0 and ρ(λ1, . . . , λp) are di�erentiable functions that satisfy

ρ0(λ1, . . . , λp) < · · · < ρr(λ1, . . . , λp) = ρr+1(λ1, . . . , λp) = · · · = ρp(λ1, . . . , λp).

(3.5)

This then gives the estimate of d to be

d̂ = max{k : Bn(k)} for k = 0, . . . , p.

When c1(n) is a decreasing function Bn(k) will increase with a peak at k = r and

Bn(k) will be decreasing for p > r.

3.1.3 Ladle plot

The Ladle estimator, developed by Luo and Li (2016), is a combinations of the scree

plot method and the Ye-Weiss plot developed by Ye and Weiss (2003). Since M̂ is a

consistent estimator of M and M has rank d we can know that λ̂d+1 will be much

smaller than λ̂d, where M is a candidate matrix and the λi's are the eigenvalues of

M . Using this the following function is de�ned

φn : {0, . . . , p− 1} → R, φn(k) =
λ̂k+1

1 +
∑p−1

i=0 λ̂i+1

. (3.6)
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The eigenvalues have been shifted so that φn takes small values at k = d rather than

at k = d+ 1.

Next, we turn our attention to the Ye-Weiss plot. Let F be the distribution of

(X, Y ) and let Fn be the empirical distribution based on S = (X1, Y1), . . . , (Xn, Yn).

Conditioning on S, let (X∗1,n, Y
∗
1,n), . . . , (X∗n,n, Y

∗
n,n) be an i.i.d bootstrap sample

from Fn. Now de�ne {λ̂1, . . . , λ̂p, v̂1, . . . , v̂p} and {λ∗1, . . . , λ∗p, v∗1, . . . , v∗p} be the eigen-
values and eigenvectors of M̂ and M∗ respectively. For each k < p, let

B̂k = (v̂1, . . . , v̂k) B∗k = (v∗1, . . . , v
∗
k)

and de�ne the function

f0n : {0, . . . , p− 1} → R, f0n(k) =

0 k = 0

n−1
∑n

i=1 1− | det(BT

kB
∗
k,i)| k = 1, . . . , p− 1

(3.7)

where B∗k,i denotes the ith bootstrap sample. From Ye and Weiss (2003), it can be

established that the function f0n(k) gives a measure of the variability of the bootstrap

estimates around the full sample estimate B̂k. The range of f0n is [0, 1], where 0

indicates each B∗k,i spans the same column space as B̂k and 1 occurs when B∗k,i

spans a space orthogonal to B̂k. So if we de�ne the function

fn : {0, . . . , p− 1} → R fn(k) =
f0n(k)

1 +
∑p−1

i=0 f
0
n(i)

. (3.8)

Ye and Weiss (2003) determined that fn is small for k = d and larger for k > d.

Lastly, the ladle estimator of the rank d is de�ned to be

d̂ = arg min
k
{gn(k) : k ∈ D(gn)}, (3.9)

where gn(k) = φn(k) + fn(k).

3.2 Numerical studies

Consider the synthetic regression models

Model I: Y = X1 +X2 + 0.2ε

Model II: Y =
X1

0.5 + (X2 + 1)2
+ 0.2ε

Model III: Y = X1(X1 +X2 + 1) + 0.2ε

Choosing n = 100 and p = 10, Figure 3.1 shows the ladle plot for model II. As

we can see, the ladle plot correctly estimates d to be 2. We consider the models
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Figure 3.1: Ladle plot of model II with n = 100 and p = 10.

de�ned above where model I has e�ective dimension 1 and models II and III have

e�ective dimension 2. We run 1000 simulation experiments with n = 100, σ = 0.2

and h = 20. Table 3.1 shows the percentage of correct estimates as p increases. This

is a very promising result as it demonstrates that the performance of the algorithm

does not su�er a lot when the dimension is increased, instead we can see that as p

increase the number of correct estimates for Models II and III decreases slightly but

remains high.

Model
p

10 30 50

I 100 100 100
II 99 98 97
III 99 98 97

Table 3.1: Percentage of correct estimations of d in 1000 simulations using the ladle estimator for
the three models.
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Chapter 4

Non-linear SDR

In recent years there is an interest in non-linear SDR, where we extract linear or non-

linear functions of the predictors. Extracting non-linear functions of the predictors

will enable us to reduce the dimension of data further. Consider the model Y =

X1X2 +X3X4 + ε. We can see that this model has four linear directions which are

X1, X2, X3 and X4. Alternatively, this model has one non-linear direction which is

X1X2 +X3X4.

To perform linear dimension reduction, we work under the non-linear conditional

independence model:

Y X|f(X), (4.1)

where f : Rp → Rd denotes linear or non-linear functions of the predictors. Some

examples include the work by Wu (2008) and Yeh et al. (2009) which introduced

Kernel SIR and the work by Fukumizu et al. (2009) which used kernel regression.

4.0.1 Reproducing kernel Hilbert space

The Reproducing Kernel Hilbert Space (RKHS) is de�ned repeatedly (see Aronszajn

(1950), Berlinet and Thomas-Agnan (2004), Wu (2008) and Li (2018)) in non-linear

literature and will play a vital role in the extension of our method to a uni�ed linear

and non-linear setting. To begin we will give a clear de�nition of a RKHS.

To understand a reproducing kernel Hilbert space we will �rst de�ne a reproduc-

ing kernel (Berlinet and Thomas-Agnan (2004)).

De�nition 4.1 Let H be a Hilbert space of R-valued functions de�ned on a non-

empty set X . A function κ : X × X → R is called a reproducing kernel of H if it

satis�es:

∀x ∈ X ,κ(·, x) ∈ H

∀x ∈ X ,∀g ∈ H, 〈g, κ(·, x)〉H = g(x).

The second condition is called the reproducing property.
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A Hilbert space which possesses a reproducing kernel is called a reproducing

kernel Hilbert space.

4.1 Previous methods

4.1.1 Kernel sliced inverse regression

The work developed by Wu (2008) adapts linear SIR into the non-linear setting using

what is known as the kernel trick and named kernel SIR. It was proposed that in the

non-linear setting, that with the introduction of kernel data, SIR can be reformulated

as solving the eigen-problem

EhKa = λKa, (4.2)

whereK := {κij = 〈φ(Xi),φ(Xj)〉H}, Eh =
∑h

j=1 n
−1
j 1j1

T

j , 1j = [δj(y1) . . . δj(yn)]T

and a is an n-vector whose ith element is the coe�cient ai.

Therefore, Kernel SIR performs a spectrum decomposition of the weighted kernel

matrix EhK with respect to the kernel matrix K. Let λ1, . . . , λn denote the eigen-

values, and a1, . . . ,an be the corresponding complete set of eigenvectors. Through

further investigation, Wu (2008) proposed that the projections of φ(X) along the

eigenvectors ak, k = 1, . . . , n are given by

〈βk,φ(X)〉H =
n∑
i=1

aki 〈φ(Xi),φ(X)〉H =
n∑
i=1

aki κ(Xi,X). (4.3)

Similar to the linear case, the following assumption is present in many dimension

reduction methods.

Assumption 4.2 For any v ∈ H, we have that E[vTφ(X)|βTφ(X)] is linear in

βTφ(X).

This is once again equivalent to assuming φ(X) is elliptically symmetric and is

named the linear design condition.

The following theorem forms the basis for the kernel SIR methodology.

Theorem 4.3 Under assumption 4.2, E[φ(X)|y] − E[φ(X)] falls into the linear

subspace spanned by βTΣxx, where Σxx is the covariance matrix of X.

The estimation algorithm for kernel SIR is almost the same as the linear estima-

tion algorithm, with the addition of a �rst step. The estimation procedure, given in

Wu (2008), is as follows:

1. Prepare the data in kernel form K̃, where K̃ is centered and possibly reduced.

2. Partition a range of Y into h slices to get the discretised Ỹ .
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3. Calculate within-slice means for each slice and the between-slice covariance

matrix V̂ using K̃ in place of X. Also calculate the covariance matrix for the

kernel data, denoted by ΣK̃ .

4. Extract the leading eigenvalues and eigenvectors of V̂ with respect to ΣK̃ .

This is equivalent to solving the eigen-problem in equation (4.2).

5. Normalise the eigenvectors and get the projection directions.

4.1.2 Non-linear principal support vector machines

Li et al. (2011) extended linear PSVM to the non-linear problem de�ned in (4.1)

via the reproducing kernel Hilbert space (RKHS). Under a uni�ed framework the

methodology of the non-linear method follows a very similar layout to the linear

methodology. Let H be de�ned as a RKHS, then the sample version of the PSVM

objective function can be written as

Λ̂(c) = n−1cTΨTΨc+ λn−1
n∑
i=1

(
1− Ỹi(ΨT

i c− t)
)+

, (4.4)

where ΨT

i = (ψ1(Xi), . . . , ψk(Xi)), c ∈ Rk and Λ : H × R → R+. The quadratic

programming problem that solves (4.4) is de�ned in the following theorem, where the

symbol � is the Hadamard product and PA is the projection matrix A(ATA)−1AT

for a matrix A of full rank.

The next theorem outlines the non-linear PSVM problem as a quadratic pro-

gramming problem, taken from Li et al. (2011).

Theorem 4.4 If c∗ minimises Λ̂(c) over Rk, then c∗ = 1
2(ΨTΨ)−1ΨT(ỹ � α∗),

where α∗ is the solution to the quadratic programming problem:

maximise 1Tα− 1

4
(α� ỹ)TPΨ(α� ỹ)

subject to 0 ≤ α ≤ λ, αTỹ = 0.

(4.5)

Note the projection matrix PΨ is replaced by the kernel matrix Kn = {κ(i, j) :

i, j = 1, . . . , n} for some positive bivariate mapping κ : ΩX × ΩX → R. Let Qn =

In − Jn/n, where In is the n× n identity matrix and Jn is an n× n matrix of 1's.

The following proposition is taken from Li et al. (2011).

Proposition 1 Let ω = (ω1, . . . , ωn), ψω =
∑n

i=1 ωi [κ(X,Xi)− Enκ(X,X)]. The

following statements are equivalent:

1. ω is an eigenvector of the matrix QnKnQn with eigenvalues λ.

2. ψω is an eigenfunction of the operator Σn with eigenvalue λ/n.
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4. NON-LINEAR SDR

If λ 6= 0, then either statement implies (ψω(X1), . . . , ψω(Xn)) = λωT

The above proposition can be used to �nd the eigenfunctions of Σn. The estima-

tion algorithm, discussed in Li et al. (2011), takes the form:

1. (Optional) Marginally standardise X1, . . . ,Xn. This step can be omitted if

the components of Xi have similar variances.

2. Choose a kernel κ and the number of basis functions k (say k = n/2). Compute

Ψ = (ω1, . . . ,ωk) and PΨ from QnKnQn.

3. Divide the sample according to LVR or OVA, each yielding a set of slices. For

each pair of slices, solve the quadratic programming problem in Theorem 4.4.

This gives coe�cients c∗1, . . . , c
∗
h̃ ∈ Rk, where h̃ = h− 1 for LVR and

(
h
r

)
for

OVA.

4. Compute the �rst d eigenvectors v̂1, . . . , v̂d of the matrix
h̃∑
i=1

cic
T

i . Denote the

rth component of vs as vsr.

5. The sth su�cient predictor evaluated at x is vs1ψ1(x) + · · ·+ vskψk(x), where

ψr(x) = λ−1r
∑n

i=1 ωri[κ(x,Xi)−Enκ(x,X)]. If step 1 is used, then x should

be marginally standardised.

4.2 Non-linear principal distance-weighted

discrimination

In this section we turn our attention to the extension of this method to the non-linear

case. Analogous to the work developed by Li et al. (2011) we will be expanding linear

PDWD for non-linear PDWD under a uni�ed framework. We have speci�ed that the

PSVM problem is a quadratic programming problem. Similar to the linear problem,

due to the convexity and di�erentiability of the DWD problem, the non-linear DWD

problem can be solved by �nding the zeroes of the �rst derivative. This usually yields

faster results that quadratic programming.

4.2.1 Non-linear su�cient dimension reduction using

distance-weighted discrimination

Let H be a reproducing kernel Hilbert space of functions of X with inner product

〈·, ·〉H. Similar to the linear case, the objective function, Λ(ψ, t) : H × R 7→ R+,
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4.2. NON-LINEAR PRINCIPAL DISTANCE-WEIGHTED DISCRIMINATION

takes the form

Λ(ψ, t) = var(ψ(X)) + E

[
λ
(

1√
λ
− Ỹ (ψ(X)− E[ψ(X)]− t)

)+
+

[
Ỹ (ψ(X)− E[ψ(X)]− t) +

(
1√
λ
− Ỹ (ψ(X)− E[ψ(X)]− t)

)+]−1 ]
,

(4.6)

where Ỹ is de�ned as in (2.2). Now de�ne 〈φ1,Σφ2〉H = cov[φ1(X), φ2(X)], for any

φ1, φ2 ∈ H, where Σ : H 7→ H is the covariance operator. Therefore (4.6) can be

rewritten as

Λ(ψ, t) = 〈ψ,Σψ〉H + E

[
λ
(

1√
λ
− Ỹ (ψ(X)− E[ψ(X)]− t)

)+
+

[
Ỹ (ψ(X)− E[ψ(X)]− t) +

(
1√
λ
− Ỹ (ψ(X)− E[ψ(X)]− t)

)+]−1 ]
.

(4.7)

Finally, for û = Ỹ (ψ(X)− E[ψ(X)]− t) we can write

Λ(ψ, t) = 〈ψ,Σψ〉H + E

[
λ
(

1√
λ
− û
)+

+

[
û+

(
1√
λ
− û
)+]−1 ]

. (4.8)

Lemma 4.5 Suppose the mapping H → L2(PX), f 7→ f is continuous. Then for

each �xed t in R, the function ψ 7→ Λ(ψ, t) is continuous with respect to the L2(PX)-

norm.

Proof. Let ψ1 and ψ2 be two members of L2(PX), where û1 = Ỹ (ψ1(X)−E[ψ1(X)]−
t) and û2 = Ỹ (ψ2(X)− E[ψ2(X)]− t). Then

|Λ(ψ2, t)− Λ(ψ1, t)| ≤ |var[ψ2(X)]− var[ψ1(X)]|+ E

∣∣∣∣∣λ( 1√
λ
− û2

)+
− λ

(
1√
λ
− û1

)+
+

[
û2 +

(
1√
λ
− û2

)+]−1
−
[
û1 +

(
1√
λ
− û1

)+]−1 ∣∣∣∣∣.
We start by considering the �rst term on the right-hand side. This gives

|var[ψ2(X)]− var[ψ1(X)]|

= |var[ψ2(X)− ψ1(X) + ψ1(X)]− var[ψ1(X)]|

= |var[ψ2(X)− ψ1(X)] + 2cov[ψ2(X)− ψ1(X), ψ1(X)]|

≤ |var[ψ2(X)− ψ1(X)]|+ 2|var[ψ2(X)− ψ1(X)]var[ψ1(X)]|1/2

≤ ‖ψ2 − ψ1‖2L2(PX) + 2‖ψ2 − ψ1‖L2(PX)‖ψ1‖L2(PX).

Before we consider the remaining terms of the above equation, we �rst note, for

a, b ∈ R and c > 0 we have

|[b+ (c− b)+]−1 − [a+ (c− a)+]−1 + c−2(c− b)+ − c−2(c− a)+| ≤ c−2|a− b|.
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4. NON-LINEAR SDR

Therefore, the remaining terms can be rewritten as

E

∣∣∣∣∣λ( 1√
λ
− û2

)+
− λ

(
1√
λ
− û1

)+
+

[
û2 +

(
1√
λ
− û2

)+]−1
−
[
û1 +

(
1√
λ
− û1

)+]−1 ∣∣∣∣∣
≤ λE|û2 − û1|

= λE|Ỹ (ψ2(X)− t)− Ỹ (ψ1(X)− t)|

= λE|ψ2(X)− ψ1(X)|

= λ‖ψ2 − ψ1‖L2(PX).

Combining this, we �nd

|Λ(ψ2, t)− Λ(ψ1, t)| ≤ ‖ψ2 − ψ1‖2L2(PX) + 2‖ψ2 − ψ1‖L2(PX)‖ψ1‖L2(PX) + λ‖ψ2 − ψ1‖L2(PX)

= ‖ψ2 − ψ1‖L2(PX)

(
‖ψ2 − ψ1‖L2(PX) + 2‖ψ1‖L2(PX) + λ

)
.

Therefore |Λ(ψ2, t)− Λ(ψ1, t)| → 0 as ‖ψ2 − ψ1‖ → 0.

Following the de�nition 1 in Li et al. (2011), we say that a function ψ ∈ H
is unbiased for non-linear su�cient dimension reduction if it has a version that is

measurable with respect to σ{f(X)}. Using this then we prove the following theorem
which proves that the minimiser of the objective function (4.7) estimates the CS.

Theorem 4.6 Suppose the mapping H → L2(PX), f 7→ f is continuous and

1. H is a dense subset of L2(PX)

2. Y X|f(X)

If (ψ∗, t∗) minimises Λ(ψ, t) among all (ψ, t) ∈ H × R, then ψ∗(X) is unbiased.

Proof. Beginning with the �rst term we have

var[ψ(X)] = var[E[ψ(X)|f(X)]] + E[var[ψ(X)|f(X)]] ≥ var[E[ψ(X)|f(X)]].

(4.9)

Now let us look at the second term. Again, we can write

E

[[
û+

(
1√
λ
− û
)+]−1

+ λ
(

1√
λ
− û
)+]

= E

[
E

[[
û+

(
1√
λ
− û
)+]−1

+ λ
(

1√
λ
− û
)+ ∣∣∣∣Ỹ ,f(X)

]]
.

If we de�ne the function g such that g(a) =

[
a+

(
1√
λ
− a
)+]−1

+λ
(

1√
λ
− a
)+

then

this gives

E

[[
û+

(
1√
λ
− û
)+]−1

+ λ
(

1√
λ
− û
)+ ∣∣∣∣Ỹ ,f(X)

]
= E[g(û)|Ỹ ,f(X)].
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4.2. NON-LINEAR PRINCIPAL DISTANCE-WEIGHTED DISCRIMINATION

Since g is a convex function, we can use Jenson's inequality as follows:

E[f(û)|Ỹ ,f(X)] ≥
[
E[û|Ỹ ,f(X)] +

(
1√
λ
− E[û|Ỹ ,f(X)]

)+]−1
+ λ

(
1√
λ
− E[û|Ỹ ,f(X)]

)+
≥

[
Ỹ (E[ψ(X)− E[ψ(X)]|f(X)]− t)

+
(

1√
λ
− Ỹ (E[ψ(X)− E[ψ(X)]|f(X)]− t)

)+ ]−1
+ λ

(
1√
λ
− Ỹ (E[ψ(X)− E[ψ(X)]|f(X)]− t)

)+
Thus combing this with (4.9) we get

L(ψ, t) ≥ Λ(L(ψ), t), (4.10)

where L(ψ) denotes the function E[ψ(X)−E[ψ(X)]|f(X)]. Equation (4.9) becomes

strict if E[var[ψ(X)|f(X)]] > 0. The equality E[var[ψ(X)|f(X)]] = 0 means that

ψ(X) is constant given f(X) and is therefore equivalent to there being a version

of ψ that is measurable with respect to σ{f(X)}. Hence if there is no version of ψ

that is measurable with respect to σ{f(X)}, then

Λ(ψ, t) > Λ(L(ψ), t).

Since H ⊂ L2(PX), ψ belongs to L2(PX), for any ε > 0, there is a ψ1 ∈ H such that

‖ψ1 − L(ψ)‖L2(PX) < ε.

By Lemma 4.5, we can choose ε to be su�ciently small so that Λ(ψ, t) > Λ(ψ1, t),

which means ψ cannot be ψ∗.

4.2.2 Sample estimation algorithm

Let H be a linear space of functions from ΩX to R spanned by Fn = {ψ1, . . . , ψn}.
These functions are chosen, such that, En[fi(X)] = 0. Let

Ψ =


ψ1(X1) · · · ψ1(Xn)

...
. . .

...

ψn(X1) · · · ψn(Xn)

 .

Hence, the sample version of (4.7) becomes

Λ̂(c) = cTΨTΨc+
1

n

n∑
i=1

[
λ

(
1√
λ
− Ỹi(ΨT

i c− t)
)+

+

[
Ỹi(Ψ

T

i c− t) +

(
1√
λ
− Ỹi(ΨT

i c− t)
)+
]−1 ]

.

(4.11)
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where ΨT

i = (ψ1(Xi), . . . , ψk(Xi)), c ∈ Rk and Λ : H× R→ R+.

This problem di�ers from the kernel objective function, given in Wang and Zou

(2015), where ΨTΨ is replaced by the kernel matrix Kn = {κ(i, j) : i, j = 1, . . . , n}
for some positive de�nite bivariate mapping κ : ΩX×ΩX → R. For the function class
H, the reproducing kernel Hilbert space is based on the mapping κ. Many choices of

κ exist, some of the more popular choices are the Gaussian radial kernel κ(x1,x2) =

e−γ‖x1−x2‖2 , where γ > 0 and the polynomial kernel κ(x1,x2) = (xT1x2 + c)r, where

r is a positive integer. For the Gaussian radial kernel, the choice of γ is discussed in

Li et al. (2011). Let Qn = In−Jn/n, where In is the n×n identity matrix and Jn

is an n× n matrix with entries 1. We can use proposition 1 , where for our problem

we need ΨTΨ, where Ψ = W = (ω1, . . . ,ωn) to estimate the eigenfunctions of Σn.

Since ωi is an eigenvector of QnKnQn, ΨTΨ becomes close to an identity matrix.

Therefore the objective function in (4.11) becomes independent ofX. For this reason

we choose Ψ = K
1/2
n W . Therefore, the kernel PDWD estimation algorithm is as

follows:

1. (Optional) Marginally standardise X1, . . . ,Xn. This step can be omitted if

the components of Xi have similar variances.

2. Choose a kernel κ and create the kernel matrix K. Calculate Ψ = K
1/2
n W .

3. Divide the sample according to LVR or OVA. For each set of slices compute the

coe�cient vectors c1, . . . , ch̃ using the kernel DWD algorithm withK replaced

with ΨTΨ. For LVR h̃ = h− 1 and for OVA h̃ =
(
h
2

)
.

4. The su�cient predictors are equivalent to the �rst d eigenvectors v̂1, . . . , v̂d of

the matrix
h̃∑
i=1

cic
T

i .

4.2.3 Numerical studies

We consider the following models

Model I: Y =
X1

0.5 + (X2 + 1)2
+ 0.2ε

Model II: Y = (X2
1 +X2

2 )1/2 log((X2
1 +X2

2 )1/2) + 0.2ε

where X ∼ N(0, Ip), ε ∼ N(0, 1). For this choice of models, we only need to compare

KPDWD to KPSVM, since these are the models used in Li et al. (2011). In the same

format as Li et al. (2011) we will use the absolute value of Spearman's correlation

to measure the closeness of the predictors to the true predictors.
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We choose n = 100, λ = 1, p = 10, 20, 30 and h = 20. For Spearman's corre-

lation, the numbers are between 0 and 1, where larger numbers indicate a higher

performance. Using the Gaussian kernel basis, Table 4.1 shows that kernel PDWD

outperforms kernel PSVM for both models. It is also clear that the performance of

kernel PDWD remains good as p increases.

Model p KPSVM KPDWD

I
10 0.91 (0.012) 0.97 (0.009)
20 0.86 (0.029) 0.97 (0.015)
30 0.84 (0.033) 0.97 (0.014)

II
10 0.90 (0.018) 0.92 (0.017)
20 0.82 (0.037) 0.93 (0.020)
30 0.78 (0.035) 0.93 (0.019)

Table 4.1: Comparison of estimation performance between KPSVM and KPDWD. The table reports
the mean performance of 100 iterations (standard errors in parenthesis) for the two methods.
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Chapter 5

Parallel SDR

The methods previously mentioned approach SDR directly by evaluating the dataset

as a whole. Many methods have been developed using the process of splitting the

data into subsets with respect to the sample size, n. Some of these include Liquet

and Saracco (2016). Another approach, proposed by Yin and Hilafu (2015), instead

partitions the feature space by splitting the variables into subsets and performing a

sequential method on the smaller subsets.

We propose a new approach to dimension reduction in the form of parallel pro-

gramming through feature space partitioning. Similar to Yin and Hilafu (2015), we

too partition the feature space however we propose splitting the variables into sub-

sets and performing the method on multiple machines in parallel. This should have

a positive impact on the elapsed speed of the method which will be extremely useful

for high dimensional data.

Remark 5.1 For this section we will often de�ne subsets of Y and X. A subset of

the Y and X over the sample space will be denoted Y(i) and X(i), for i = 1, . . . , g.

The sample size of Y(i) and X(i), ni, is de�ned as 1 ≤ ni ≤ n. A subset of X over

the feature space will be denoted by X(j), for j = 1, . . . ,m. The dimension of X(j),

pj, is de�ned as 1 ≤ pj ≤ p.

5.1 Literature review

As previously discussed, many methods already exist which split big data before

performing SDR. These methods include splitting the sample space or splitting the

feature space. The motivation and theory when splitting the sample space compared

to the feature space is often very di�erent so we will consider previous methods

separately.
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5.1.1 Separation of sample space

When the sample size of data is extremely large this can cause analytical compli-

cations with respect to both speed and memory. However as we have previously

found large n usually produces more accurate results. Below we have included a

description of some of the already produced SDR methods that involve sample space

partitioning.

5.1.1.1 BIG-SIR

There have been multiple methods of separating the sample space and performing

parallel programming versions of SDR. One in particular is BIG-SIR, introduced by

Liquet and Saracco (2016). This algorithm was developed to tackle data where the

sample size is much larger than the dimension. The BIG-SIR algorithm is as follows:

1. Split the sample space into g slices, to give n = n1+· · ·+ng, Y = (Y (1), . . . ,Y (g))

and X = (X(1), . . . ,X(g)), such that p < ni for all i = 1, . . . , g.

2. Perform SIR on each subset to produce the candidate matrix M̂ (i) for all

i = 1, . . . , g.

3. Re-collect the data and calculate

M̂ =

g∑
i=1

1

ni
M̂ (i)M̂

T

(i).

4. Finally we let v̂1, . . . , v̂d be the d largest eigenvectors of M̂ . Thus β̂ =

Σ̂
−1/2
xx (v̂1, . . . , v̂d) can be used to estimate the CDRS.

The motivation for this work was to �nd a method that could be applied to big

data. Even though accuracy is not the primary goal of this method it is worth not-

ing the implications that separating the sample has on the accuracy. We have found

previously that the larger the sample size the better the accuracy of the method.

Therefore, since this method relies upon separating the sample space, and thus re-

ducing the size of n within each subset, the accuracy of this method is not as high

as standard SIR.

5.1.1.2 Distributive PSVM

Distributive PSVM, introduced by Jin et al. (2019), produced a new form of PSVM

which separates the sample space and distributes the data onto multiple machines.

PSVM has been found to often produce more accurate results than other methods
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but can be quite slow. The PSVM algorithm is a quadratic programming prob-

lem which has computational complexity of approximately O(n3). Therefore, the

computational e�ciency of PSVM is heavily dependant on the size of n.

This method was produced in an attempt to tackle dimension reduction for data

where the sample size is large and much greater than the dimension. The author pro-

poses two methods beginning with what they name the naive distributed estimation

(ND-PSVM). This approach begins by partitioning the data samples into g subsets

and performing PSVM on each subset. The estimation algorithm for ND-PSVM is

as follows:

1. Partition the data samples into g disjoint subsets, to give n = n1 + · · · + ng,

such that the jth subset contains the data (X(j), Y(j)) and p < ni for all

i = 1, . . . , g. There is no requirement for the ni's to be equal. Since the

accuracy of the estimator correlates with the size of n it is best for n to be

as large as possible. Therefore, the accuracy of the estimator will be partially

dependant on the size of the smallest ni. Choosing equal ni's will ensure the

greatest accuracy for the number of subsets.

2. Perform PSVM on each subset to produce the candidate matrix M̂ (j) for all

j = 1, . . . , g.

3. Gather the data and calculate

M̂ =

g∑
j=1

1

g
M̂ (j).

4. Finally we let v̂1, . . . , v̂d be the d largest eigenvectors of M̂ . Thus β̂ =

Σ̂
−1/2
xx (v̂1, . . . , v̂d) can be used to estimate the CDRS.

This method is very similar to BIG-SIR discussed previously with the main dif-

ference being the implementation of PSVM as opposed to SIR. Therefore, similar

to BIG-SIR, the reduction of the sample size within each subset leads to a negative

impact on the accuracy of the method compared with the method applied to the

entire data.

As previously discussed this work consisted of two approaches for sample space

partitioning. The second approach, named re�ned distributed estimation (RD-

PSVM), instead approximates the hinge loss function u+ = max(u, 0) within the

PSVM objective function. This is done using the smooth function Kr(u) = uH(u/r)

where H is a smooth and di�erentiable function satisfying

H(u) =

1, for u ≥ 1

0, for u ≤ −1
.
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Let θ = (ψT, t)T and X∗ = (XT,−1)T, then the estimation algorithm becomes:

1. Partition the data samples into g disjoint subsets, to give n = n1+· · ·+ng, such
that the jth subset contains the data (X(j), Y(j)) and p < ni for all i = 1, . . . , g.

2. Calculate the following for j = 1, . . . , g, where Ij represents the set of samples

in the jth subset:

Û(j) = n−1
∑
i∈Ij

X∗iX
∗T
i , Ŵ(j) = n−1

∑
i∈Ij

X∗iX
∗T
i H ′((1− ỸiθT(0)X

∗
i )/r)/r,

V̂(j) = n−1
∑
i∈Ij

X∗i Ỹi

[
H((1− ỸiθT(0)X

∗
i )/r) +H ′((1− ỸiθT(0)X

∗
i )/r)/r

]
,

where θ(0) is a `good' initial value, where a suggested initial value is the esti-

mator θ̂j of the jth subset of data.

3. Calculate θ̂ for each slice as

θ̂ =

 g∑
j=1

(
Ŵj + 2λ−1diag(Ûj , 0)

)−1 g∑
j=1

V̂j .

4. Compute the candidate matrix as

M̂ =

h∑
i=1

ψ̂iψ̂
T

i

using θ̂, where h is the number of slices.

5. Finally we let v̂1, . . . , v̂d be the d largest eigenvectors of M̂ . Thus β̂ =

Σ̂
−1/2
xx (v̂1, . . . , v̂d) can be used to estimate the CDRS.

5.1.2 Separation of the feature space

Separation of the feature space may also be required if p is extremely large however

the formulation of such methods is commonly motivated by the restrictions on the

dimension of the data enforced by the sample size. This being, many dimension

reduction methods require p < n. The desire is that by splitting the feature space,

only the dimension of the subsets of the data need to be less than n. Therefore

by separating the feature space before performing traditional dimension reduction

methods we hope to avoid this restriction. We aim to investigate the implication

this will have on the e�ciency of classical methods.
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5.1.2.1 DECOrrelated feature space partitioning for distributed sparse

regression

The work proposed by, Wang et al. (2016) is not a method of SDR but rather a

method for variable selection which will form the groundwork for the new method

of SDR we are developing. Variable selection and dimension reduction have similar

aims but are slightly di�erent.

Variable selection aims to �nd a subset of the original data which contains the

variables that hold the most information about the response. Dimension reduction on

the other hand creates new variables made of combinations of the original variables.

To better understand this we shall consider the model Y = X1(X2 +X3) + ε. Using

variable selection we would determine three variables of interest, X1, X2 and X3.

Whereas using dimension reduction we would only �nd two directions, or dimension,

which are X1 and X2 +X3.

The basic idea of this method is to decorrelate the design matrix and partition

the feature space into m subsets. Traditional variable selection techniques can then

be performed of the subsets. A key bene�t of this method is the potential for

parallel programming, meaning that the desired variable selection technique can

be performed on each subset on separate computers and therefore reduce elapsed

computation time.

Consider the linear regression model

Y = Xβ + ε. (5.1)

Let us consider the singular value decomposition of the design matrix asX = UDV T,

where U is an n×p matrix, D is a p×p diagonal matrix and V is a p×p orthogonal
matrix. Then multiplying (5.1) by

√
pD−1UT on the left, we get

√
pD−1UTY =

√
pV Tβ +

√
pD−1UTε (5.2)

or

Ỹ = βX̃β + ε̃, (5.3)

where Ỹ =
√
pD−1UTY , X̃ =

√
pV T and ε̃ =

√
pD−1UTε. It is now clear that X̃

is mutually orthogonal. The decorrelation step can also be performed by instead

multiplying by (XXT/p)−1/2. The new feature matrix can now be split into m

subsets and hence the estimation algorithm is as follows:

1. Decorrelate the data as speci�ed above and split the new feature matrix into

m subsets X̃
(1)
, . . . , X̃

(m)
.

2. Compute β̂
(i)

for each subset, using the desired variable selection technique.
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3. Combine the β̂
(i)
's to produce

β̂ =


β̂
(1)

...

β̂
(m)

 .

5.1.2.2 Sequential SDR

The work by Yin and Hilafu (2015) is di�erent from others previously discussed as

its primary goal is to tackle the problem of p � n. Therefore, the aim is to reduce

p so that the dimension is less than n and then use a standard dimension reduction

technique to �nd the su�cient dimension reduction subspace. Let X1 and X2 be

random vectors and R(X1) be a vector function of X1. We begin with 3 statements

(a) X1 (X2, Y )|R(X1),

(b) X1 X2|{R(X1), Y } and X1 Y |R(X1),

(c) X1 Y |{R(X1),X2}.

Proposition 1 of Yin and Hilafu (2015) states that either (a) or (b) imply (c). This

framework consists of two separate paths, depending on the choice of statement (a)

or statement (b). Statement (a) is considered the better choice for a quantitative

response variable, whereas statement (b) would be the desired choice if the response

variable is categorical. From now on the paths shall be referred to as Path I and

Path II, respectively.

Path I: Let X = (X(1)T, . . . ,X(m)T)T and R(X(1)) = β(1)TX(1). Then the aim

is to estimate SŶ ,X(1) , where the response variable is multivariate. There are many

methods for estimating this subspace, but Yin and Hilafu chose to use Projective

Resampling Sliced Inverse Regression (PRSIR) developed by Li et al. (2008). The

estimation procedure (taken from Yin and Hilafu (2015)) is as follows:

1. Decompose X ∈ Rp into XT = (X(1)T,X(2)T), where X(1) is a p1 × 1 vector

such that n > p1. Consider the problem of estimatingX(1) (X(2), Y )|β(1)TX(1).

2. Apply PRSIR to the problem of Y T = (X(2)T, Y )|X(1) and �nd the reduced

variable β(1)TX(1).

3. Replace the predictor X by (β(1)TX(1),X(2)) and go back to step 1.

Repeat steps 1-3 until all the variables in the original predictor vector X have been

used in step 1.

Path II: In path II both X(1) X(2)|(β(1)TX(1), Y ) and X(1) Y |β(1)TX(1)

need to be considered. The �rst is to identify the partial CDRS S
(Y )

X(2)|X(1) , where
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S(Y )X(2)|X(1) denotes the dimension reduction space spanned by β(1) such that

X(1) Y |β(1)TX(1), and has multivariate response. The second is to identify the

usual CDRS, SY |X(1) . Here Projective Resampling Partial Sliced Inverse Regression

(PRPSIR), proposed by Hilafu and Yin (2013), is used. The estimation procedure

(again taken from Yin and Hilafu (2015)) is as follows:

1. Decompose X ∈ Rp into XT = (X(1)T,X(2)T) where X(1) is a p1 × 1 vector

such that n > p1. Consider the problem of estimating S
(Y )

X(2)|X(1) and SY |X(1) .

2. Apply PRPSIR to the problem of S
(Y )

X(2)|X(1) and �nd the reduced variable

αT1X
(1).

3. Apply SIR to the problem of SY |X(1) and �nd the reduced variable αT2X
(1).

4. Set β(1) = (α1,α2), replace the predictor X by with (β(1)TX(1),X(2)) and go

back to step 1.

When combining α1 and α2 to obtain β
(1), the singular value decomposition method

can then be used to remove redundant directions in case α1 and α2 have common

estimated directions. Repeat steps 1-4 until all variables in the original predictor

vector have been used in step 1.

5.1.2.3 Groupwise

Often in practice, data occurs where the predictors naturally fall into several groups.

Li et al. (2010) and Guo et al. (2015) developed a method, named groupwise SDR

which attempts to estimate SY |X by performing SDR on the naturally forming

groups. For this type of data we instead aim to �nd

Y X|(β(1)TX(1), . . . ,β(m)TX(m)), (5.4)

where we assume there are m groups of predictors and span(β(i)) forms the column

space of SY |X(i) . This gives

m⋃
i=1

SY |X(i) ⊇ SY |X ,

where an equality occurs if X(i) X(j) for all i, j = 1, . . . ,m. An added assumption

of the work by Li et al. (2010) is that di > 0, where di is the estimated dimension size

in each group. That is there are directions of interest within each naturally forming

group.
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5.1.2.4 Sparse SIR via LASSO

The work by Lin et al. (2019) introduces an e�cient LASSO variant of SIR for p� n

problems. Generally in SDR literature β ∝ Σ−1η, where Σ is the general covariance

matrix ofX and η are the leading eigenvalues of the candidate matrix. The common

approach of estimating Σ−1η is to estimate Σ−1 and η separately, however when

p > n, Σ is singular and therefore not invertible. Another approach to avoid directly

estimating Σ−1 is by solving an L1 penalisation problem.

To begin, we de�ne the classic SIR candidate matrix to be

V̂ =
1

h
XhX

T

h, (5.5)

where Xh is a p× h matrix formed by the h sample means. Now de�ne λ̂ to be the

largest eigenvalue of V̂ , η̂ be it's respective eigenvector and letM = Ih⊗ 1c, where

1 is a nj × 1 vector of 1's and c = n/h. Therefore,

λ̂η̂ =
1

h
XhX

T

hη̂ =
1

nc
XMMTXTη̂.

Finally de�ning

A =
1

cλ̂
MMTXTη̂

gives η̂ = n−1XA, which yields

1

n
XA ∝ 1

n
XXTβ,

where n−1XXT is used as an approximation of Σ.

Using LASSO regression, we can recover a sparse estimate of β, where β is

estimated to be the minimiser of

1

2n
‖A−XTβ‖22 + µ‖β‖1.

Therefore the estimation algorithm, described in Lin et al. (2019), takes the form:

1. Let λ̂i and η̂i, for i = 1, . . . , d, be the d leading eigenvalues and eigenvectors

of V̂ , respectively.

2. Let A = c−1MMTXTη̂ diag(λ−11 , . . . , λ−1d ).

3. For each i = 1, . . . , d, solve the LASSO optimisation problem

η̂i = arg min
1

2n
‖A∗i −XTβ‖22 + µi|β|1,

where µi = C
√

log(p)
nλi

for su�ciently large constant C andA∗i is the ith column

of A.
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4. Let B̂ be the matrix formed by β̂1, . . . , β̂d. The estimator of Pβ is given by

PB̂.

Further to this work, Pircalabelu and Artemiou (2021) adapted this method

for PSVM. The PSVM objective function also depends on Σ which needs to be

estimated. For sparse PSVM via LASSO, Σ is also estimated using LASSO.

5.2 SDR by decorrelating variables

The work by Li et al. (2010) introduced a parallel programming problem for sep-

arating the feature space of grouped data. Similar to the approach proposed by

Wang et al. (2016), we aim to develop a new method for SDR by �rst decorrelat-

ing the data, for all types of vector data. Many methods of SDR begin by �rst

standardising the feature matrix before applying more steps. We propose to take

advantage of this common standardisation step to instead decorrelate the variable.

If Z = Σ1/2(X − X̄) then the covariance matrix of Z is equal to Ip. Therefore

Zi (X1, . . . ,Zi−1,Zi+1, . . . ,Zp) for i = 1, . . . , p. (5.6)

Before we continue, we shall de�ne some notation. Let m denote the number of

subsets and let Z(i) denote the ith subset of Z, where Z = (Z(1)T, . . . ,Z(m)T)T.

Then we obtain

Z(i) (Z(1), . . . ,Z(i−1),Z(i+1), . . . ,Z(m)) for i = 1, . . . ,m. (5.7)

Next we can perform a standard SDR methods on Z(i) to yield

Y Z(i)|β̃(i)T
Z(i). (5.8)

Now let A = diag(β̃
(i)T

) which has dimension d̃ = d̃1 + · · · + d̃m. Combining

(5.7) and (5.8) gives,

Y Z|ATZ. (5.9)

Here d ≤ d̃ ≤ md and hence this process only predicts the principal directions within

each subset. Now since we have established that the information, we require from

Z remains within ATZ, further evaluation can be performed on ATZ instead of Z,

without loss of information.

If one of the combinations of variables lies within separate subsets, then the

steps so far will �nd separate directions for the variables in each subset. This means

that even though the space spanned by the columns of A is a dimension reduction

subspace, it may not be the minimal dimension reduction subspace. To �nd the
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minimal dimension reduction subspace, we �nd the d most important directions of

ATZ using traditional methods to give

Y ATZ|BTATZ ⇒ Y Z|(AB)TZ

since P(Y |Z) = P(Y |ATZ). Therefore, we choose β = Σ̂
−1/2
xx AB to give

Y X|βTX.

.

5.2.1 Estimation algorithm

The method we proposed has been clearly outlined in the previous section. Below

we include a step-by-step algorithm of this method.

1. Decorrelate the variables by standardising X and split the feature space of X

into m subsets such that X = (X(1)T, . . . ,X(m)T)T where the dimension of

X(i) is pi and p = p1 + · · ·+ pm.

2. Perform the desired SDR method on each subset to obtain Â
(i)

of size pi × d̃,
where d ≤ d̃ ≤ md and d̃ = d̃1 + · · ·+ d̃m. Now form a matrix Â as follows

Â =


Â

(1)
0p1×d1 · · · 0p1×d1

0p2×d2 Â
(2) · · · 0p2×d2

...
...

. . .
...

0pm×dm 0pm×dm · · · Â
(m)

 .

3. Perform the chosen SDR method on Â
T

X to obtain B̂ of size md× d.

4. Let β̂ = Σ̂
−1/2
xx ÂB̂ and so we can use the subspace spanned by β̂ = (β̂1, . . . , β̂d)

to estimate the CDRS.

5.2.2 Separating the sample space and feature space

Using the ideas developed by Liquet and Saracco (2016) we can now extend our

method so that we can separate both the sample space and the feature space, as

follows:

1. Decorrelate the variables by standardising X and split the feature space of X

into m subsets such that X = (X(1)T, . . . ,X(m)T)T where the dimension of

X(i) is pi and p = p1 + · · ·+ pm.
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2. Split the sample space into g slices, to give n = n1+· · ·+ng, Y = (Y (1), . . . ,Y (g))

and

X =


X

(1)
(1) · · · X

(1)
(g)

...
. . .

...

X
(m)
(1) · · · X(m)

(g)

 ,

such that p < ni for all i = 1, . . . , g.

3. Perform the desired method on each subset to produce the candidate matrix

M̂
(j)
(i) for all i = 1, . . . , g and j = 1, . . . ,m.

4. Recollect the data and calculate

M̂
(j)

=

g∑
i=1

1

ni
M̂

(j)
(i)M̂

(j)T
(i)

for all j = 1, . . . ,m.

5. Finally, we let η(j) be the d largest eigenvectors of
ˆ

M (j). Thus Â
(j)

= η(j) for

all j = 1, . . . ,m.

6. Using Â
(j)

of size pj × d̃, where d ≤ d̃ ≤ md and d̃ = d̃1 + · · · + d̃m, form a

matrix Â as follows

Â =


Â

(1)
0p1×d1 · · · 0p1×d1

0p2×d2 Â
(2) · · · 0p2×d2

...
...

. . .
...

0pm×dm 0pm×dm · · · Â
(m)

 .

7. Again separate Â
T

X into g subsets as above and perform the desired method

on each subset to obtain N̂ (i) for all i = 1, . . . , g. Calculate

N̂ =

g∑
i=1

1

ni
N̂ (i)N

T

(i).

8. Now B̂ = ν, where ν is the d largest eigenvectors of N̂ and B̂ is of size md×d.

9. Let β̂ = Σ̂
−1/2
xx ÂB̂ and so the subspace spanned by β̂ = (β̂1, . . . , β̂d) can be

used to estimate the CDRS.

Many classical methods which do not attempt to separate the feature space are

restricted such that they require p < n. Therefore, for each subset we require pi < n.

However, since we standardise �rst, which requires a non-singular covariance matrix,

we too require p < n and thus separating the hyperplane in this way does not allow

us to perform the method on high dimension low sample size data.
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5.2.3 Synthetic analysis

We have chosen to again use the distance measure de�ned in (2.37). This measure

can take values from 0 to
√

2d, with lower numbers indicating the two vectors are

closer together and therefore implying a higher level of accuracy. We will start by

evaluating the performance of our proposed method through synthetic studies. Since

we are splitting the data into m subsets, we once again need to evaluate our method

when all of the features of interest fall into one subset and when the features of

interest are separated into di�erent subsets. For this reason, we will consider the

following models with r to be de�ned later.

Model I: Y = X1 +Xr + 0.2ε

Model II: Y =
X1

0.5 + (Xr + 1)2
+ 0.2ε

Model III: Y = X1(X1 +Xr + 1) + 0.2ε

Since our method involves the separation of the feature space it is important

that our numerical investigations include examples with correlation. Therefore, we

choose X ∼ N(0,Σ) and ε ∼ N(0, Ip), with Σij = s|i−j|. The following results have

been obtained using h = 20 and λ = 0.1 for PSVM and PDWD.

5.2.3.1 Performance when combinations of variables fall in di�erent

subsets

As previously stated since we are separating the variables into di�erent subsets,

and then performing our method on each individual subset, we are interested in the

performance of our method when all the important variables fall into the same subset

and when they fall into di�erent subsets. For this reason, we will consider the case

when r = 2 and r = p. Tables 5.1 and 5.2 show the performance of our method for

s = 0 and s = 0.2 respectively.

On �rst inspection of tables 5.1 and 5.2, we see little di�erence between the

accuracy for s = 0 and s = 0.2. For model I, separating the variables for r = 2 and

r = p has a negative impact on the performance for p < n, and a slight increase

in the performance for p = n. This is apparent for SIR, PDWD and PSVM, with

minor variation between choices of r. For models II and III, separating the variables

generally has a positive e�ect on the performance with a slight decrease occurring

for larger choices of m.

Figure 5.1 shows the performance of our method for more choices of p and gives a

clearer view of our method compared with no separation, with n = 100. Separation

of the variables produces better results for 70.6% of the scenarios, where the mean

distance of all results is 1.29 for no separation of variables and 1.23 for our method.
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Model p m
SIR PDWD PSVM

r = 2 r = p r = 2 r = p r = 2 r = p

I

10
1 0.10 (0.022) 0.06 (0.013) 0.09 (0.033) 0.12 (0.042) 0.12 (0.016) 0.09 (0.008)
2 0.16 (0.010) 0.12 (0.007) 0.14 (0.104) 0.17 (0.062) 0.13 (0.024) 0.13 (0.038)
5 0.20 (0.017) 0.13 (0.023) 0.11 (0.021) 0.11 (0.040) 0.14 (0.010) 0.14 (0.012)

50
1 0.43 (0.022) 0.29 (0.043) 0.35 (0.056) 0.44 (0.081) 0.44 (0.066) 0.39 (0.036)
2 0.44 (0.031) 0.45 (0.029) 0.39 (0.074) 0.54 (0.019) 0.48 (0.036) 0.52 (0.164)
5 0.45 (0.060) 0.42 (0.082) 0.51 (0.083) 0.47 (0.057) 0.49 (0.077) 0.47 (0.051)

100
1 1.41 (0.012) 1.41 (0.002) 1.37 (0.027) 1.31 (0.020) 1.34 (0.084) 1.40 (0.014)
5 1.30 (0.130) 1.35 (0.091) 1.35 (0.050) 1.34 (0.038) 1.33 (0.018) 1.37 (0.023)
10 1.27 (0.114) 1.33 (0.089) 1.40 (0.007) 1.39 (0.012) 1.23 (0.126) 1.32 (0.047)

II

10
1 0.66 (0.063) 0.87 (0.061) 0.62 (0.002) 0.77 (0.230) 0.42 (0.181) 0.59 (0.027)
2 0.87 (0.317) 0.66 (0.214) 0.76 (0.176) 0.67 (0.130) 0.44 (0.068) 0.55 (0.078)
5 0.51 (0.022) 0.67 (0.118) 0.62 (0.002) 0.77 (0.230) 0.54 (0.196) 0.79 (0.133)

50
1 1.67 (0.026) 1.62 (0.007) 1.33 (0.004) 1.44 (0.127) 1.51 (0.199) 1.50 (0.138)
2 1.39 (0.196) 1.43 (0.194) 1.36 (0.015) 1.50 (0.116) 1.45 (0.010) 1.45 (0.062)
5 1.52 (0.060) 1.31 (0.027) 1.29 (0.064) 1.39 (0.157) 1.31 (0.075) 1.37 (0.128)

100
1 1.98 (0.019) 1.96 (0.011) 1.97 (0.011) 1.92 (0.046) 1.95 (0.060) 1.93 (0.040)
5 1.96 (0.019) 1.94 (0.021) 1.97 (0.020) 1.91 (0.024) 1.95 (0.072) 1.94 (0.034)
10 1.93 (0.011) 1.95 (0.002) 1.97 (0.008) 1.95 (0.052) 1.96 (0.017) 1.94 (0.020)

III

10
1 1.18 (0.497) 1.44 (0.304) 0.78 (0.100) 1.18 (0.042) 0.84 (0.005) 1.05 (0.171)
2 0.96 (0.000) 1.02 (0.044) 0.53 (0.159) 0.80 (0.113) 1.05 (0.415) 0.86 (0.192)
5 0.76 (0.189) 1.09 (0.140) 0.78 (0.100) 1.18 (0.042) 0.89 (0.005) 1.23 (0.453)

50
1 1.84 (0.170) 1.88 (0.093) 1.78 (0.093) 1.82 (0.102) 1.91 (0.014) 1.87 (0.009)
2 1.72 (0.082) 1.67 (0.042) 1.75 (0.206) 1.60 (0.041) 1.65 (0.064) 1.70 (0.179)
5 1.67 (0.187) 1.64 (0.038) 1.72 (0.138) 1.78 (0.179) 1.73 (0.111) 1.76 (0.003)

100
1 1.99 (0.002) 1.98 (0.004) 1.98 (0.017) 1.97 (0.022) 1.98 (0.014) 1.98 (0.009)
5 1.99 (0.008) 1.97 (0.020) 1.99 (0.018) 1.97 (0.026) 1.97 (0.015) 1.97 (0.010)
10 1.92 (0.074) 1.99 (0.001) 1.98 (0.010) 1.98 (0.008) 1.95 (0.028) 1.95 (0.008)

Table 5.1: Comparison of di�erent amounts of subsets for PDWD, PSVM and SIR. The table shows
the mean performances (standard deviation in parenthesis) of each method with n = 100 and s = 0
of 100 iterations.

Figure 5.1 indicates more clearly that separation of the variables produces better

results more often than not separating the variables. We will now investigate whether

speci�c choices model, p, m, r, s and classic method show di�erent proportion of

increased performance for separation of variables. Figure 5.2 shows the 720 scenarios

by model, p, m, r, s and choice of classic method.

The choice of method, r and s has little impact on the number of results that our

method had an improved performance. It is clear that our method introduces more

performance improvements for models II and III, since it can be seen that most of

the better performances occur for models II and III. Our method produced better

results only 35.8% of the time for model I, whereas our method created improved

results 86.3% of the time for model II and 89.6% of the time for model III. For the

choices of p and m, the charts show that the number of results where our method

shows a better performance increases, as p andm increase. For the choice of method,

we see that for PDWD the points remain extremely close to the line which implies

the separation of variables has little e�ect on the accuracy of the method. This trend

can also be seen for PSVM however the points do show a larger spread than those
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Model p m
SIR PDWD PSVM

r = 2 r = p r = 2 r = p r = 2 r = p

I

10
1 0.14 (0.009) 0.10 (0.006) 0.15 (0.019) 0.09 (0.014) 0.11 (0.041) 0.10 (0.014)
2 0.16 (0.007) 0.13 (0.001) 0.18 (0.020) 0.19 (0.024) 0.14 (0.025) 0.15 (0.091)
5 0.15 (0.007) 0.13 (0.027) 0.21 (0.026) 0.14 (0.042) 0.15 (0.060) 0.14 (0.022)

50
1 0.32 (0.035) 0.29 (0.018) 0.52 (0.155) 0.36 (0.103) 0.64 (0.040) 0.52 (0.025)
2 0.54 (0.041) 0.44 (0.025) 0.56 (0.036) 0.47 (0.184) 0.50 (0.031) 0.33 (0.058)
5 0.55 (0.017) 0.47 (0.007) 0.50 (0.118) 0.40 (0.074) 0.64 (0.086) 0.47 (0.077)

100
1 1.40 (0.021) 1.40 (0.017) 1.36 (0.037) 1.38 (0.030) 1.39 (0.030) 1.28 (0.179)
5 1.32 (0.102) 1.15 (0.234) 1.31 (0.034) 1.38 (0.003) 1.39 (0.033) 1.28 (0.188)
10 1.32 (0.055) 1.33 (0.007) 1.35 (0.006) 1.25 (0.072) 1.21 (0.055) 1.31 (0.084)

II

10
1 1.00 (0.327) 0.94 (0.197) 0.72 (0.115) 0.57 (0.085) 0.70 (0.157) 0.70 (0.040)
2 0.96 (0.368) 0.92 (0.091) 0.80 (0.108) 0.71 (0.092) 0.55 (0.001) 0.67 (0.101)
5 0.63 (0.078) 0.84 (0.150) 0.72 (0.115) 0.57 (0.085) 0.66 (0.061) 0.72 (0.037)

50
1 1.58 (0.021) 1.74 (0.000) 1.37 (0.061) 1.50 (0.002) 1.54 (0.092) 1.46 (0.068)
2 1.56 (0.005) 1.44 (0.162) 1.32 (0.078) 1.42 (0.144) 1.34 (0.195) 1.44 (0.117)
5 1.36 (0.061) 1.49 (0.171) 1.33 (0.055) 1.50 (0.021) 1.51 (0.005) 1.34 (0.101)

100
1 1.99 (0.007) 1.98 (0.012) 1.88 (0.072) 1.95 (0.047) 1.93 (0.034) 1.98 (0.010)
5 1.96 (0.029) 1.96 (0.048) 1.89 (0.061) 1.95 (0.047) 1.94 (0.021) 1.97 (0.002)
10 1.90 (0.091) 1.97 (0.009) 1.93 (0.089) 1.94 (0.011) 1.96 (0.011) 1.95 (0.017)

III

10
1 1.69 (0.053) 1.35 (0.325) 1.15 (0.153) 1.18 (0.063) 0.91 (0.608) 0.81 (0.081)
2 0.94 (0.125) 0.65 (0.177) 1.38 (0.003) 1.05 (0.126) 0.85 (0.097) 0.96 (0.220)
5 1.46 (0.332) 1.05 (0.583) 1.15 (0.153) 1.18 (0.063) 0.89 (0.576) 0.98 (0.064)

50
1 1.92 (0.014) 1.93 (0.014) 1.77 (0.139) 1.68 (0.085) 1.84 (0.100) 1.86 (0.029)
2 1.79 (0.101) 1.80 (0.017) 1.78 (0.081) 1.90 (0.031) 1.82 (0.028) 1.61 (0.063)
5 1.74 (0.090) 1.73 (0.131) 1.75 (0.167) 1.61 (0.133) 1.71 (0.150) 1.73 (0.129)

100
1 1.98 (0.002) 1.98 (0.012) 1.99 (0.013) 1.96 (0.032) 1.98 (0.005) 1.95 (0.009)
5 1.99 (0.003) 1.99 (0.001) 1.99 (0.002) 1.95 (0.031) 1.99 (0.004) 1.95 (0.005)
10 1.98 (0.011) 1.96 (0.035) 1.97 (0.005) 1.95 (0.007) 1.97 (0.014) 1.97 (0.020)

Table 5.2: Comparison of di�erent amounts of subsets for PDWD, PSVM and SIR. The table
shows the mean performances (standard deviation in parenthesis) of each method with n = 100
and s = 0.2 of 100 iterations.

for PDWD.
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Figure 5.1: Performance of our method of 720 scenarios for all models and multiple choices of p,
m, r, s, including results for SIR, PDWD and PSVM. Green points indicate results where the
performance of our method was better than not separating and red show the alternative.
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Figure 5.2: Performance of our method of 720 scenarios by model, p, m, r, s and choice of classic
method. Green points indicate results where the performance of our method was better than not
separating and red show the alternative.
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5.2.3.2 Performance and time

Table 5.3 shows the distance and time for r = 2 and s = 0. We have included the

distance for each of the cases to give a clearer picture of the overall performance of

our method for each case. If we �rst consider SIR, which is generally not considered

to have high computational complexity, we can see that the separation of variables

causes an increase in the time of the method by the separation of the feature space.

This is consistent across all p and for all models. However, for PDWD and PSVM

we see much greater discrepancies with respect to time. The time taken for PDWD

appears to be greatly improved by sub-setting the variables for larger p. Lastly,

PSVM shows very similar results to PDWD, where the time is signi�cantly improved

by separating the variables for all choices of p.

Model p m
SIR PDWD PSVM

Distance Time Distance Time Distance Time

I

50
1 0.06 (0.014) 0.05 0.08 (0.001) 0.22 0.07 (0.002) 2.82
5 0.13 (0.008) 0.30 0.15 (0.000) 0.41 0.12 (0.026) 0.93
10 0.12 (0.032) 0.31 0.12 (0.001) 0.40 0.13 (0.009) 0.86

250
1 0.16 (0.009) 0.28 0.19 (0.005) 2.69 0.22 (0.014) 4.97
5 0.34 (0.013) 0.62 0.36 (0.015) 0.72 0.30 (0.002) 2.93
10 0.34 (0.002) 0.61 0.35 (0.004) 0.67 0.30 (0.042) 1.75

500
1 0.26 (0.019) 1.39 0.37 (0.004) 12.19 0.42 (0.002) 11.17
5 0.56 (0.017) 2.05 0.57 (0.026) 2.09 0.51 (0.018) 7.08
10 0.59 (0.006) 2.25 0.57 (0.018) 2.12 0.50 (0.034) 3.90

II

50
1 0.51 (0.003) 0.03 0.50 (0.026) 0.22 0.42 (0.006) 10.60
5 0.37 (0.028) 0.32 0.52 (0.052) 0.41 0.26 (0.023) 1.07
10 0.55 (0.008) 0.30 0.54 (0.063) 0.42 0.34 (0.015) 1.18

250
1 1.19 (0.017) 0.28 1.10 (0.024) 2.82 1.37 (0.003) 42.45
5 0.97 (0.009) 0.61 1.16 (0.038) 0.78 0.71 (0.002) 3.15
10 1.02 (0.119) 0.63 1.17 (0.000) 0.70 0.68 (0.013) 2.04

500
1 1.53 (0.014) 1.39 1.46 (0.003) 11.87 1.55 (0.026) 11.45
5 1.35 (0.040) 2.06 1.52 (0.031) 2.11 1.28 (0.080) 7.50
10 1.25 (0.063) 2.10 1.49 (0.034) 2.11 1.09 (0.003) 4.25

III

50
1 0.85 (0.001) 0.03 0.74 (0.025) 0.21 0.68 (0.011) 19.34
5 0.63 (0.032) 0.30 0.83 (0.025) 0.42 0.55 (0.155) 1.28
10 0.72 (0.058) 0.30 0.72 (0.026) 0.40 0.42 (0.008) 1.62

250
1 1.52 (0.086) 0.28 1.38 (0.089) 2.66 1.75 (0.089) 281.22
5 1.28 (0.084) 0.64 1.47 (0.073) 0.73 1.17 (0.017) 3.34
10 1.20 (0.281) 0.61 1.54 (0.005) 0.71 1.13 (0.122) 2.44

500
1 1.81 (0.068) 1.39 1.81 (0.064) 11.57 1.92 (0.001) 17.24
5 1.66 (0.218) 2.06 1.81 (0.059) 2.11 1.56 (0.037) 8.28
10 1.64 (0.064) 2.07 1.75 (0.012) 2.14 1.35 (0.050) 4.61

Table 5.3: Comparison of the time taken of SIR, PDWD and PSVM for di�erent amount of subsets
for n = 1000. The table shows the mean performance/distance (standard deviation in parenthesis)
and time (in seconds) of 100 iterations.
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5.2.3.3 Splitting n and p

Similar to the simulations produced without splitting the sample space, we are once

again interested in the di�erence between the results with and without structured

correlation. Therefore, tables 5.4 and 5.5 show the simulation results for s = 0 and

s = 0.2, respectively. Both tables explore the results of all three models for r = 2,

with multiple choices of m and g.

From both sets of simulations, increasing g has a negative impact on the perfor-

mance, which is apparent for both choices of r. We once again see that separating

the feature space has a positive e�ect on the performance, however the positive e�ect

does not appear to outweigh the negative impact of separating the sample space.

Model m g SIR PDWD PSVM

I

1
1 0.06 (0.007) 0.07 (0.008) 0.06 (0.007)
2 0.12 (0.063) 0.07 (0.008) 0.07 (0.010)
5 0.19 (0.111) 0.08 (0.011) 0.08 (0.025)

2
1 0.10 (0.011) 0.10 (0.012) 0.11 (0.013)
2 0.11 (0.015) 0.11 (0.015) 0.11 (0.015)
5 0.11 (0.016) 0.11 (0.015) 0.11 (0.018)

5
1 0.11 (0.015) 0.12 (0.012) 0.11 (0.018)
2 0.12 (0.017) 0.13 (0.016) 0.12 (0.017)
5 0.13 (0.018) 0.13 (0.016) 0.12 (0.019)

II

1
1 0.58 (0.055) 0.54 (0.054) 0.60 (0.103)
2 0.60 (0.060) 0.96 (0.423) 0.79 (0.267)
5 0.85 (0.363) 1.09 (0.397) 0.99 (0.358)

2
1 0.50 (0.061) 0.50 (0.058) 0.51 (0.074)
2 0.85 (0.389) 0.86 (0.394) 0.90 (0.414)
5 0.99 (0.384) 1.00 (0.384) 1.03 (0.389)

5
1 0.50 (0.061) 0.48 (0.062) 0.51 (0.054)
2 0.88 (0.396) 0.89 (0.420) 0.92 (0.424)
5 1.01 (0.382) 1.02 (0.396) 1.05 (0.395)

III

1
1 0.83 (0.087) 0.71 (0.060) 0.66 (0.066)
2 1.00 (0.220) 1.04 (0.346) 0.92 (0.318)
5 1.24 (0.390) 1.17 (0.341) 1.12 (0.381)

2
1 0.68 (0.076) 0.68 (0.073) 0.64 (0.050)
2 0.94 (0.296) 0.97 (0.316) 0.93 (0.311)
5 1.04 (0.297) 1.07 (0.307) 1.07 (0.331)

5
1 0.67 (0.069) 0.67 (0.067) 0.68 (0.049)
2 0.97 (0.322) 0.98 (0.340) 0.96 (0.342)
5 1.07 (0.314) 1.08 (0.320) 1.07 (0.327)

Table 5.4: Comparison of di�erent values of m and g for PDWD, PSVM and SIR. The table shows
the mean performances (standard deviation in parenthesis) of each method with n = 1000, p = 50
and s = 0 of 100 iterations.
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Model m g SIR PDWD PSVM

I

1
1 0.07 (0.009) 0.08 (0.010) 0.07 (0.008)
2 0.13 (0.069) 0.08 (0.009) 0.08 (0.011)
5 0.21 (0.119) 0.08 (0.012) 0.09 (0.021)

2
1 0.11 (0.013) 0.12 (0.014) 0.12 (0.009)
2 0.12 (0.016) 0.12 (0.016) 0.12 (0.015)
5 0.12 (0.016) 0.12 (0.017) 0.13 (0.018)

5
1 0.13 (0.014) 0.13 (0.016) 0.13 (0.014)
2 0.14 (0.017) 0.13 (0.017) 0.13 (0.014)
5 0.14 (0.017) 0.14 (0.018) 0.13 (0.013)

II

1
1 0.60 (0.056) 0.57 (0.057) 0.59 (0.070)
2 0.62 (0.057) 0.96 (0.405) 0.75 (0.244)
5 0.86 (0.356) 1.09 (0.382) 0.97 (0.368)

2
1 0.53 (0.077) 0.51 (0.070) 0.52 (0.061)
2 0.88 (0.381) 0.89 (0.406) 0.88 (0.403)
5 1.02 (0.373) 1.03 (0.390) 1.03 (0.393)

5
1 0.52 (0.066) 0.52 (0.066) 0.53 (0.057)
2 0.90 (0.398) 0.91 (0.404) 0.92 (0.412)
5 1.03 (0.380) 1.03 (0.381) 1.04 (0.382)

III

1
1 0.94 (0.089) 0.80 (0.069) 0.72 (0.050)
2 1.10 (0.203) 1.11 (0.321) 1.06 (0.367)
5 1.31 (0.348) 1.23 (0.315) 1.21 (0.372)

2
1 0.74 (0.083) 0.75 (0.076) 0.77 (0.082)
2 1.04 (0.322) 1.05 (0.319) 1.02 (0.293)
5 1.15 (0.311) 1.15 (0.310) 1.13 (0.295)

5
1 0.75 (0.076) 0.76 (0.071) 0.72 (0.060)
2 1.06 (0.328) 1.05 (0.317) 1.05 (0.349)
5 1.16 (0.311) 1.15 (0.303) 1.17 (0.333)

Table 5.5: Comparison of di�erent values of m and g for PDWD, PSVM and SIR. The table shows
the mean performances (standard deviation in parenthesis) of each method with n = 1000, p = 50
and s = 0.2 of 100 iterations.

5.2.3.4 Order determination

Our proposed method is a two-step method and so we are interested in assessing the

e�ciency of our order determination choice for each step and the overall method. The

�rst step consists of separating the variables which means we will need to estimate d

for each subset. Our method assumes the combined dimension d̃ of Â found in the

�rst step to be d ≤ d̃ ≤ md, where d̃ is equal to the sum of the d̃i's for each subset.

Therefore, we only require di ≤ d̃i ≤ d, for all i = 1, . . . ,m.

To estimate the dimension, we will use the ladle estimator and will be considering

models I, II and III, where we have d = 1, 2, 2, respectively. We are once again

interested in the e�ects on the e�ciency of the ladle estimator as a choice for order

determination when the important variables fall into di�erent subsets. Therefore,
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we will evaluate the e�ciency for r = 2 and r = p.

We are once again interested in the di�erence between results with and without

structured correlation, hence tables 5.6 and 5.7 show the results for s = 0 and

s = 0.2, respectively. The ladle estimator produces better results for models I and

II for both s = 0 and s = 0.2. Generally, as m increases the results su�er, however

for models I and II the percentage of correctly estimated values remains above 80

percent for both r = 2 and r = p. There seems to be some di�erence between the

results with and without structures correlation, which is apparent in model III for

SIR and PSVM.

Model m step
SIR PDWD PSVM

r = 2 r = p r = 2 r = p r = 2 r = p

1

1 - 100 100 100 100 100 100

2
�rst 100 95 99 99 97 97

second 81 96 100 100 100 100
both 81 95 99 99 97 97

5
�rst 100 99 100 100 100 100

second 96 97 100 100 100 100
both 96 96 100 100 100 100

2

1 - 97 98 99 100 98 100

2
�rst 100 99 100 100 100 80

second 91 97 100 100 100 64
both 91 97 100 100 100 56

5
�rst 100 100 100 100 100 38

second 95 99 100 100 100 72
both 95 99 100 100 100 25

3

1 - 61 66 100 100 94 93

2
�rst 88 98 100 100 96 95

second 65 93 100 100 96 62
both 60 91 100 100 96 60

5
�rst 97 99 100 100 93 54

second 75 82 99 100 93 78
both 75 82 99 100 93 45

Table 5.6: Comparison of di�erent values of m of the ladle estimator for PDWD, PSVM and SIR.
The table shows the percentage of correct estimations of each method with n = 300, p = 10 and
s = 0 of 100 iterations.
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Model m step
SIR PDWD PSVM

r = 2 r = p r = 2 r = p r = 2 r = p

1

1 - 100 100 100 100 100 100

2
�rst 100 94 99 100 95 100

second 82 95 100 100 100 100
both 82 93 99 100 95 100

5
�rst 98 98 99 100 99 100

second 93 98 100 100 100 100
both 92 96 99 100 99 100

2

1 - 96 95 99 100 100 100

2
�rst 100 100 100 100 100 81

second 84 100 100 100 100 53
both 84 100 100 100 100 44

5
�rst 100 100 100 100 100 31

second 94 97 100 100 100 80
both 94 97 100 100 100 27

3

1 - 54 66 99 100 88 95

2
�rst 78 99 100 100 84 90

second 61 92 100 100 84 52
both 54 91 100 100 84 47

5
�rst 94 99 100 99 77 57

second 67 86 99 100 76 68
both 65 85 99 99 76 49

Table 5.7: Comparison of di�erent values of m of the ladle estimator for PDWD, PSVM and SIR.
The table shows the percentage of correct estimations of each method with n = 300, p = 10 and
s = 0.2 of 100 iterations.

5.2.4 Real data analysis

Finally, we turn our attention to a real data analysis. We aim to assess the e�ects

of introducing random data into the real dataset. Our chosen data is the Fertility

dataset taken from the UCI Machine Learning Repository. The data contains 100

samples and 9 predictor variables. We will add random variables to give p̃ = 9 +

number of added variables. We will then perform our method on the new data and

compare the predictors with our original predictor. Again, we are interested in when

the true variables fall into the same subset and into di�erent subsets. Therefore, we

will produce 2 results for each added data, one where we add the variables at the

end and one where we add the variables in the middle.

Table 5.8 shows the performance for multiple numbers of added variables. The

left column is the performance when the true variables fall into the same subset and

the right column show the performance when the true variables fall into multiple

subsets. We can see that ensuring all the true variables fall into the same subset

has no signi�cant impact on the results but increasing m consistently improves the
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results which implies that a higher value of m makes each method more robust

against unrelated data being included.

p̃ m SIR PDWD PSVM

15
1 0.13 (0.046) 0.12 (0.025) 0.12 (0.050)
2 0.11 (0.031) 0.12 (0.041) 0.11 (0.029) 0.11 (0.030) 0.13 (0.045) 0.13 (0.034)
3 0.12 (0.026) 0.12 (0.030) 0.13 (0.062) 0.10 (0.021) 0.10 (0.028) 0.10 (0.045)

20
1 0.18 (0.051) 0.16 (0.040) 0.18 (0.037)
2 0.16 (0.038) 0.15 (0.044) 0.18 (0.057) 0.14 (0.025) 0.16 (0.039) 0.16 (0.028)
3 0.15 (0.021) 0.14 (0.037) 0.15 (0.059) 0.15 (0.042) 0.16 (0.073) 0.16 (0.028)

30
1 0.23 (0.029) 0.26 (0.063) 0.24 (0.050)
2 0.20 (0.040) 0.25 (0.068) 0.23 (0.069) 0.23 (0.040) 0.26 (0.114) 0.28 (0.125)
3 0.23 (0.040) 0.21 (0.025) 0.22 (0.046) 0.23 (0.048) 0.24 (0.040) 0.25 (0.062)

110
1 - - -
2 1.03 (0.359) 0.92 (0.252) 0.95 (0.348) 0.98 (0.275) 0.97 (0.348) 1.14 (0.260)
3 1.13 (0.380) 1.03 (0.291) 1.07 (0.357) 1.09 (0.390) 1.07 (0.276) 1.05 (0.268)

Table 5.8: Comparison of di�erent amounts of random data for PDWD, PSVM and SIR. The table
shows the mean performances (standard deviation in parenthesis) of each method of 100 iterations.
Left column: all true variables fall into same subset, right column: true variables fall into di�erent
subsets.

5.3 SDR without decorrelating variables

Previously we attempted to perform dimension reduction through feature space parti-

tioning by decorrelating the variables before separation. We propose a new approach

that does not require the decorrelation step. By excluding this step, we hope to de-

velop a "divide and conquer" method that can be performed on high dimension low

sample space (HDLSS) data and more importantly when the dimension size exceeds

the sample size, which is a strict restriction that many previous methods su�er from.

From this point forward we will refer to the method de�ned in the previous section

as method 1, and the following method as method 2.

Method 1 begins by taking advantage of the common standardisation step found

in many classical methods and using this step to decorrelate the features. By in-

cluding this step, it was clear that the consistency of the overall method required p

to remain less that n. We also believe that avoiding this step will have a positive

impact on the computational time of the method.

5.3.1 Estimation algorithm

Similar to method 1 we will require a two-step method since the �rst step will once

again estimate a CDRS, but not necessarily the minimal CDRS. The estimation

procedure is as follows:
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1. Split the feature space of X into m subsets such that X = X(1), . . . ,X(m),

where the dimension of X(i) is pi and p = p1 + · · ·+ pm.

2. Perform the desired SDR method on each subset to obtain Â
(i)

of size pi×d(1),
where d ≤ d(1) ≤ md and d(1) = d1 + · · ·+dm. Now form a matrix Â as follows

Â =


Â

(1)
0p1×d1 · · · 0p1×d1

0p2×d2 Â
(2) · · · 0p2×d2

...
...

. . .
...

0pm×dm 0pm×dm · · · Â
(m)

 .

3. Perform the chosen SDR method on Â
T

X to obtain B̂ of size md× d.

4. Let β̂ = ÂB̂ and so we can use the subspace spanned by β̂ = (β̂1, . . . , β̂d) to

estimate the CDRS.

5.3.2 Separating the sample space and feature space

As previously discussed, there have been multiple methods of separating the sample

space and performing parallel programming versions of SDR. One in particular is

BIG-SIR, introduced by Liquet and Saracco (2016). Similar to the extension we

obtained when decorrelating the variables, we can now extend our method so that

we can separate both the sample space and the feature space. The extended method

is as follows:

1. Split the feature space ofX intom subsets such thatX = (X(1)T, . . . ,X(m)T)T,

where the dimension of X(i) is pi and p = p1 + · · ·+ pm.

2. Split the sample space into g slices, to give n = n1+· · ·+ng, Y = (Y (1), . . . ,Y (g))

and

X =


X

(1)
(1) · · · X

(1)
(g)

...
. . .

...

X
(m)
(1) · · · X(m)

(g)

 ,

such that p < ni for all i = 1, . . . , g.

3. Perform the desired method on each subset to produce the candidate matrix

M̂
(j)
(i) for all i = 1, . . . , g and j = 1, . . . ,m.

4. Recollect the data and calculate

M̂
(j)

=

g∑
i=1

1

ni
M̂

(j)
(i)M̂

(j)T
(i)

for all j = 1, . . . ,m.
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5. Finally, we let η(j) be the d largest eigenvectors of
ˆ

M (j). Thus Â
(j)

=

Σ̂
−1/2
xx η(j) for all j = 1, . . . ,m.

6. Using Â
(j)

of size pj × d(1), where d ≤ d(1) ≤ md and d(1) = d1 + · · · + dm,

form a matrix Â as follows

Â =


Â

(1)
0p1×d1 · · · 0p1×d1

0p2×d2 Â
(2) · · · 0p2×d2

...
...

. . .
...

0pm×dm 0pm×dm · · · Â
(m)

 .

7. Again separate Â
T

X into g subsets as above and perform the desired method

on each subset to obtain N̂ (i) for all i = 1, . . . , g. Calculate

N̂ =

g∑
i=1

1

ni
N̂ (i)N

T

(i).

8. Now B̂ = Σ̂ATxν, where ν is the d largest eigenvectors of N̂ and B̂ is of size

md× d.

9. Let β̂ = ÂB̂ and so the subspace spanned by β̂ = (β̂1, . . . , β̂d) can be used to

estimate the CDRS.

5.3.3 Synthetic simulation studies

We will begin with synthetic simulation studies to evaluate the e�ciency of method

2 with respect to both accuracy and time using the same measure and models as for

method 1. Again, since method 2 also involves the separation of the feature space

it is important that we consider models with structured correlation. Therefore, we

choose X ∼ N(0,Σ) and ε ∼ N(0, Ip), with Σij = s|i−j|. Analogous to the previous

section, h is chosen to be 20 and λ is chosen to be 0.1.

5.3.3.1 Performance when combinations of variables fall in di�erent

subsets

As stated with the models, we need to evaluate our method when all the important

variables fall into one subset and when they fall into di�erent subsets. We have run

synthetic simulations for the models with n = 100 and for di�erent values for p and

m.

Immediate inspection of the results shows that separating the variables has a

positive impact on the performance, with a greater impact occurring as p increases.

This is evident for both choices of s = 0 and 0.2, represented in table 5.9 and
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table 5.10 respectively. There is a slight decrease in accuracy when the important

variables fall into di�erent subsets however it is clear that as m increases the results

still improve analogous to when the important variables fall into the same subset.

There is no obvious change in performance when structured covariance is added

(when s > 0) as it seems to follow the same pattern as already described.

An important feature of interest is the case for models II and III, which have

e�ective dimension 2 and thus md = 10 for m = 5. Therefore when p = 10, we would

expect the results for m = 1 and m = 5 to be similar which is clearly indicated in

both table 5.9 and table 5.10.

Figure 5.3 shows the comparison of separating the feature space against not

separating the feature space for 720 scenarios, including all models, multiple values of

p, m, r and s, and for the three classical methods that we have previously considered.

Figure 5.3 clearly shows that separating the variables produces accurate results more

often, in fact separating the features produced better results 85.7% of the time and

the mean performance for not separating and separating is 1.29 and 1.05, respectively.

Figure 5.4 shows the results shown in �gure 5.3, broken down by model, p, m, r,

s and classical method. We see similar results for each choice of classic method and

for each choice of s, which shows that introducing structured covariance has little

impact on the accuracy of method 2. It is also clear that the choice of model e�ects

the accuracy of our method in comparison to no separation, where for model I we

see many more occurrences of no separation performing better.
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Model p m
SIR PDWD PSVM

r = 2 r = p r = 2 r = p r = 2 r = p

I

10
1 0.10 (0.022) 0.06 (0.013) 0.09 (0.033) 0.12 (0.042) 0.12 (0.016) 0.09 (0.008)
2 0.11 (0.029) 0.44 (0.241) 0.07 (0.048) 0.34 (0.028) 0.07 (0.007) 0.28 (0.038)
5 0.05 (0.009) 0.13 (0.073) 0.08 (0.016) 0.15 (0.034) 0.08 (0.010) 0.17 (0.117)

50
1 0.43 (0.022) 0.29 (0.043) 0.35 (0.056) 0.44 (0.081) 0.44 (0.066) 0.39 (0.036)
2 0.19 (0.059) 0.97 (0.125) 0.23 (0.006) 0.68 (0.023) 0.23 (0.025) 0.88 (0.158)
5 0.17 (0.005) 0.55 (0.037) 0.12 (0.028) 0.55 (0.102) 0.12 (0.054) 0.56 (0.001)

100
1 1.41 (0.012) 1.41 (0.002) 1.37 (0.027) 1.31 (0.020) 1.34 (0.084) 1.40 (0.014)
5 0.16 (0.017) 0.75 (0.189) 0.25 (0.068) 0.81 (0.054) 0.26 (0.007) 0.88 (0.031)
10 0.18 (0.044) 0.56 (0.115) 0.17 (0.047) 0.55 (0.091) 0.15 (0.011) 0.49 (0.004)

200
1 - - - - - -
5 0.42 (0.081) 1.32 (0.082) 0.52 (0.081) 1.15 (0.084) 0.56 (0.090) 1.23 (0.066)
10 0.30 (0.062) 1.05 (0.147) 0.39 (0.076) 0.93 (0.107) 0.33 (0.069) 0.97 (0.126)

II

10
1 0.66 (0.063) 0.87 (0.061) 0.62 (0.002) 0.77 (0.230) 0.42 (0.181) 0.59 (0.027)
2 0.79 (0.446) 0.56 (0.090) 0.74 (0.108) 0.64 (0.172) 0.35 (0.098) 0.73 (0.262)
5 0.66 (0.063) 0.87 (0.061) 0.62 (0.002) 0.77 (0.230) 0.42 (0.181) 0.59 (0.027)

50
1 1.67 (0.026) 1.62 (0.007) 1.33 (0.004) 1.44 (0.127) 1.51 (0.199) 1.50 (0.138)
2 1.44 (0.030) 1.52 (0.003) 1.17 (0.090) 1.32 (0.112) 1.45 (0.032) 1.38 (0.127)
5 1.43 (0.046) 1.35 (0.159) 1.10 (0.102) 1.13 (0.264) 0.86 (0.316) 1.33 (0.147)

100
1 1.98 (0.019) 1.96 (0.011) 1.97 (0.011) 1.92 (0.046) 1.95 (0.060) 1.93 (0.040)
5 1.61 (0.056) 1.49 (0.091) 1.42 (0.039) 1.34 (0.091) 1.34 (0.096) 1.42 (0.019)
10 1.36 (0.220) 1.53 (0.080) 1.48 (0.064) 1.35 (0.047) 1.36 (0.068) 1.48 (0.017)

200
1 - - - - - -
5 1.82 (0.072) 1.82 (0.073) 1.69 (0.067) 1.72 (0.065) 1.71 (0.090) 1.73 (0.077)
10 1.75 (0.083) 1.75 (0.069) 1.63 (0.072) 1.65 (0.077) 1.51 (0.114) 1.63 (0.089)

III

10
1 1.18 (0.497) 1.44 (0.304) 0.78 (0.100) 1.18 (0.042) 0.84 (0.005) 1.05 (0.171)
2 1.41 (0.126) 1.51 (0.012) 0.49 (0.165) 0.80 (0.102) 0.98 (0.400) 1.06 (0.504)
5 1.18 (0.497) 1.44 (0.304) 0.78 (0.100) 1.18 (0.042) 0.84 (0.005) 1.05 (0.171)

50
1 1.84 (0.170) 1.88 (0.093) 1.78 (0.093) 1.82 (0.102) 1.91 (0.014) 1.87 (0.009)
2 1.82 (0.070) 1.85 (0.069) 1.69 (0.227) 1.53 (0.065) 1.61 (0.217) 1.74 (0.245)
5 1.59 (0.220) 1.63 (0.205) 1.42 (0.216) 1.52 (0.256) 1.56 (0.082) 1.76 (0.043)

100
1 1.99 (0.002) 1.98 (0.004) 1.98 (0.017) 1.97 (0.022) 1.98 (0.014) 1.98 (0.009)
5 1.82 (0.140) 1.96 (0.036) 1.71 (0.116) 1.74 (0.287) 1.91 (0.065) 1.75 (0.019)
10 1.84 (0.140) 1.82 (0.207) 1.81 (0.054) 1.87 (0.099) 1.78 (0.102) 1.81 (0.081)

200
1 - - - - - -
5 1.98 (0.018) 1.98 (0.026) 1.95 (0.034) 1.94 (0.045) 1.96 (0.027) 1.96 (0.028)
10 1.97 (0.030) 1.97 (0.040) 1.93 (0.045) 1.92 (0.057) 1.94 (0.049) 1.93 (0.049)

Table 5.9: Comparison of di�erent amounts of subsets for SIR, PDWD and PSVM. The table shows
the mean performances (standard deviation in parenthesis) of each method with n = 100 and s = 0
of 100 iterations.
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Model p m
SIR PDWD PSVM

r = 2 r = p r = 2 r = p r = 2 r = p

I

10
1 0.14 (0.009) 0.10 (0.006) 0.15 (0.019) 0.09 (0.014) 0.11 (0.041) 0.10 (0.014)
2 0.06 (0.021) 0.40 (0.023) 0.07 (0.006) 0.35 (0.003) 0.07 (0.049) 0.32 (0.043)
5 0.09 (0.019) 0.26 (0.002) 0.10 (0.048) 0.13 (0.047) 0.06 (0.009) 0.22 (0.200)

50
1 0.32 (0.035) 0.29 (0.018) 0.52 (0.155) 0.36 (0.103) 0.64 (0.040) 0.52 (0.025)
2 0.29 (0.045) 0.86 (0.041) 0.26 (0.011) 0.72 (0.162) 0.31 (0.045) 0.74 (0.202)
5 0.11 (0.009) 0.50 (0.216) 0.21 (0.075) 0.63 (0.020) 0.14 (0.026) 0.49 (0.050)

100
1 1.40 (0.021) 1.40 (0.017) 1.36 (0.037) 1.38 (0.030) 1.39 (0.030) 1.28 (0.179)
5 0.18 (0.024) 1.15 (0.326) 0.20 (0.063) 0.70 (0.099) 0.22 (0.028) 0.86 (0.111)
10 0.14 (0.026) 0.48 (0.160) 0.20 (0.038) 0.36 (0.011) 0.11 (0.025) 0.65 (0.109)

200
1 - - - - - -
5 0.29 (0.046) 1.35 (0.055) 0.36 (0.041) 1.05 (0.081) 0.42 (0.098) 1.17 (0.062)
10 0.22 (0.033) 0.97 (0.123) 0.27 (0.041) 0.78 (0.094) 0.25 (0.032) 0.91 (0.090)

II

10
1 1.00 (0.327) 0.94 (0.197) 0.72 (0.115) 0.57 (0.085) 0.70 (0.157) 0.70 (0.040)
2 1.00 (0.122) 1.20 (0.021) 0.75 (0.145) 0.65 (0.096) 0.34 (0.015) 0.88 (0.037)
5 1.00 (0.327) 0.94 (0.197) 0.72 (0.115) 0.57 (0.085) 0.70 (0.157) 0.70 (0.040)

50
1 1.58 (0.021) 1.74 (0.000) 1.37 (0.061) 1.50 (0.002) 1.54 (0.092) 1.46 (0.068)
2 1.55 (0.117) 1.54 (0.120) 1.18 (0.092) 1.21 (0.119) 1.29 (0.244) 1.41 (0.011)
5 1.26 (0.343) 1.55 (0.022) 1.06 (0.021) 1.30 (0.146) 0.76 (0.075) 1.21 (0.015)

100
1 1.99 (0.007) 1.98 (0.012) 1.88 (0.072) 1.95 (0.047) 1.93 (0.034) 1.98 (0.010)
5 1.60 (0.006) 1.44 (0.007) 1.41 (0.228) 1.42 (0.039) 1.18 (0.066) 1.35 (0.008)
10 1.49 (0.040) 1.61 (0.118) 1.15 (0.133) 1.48 (0.163) 1.32 (0.156) 1.49 (0.127)

200
1 - - - - - -
5 1.75 (0.088) 1.76 (0.057) 1.62 (0.055) 1.63 (0.063) 1.59 (0.080) 1.67 (0.138)
10 1.67 (0.079) 1.69 (0.073) 1.55 (0.076) 1.57 (0.083) 1.40 (0.158) 1.56 (0.079)

III

10
1 1.69 (0.053) 1.35 (0.325) 1.15 (0.153) 1.18 (0.063) 0.91 (0.608) 0.81 (0.081)
2 1.62 (0.012) 0.93 (0.058) 1.35 (0.017) 1.04 (0.113) 0.58 (0.368) 0.88 (0.248)
5 1.69 (0.053) 1.35 (0.325) 1.15 (0.153) 1.18 (0.063) 0.91 (0.608) 0.81 (0.081)

50
1 1.92 (0.014) 1.93 (0.014) 1.77 (0.139) 1.68 (0.085) 1.84 (0.100) 1.86 (0.029)
2 1.97 (0.012) 1.81 (0.139) 1.74 (0.054) 1.80 (0.152) 1.85 (0.037) 1.74 (0.078)
5 1.79 (0.170) 1.86 (0.058) 1.56 (0.367) 1.45 (0.017) 1.41 (0.206) 1.56 (0.157)

100
1 1.98 (0.002) 1.98 (0.012) 1.99 (0.013) 1.96 (0.032) 1.98 (0.005) 1.95 (0.009)
5 1.87 (0.112) 1.93 (0.053) 1.88 (0.065) 1.81 (0.068) 1.83 (0.022) 1.71 (0.103)
10 1.87 (0.086) 1.88 (0.035) 1.83 (0.103) 1.89 (0.034) 1.79 (0.032) 1.78 (0.106)

200
1 - - - - - -
5 1.97 (0.022) 1.95 (0.041) 1.91 (0.057) 1.89 (0.054) 1.94 (0.032) 1.93 (0.040)
10 1.96 (0.037) 1.92 (0.058) 1.89 (0.069) 1.85 (0.066) 1.88 (0.089) 1.88 (0.063)

Table 5.10: Comparison of di�erent amounts of subsets for PDWD, PSVM and SIR. The table
shows the mean performances (standard deviation in parenthesis) of each method with n = 100
and s = 0.2 of 100 iterations.
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It is clear that the choice of r has an impact on the accuracy of method 2, where

we once again see that most of the occurrences of no separation producing better

results appearing for r = p. Finally, similar to method 1, we see that increasing p

and m increases the performance of method 2 compared with m = 1.

Figure 5.3: Performance of our method of 720 scenarios for all models and multiple choices of p,
m, r, s, including results for SIR, PDWD and PSVM. Green points indicate results where the
performance of our method was better than not separating and red show the alternative.
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Figure 5.4: Performance of our method of 720 scenarios by model, p, m, r, s and choice of classic
method. Green points indicate results where the performance of our method was better than not
separating and red show the alternative.
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5.3.3.2 Performance and time

We are also interested in the computational time advantages of our proposed method.

Since we are investigating the time of the method rather than the performance, we

will only consider r = 1 and s = 0. Here we have chosen n = 1000 with multiple

values for p and m. The times for m > 1 indicate an overall time for the method

when the data is analysed on separate machines. If all analysis is performed on one

machine in succession, then the time would likely increase as m increases. Table 5.11

shows the performance and time in each case.

Model p m
SIR PDWD PSVM

Distance Time Distance Time Distance Time

I

50
1 0.06 (0.014) 0.05 0.08 (0.001) 0.22 0.07 (0.002) 2.82
5 0.03 (0.001) 0.05 0.09 (0.002) 0.13 0.03 (0.006) 0.67
10 0.02 (0.004) 0.04 0.08 (0.005) 0.13 0.02 (0.003) 0.57

250
1 0.16 (0.009) 0.28 0.19 (0.005) 2.69 0.22 (0.014) 4.97
5 0.06 (0.000) 0.06 0.18 (0.000) 0.27 0.07 (0.005) 2.62
10 0.06 (0.006) 0.05 0.16 (0.000) 0.18 0.04 (0.006) 1.28

500
1 0.26 (0.019) 1.39 0.37 (0.004) 12.19 0.42 (0.002) 11.17
5 0.09 (0.015) 0.09 0.25 (0.015) 0.56 0.10 (0.001) 7.35
10 0.07 (0.000) 0.05 0.21 (0.021) 0.27 0.07 (0.004) 2.75

II

50
1 0.51 (0.003) 0.03 0.50 (0.026) 0.22 0.42 (0.006) 10.60
5 0.33 (0.020) 0.05 0.48 (0.028) 0.13 0.19 (0.019) 0.82
10 0.50 (0.029) 0.03 0.50 (0.059) 0.16 0.28 (0.079) 0.93

250
1 1.19 (0.017) 0.28 1.10 (0.024) 2.82 1.37 (0.003) 42.45
5 0.80 (0.037) 0.05 1.00 (0.026) 0.27 0.49 (0.010) 2.86
10 0.90 (0.134) 0.06 1.00 (0.004) 0.20 0.42 (0.014) 1.61

500
1 1.53 (0.014) 1.39 1.46 (0.003) 11.87 1.55 (0.026) 11.45
5 1.04 (0.149) 0.10 1.24 (0.028) 0.56 0.91 (0.020) 7.32
10 0.90 (0.083) 0.06 1.20 (0.027) 0.29 0.56 (0.078) 3.04

III

50
1 0.85 (0.001) 0.03 0.74 (0.025) 0.21 0.68 (0.011) 19.34
5 0.59 (0.001) 0.04 0.78 (0.029) 0.14 0.51 (0.165) 1.17
10 0.68 (0.045) 0.03 0.68 (0.005) 0.17 0.42 (0.034) 1.41

250
1 1.52 (0.086) 0.28 1.38 (0.089) 2.66 1.75 (0.089) 281.22
5 1.07 (0.112) 0.05 1.33 (0.074) 0.26 0.92 (0.011) 3.78
10 1.12 (0.233) 0.06 1.38 (0.019) 0.20 0.94 (0.127) 2.27

500
1 1.81 (0.068) 1.39 1.81 (0.064) 11.57 1.92 (0.001) 17.24
5 1.38 (0.103) 0.08 1.66 (0.093) 0.58 1.23 (0.140) 10.59
10 1.45 (0.092) 0.07 1.55 (0.006) 0.29 0.88 (0.059) 3.90

Table 5.11: Comparison of the time taken of SIR, PDWD and PSVM for di�erent amount of subsets
for n = 1000 and r = 2. The table shows the mean performance/distance (standard deviation in
parenthesis) and time (in seconds) of 100 iterations.

To be expected for lower choices of p there is only a small di�erence in compu-

tational time, with m = 1 outperforming m > 1 for SIR. However as p increases,

especially notably for p = 500, there is a vast improvement in the time taken for all

methods, but PDWD and PSVM in particular. We have included the performance
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of each case to give a clear picture of the multiple bene�ts of separating the data.

Table 5.11 clearly shows that separating the data leads to a steep increase in both

the accuracy and the computational e�ciency for all three methods and models,

especially for larger p.

5.3.3.3 Splitting n and p

We have run simulation studies for models I, II and III with n = 1000, p = 50 and

r = 1. Tables 5.12 and 5.13 show the performance for s = 0 and s = 0.2, respectively,

of di�erent methods for di�erent values of m and g. We can see as before separating

the feature space has a positive impact on the performance, however separating the

sample space has a negative impact on the performance. Similar to the previous

chapter, we see that as g increases we see a decrease in the accuracy and in increase

in the accuracy as m increases. Unfortunately, once again we see that in decrease in

the performance in�icted by increasing g outweighs the increase gained by increasing

m, however the results are closer than for method 1. We have seen previously

that the size of n seems to positively correlate with the performance of dimension

reduction estimators. Therefore, since we are decreasing the size of n we are losing

accuracy. Alternatively, we have seen that the size of p negatively correlated with the

accuracy of many methods. Therefore, separating the feature space and performing

the dimension reduction method on the subset, with a smaller dimension, produces

an increased accuracy.
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Model m g SIR PDWD PSVM

I

1
1 0.06 (0.007) 0.07 (0.008) 0.06 (0.007)
2 0.12 (0.063) 0.07 (0.008) 0.07 (0.010)
5 0.19 (0.111) 0.08 (0.011) 0.08 (0.025)

2
1 0.05 (0.006) 0.05 (0.008) 0.05 (0.006)
2 0.06 (0.020) 0.05 (0.007) 0.05 (0.008)
5 0.07 (0.023) 0.05 (0.008) 0.05 (0.008)

5
1 0.04 (0.007) 0.04 (0.008) 0.04 (0.007)
2 0.06 (0.030) 0.04 (0.008) 0.04 (0.006)
5 0.07 (0.036) 0.04 (0.007) 0.04 (0.007)

II

1
1 0.58 (0.055) 0.54 (0.054) 0.60 (0.103)
2 0.60 (0.060) 0.96 (0.423) 0.79 (0.267)
5 0.85 (0.363) 1.09 (0.397) 0.99 (0.358)

2
1 0.48 (0.063) 0.47 (0.059) 0.42 (0.061)
2 0.72 (0.351) 0.84 (0.402) 0.81 (0.431)
5 0.87 (0.387) 0.98 (0.393) 0.96 (0.417)

5
1 0.46 (0.069) 0.42 (0.067) 0.37 (0.037)
2 0.46 (0.117) 0.85 (0.443) 0.61 (0.328)
5 0.59 (0.254) 0.98 (0.416) 0.71 (0.342)

III

1
1 0.83 (0.087) 0.71 (0.060) 0.66 (0.066)
2 1.00 (0.220) 1.04 (0.346) 0.92 (0.318)
5 1.24 (0.390) 1.17 (0.341) 1.12 (0.381)

2
1 0.68 (0.081) 0.65 (0.073) 0.56 (0.065)
2 0.81 (0.241) 0.94 (0.325) 0.79 (0.301)
5 0.96 (0.313) 1.05 (0.320) 0.95 (0.345)

5
1 0.68 (0.094) 0.61 (0.072) 0.52 (0.049)
2 0.71 (0.150) 0.93 (0.353) 0.60 (0.146)
5 0.91 (0.331) 1.04 (0.334) 0.70 (0.210)

Table 5.12: Comparison of di�erent values of m and g for PDWD, PSVM and SIR. The table shows
the mean performances (standard deviation in parenthesis) of each method with n = 1000, p = 50
and s = 0 of 100 iterations.
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Model m g SIR PDWD PSVM

I

1
1 0.07 (0.009) 0.08 (0.010) 0.07 (0.008)
2 0.13 (0.069) 0.08 (0.009) 0.08 (0.011)
5 0.21 (0.119) 0.08 (0.012) 0.09 (0.021)

2
1 0.05 (0.008) 0.06 (0.007) 0.05 (0.007)
2 0.06 (0.020) 0.06 (0.008) 0.05 (0.008)
5 0.07 (0.024) 0.06 (0.009) 0.05 (0.008)

5
1 0.04 (0.008) 0.05 (0.008) 0.04 (0.010)
2 0.07 (0.034) 0.04 (0.008) 0.04 (0.009)
5 0.08 (0.040) 0.04 (0.009) 0.04 (0.009)

II

1
1 0.60 (0.056) 0.57 (0.057) 0.59 (0.070)
2 0.62 (0.057) 0.96 (0.405) 0.75 (0.244)
5 0.86 (0.356) 1.09 (0.382) 0.97 (0.368)

2
1 0.50 (0.076) 0.48 (0.067) 0.46 (0.058)
2 0.75 (0.342) 0.87 (0.415) 0.82 (0.414)
5 0.90 (0.374) 1.01 (0.400) 0.98 (0.416)

5
1 0.48 (0.072) 0.45 (0.068) 0.36 (0.048)
2 0.50 (0.145) 0.86 (0.426) 0.50 (0.279)
5 0.62 (0.251) 0.99 (0.403) 0.65 (0.342)

III

1
1 0.94 (0.089) 0.80 (0.069) 0.72 (0.050)
2 1.10 (0.203) 1.11 (0.321) 1.06 (0.367)
5 1.31 (0.348) 1.23 (0.315) 1.21 (0.372)

2
1 0.75 (0.089) 0.71 (0.078) 0.69 (0.104)
2 0.93 (0.271) 1.02 (0.328) 0.88 (0.284)
5 1.08 (0.318) 1.13 (0.321) 1.00 (0.308)

5
1 0.78 (0.097) 0.70 (0.071) 0.62 (0.081)
2 0.82 (0.169) 1.01 (0.331) 0.76 (0.224)
5 1.01 (0.325) 1.12 (0.319) 0.84 (0.286)

Table 5.13: Comparison of di�erent values of m and g for PDWD, PSVM and SIR. The table shows
the mean performances (standard deviation in parenthesis) of each method with n = 1000, p = 50
and s = 0.2 of 100 iterations.
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5.3.3.4 Order determination

As discussed preciously, since our method is a two-step method, we need to evaluate

the e�ciency of the ladle estimator for each step and the overall performance. For

the �rst step we only require the estimator d̂ to satisfy, di ≤ d̂ ≤ d. To evaluate the

estimator we will consider models I, II and III for r = 2 and r = p, where we have

d = 1, 2 and 2, respectively.

Tables 5.14 and 5.15 show the percentages of correctly estimated dimensions with

n = 300 and p = 10, for s = 0 and s = 0.2 respectively. We have evaluated the

results for multiple values of m and highlighted the percentage of correct estimations

for the �rst step, the second step and for both steps. It is clear from the results that

the ladle estimator is more successful at estimating the correct dimension for PDWD

and PSVM compared with SIR. It is also noticeable that the results are a�ected by

the choice of m where the performance generally decreases as m increases.

It is clear that choosing r = p has a much greater impact on the accuracy of the

ladle estimator for method 2, than it did for method 1. This is likely due to the

correlation between the variables for method 2, which does not exist for method 1.

Model m step
SIR PDWD PSVM

r = 2 r = p r = 2 r = p r = 2 r = p

1

1 - 99 100 100 100 100 100

2
�rst 97 98 98 99 100 100

second 99 96 100 100 100 100
both 96 94 98 99 100 100

5
�rst 100 96 100 100 100 100

second 99 97 100 100 100 100
both 99 95 100 100 100 100

2

1 - 92 93 100 99 100 99

2
�rst 100 100 100 100 100 87

second 97 36 100 100 100 56
both 97 36 100 100 100 51

5
�rst 100 100 100 100 100 44

second 99 24 100 100 99 75
both 99 24 100 100 99 36

3

1 - 58 68 100 100 97 98

2
�rst 82 96 99 99 96 88

second 74 32 100 100 96 58
both 73 32 99 99 96 53

5
�rst 94 98 100 100 87 49

second 80 14 99 99 85 65
both 79 14 99 99 85 40

Table 5.14: Comparison of di�erent values of m of the ladle estimator for PDWD, PSVM and SIR.
The table shows the percentage of correct estimations of each method with n = 300, p = 10 and
s = 0 of 100 iterations.
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Model m step
SIR PDWD PSVM

r = 2 r = p r = 2 r = p r = 2 r = p

1

1 - 100 100 100 100 100 100

2
�rst 99 97 98 100 96 100

second 96 96 100 100 100 100
both 96 95 98 100 96 100

5
�rst 99 99 100 100 100 99

second 98 95 100 100 100 100
both 97 94 100 100 100 99

2

1 - 95 95 100 100 100 100

2
�rst 98 100 100 100 100 86

second 98 50 100 100 100 53
both 96 50 100 100 100 46

5
�rst 100 100 100 100 100 45

second 99 31 100 100 100 74
both 99 31 100 100 100 35

3

1 - 51 57 100 100 90 92

2
�rst 78 97 100 100 91 87

second 72 46 99 100 89 52
both 69 46 99 100 89 47

5
�rst 93 98 100 99 76 59

second 76 24 100 100 75 71
both 76 24 100 99 75 45

Table 5.15: Comparison of di�erent values of m of the ladle estimator for PDWD, PSVM and SIR.
The table shows the percentage of correct estimations of each method with n = 300, p = 10 and
s = 0.2 of 100 iterations.

5.3.4 Real data analysis

Lastly, we will now further our investigate through a real data analysis. We will be

using the same methodology and dataset that was used for the real data analysis of

method 1. Table 5.16 shows the performance for multiple numbers of added variables.

The left column is the performance when the true variables fall into the same subset

and the right column show the performance when the true variables fall into multiple

subsets. We can see that ensuring all the true variables fall into the same subset has

a more signi�cant impact on the results for method 2 than for method 1, however

there is still little di�erence in most cases. This is likely due to the omission of the

decorrelation step. Once again increasing m improves the results which indicates

that an increased value of m leads to a more robust method with respect to random

variables being added.
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p̃ m SIR PDWD PSVM

15
1 0.15 (0.046) 0.11 (0.019) 0.24 (0.156)
2 0.11 (0.039) 0.19 (0.119) 0.11 (0.054) 0.12 (0.033) 0.12 (0.020) 0.18 (0.075)
3 0.12 (0.035) 0.12 (0.071) 0.11 (0.039) 0.12 (0.033) 0.12 (0.036) 0.12 (0.035)

20
1 0.27 (0.154) 0.20 (0.038) 0.30 (0.107)
2 0.16 (0.080) 0.18 (0.043) 0.15 (0.034) 0.19 (0.034) 0.16 (0.032) 0.29 (0.147)
3 0.19 (0.085) 0.23 (0.122) 0.18 (0.058) 0.17 (0.055) 0.16 (0.039) 0.17 (0.038)

30
1 0.42 (0.349) 0.24 (0.041) 0.52 (0.211)
2 0.28 (0.222) 0.30 (0.083) 0.21 (0.038) 0.25 (0.047) 0.46 (0.195) 0.38 (0.172)
3 0.22 (0.077) 0.38 (0.377) 0.22 (0.027) 0.25 (0.046) 0.27 (0.079) 0.23 (0.049)

110
1 - - -
2 0.77 (0.298) 0.79 (0.315) 0.61 (0.222) 0.73 (0.201) 0.60 (0.328) 0.58 (0.205)
3 0.83 (0.377) 0.92 (0.360) 0.63 (0.153) 0.58 (0.206) 0.77 (0.220) 0.95 (0.311)

Table 5.16: Comparison of di�erent amounts of random data for PDWD, PSVM and SIR. The table
shows the mean performances (standard deviation in parenthesis) of each method of 100 iterations.
Left column: all true variables fall into same subset, right column: true variables fall into di�erent
subsets.

5.4 Comparison of previous methods

We have previously conducted extensive simulation studies for both methods 1 and

2, to compare each method with m = 1. We will now turn our attention to the

accuracy of method 1 compared with method 2. Figure 5.5 shows the performance

of method 1 against method 2 of 720 scenarios, for all models, multiple choices of

p, m, r and s, and all the classic methods used previously. The chart indicates

that method 2 produces better results more often than method 1, where method 2

performs better 76.8% of the time and the mean distances of each method is 1.23

and 1.05, respectively.

Figure 5.5: Performance of our method of 720 scenarios for all models and multiple choices of p,
m, r, s, including results for SIR, PDWD and PSVM. Green points indicate results where the
performance of our method was better than not separating and red show the alternative.
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It is clear that method 2 performs better than method 1, however for which

scenarios it performed better is also of interest. Figure 5.6 shows the results of �gure

5.5 broken down by model, p, m, r, s and classic method. Again, we see that the

choice of s does not seem to e�ect the distribution of the results, however we do

see that SIR shows stronger results for method 1 than method 2 when compared

with PDWD and PSVM. As expected, we see that method 1 performs better for

r = p than for r = 2, which was clear in previous analysis. This mirrors the results

we saw earlier when comparing each method to the dimension reduction techniques

performed with no separation.

The spread of the performances seems to be similar for models I, II and III,

with method 1 showing better results for all three. Finally, it appears that as p

and m increase, the number of scenarios where method 2 outperforms method 1 also

increases.
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Figure 5.6: Performance of our method of 720 scenarios by model, p, m, r, s and choice of classic
method. Green points indicate results where the performance of our method was better than not
separating and red show the alternative.
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Chapter 6

Conclusion

6.1 Recap of work

6.1.1 Development of new linear method

The work produced by Li et al. (2011) using classi�cation methods as tools for di-

mension reduction yielded a great improvement of accuracy compared with more

classic methods. We noticed that a signi�cant drawback of this work was the exten-

sive computational costs compared with many methods, including Li (1991). Our

aim was to try a similar approach which maintained the accuracy of PSVM without

the heavy computational cost. By comparing SVM and DWD in the classi�cation

setting we found that a signi�cant di�erence was that DWD is smooth and therefore

di�erentiable everywhere. This opens the door for algorithms that �nd the zeroes of

the derivative of the optimisation problem instead of solving the optimisation prob-

lem directly. Wang and Zou (2015) developed a new algorithm for DWD which takes

advantage of DWD's di�erentiability and strict convexity to produce a much faster

algorithm for solving the DWD objective function.

Given that the DWD classi�cation method was signi�cantly more computation-

ally e�cient than the SVM algorithm it presented a possibility of achieving our aim

of developing a faster dimension reduction technique. As discussed in Marron et al.

(2007), DWD was proposed as an alternative for SVM when p was large since SVM

su�ers from data piling as p increases. This fact was of interest since we could also as-

sess the impact of data piling in a dimension reduction setting. Using the framework

create by Li et al. (2011), we were able to begin by developing a linear dimension

reduction technique using DWD, and prove the consistency of our estimator in the

linear case.

The synthetic simulation studies that we ran compared both PDWD and PSVM.

The results showed many advantages of our method over the method proposed by Li

et al. (2011), with respect to accuracy but more importantly time. We found that
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PDWD often produce higher accuracy results and showed signi�cant improvements

computationally, especially as n increased. The real data analysis also implied that

PDWD was more robust against noise with respect to random features.

Qiao and Zhang (2015) developed a new classi�er in an attempt to manipulate

the positive features of both SVM and DWD into one classi�er since DWD is more

sensitive to data with an uneven amount of samples in class than another. In an

attempt to investigate the e�ects of this sensitivity in the dimension reduction setting

we also considered the weighted DWD objective function proposed by Qiao et al.

(2010). The introduction of the weights into the objective function showed little

change in the results in the dimension reduction setting and hence the results have

been omitted.

6.1.2 Non-linear principal distance-weighted discrimination

Once we had con�rmed that linear PDWD showed improvements compared with

PSVM, it was bene�cial to extend this into the non-linear setting under a uni�ed

framework. Analogous to the �nding of Li et al. (2011), much of the theory in the

non-linear setting followed a similar structure to the linear case. The simulation

studies that we performed, simply mirrored the �ndings that we had discovered in

the linear case, where PDWD often outperformed PSVM.

6.1.3 Separation of feature space

As stated, PDWD is computationally faster that PSVM which was a vast improve-

ment however we also proved that our PDWD estimator only remains consistent

whilst p < n. Countering this restriction is a particular area of interest in dimension

reduction due to the drastic increase in the dimension of data which has occurred in

recent years. The work proposed by Yin and Hilafu (2015) introduced a sequential

method for dimension reduction by sub-setting the features. We aimed to adapt a

method of dimension reduction by separating the feature space, but in an attempt

to also improve the computational e�ciency, our method is instead a parallel pro-

gramming problem.

Using the concept proposed by Wang et al. (2016), our method begins by decor-

relating the variables before sub-setting the features. We then performed a standard

SDR method on each subset on separate machines and recollected the outputs. We

realised that since the dimension reduction method was being performed on sepa-

rate subsets, the method may miss any relationships between variables in di�erent

subsets. Therefore, our original method was not estimating the minimum central di-

mension reduction subspace. To �x this problem we added a second step making our

problem partially sequential. Our original concerns of the enforced sequential nature
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of our method having adverse e�ects on the computation time were eased after exten-

sive synthetic simulation studies were performed. This method also showed positive

e�ects on the accuracy, with 70.6% of the simulations producing better results than

without separation.

6.1.4 Separation of feature space without decorrelation

Our aims when �rst partitioning the feature space was to produce a method which

remains a viable option when p surpasses n. Unfortunately, the decorrelation step

reintroduced this restriction which led us to investigate another approach. Skipping

the decorrelation step would help loosen this restriction and increase the computa-

tional time, however we were unsure of the e�ect this would cause on the accuracy

of the method.

The theory of the previous method depends heavily on the decorrelation of the

features, which led us to begin with accessing the simulation results of omitting this

step. As expected we found that skipping the decorrelation step greatly reduced the

computational time for all classic methods tested. Surprisingly, this approach had

positive e�ects on the accuracy compared with separation with decorrelation and

no separation. We found that omitting the decorrelation step out performed the

method with decorrelation 76.8% of the time and outperformed the methods with

no separation in 85.7% of the simulations.

6.2 Work still to consider

6.2.1 Su�cient dimension reduction using FLAME

Our research into PDWD with weights implied that the sensitivity that DWD su�ers

from with imbalanced data in the classi�cation setting is not replicated in a dimen-

sion reduction setting. However, more investigation into this proposition using the

FLAME estimator may yield interesting features that we have not considered.

6.2.2 Methodology of feature space partitioning without

decorrelation

Our simulation experiments into the performance of our dimension reduction method

through feature space partitioning without decorrelation unfortunately came close

to the end of this work. Given more time we would have attempted to formulate

some theory for this method since the bene�ts made clear by the simulations are

signi�cant. Our investigation into the theory of this method implies that any theory
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that can be produced will need to be di�erent from the theory with the decorrelation

step.
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