On The Efficacy of Physics-Informed Context-Based
Anomaly Detection for Power Systems

Muhammad Nouman Nafees, Neetesh Saxena, and Pete Burnap,
School of Computer Science & Informatics, Cardiff University, Cardiff, United Kingdom
{nafeesm, saxenan4, burnapp} @cardiff.ac.uk

Abstract—The Automatic Generation Control (AGC), a fun-
damental frequency control system, is vulnerable to cyber-
physical attacks. Coordinated false data injection attack, aiming
to generate fake transient measurements, typically precedes
unwarranted actions, inducing frequency excursion, leading to
electromechanical swings between generators, blackouts, and
costly equipment damage. Unlike other works that focus on point
anomaly detection, this work focuses on contextual detection of
stealthy cyber-attacks against AGC by utilizing prior informa-
tion, which is essential for power system operation and situational
awareness. More specifically, we depart from the traditional
deep learning anomaly detection that is thoroughly driven by
black-box detection; instead, we envision an approach based
on physics-informed hybrid deep learning detection ‘CLDPhy,’
which utilizes the combination of prior knowledge of physics and
system metrics. Our method, to the extent of our knowledge, is the
first context-based anomaly detection for stealthy cyber-physical
attacks against the AGC system. We evaluate our approach on
an industrial high-class PowerWorld simulated dataset — based
on the TEEE 37-bus model. Our experiments observe a 36.4%
improvement in accuracy for coordinated attack detection with
contextual information, and our approach clearly demonstrates
the superiority in comparison with other baselines.

Index Terms—Automatic generation control, coordinated at-
tack, deep learning, context-based anomaly detection

I. INTRODUCTION

Modern power grids have evolved into a more complex
cyber-physical system, incorporating integrated communica-
tion networks, advanced monitoring and control systems, along
with several intelligent hardware devices. With the unique
complexity and heterogeneity in the power grid networks
comes added vulnerability to emerging threats such as cyber-
attacks. For example, nation-state actors mounted one major
known attack on the Ukrainian power grid on December 23rd,
2015. Attackers illegally infiltrated Supervisory Control and
Data Acquisition (SCADA) systems and computers, culminat-
ing in a blackout with catastrophic consequences: a power
outage that left 225,000 customers without energy for two to
six hours [1]. Consequently, security has become a critical
concern, necessitating the development of holistic detection
techniques to counter the threats encountered by modern power
grid networks.

The vulnerability of the power grid to cyber-attacks is
reflected by the demonstration projects, as well as real-world
attacks [2], [3]. A significant challenge for security operators
is effectively detecting anomalous events: However, not all
anomalous events are malicious, culminating in an overwhelm-
ing number of false alarms for security operators to investigate.
Although security tools such as Security Information and
Event Management (SIEM) are effective for alert correlation
in Information and Communications Technology (ICT), much
of what is known about contextual detection in power grids is
still anecdotal.

More specifically, cyber-attacks such as False Data Injec-
tion (FDI) attacks against SCADA and Automatic Generation
Control System (AGC) have emerged as an important concern
[4]. Even worse, besides being afflicted with random load
disturbances, adversaries can mount control-based cyber-attack
by targeting the Area Control Error (ACE) values sent from
the AGC algorithm to the designated generators. On the other
hand, advanced adversaries may also manipulate values in the
control process loops that collate continuous data via suitable
sensors. For example, adversaries can imitate the signatures
of a natural load disturbance in the power grid: Worse still,
the attack can prevent operators from successfully determining
the cause of an anomaly. Consequently, the attack can closely
follow the behavior of the physical system. The attackers can
make the attack appear to be a plausible physical system
behavior until inducing unwarranted actions and causing a
severe power outage in the worst scenario.

Malicious anomalies in the SCADA and AGC can be clas-
sified as point and contextual anomalies. A point anomaly is
defined as an event that differs from its Spatio-temporal neigh-
boring events. In contrast, a contextual anomaly is defined as
the events that globally interact in a specific context to cause
the unusual manifestation of impacts on the power grid, even
if any individual isolated event can be normal. Specifically,
context-aware detection can reduce false-positive alerts; for
example, they raise suspicion when local and contextual events
occur together. Reducing false alarms is crucial; flagging a
security event is equally critical when it is not a threat.

A. Related Work

Most research on anomaly detection has focused on de-
tecting point anomalies [5], [6]. Contextual anomalies in an
environment may be considered normal or malicious if they



arise suspicious under certain conditions in a given context.
In context of the AGC, there are two main dual approaches
that are mainly used to detect FDI attacks: Model-based
and data-driven methods [7]. Model-based methods suffer
scalability issues and require extensive construction of power
system knowledge-based modeling. Authors in [8] used kernel
density estimation to detect FDI attacks in AGC. In [5],
load forecasting-based algorithms were utilized for attack
detection. However, the detection using the aforementioned
method requires a precise forecast of the load profile of the
smart grid.

The data-driven methods require historical data, and a
training procedure [7]; datasets can be generated through
simulations, and there are available historical datasets, which is
the motivation to use this approach in this work. Most studies
conduct anomaly detection using deep learning to detect FDI
attacks in the AGC (see, e.g., [7], [9], [10]). For example, the
authors in [10] proposed a neural network-based Luneberger
observer to detect attacks in the AGC. Similarly, regression-
based predictive models for FDI attacks are proposed in [11],
[12]. In this context, authors in [12] developed regression-
based signal prediction using long short-term memory (LSTM)
networks to detect FDI attacks in the AGC system. One major
bottleneck for using deep learning-based techniques is them
being ‘black-box,” particularly when the model is not equipped
with prior knowledge-based contexts.

B. Contributions

Motivated by the aforementioned problems, such as lack of
context and prior information in the anomaly detection sys-
tems, we propose an approach that involves physics-informed
hybrid context-based anomaly detection for the power system
by utilizing prior information in the deep learning model. We
call it “hybrid” anomaly detection because it combines prior
information with multiple neural networks. More specifically,
we need to answer the primary research question of this work:
How can deep anomaly detection be utilized to discern point
and contextual anomalies in the context of complex cyber-
physical attacks?

In this sense, this paper aims to introduce a context-based
anomaly detection framework that exploits prior information
in power systems to overcome the bottleneck of black-box
detection in such approaches, enabling the system to detect
context-based malicious anomalies, even if any individual
isolated event appears to be normal. We use the CNN-LSTM-
DNN architecture, which we call CLDPhy, to detect anomalies
conditioned on a specific AGC context. CLDPhy differentiates
from the previous works in how it utilizes the relevant system
and physics-informed metrics, inter-area indices of AGC and
additional contextual information received from the control
center, to boost anomaly detection for stealthy events and en-
forces properties about how the algorithm identifies anomalous
measurements conditioned on the context. As the proposed
approach utilizes data already available in most AGC systems,
its integration with other detection systems is straightforward.
This is crucial, as the detection system would enable more

informed response. To evaluate our approach, we use the
synthetic datasets from the high-class PowerWorld simulator
based on the IEEE 37-bus model. Our results show a 36.4%
improvement in accuracy for coordinated attack detection with
contextual information. Moreover, beyond simply improving
the detection accuracy, our approach produces fewer false
positives and higher precision, recall and Fl-scores than the
other models.

II. SYSTEM AND ATTACK MODELS

This work’s main idea is to detect stealthy and coordinated
attacks that incorporate multiple attack vectors to cause dire
consequences to the critical infrastructure such as the power
grid. In this section, we discuss the problem statement and
detail the system and attack model for this paper.

A. Problem Statement

Coordinated process control loop attacks are the congre-
gation of multiple cyber-physical attack models in which an
adversary is assumed to have advanced knowledge of the
system’s control processes, such as the secondary frequency
control mechanism in the power grid [13]. The adversary starts
injecting false data into the sensor’s values in a coordinated
way to keep the attack stealthy: Ensuring the detection statistic
remains below the known thresholds. In his journey, from
one control loop to another, the adversary continually injects
malicious measurements into the critical signals, ensuring not
exceeding the threshold values for the various processes.

B. System Model

In this work, we focus on the AGC system of the power
grid. The AGC is a wide-area frequency control application
that maintains the system frequency at a nominal value (e.g.,
60Hz) and keeps the power interchange between Balancing
Authority (BA) areas at the scheduled values. The control of
the AGC mechanism relies on the closed-loop feedback control
system, consisting of sensors, actuators, and controllers (e.g.,
PLCs). The sensors measure the tie-line power flow between
BA areas, bus voltage, and system frequency, typically sent
to a control center via an industrial control system known as
a SCADA system. The AGC controller computes the control
signal known as the (Area Control Error) ACE using these
measurements after receiving them over a communication
network. For the i*" area, ACE; = a; X Pr, 4+ b; x f;, where
Pg, and f; are the i"" area’s power export and frequency
deviation of the grid, whereas a; and b; are the constants. The
ACE values are transmitted to the generators to adjust the
primary control loop set-points, and the process is repeated
every 2-4 seconds, thus completing the closed loop.

C. Attack Model

Without loss of generality, we consider multiple attack
models in the AGC system, introducing various types of FDI
attacks in different areas of the AGC system. In this direction,
such attacks are not considered once-for-all actions but an
iterated process; several iterations of an attack are required to



mount an effective attack with an adverse impact [13]. The
actions can adversely impact the performance of the AGC
system, which can cause generation imbalance and destabilize
systems’ frequency. From the defender’s perspective, such
actions can be caused for various reasons unrelated to a
cyber-attack; therefore, the absence of context to the anomaly
detection in the power system can lead to bad control decisions
with dire consequences.

Attack Implementations. This work considers multiple
attack scenarios: point anomaly-based basic attacks and con-
textual anomaly-based stealthily coordinated attacks. For point
anomaly-based basic attacks, the adversary mounts an attack
on a single measurement signal without any coordination,
which can be modeled as:

AF; = ay(Afi +S¢), (1)
AP, = ay(Apy + Sy), (2)

where AF; and AP, are the deviations caused by the attack
on frequency and tie-line signals, respectively. To this end, a
and a,, represent the attack factors for frequency and tie-line,
respectively. Sy and S, are the scaling factors with respect to
AGC set-points; the increase in values outside the acceptable
range can exceed the system’s threshold.

For contextual anomaly-based coordinated attacks, the ad-
versary mounts multi-stage attacks involving iterative cycles
with coordination, which can be modeled as:

AFL - af(t'min) X (AfL + Sf(tmin)% (3)
APf = a’[)(t’lll,f’ll) X (Apf + Sf (t'/nin,))~ (4)

The adversary mounts a multi-stage attack starting with
20 cycles of a scale attack on tie-line for minimum time in
seconds. Simultaneously, the adversary mounts a ramp attack
on tie-line 2-3, whereas a random attack is followed on the
frequency in area 3. The random attack on the frequency of
Area 3 is coordinated with the scale and ramp; it is worth
noting that the random attack is used to compensate for
the deviation of the sudden frequency change so that the
stealthiness of the attack can be maintained. The adversary
must ensure that frequency signal, ACE value, and their
corresponding rate of change must be within the acceptable
range.

III. CONTEXT-BASED ANOMALY DETECTION IN
INTER-PROCESS CONTROL LOOPS

In power systems, the effects of the attack on a single area
in one control loop must have evident side-effects and con-
nectivity concerning state variables on other areas in control
loops of the AGC, and our approach can detect the attack
there by utilizing prior information. For example, loss of
generation in Area | can cause the system frequency and load
in other areas to decrease. During the attack, such side-effects
on another control loop are inevitable because the adversary
can only manipulate the variables for the processes he has
already compromised.

A. Workflow of Detection Scheme

The proposed model uses sensor measurements including
voltage, frequency, tie-line, and power flow from the AGC time
series from PowerWorld. Additional contextual information in
conjunction with critical processes and component information
is also incorporated for the demonstration of our approach. The
model is mainly based on the Convolution Neural Network
(CNN), Long Short-Term Memory (LSTM), and Deep Neural
Network (DNN) model. Our choice of combining these layers
is motivated by [14], which indicates that LSTM performance
can be significantly improved by providing better features
to the LSTM, which the CNN layers provide, as well as
improving output predictions, which the DNN layers provide.
The main idea of the model is to feed input features of the
power system data, surrounded by temporal context, into a
few CNN layers to extract contextual features in conjunction
with reducing variations. An attention network with prior
knowledge is used to preserve contextual information and
assign weights to the power system attributes according to
its importance and relevance. The output of the CNN layer is
then fed into a few LSTM layers to reduce temporal variations,
as overviewed in Algorithm 1. Then, the last LSTM layers’
output is fed into a fully connected DNN layer, which utilizes
joint learning from labeled data and prior information to
predict contextual anomalies in the power system.

Algorithm 1 Initial Process Data Learning Algorithm

Input: Time series data X = (1, @2, T3, Z4..., T4);
Prior information, P, ;
Sliding window lengths, L1, Lo
Input/output model for CNN-LSTM-DNN;
Output: fragmented labels in D;
Optimized parameters;
Require: additional information by sliding window D, =
(dl, d2, ..,dm — X+ 1),
Ensure: Timestamp for data sequence and inter-area correla-
tion;
Initialize X,,,D;,D,;
for each Y,,/d; € D, do
Sequence generation S;;
Spatial feature extraction;
Temporal feature extraction;
extract contextual information from sub-network;
Feed to DNN;
end for

IR A o e

1) Control Invariants: The proposed anomaly detection for
coordinated attacks aims to ensure that each participating
area’s information is fragmented in the feature space, where
specific data features of the measurements are constantly
tracked. To identify the strong control invariants for the
accuracy of the results, we first employ pattern mining on the
dataset in which we get antecedent followed by consequent
as the output such that specific antecedent implies relevant
consequent.



2) CNN: We utilize the CNN attention block unit to focus
on the key features in the time-series data. In so doing, we
ensure the unit focuses on the important features in the data
and ignores the irrelevant information. The CNN module is
formed by multiple layers where each layer has a convolution
layer, a non-linear, and a normalization layer with a rectified
linear activation function. Furthermore, these layers aggregate
samples by employing pooling layers that gradually extract
key features via the stacking of convolutional layers.

The employed attention block in our work expands the
receptive field of the input, which makes the model capable
of attaining contextual information in conjunction with min-
imizing the interference of irrelevant features to the model.
Doing so allows the model to be able to discriminate between
the critical information and unimportant information of the
time-series data of the AGC.

Prior Information. Separate encoders for prior informa-
tion and data are employed, allowing it to increase/decrease
the strength of additional information and control invariants
without retraining. In so doing, two encoders are utilized for
the prior information based on control invariants and labeled
data measurements to predict anomalies conditioned on the
context.

Specific process values are parameterized by variables: po-
tential violation strength and iterative frequency. The variables
have associated scores, which are inspired by the physics-
informed process-based metrics. For example, the frequency
must not exceed 1Hz during a 15-second window, and the
ACE signal must not exceed +0.05 p.u in potential violation
strength variables. Such metrics are indicative of malicious
point anomalies; however, these anomalies complement the
contextual information. As an example, control center usually
receive weather data from weather stations to process load
forecasting in accordance with some side-channel metrics. We
correlate such metrics and we use the historical values of ACE
and tie-lines and power flow measurements as an input for
contextual analysis. The integration of prior information is
overviewed in Algorithm 2.

3) RNN-LSTM: Neural networks are usually not effective
on time series data on account of vanishing gradient prob-
lems. A Recurrent Neural Network (RNN) was introduced to
overcome such issues, ensuring that the neural network learns
the patterns over time. The RNN is capable of predicting
sequential data like actions based on previous events. However,
using more network layers by RNN makes it challenging to
keep track of parameters from the previous layers. Therefore,
a variant of RNN, called LSTM, is used to accurately predict
sensing time-series data to detect malicious anomalies. LSTM
consists of a chain structure with multiple neural network
modules, with different gates such as the input gate, output
gate, and forget gate; these gates are responsible for selecting
or rejecting the information passing through the network.

4) DNN: A deep neural network with multiple layers looks
similar to the traditional multi-layer perceptron. They are made
up of a layered network structure with a specific number of
neurons in each layer. The output layer’s node numbers and
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Fig. 1. A three-area 37-bus power grid

Algorithm 2 Integration of Prior Information and Metrics
Process
Input: training data D = (z;,y;);
Power metrics M = (my, ma, m3, ..., my);
Threshold, load-profile, spatial-temporal state;
Correlation between the plurity of AGC attributes;
Output: Adaptive capacity, Spatial-temporal states;
Optimized parameters;

Require: information encoder [, trained data encoder Ey,
decision block Bg;
Ensure: The label of each fragment correlate with the com-
puted metrics;
1: Initialize E),,Eq,Bg;
2: while not converged do
3: Get batch D from Feeder;
4 Get corresponding M for D;
5 Get features in accordance with sliding window
Wx/E,/Eq;
6 Update from gradients;
7: if any threshold then
8 update Y, Q, for t,, = 0 to #,;
9 end if
end while

-
@

activation functions are tailored to the classification issue. In
addition to the input and output layers, it has hidden layers
that can extract complex information. The DNN used in this
study contains two dense layers with the rectified linear unit
activation function and utilizes joint learning from labeled data
and prior information.

IV. EXPERIMENTS AND RESULTS

We evaluate our detection approach using simulated datasets
for different areas in the AGC system. This section first
explores the environment and model settings of our proposed
approach. Then, we evaluate our approach using different
metrics such as accuracy, precision, recall, and Fl-score for
point and contextual anomalies. Finally, we compare our
results with other baselines.



A. Case Study

We conduct PowerWorld simulations based on the three-
area IEEE 37-bus model, an industry-class simulator. Fig. 1
[4] illustrates a three-area grid with 37 buses, where the tie-
lines are represented by dotted lines. For reference, we use
historical load profiles of NY-ISO [15] to modify the dataset.
We consider it an essential step to verify the reliability of the
dataset. The states are composed of the voltage, frequency,
power flow of the individual buses, tie-line measurements, and
the ACE values for various areas. Furthermore, each generator
is equipped with 4 second AGC cycle length.

We collect the normal data, and thereafter, we implement
false data attacks as reflected in the literature as well as
presented in Equations 1-4. Realistic ACE patterns were
inserted into this synthetic AGC system. We manually tune
the measurements to simulate load fluctuations in multiple
areas of the AGC system. The added measurements do not
violate any predefined rules for the standard power system
scenarios; however, the modification can be anomalous under
given conditions based on prior information. To mimic a
ramp attack, we carefully inject the attack sequence with
respect to ramp up/down generators and deviate frequency and
ACE measurements in a coordinated way. The exploitation of
vulnerabilities and mounting actual attacks is not the scope
of this work. Besides, we realize that combining synthetic
and real data can inevitably introduce bias; therefore, we
analyze the distribution manually to reduce the bias as much
as possible.

B. Context-based Anomaly Detection

We implement our approach using Tensorflow 2.0 with
Anaconda 3.0 for programming in Python. We add feeding
features into a CNN and perform temporal modeling with
an LSTM. We then feed this output into two connected
layers of DNN. We also analyze the effect of using different
combinations of deep learning. We investigate the impact of
adding LSTM before the fully connected layers of DNN. We
then compare our approach with several other approaches such
as LSTM, CNN-LSTM, and LSTM-DNN and methods that
only focus on point anomalies. Sliding windows are used to
split the data traces. Power measurements, including sensors
and actuation values in conjunction with prior information,
are given as input features in our approach. The correlation
of information with the attributes ensures the improvement in
the model performance in the employed algorithm context.

We trained our model in two settings: with and without prior
information context. The “without prior information” setting
contains no additional physics-informed metrics and contex-
tual information. The “with prior information” setting is more
representative of the information about the control process of
AGC, which includes the physics-based system metrics and
other attributes relevant to the power system. Furthermore, we
evaluate our approach on two sets of attack scenarios: basic
FDI attacks and coordinated attacks. The “point anomaly”
refers to an anomalous event based on threshold violations.
The “contextual anomaly” is a stealthy attack event that looks

TABLE I
RESULTS AND COMPARISON

Basic FDI Attack with Point Anomaly

Method [ Accuracy | Precision | Recall
LSTM 81.2% 74.4% 72.4%
CNN-LSTM 84.2% 78.1% 76.2%
LSTM-DNN 59.6% 56.2% 51.2%
CLDPhy (contex- | 96.4% 95.3% 94.5 %
tual with prior)

CLDPhy  (non | 85.2% 84.3% 80.5%

contextual
without prior)

Coordinated stealthy FDI Attack with Contextual Anomaly

LSTM 40.2% 37.5% 34.2%
CNN-LSTM 55.2% 54.5% 53.6%
LSTM-DNN 37.3% 32.4% 28.2%
CLDPhy (contex- | 93.2% 92.5% 91.6%
tual with prior)

CLDPhy (non | 56.8% 54.3% 52.8%

contextual
without prior)

normal without context. True positives (TP), true negatives
(TN), false negatives (FN), and false positives (FP) are used
for performance results. These four results are used to compute
the metrics for evaluation of our results:

Accuracy =TP + TN, (5)
TP
P ] ] = ———
recision TP+ P (6)
TP
= ——— 7
Reca TP FN’ @)

precision X recall
F1 — scorec =2 x

®)

precision + recall”

We illustrate the results and comparison of our approach
in Table 1 and Fig. 2. Our detection approach is superior
compared to other models for both point and contextual
anomalies. For the basic FDI attacks with point anomalies,
CLDPhy with prior information performs significantly better
as expected, since the prior information compliments the
detection algorithm with more context and accuracy. The
models without CNN layers have less accuracy, precision, and
recall, which justifies the advantage of having a CNN layer
that provides better features for temporal modeling. It is worth
noting that increasing window size improved the accuracy and
recall results for all the methods; CLDphy clearly outperforms
other methods.

CLDPhy performs significantly better compared to all the
algorithms against coordinated stealthy attacks with contextual
anomalies. Systematically removing prior information from
our approach for coordinated attacks observed drastic per-
formance degradation; for example, accuracy decreases from
93.2% to 56.8%, although the performance change in basic
FDI detection is not significant (from 96.4% to 85.2%).
These results can be attributed to the nature of anomalies
and detection approach. For example, the coordinated stealthy
attack does not reflect any apparent malicious anomalies;
therefore, providing context with additional information boost
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Fig. 2. Comparison results of F1-score under different sliding window lengths

the performance of the detection algorithm. These results
support that the prior information-based contextual attributes
are vital for the approach to making a conditional inference.
More specifically, our approach can achieve high F1-scores;
better F1 scores are essential when the FN and FP are crucial.
Moreover, F1 is more significant in contextual detection to en-
sure that specific stealthy attacks are prevented that can cause
more damaging effects on the power systems. Fig. 2 shows
the Fl-score with different window sizes. The CLDphy with
contextual information has better Fl-scores comparatively.
However, performance degrades when the window length is
larger than 30 due to the time duration of attacks for basic
FDI attacks and point anomalies. In particular, Fl-scores
for CLDPhy without prior information against coordinated
stealthy attacks suffer more degradation. In contrast, CLDPhy
with contextual information performs significantly better, and
an explanation for this result can be attributed to the contextual
anomalies utilization by the algorithm throughout the sliding
window lengths. We note that reducing false positives and
recall performance can be improved further by optimizing
some factors, such as increasing the attack threshold and
incorporating attack scenario-specific metrics into the model.

C. Limitations

We realize the limitations of generalizing the results of
this paper to other complex cyber-physical system datasets,
particularly those with more dynamic power system attributes.
Moreover, there might be some practical limitations in terms
of incorporating a wide range of physics-informed attributes;
the input to the CNN model is manually designed to capture
correlations of sensor readings. However, the main idea of
our approach is to reduce the false-positive ratio by detecting
anomalies based on specific contexts.

V. CONCLUSION AND FUTURE WORK

We proposed a context-based anomaly detection approach
based on deep learning for the power system. Our strategy to
reduce the number of false positives and increase the accu-
racy, precision, recall and Fl-scores involved utilizing hybrid
classifiers; a feature extractor and temporal matcher with a
given prior information context. Unlike similar works, our

approach utilized additional physics-informed metrics from
multiple areas of the AGC to detect context-wise anomalies
based on prior information, specifically tailored for coordi-
nated attacks. We observe that our proposed approach clearly
demonstrates superiority compared to other baselines, and re-
flects the efficacy of contextual prior-information; for example,
CLDphy with contextual prior-information achieved accuracy
of 96.4% and 93.2% compared to the accuracy of 85.2% and
56.8% without contextual prior-information for basic FDI and
coordinated attacks, respectively.

The proposed approach can be extended to more diverse
attack scenarios by incorporating a wide range of prior
information based on physics, communication, and control
processes. Moreover, individual prior information attributes
can be analyzed in terms of the efficacy of the anomaly
detection performance. Other aspects can also be considered
to improve the efficacy of this work, such as combining sensor
measurements and network packets in a hybrid neural network
architecture.
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